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SUMMARY

Antimicrobial resistance (AMR) in pig populations is a public health concern. There is a lack of
information of spatial distributions of AMR genes in pig populations at large scales. The
objective of the study was to describe the spatial pattern of AMR genes in faecal samples from
pig farms and to test if the AMR genes were spatially randomly distributed with respect to the
geographic distribution of the pig farm population at risk. Faecal samples from 687 Danish pig
farms were collected in February and March 2015. DNA was extracted and the levels of seven
AMR genes (ermB, ermF, sull, sulll, tet(M), tet(O) and tet(W)) were quantified on a high-
throughput real-time PCR array. Spatial differences for the levels of the AMR genes measured as
relative quantities were evaluated by spatial cluster analysis and creating of risk maps using
kriging analysis and kernel density estimation. Significant spatial clusters were identified for
ermB, ermF, sulll and tet(W). The broad spatial trends in AMR resistance evident in the risk
maps were in agreement with the results of the cluster analysis. However, they also showed that
there were only small scale spatial differences in the gene levels. We conclude that the
geographical location of a pig farm is not a major determinant of the presence or high levels of

AMR genes assessed in this study.
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INTRODUCTION

After the Swann Report was published in 1969 [1],
antimicrobial resistant (AMR) bacteria and the use
of antibiotics in animals have been under scrutiny
for their potentially negative effects on human health.
Every year in Europe, more than 25 000 people die of
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diseases caused by AMR bacteria [2]. Management of
this problem would benefit from an epidemiological
approach to identify both direct and indirect causes
of human infections arising from AMR bacteria.
Bacteria harbouring AMR genes are present in por-
cine faeces [3, 4], and it is generally accepted that
AMR bacteria can be transferred from animals to
humans through meat consumption [5] and via direct
contact with pigs [6, 7]. Spreading slurry on farmland
for the purposes of crop fertilisation might be a third
way of transferring AMR genes from pigs to humans
as fertilisation with porcine manure can increase the
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AMR levels in soil [8, 9]. The relative importance of
transmission through meat compared with other
transmission routes vary from gene to gene depending
on the bacterial host of the gene.

Some bacteria are intrinsically resistance to AMR.
Therefore, the bacterial composition of the porcine
gut will affect the levels of the AMR genes. Previous
studies have identified spatial patterns in the distribu-
tion of the different bacterial pathogens of livestock
[10-13]. Thus, this study was planned with the
hypothesis that AMR genes show a non-random spa-
tial distribution. This hypothesis is supported by pre-
vious studies that have found spatial patterns of
phenotypic AMR in enteric pathogens [14] and indi-
cator bacteria [15]. In this study, we report the spatial
patterns of the endemic levels of seven selected AMR
genes in faecal total community DNA from pig farms.
To the best of our knowledge, this is the first study of
its kind. The pigs from which the samples were
obtained had no clinical signs of disease. Therefore,
the levels of AMR genes are assumed to reflect the
background level of AMR in the Danish pig popula-
tion, potentially acting as a reservoir for AMR in
humans. The present study was designed to assess
whether the spatial distribution of seven selected
AMR genes was random with respect to the geo-
graphic distribution of the pig farm population at risk.

Seven genes, ermB, ermF, sull, sulll, tet(M), tet(O)
and tet(W) were included in this study because they
have previously been identified as being present on
Danish pig farms and a validated qPCR assay was
available for testing for the presence of these genes
[4]. The genes included in the assay comprise genes
coding for two of the three most commonly used anti-
microbial classes in Danish pig production, tetracy-
clines and macrolides [16]. The ermF and ermB
genes code for resistance against macrolides whereas
the tet(M), tet(O) and tet(W) genes encode resistance
against tetracycline. These genes were included
because they are expected to be found at high levels
in some farms and could be used for detecting poten-
tial differences between farms. This might not be the
case if the differences were below the sensitivity of
the qPCR. Furthermore, the assay included two
genes that are relatively rare in finisher pigs, i.e. the
sull and sulll. Sulphonamides, the antimicrobial
class that these two genes encode resistance against,
are rarely used in finisher in Danish pig production
[16]. Evaluation of the levels of AMR genes using spa-
tial statistical and geostatistical methods can be useful
in generation of hypotheses regarding how the genes
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might spread through pig populations. Identification
of spatial clustering of farms according to a specific
AMR gene would provide a foundation for further
analyses to explain the presence of these clusters, aid-
ing our understanding of determinants of AMR genet-
ics among Danish pig farms. This would help in the
introduction of surveillance and monitoring systems,
as well as preventive initiatives to limit the extent of
AMR genes in pig farms. Furthermore, the findings
of risk areas for specific AMR genes would indicate
that the AMR genes are spread from farm to farm.

The objectives of the study were to describe the spa-
tial patterns of AMR genes in faecal samples from pig
farms and to test if the AMR genes were spatially ran-
domly distributed.

METHODS
Study design and sampling

This was a cross-sectional study with sampling
carried out from 2 February 2015 to 3 March 2015.
The sampling period was restricted to these months
to avoid seasonal changes in the level of AMR in
pig farms [17].

Sampling took place at five of the seven largest
Danish-owned slaughterhouses for finisher pigs in
Denmark to ensure spatial randomness. Previous
investigations showed that these slaughterhouses pri-
marily received pigs from local farms [unpublished
data]. The remaining two slaughterhouses were
excluded because one primarily slaughtered pigs
from free-range and organic farms, and the other
was located on Bornholm. This remote island was
excluded for all analysis, and therefore in this study
‘Denmark’ refers to ‘Denmark excluding Bornholm’.

The number of farms to sample at each slaughter-
house was weighted according to the average number
of farms sending pigs to slaughter during two 5-week
periods starting from February and November 2014.
The data used to plan the sampling were meat inspec-
tion data. These data were obtained from the Danish
Classification Inspection and include details of indi-
vidual pigs slaughtered at each of the study slaughter-
houses. A total of 15 31 600 finishers were slaughtered
in Denmark in February 2015 [18]. Of these, 13 65 963
(89%) were slaughtered at the seven major
slaughterhouses.

In Clasen et al. [4], it was demonstrated that sam-
ples from five pigs were sufficient to obtain a represen-
tative sample of AMR genes at farm level. However, it
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was not known in advance which farms were sending
animals for slaughter on a given day or how many
pigs they would send. Hence, a purposive sampling
strategy was adopted: when a number of pigs from
the same farm were identified at the slaughter line,
five of the pigs were sampled. That this approach
resulted in a random sample that was later verified
using meat inspection data from the sampling period
[unpublished data]. Slaughterhouse technicians, who
were introduced to the sampling methods by the first
author on the first sampling day, collected the sam-
ples. The samples were taken at the slaughter line
after the gut was removed from the carcass by squeez-
ing a small amount of faeces out of the rectum into an
empty 12-5 ml sample glass. The samples were kept at
room temperature until all samples were collected for
the day, and were then placed in a Styrofoam box with
cooling elements and mailed overnight to the labora-
tory. Some deliveries were delayed by one day, but
the cooling element was still frozen at arrival and
the samples were deemed to be valid.

Quantification of AMR gene levels

The five samples per farm were pooled into a single
aliquot and AMR levels were quantified as described
by Clasen et al. [4]. Pooling was performed by taking
an amount fitting the eye of a 10 ul inoculation loop
from each of the five samples and dissolving it in
3:5 ml phosphate buffered saline (PBS). The pooled
samples were vortexed individually and 2 ml of them
was stored at —20°C until further processing. DNA
was extracted with the Maxwell 16 Blood DNA
Purification Kit (Promega) and DNA concentrations
were diluted to 40 ng/ul. Seven AMR genes (ermB,
ermF, sull, sulll, tet(M), tet(O) and tet(W)) were
included in the study as a high-throughput real-time
PCR (qPCR) assay was optimised and ready to use
[4]. The genes were quantified using the high-capacity
gPCR chip ‘Gene Expression 192 x 24’ (Fluidigm) with
two technical replicates. The amplification efficiency of
the primers was determined by standard curves and
obtained results were normalised with 16S ribosomal
DNA, which was used as the reference gene.

Data analysis

Raw quantification cycle (Cq) values generated by the
gPCR were taken from the Fluidigm Real-Time PCR
Analysis Software version 4.1.3 [19] and exported to
R version 3.2.2 [20]. The mean of the Cq values for
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technical replicates for each sample per gene was cal-
culated. The C, values were corrected with the inter-
plate calibrators included in all runs, along with an
efficiency calibration [21] calculated from standard
curves generated for each of the primer sets [4]. The
C, value reflects the number of PCR cycles until a pre-
defined threshold is reached. Therefore, high C, values
reflect a low-level presence of the gene. Values above
gene-specific limits of detection [4] were coded as non-
detects. Relative quantification (RQ) values indicate
the quantity of genes in relation to the total amount
of bacterial DNA found in the sample. The latter
was measured by the reference gene 16S. The RQ
values were calculated using the Livak method [22]
as follows:
RQprimersetX — 2—(Cq,gene of interest = Cq,reference gene)'

The RQ value was calculated for all genes
except sull and sulll. Samples with non-detects were
excluded before calculating the RQ values. Due to a
large number of non-detects among the samples for
sull and sulll, these genes were dichotomised as pre-
sent or absent and analysed on a binary scale. The
gene was deemed to be present if the qPCR assay
resulted in a C; value even though it was above
limit of detection.

Genes with RQ values were also grouped according
to the quantiles of the RQ values, as it is not known
whether quantitative levels of AMR genes measured
by the C, values show a linear relation to the amount
of the gene present in the sample.

Spatial analyses

To test the hypothesis that the distribution of the
seven AMR genes were not randomly spatially distrib-
uted two sets of complimentary spatial analyses were
conducted. First, spatial cluster analysis using scan
statistic was performed to identify significant areas
with significantly higher or lower risk (or higher or
lower mean RQ values) of the seven AMR genes.
Secondly, risk maps created using kriging and kernel
density estimation were developed to allow us to visu-
alise and describe the geographic distribution of AMR
genes.

Cartesian coordinates given in UTM EUREF&9
zone 32 format were obtained from the national
Central Husbandry Register where all pig farms in
Denmark are registered with a unique identification
number [23].
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Spatial cluster analysis

The spatial scan statistic is a non-parametric test for
the presence of clustering of events, accounting for
the geographically irregular distribution of (in this
example) the Danish pig farm population at risk.
The spatial scan statistic is a cluster detection test
able both to identify and to test the significance of
specific clusters while it simultaneously provides the
location of the clusters. Purely spatial cluster analyses
were performed to identify spatial clusters of low and
high levels of the AMR genes. Briefly, the test sequen-
tially centres a circle or an ellipse in each farm in the
study population and compares the RQ values of the
AMR genes inside the circle with the RQ values of
the farms outside. This circle or ellipse is called the
search window. The search window will be increased
until it reaches a predefined maximum. The predefined
maximum can either be a specified size the search win-
dow (i.e. radius of the circle) or a maximum propor-
tion of the population at risk inside a cluster. Often
the maximum is set by using existing epidemiological
knowledge of the disease in question. However, in this
study no such information was available and different
settings were used. The likelihood function was com-
puted for each search window. The cluster with the
highest likelihood constitutes the most likely cluster.
Spatial scan analysis was carried out for the seven
AMR genes separately. Depending on the type of
the variable used for the analysis different models
(i.e. statistical distributions) can be selected. Three
different models were used:

(1) A normal model [24] for continuous RQ
values for ermB, ermF, tet(M), tet(O) and tet
(W). The model calculates the mean within
and outside the search window and the level of
significance is calculated for the difference
between the two means. The normal model imple-
mented in SaTScan can also handle non-normal
data [24].

(2) A multinomial model [25] for ordinal RQ values
in quantiles for ermB, ermF, tet(M), tet(O) and
tet(W). The model calculates the expected and
observed number of observations within each cat-
egory for each search window and thus results in a
relative risk for each of the four categories of the
genes in relation to the other categories.

(3) A Bernoulli model [26] for binary values for sull
and sulll. Samples where the gene was present
were defined as cases, and samples where the
gene was not present were defined as controls.
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For each model and gene, the cluster analysis was
run with different parameter settings for the shape
of the search window (elliptic or circular) and the
maximum percentage of the population at risk was
included in clusters (1, 5, 12-5, 25 or 50% of the popu-
lation). For the Bernoulli and normal models, the
search for high- and low-level clusters was carried
out simultaneously. The test statistics are generated
using a randomisation process based on Monte
Carlo simulation. The number of iterations for all
tests was set to 999. The most likely cluster and a num-
ber of secondary clusters will be identified. Only sec-
ondary clusters that did not overlap with the most
likely cluster were requested. If a cluster is identified
the test determines its significance and the cluster
declared statistically significant if the P-value was
less than the o level of 0-05.

Risk maps

Kriging and kernel density estimation were used to
estimate values of a variable at an unmeasured loca-
tion from observed values at surrounding locations.
Kriging was used for continuous variables (RQ values
of the AMR gene levels) and kernel density estimation
was used for binary variables (presence of sull and
sulll genes). Kriging and kernel density estimation
techniques were used to describe the first-order trends
in the spatial distribution of AMR genes.

For both kriging and kernel density estimation ana-
lyses a regular grid comprised of individual cells 5 km
length east to west and 5 km north to south was super-
imposed over the geographic boundaries of Denmark.

The ordinary kriging and the kernel density estima-
tion analyses were done according to Bihrmann et al.
[10] where details on mathematical equations can be
found. The methods are explained briefly in the fol-
lowing sections.

Kriging

Kriging is considered an optimal method of spatial
prediction of variables representing a spatially con-
tinuous surface. It refers to a family of least-square lin-
ear regression algorithms that attempt to predict
values of a variable at locations where data are not
observed, based on the spatial pattern of the observed
data. Ordinary kriging is a common method to use
and it relies on the observations of the target variable
and its corresponding spatial positions. Kriging has
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the advantage that along with a smooth surface of
predicted values, prediction variance is also estimated.
Kriging is a weighted average of observed values,
where the weight function is based on the spatial vari-
ation between measurements which is modelled by the
semivariogram. Kriging can be used to estimate the
spatial distribution of a disease measured at farm
level (e.g. farm level incidence or prevalence of
infected animals) [10, 27-29]. Although the disease
variable is measured in particular farms it is assumed
that the disease variable represents a spatially continu-
ous surface of the disease level. This can be interpreted
as the disease level we would expect at the location of
a virtual (or new) farm. The method assumes a sta-
tionary rate, but it has also been effective on non-
stationary rates [30].

Semivariograms were derived to obtain estimates of
three parameters (range of influence, nugget and par-
tial sill) that were then used to estimate the spatial
variation and the weight function for kriging.
Semivariograms measure the degree of dissimilarity
between observations as a function of the distance.
Typically, semi-variance, half the variance, increases
as the distance between the locations grows until at
some point the locations are considered independent
of each other and the semi-variance no longer
increases. If neighbouring data points resemble each
other more closely than those further apart spatial
dependence is assessed to be present. This would be
indicated by a rising curve in the semivariogram,
which plateaus as the similarities diminish with
increasing distance. A semivariogram is characterised
by three parameters the nugget effect, the sill and the
range of influence. The nugget effect refers to the
variability in the variable that cannot be explained
by distance between the observations. Many factors
influence the magnitude of the nugget effect including
imprecision in sampling techniques, underlying vari-
ability of the attribute that is being measured, and
the minimum spacing between observations. The lat-
ter is due to no observations sampled close to each
other, it is impossible to estimate spatial dependence
at small distances. The sill refers to the maximum
observed variability in the data and corresponds to
the variance of the data. The difference between the
sill and the nugget effect (the partial sill) represents
the amount of observed variation that can be
explained by distance between observations. Finally,
the range of influence is the point at which the semi-
variance stops increasing and represents the distance
at which two observations on average are not
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correlated. Often a model is fit to the semivariogram
to estimate the parameters and in order to make use
of the spatial dependence in other statistical techni-
ques, including the kriging analysis.

In the present study kriging has been used to esti-
mate the spread patterns of AMR gene levels. The
spatial dependence would be a result of neighbouring
farms having more similar AMR gene levels than
those that are further apart. For each gene, two semi-
variograms were created, one as a primary analysis
and the other as a sensitivity analysis. The semivario-
grams were created in two ways, the first was chosen
where possible and the second as an alternative:

(1) Two models with different parameter settings were
fitted to the same semivariogram.

(2) Two semivariograms were fitted using different
lag widths, to which models with equal settings
were fitted.

An exponential semivariogram model was used and
the best fitted model was chosen. The model semivar-
iogram parameter estimates the partial sill, the nugget
effect, and the practical range of influence (three times
the range of influence reported by the fitted model)
were reported.

Directional semivariograms in four directions
(north, north-east, east and south-east) were estimated
to visually evaluate anisotropy. Anisotropy exists if
there are substantial differences between the semivar-
iograms in different directions.

For each semivariogram model, ordinary kriging
was performed using the grid and repeated with dif-
ferent numbers of nearest neighbours in the kriging
estimation. The number of neighbours ranged from
15 to 50 farms with intervals of five farms. A
smoothed map showing the distribution of AMR
gene levels measured in RQ values across Denmark
was then produced. Furthermore, the prediction var-
iances were plotted as an estimate of the uncertainties
in the maps.

Kernel density estimation

The first-order spatial trend in the distribution of pig
farms with sull and sulll genes was described using
kernel density estimation methods. Kernel density
estimation gives weighted means for each location in
the study region. Here a Gaussian, edge-corrected ker-
nel smoothed map of gene-positive farms (showing the
number of gene-positive farms per square kilometre)
was computed as the numerator and a kernel
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Fig. 1. Descriptive statistics of the genes. (@) The distribution of the RQ values for the ermB, ermF, tet(M), tet(O) and tet
(W) genes. (b) The distribution of sull and sulll genes; grey indicates the absence of the gene, while black indicates the

presence of the gene.

smoothed map of all of the sampled pig farms com-
puted as the denominator using the ‘spatialkernel’
package in R [20, 31]. A raster map showing the
prevalence of sull- and sulll-positive farms (expressed
as the number of gene-positive farms per 100 farms
per square kilometre) was produced by dividing
the numerator raster map by the denominator.
Bandwidths for each of the kernel smoothed maps
were calculated using the normal optimal method
and an average of the bandwidths for the positive
and negative farms were used [32].

Software for spatial analyses

All data were handled in R version 3.2.2 [20]. Spatial
cluster analysis was performed in SaTScan version
9.4.1 [33]. Maps were derived using the ‘sp’ package
[20, 34]. Semivariograms, ordinary kriging and kernel
density estimation were performed using the ‘gstat’
package in R version 3.2.2 [20, 35]. Bandwidths for
the kernel density estimations were computed using
‘sm’ package in R version 3.2.2 [20, 32].

RESULTS
Study population

The cross-sectional study comprised a study population
of 687 Danish indoor non-organic pig farms with
finishers sent to slaughter in Denmark. Samples were
collected from 129, 253, 125, 104 and 76 farms, respect-
ively, from the five slaughterhouses. More information
regarding the farms can be found elsewhere [unpub-
lished data]. The sampling technique resulted in an
almost random spatial distribution of the study popula-
tion with respect to the Danish finisher pig farms at risk
with relative under-sampling in the western part of
Jutland. The spatial distribution of AMR genes in this
area should be evaluated carefully [unpublished data].
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Levels of the AMR genes

The distribution of the RQ values for each gene and
the distributions of presence and absence of su/l and
sulll can be seen in Figure 1. For tet(M), 43 samples
were excluded from the analyses on the basis of non-
detection, and for ermF, 19 samples were excluded
from the analysis for the same reason. Of these sam-
ples, two were excluded from analysis for both ermF
and tet(M). No samples were excluded for ermB, tet
(O) and tet(W).

Spatial cluster analysis

Different parameter settings resulted in slightly differ-
ent cluster locations and sizes. If two clusters were
found in the same area the cluster including the high-
est number of farms was shown on the map (Fig. 2).
The following significant spatial clusters were found:
two high-risk clusters for ermF, one low-risk cluster
for ermF, ermB and tet(W), and one high-risk cluster
for sulll. For ermB, ermF and tet(W), the reported
clusters were found with the multinomial model. No
significant spatial clusters were found for su/l, tet(M)
and zet(O).

Risk maps

Semivariograms for the ermB, ermF, tet(M), tet(O)
and tet(W) genes are shown in Figure 3. Table 1
shows the parameters for the chosen exponential semi-
variogram model. The model estimates for tet(O) were
very similar, whereas the model estimates for fet(W),
tet(M), ermB and ermF differed between the two mod-
els (results not shown). The directional semivario-
grams showed no indication of anisotropy for any of
the genes (results not shown).

Using the two models from the semivariogram and
different numbers of nearest neighbours in the
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Fig. 2. Results of cluster analysis of AMR genes. Blue dashed lines indicate low-risk clusters, while red solid lines indicate
high-risk clusters. Relative risk (RR) for multinomial models (i.e. ermB, ermF and tet(W)), the RR is indicated for each of
the categories (1-4) in relation to the other models. For the Bernoulli model (i.e. su/Il), the RR indicates the risk of being
positive relative to the risk of being negative. N, number of farms in the cluster.

estimation of the RQ value only introduced minor
changes to the estimated value. The visual patterns
of high, medium and low levels for all genes did not
change. A stable kriging map was produced with 40
nearest neighbours, so this number was chosen in
the shown kriging maps (Fig. 4). Colours going
form blue to increasing darker red on the maps indi-
cate an increasing RQ value reflecting a higher level
of the AMR gene.

Figure 5 shows the results of the kernel density esti-
mation for su/l and sulll. Colours going from yellow
to increasingly darker red indicate increasing popula-
tion prevalence for the genes found in the area. The
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common bandwidth used for both genes was (22773
m and 32971 m, respectively).

DISCUSSION

This study showed that the some AMR genes found in
faecal samples from pigs are not completely randomly
spatially distributed. In the spatial cluster analysis,
one low-risk cluster for ermF, ermB and tet(W) and
two high-risk clusters for ermF were identified,
together with one high-risk cluster for sulll. No clus-
ters were found for sull, tet(O) and tet(M). The size
and location of the clusters varied among the genes.
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Fig. 3. Semivariograms. On each semivariogram, the fitted model is shown as black line. Each dot in the semivariogram
cloud represents a point-pair of farms. Point-pairs comprised by farms within the distance of a specified lag width are
plotted against the half of the variation (semi-variance) in the RQ values for the gene on the y-axis. When the cloud
flattens out the relationship between the pairs of locations beyond this distance is no longer correlated. This distance is
defined as the range of influence. However, when an exponential model is used the range of influence is multiplied by
three to get the practical range of influence. The sill is defined as the semi-variance at the point where the semi-variance
model flattens and the nugget effect is the intersection of the model and the y-axis. The partial sill is the sill minus the
nugget.
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Table 1. Semivariogram settings and parameter estimates

Parameter estimates in fitted exponential semivariogram

model Semivariogram settings*
Model setting*

Gene Nugget Partial sill Practical range of influence, km Weighing Lag width, m Cut-off, m
ermB 0 0-0021 2-0 Nj/hj2 500 80000
ermF 1-47¢7°  9:5¢77 2:1 Nilg 1000 None
tetM) 0 2-06e~’ 1-9 Ni{y(hy)}y? 1000 None
tet(O) 0-00015 0-000640 34 Nj/hj2 1000 None
tet(W) 0-0057 0-0048 99 ]\Q-/{y(hj)}2 500 50 000

* Refers to settings in the programming in R. ; represents the distance in metres; N; represents the number of point-pairs; lag
width represents the step size of distance intervals for creating the semivariogram; and cut-off represents the maximum dis-
tance at which pairs of data points will be considered for inclusion in the semivariogram.

The clusters on Zealand include fewer farms than clus-
ters of a similar size in Jutland. This is due to an
uneven distribution of farm locations in Denmark
[36]. The clusters found by the multinomial model
have a relative risk above one in either category one
and two, or in category three and four, meaning
that they are either high-risk clusters or low-risk clus-
ters. No mixed clusters were found. It is possible that
the current sample size is insufficient to show cluster-
ing for the three genes where no clusters were found, if
they truly exist. The risk maps created with kriging
analysis and the kernel density estimation were con-
sistent with the results of the spatial cluster analysis.
Both interpolation methods and the spatial cluster
analysis showed consistent results with different par-
ameter settings, indicating that the findings regarding
the absence and presence of spatial differences for the
genes could be considered reliable. The spatial scan
statistic provides the location, size and significance
of any clusters identified. Because its approach is cir-
cular or elliptic in nature, the assessment of clusters
along natural or artificial borders may be biased to
some extent. However, the spatial scan statistics can
account for irregular dispersal of the farms over
space which is the case for the distribution of pig
farms in most countries including Denmark. On the
other hand, this irregular dispersal of farms can lead
to unreliable estimates of interpolation. The kriging
analysis provide an error map and this show that for
most parts of the country the predictive values are
provided with the same error level. In the north-
eastern part of Zealand very few pig farms are located
why this area is associated with a higher prediction
variance and thus a higher uncertainty is associated
with the RQ values predicted in those areas.
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To the best of our knowledge, this is the first study
to report spatial patterns of AMR genes of total com-
munity DNA from porcine faeces. However, it is not
the first to evaluate spatial patterns of AMR in
Danish pig farms. A previous study in Denmark [15]
evaluated spatial patterns in ampicillin resistance in
Escherichia coli. However, E. coli only constitutes a
small part of the porcine gut microbiota. The present
study evaluates AMR genes in total community
DNA, thereby taking into account all bacteria in por-
cine faeces and for several AMR genes. This means
that there is no indication of which bacteria are
found in the samples and in which bacteria the
AMR genes are harboured. The AMR genes included
in the study might be harboured in different bacterial
species. The spatial distribution of the bacteria species
would therefore affect the spatial distribution of the
AMR genes. This could be the reason why spatial
autocorrelation is found for some of the genes and
not for other genes.

Many factors contribute to the occurrence of AMR
in farms and in the environment. The different pat-
terns in the semivariogram might suggest that the
genes are spread by different mechanisms. Local dif-
ferences in antimicrobial usage or in the presence of
bacterial species are two factors that might explain
the spatial patterns of AMR genes [37]. There is evi-
dence for local variation in the prevalence of different
bacteria in Danish pigs [38]. The local distribution of
bacteria might be affected by introducing live pigs into
the farm, as these movements of live pigs for meat
production occur very locally in Denmark [39].

Antimicrobial usage has been shown to be spatially
clustered in Denmark [36] and therefore AMR genes
could be expected to cluster accordingly. It is
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Fig. 4. (@) Risk maps for the levels of ermB and ermF genes produced by ordinary kriging. Each panel shows the
distribution of predicted RQ values and the corresponding map for the prediction variance. The legends are unique for
each gene due to the heterogeneous distributions of the genes even though same colour scale is used to produce the maps.
(b) Risk maps for the levels of tet(M), tet(O) and tet(W) genes produced by ordinary kriging. Each panel shows the
distribution of predicted RQ values and the corresponding map for the prediction variance. The legends are unique for
each gene due to the heterogeneous distributions of the genes even though same colour scale is used to produce the maps.
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sull ratio

<0 [023.044)
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O [0:52,0-55)
O $-55,058)
B [0-58,076]

sulll ratio
[0-39,0-57)
[0-:57,0-64)
[0-64,0-67)
¥-67,0-7)
[0-7,0-84]

Fig. 5. Risk maps for the prevalence of the sull and sulll genes. The maps are created using kernel density estimation.

interesting to note that for genes coding for resistance
to the same antimicrobial class, significant spatial
clusters were found for some of the genes, such as
sulll and tet(W), but not for others such as su/l and
tet(M) or tet(O), indicating that local patterns of anti-
microbial usage cannot explain the spatial clusters
alone. Another explanation for spatial patterns of
AMR could be local differences in feeding strategies.
It was not possible to assess this factor in the current
study, as feeding practice is not recorded in any
nationwide Danish register. Feeding strategies can
alter the composition of the pig gut microbiome, lead-
ing to an increase in Bifidobacterium spp., which con-
stitute a large part of the animal gut microbiota and
promotes gut health [40]. The tet(W) or tet(M) genes
are highly prevalent among Bifidobacterium spp.
[41]. Furthermore, tet(M), tet(O) and tet(W) have
been found in different types of swine feed [42] and
might be present in probiotic microorganisms also
used in some feeding schedules [43] which could sign-
ificantly affect the distribution. The distribution of the
tet genes in particular might be caused by differences
in feeding practices or gut microbiota of the pigs. This
study has shown that the 7ez(W) gene is present at the
highest levels, and that there is a large variation in
these levels among the sampled farms.

Within the practical range of influence, the farms
are correlated, but due to the methods used in this
study, it is not possible to estimate the size of the auto-
correlations by for example a correlation coefficient.
We deemed this to be beyond the scope of the paper
as it is a purely descriptive study. Furthermore, there
is no available method for assessing the adequacy of
a fitted semivariogram model, and these results should
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therefore be treated with caution. In addition the
accuracy of the semivariogram at small scale is weak
because it is not possible to sample within a smaller
distance than the distance between two pig farms. It
is also important to note that only indoor, non-
organic finisher farms were included in the study,
and the spatial relationship might not be applicable
for all Danish pig farms.

The risk maps showed results consistent of the clus-
ter analysis, but also that the spatial difference were at
small scale. Spatial clusters were found for specific
AMR genes in Danish pig farms. However, the spatial
distribution does not reveal major cold or hotspots in
Denmark for the genes in question.

The conclusion was that the geographical location
of a pig farm is not the major risk factor for presence
or high levels of the AMR genes included in the study.
Further analyses are needed to explain the clusters
found in this study.
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