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Abstract

We consider irreducible Goppa codes of length qm over IF, defined by polynomials of degree r, where
q = p' and p, m, r are distinct primes. The number of such codes, inequivalent under coordinate
permutations and field automorphisms, is determined.
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1. Introduction

Apart from their intrinsic interest, irreducible Goppa codes are of particular impor-
tance because of their application in public-key cryptosystems, since the McEliece
cryptosystem [8, page 1217] is based on such a code. However, not all irreducible
polynomials of a given degree over a finite field generate inequivalent codes and so
it is of interest to investigate how many distinct codes can be generated in this way
(see Gibson [4]). Chin-Long Chen [2] gives an upper bound for the number of such
codes which is not tight. In this paper we give an improved bound for Goppa codes
of length qm, defined by irreducible polynomials of degree r, where q — p' and p, m,
r are distinct primes. We call such codes G-codes for short. To avoid trivial cases we
insist that r + 1 < qm - 1, and if q = 2 that 2r + 1 < 2m - 1.
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Our aim is to count G-codes up to equivalence under coordinate permutations and
field automorphisms of F, (where the same automorphism is applied to each compo-
nent of a codeword: p(ci , . . . , cq») = (p(ci), . . . , p(,cq«,)) for p e Gal(F,«/F,)). It
is easy to prove that Goppa codes are transformed into Goppa codes by these oper-
ations. It does not seem likely that a monomial transformation (over F,), which is
not a scalar multiple of a permutation, sends one Goppa code to another one, but we
have not been able to establish this definitively. If it is indeed the case then the result
that we establish will give the number of Goppa codes up to the usual definition of
equivalence of codes. In particular, this holds for binary codes (see [3]).

2. Preliminaries

Let g(x) be a polynomial defining a G-code and let n be a fixed primitive element of
F?m. It is well known (see [2]) that a G-code is equivalent by a coordinate permutation
to one with a parity check matrix of the form

(i) I - —t—z —
a a — tf a — ;

l \

where a is any root of g(x) in its splitting field F9».r. We will say that this code is
defined by a and denote it by C(a). We denote F^r — F,» by §. Since r is prime each
a € § defines a G-code.

We begin with the basic connections between G-codes defined by the elements of
§. The following result is well-known ([1, 3, 7]). The converse of this theorem for
binary codes is proved in [3].

THEOREM 2.1. Ifce,P e § are related by an equation of the form

then C(a) and C(fi) are equivalent G-codes.

The letters £, £ will be reserved throughout for elements of F,™ with £ ^ 0. We
wish therefore to count the number of orbits of § under the action of the group
generated by the affine transformations a —> £a + £ and the Frobenius automorphism
a : a -> aq.

Consider first the action of the affine group. If ^a + £i = £2<* + £2 and f 1 = £2>
then £1 = f2, while if £1 ^ £2» then a = (f 1 — £2)/(£i — £2), contrary to a e §. Thus
each orbit A of the affine group, or affine set, contains qm(qm — 1) elements. We
denote the set of affine sets contained in § by A and the affine set containing a by
A(a). It follows that |A| = (qmr - qm)/qm(qm - 1) = (qm<r-» - l)/(qm - 1). Also
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tfr = 2, then there is just one affine set containing all q2m — qm elements of §. Since
there is nothing left to do in this case we exclude it and from now on assume that r

is odd.
Next, we observe that a permutes the affine sets since if ^ = £a + £ then fiq —

f a * + %q. Thus, it remains to consider the orbits of A under the action of the cyclic
group of order mr generated by a. This group is the direct product of subgroups
R = {am) of order r and M = (ar) of order m. Thus we can consider the actions of
these subgroups separately and note that in each case there are only two possibilities
for the lengths of the orbits.

3. Action of R

The orbits of A under R have length 1 or r. Suppose first that A is left invariant
by R. The action of R on A also has orbits of length 1 or r, so suppose that a s A
satisfies aq" = a. Then aqm~l = 1 and a s IF,, contrary to hypothesis. Thus, the
orbits all have length r and A contains all the qm -conjugates of all of its elements. This
also implies r \ qm{qm - 1) and, since r and q = p' are relatively prime, r \ qm — 1.

Conversely, suppose r | qm — 1. Consider the relation

qmr - 1 = (qm - l)(qm(r-l) + • • • + qm + 1)

= (9" - D[(qm(r~1) - ? ) + • • • + {qm - 1) + 1 + (r - 1)]

^ l ) - 1) + • • • + (qm - 1) + r].

Each summand in the second factor on the right is divisible by r and hence r(qm —
1) | qmr — 1. It follows that there is an element a of order r(qm — 1) in § and
aq"~l = £, being of order r, lies in ¥q«. Now ea = a*", e2a = eaqm = (ea)9" =
aq2n,... , er~'a = a9*"". Also, for any element f3 — £a + £ e A (a), we have
P9"' = (fa + £)«"' = f a9"'' + £ e A (a). Thus A (a) contains all the <?m -conjugates of
all its elements and we deduce that A (a) is fixed by R. We summarize in the following
theorem.

THEOREM 3.1. Let A be an affine set. The following are equivalent:

(i) there exists an affine set A that is fixed by R;
(ii) there exists an affine set A containing an element a such that a'""1 = e has

order r in IF,.;
(iii) r\qm-\.

Now suppose that r \ qm — 1 and A = A (a) satisfies the hypotheses of the theorem
with a*""' = £ e F, . of order r. We wish to count how many such affine sets
there are.
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Each equation xq"~l = ej ,j = 0 , . . . ,r — \ has qm — 1 distinct solutions in ¥q»,,.
Of these, qm — 1, corresponding toj = 0, lie in F,«. The remaining (r — l)(9m - 1)
lie in §. Observing that (^a) '""1 = a*""1 = e for all £ € F*m, we see that A contains
the qm — 1 solutions of xqm~l = s, and it is easy to check that A comprises the qm

translates of this set by £ e F,™. Now (aJ )9"~1 = eJ and it is immediate that the affine
set A (a'), 1 < j < r — 1, contains the qm — \ solutions of xq"~l = e'. Hence these
sets account for all of the solutions of these equations and we deduce that there are
precisely r — 1 affine sets fixed by 7?.

The remaining (^m(r-'> — \)/{qm — 1) — r+1 affine sets divide into orbits of length
r, each of which has the form {A (a), A ( a ' " ) . . . , A (a*™"")}. By a direct verification
there are 53'~f (91"' — 1)//" such orbits.

THEOREM 3.2. Ifr\qm — 1, then, under the action of R, A consists ofr — l orbits
of length 1 and ££ l f (9"" — l)/r orbits of length r. Ifr\qm — \ then A consists of
(qm(r-» _ l)/(r(q

m - 1)) orbits of length r.

4. Action of M

We shall often use, without comment, the elementary fact that if u, v are positive
integers with gcd d, then gcd(x" - 1, x" - 1) = xd - 1 (see [6, Corollary 3.7], for
example).

The orbits of M have length 1 or m. Consider the elements a e § fixed by M
and therefore satisfying aq' = a, or aq'~l = 1. Suppose a and fi = £or + £ are
fixed by M. Then fi = pq' = $q'aq' + $q' = Sq'a + §«'. If t,q' £ £ this gives
a — (£*' — £)/(£ — Z,q) contrary to a £ F,,-. Thus, f'' = £, which implies that £
lies in Fgr n F,» c F ^ , and hence in F9. Similarly, f e F , . Conversely, if £, £ € F,,
with £ ,£ 0, and a is fixed by M, then (£a + £)*' = £ot + £, so £a + £ is fixed by
M. It follows that there are 9(9 — 1) fixed points of M in A = A (a). Next, for any
f, $ € F,», £ ^ 0, we have (£a + £)«r = <*'« + %q' so A(a) is fixed by M, and the
qm(qm — 1) — 9(9 — 1) elements, apart from the fixed points, are permuted in orbits
of length m. There are qr — q elements a e § satisfying aq'~l = 1 and hence there
are

affine sets fixed by M.
If m f 9m(9m — 1), that is, if m f 9"1 — 1, then each set fixed by M must contain at

least one fixed point and therefore q(q — I) fixed points. However, even if m \ qm — 1,
which implies m \ gcd(qm — 1, qm~x — 1) = 9 — 1, we claim that any affine set fixed by
M must contain a fixed point. Thus, the only sets fixed by M are those just described.

https://doi.org/10.1017/S1446788700002949 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700002949


[5] Counting irreducible Goppa codes 303

Suppose, therefore, that m \ qm - 1 and that A(a) is fixed by M. Let aq' = £a + £.
We claim that we may assume £ = 1, that is, that there are /i, v e F?« such that

)qr = hia + v)+%', for some £' € By,. We have (/za + i/)'' = / t z ' V + v"' =
+ £) + v«' = ^'-'Sdia + v) - ^q'~l^v + (j,q'% + v"''. Now if £ e F*. then

a*2' = (Ja + §)*' = Kq'oLq' + £«' = £(<<* + £)+£«' = f 2 a + ££ + £«' and, continuing
in this way, we arrive at a = a*™ = £ma + / (f, £), where / (£, £) is an expression
in £ and £ only. This means £m = 1 (otherwise a e F,« as before). Since m \ q — 1,
we can use the same argument as in Section 3 to see that m(q — 1) | qm — 1, so
there is a £ € F,» such that pq~x = f"'. Now, gcd(^m - 1, ^r - 1) = q - 1 so
m \ qr~x H 1- g + 1. Thus there is ay such thaty (^r~1 H h ? + l ) s l mod m.
Defining /LA = ^ gives us /x*"1 = f"'. On the other hand, if the order fc of f does
not divide 9 - 1, then it divides ^m~' + qm~2 -\ h 9 + 1, so (k, qr - 1) = 1, and
we can find ay such that —y (̂ rr — 1) = —1 mod k. With thisy, (f-- ') ' ' -1 = f-', so
we can choose fi = ^~j.

Hence, we may assume that aq' = a + £. If f = 0, then we are done so
suppose I £ 0. Now ? E F,. - F,, for if £ e F,, then a? ' + a«2' H 1- a""" =
a + aq' + • • • + aq'""~" + mi-, contrary to £ ^ 0 (since p \ m). Next, for any v,
(a - v)"' = aq' - vq' = a + $ - vq' = (a - v) - {vq' -v-$). The map v -> vq' - v
is easily seen to be a bijective map on F,™ — F,, so, for any ^ e F, . - F,, it is always
possible to choose v € F9™ - F, satisfying vq' — v — § — 0. With this v, a — v is the
required fixed point.

We summarize in the following theorem.

THEOREM 4.1. Under the action ofM, A consists of consists of{qr~l — \)/{q — 1)
orbits of length 1 and

\

m \ qm — 1 q - \

orbits of length m.

5. Combining the actions of R and A/

Suppose some A(a) is fixed by a . By Theorem 4.1, we may assume that aq' = a
and aq = £a + £, and, by an argument similar to that at the beginning of the previous
section,bothf,f e F,. Thus,iff # l.a*2 = <a«+^ = £(£«+£)+§ = f 2 a + ^ + f ,
and continuing in this way we obtain « = « « ' = "̂"a + ((^r — l)/(f — 1))^. We
conclude that either £ = 1 or £ ^ 1 and fr = 1. If f = 1, then a" — a + £,
and we note that ^ ^ 0 since or £ F,«. As in Section 4, aq + aq2 + • • • + aq' —
a + aq + • • • + a9"' + r£ which forces r£ = 0 and this is impossible (since p f r).
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Hence f = 1, f ^ 1 and so r\q - 1. Conversely, let r\q - 1. Then r{q - X)\qrm - 1
but r(q — 1) { qm — 1 (by an argument similar to that in Section 3) and we may choose
a € § of order r(q — 1) so aq~x = s has order r. Now aq = ea and so aq G A(a),
and (fa + f)« = f a 9 + £« 6 A(a). Hence A (a) is fixed by a. We have now proved
the next result.

THEOREM 5.1. There are affine sets fixed by a if and only ifr \ q — 1.

6. Counting fixed points

We are now in position to apply the Cauchy-Frobenius counting theorem [5, Theo-
rem 4.18] to the action of {a) on A. In all cases there are (gm<r-1> - \)/(qm - 1) affine
sets fixed by the identity and (qr~l — \)/{q — 1) sets fixed by M. In the case r \ q — 1
each of the mr — 1 non-identity elements of order mr fixes r — 1 sets and these r — 1
sets are a subset of the set of (qr~l — \)/{q — 1) sets fixed by M. If r\qm - 1 but
r \ q — 1, then each of the r — 1 non-identity elements of order r fixes r — \ sets.
If r \ qm — 1 there are no sets fixed by any element of order r. Define the function
N(q,m, r) to be

mr \

nm(r-l) - 1

qm-\
ifrU-1

Our main result is the following.

THEOREM 6.1. The number of inequivalent G-codes is at most N(q,m, r).

The following table gives some values of N(q, m, r).

a

2
2
2
2
4
4

5
7
11
3
5
7

r

3
3
3
7
3
3

N(q, m, r)

3
7
63

1791
71
783

q
4
4
8
5
3
3

m

3
3
3
7
7
5

r

5
7
5
3
5
7

N(<7, m, r)

17765
51942291
8965437

3722
299003960

24308280100
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