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107.15 Fruit diophantine equation

Introduction
A popular problem making the rounds in social media (stated as a

problem about distribution of fruits) is the possibility of finding positive
integer solutions in  of the equation that appears in the statement
below. In this short note, we prove:

x, y, z

Theorem 1
The equation

y2 − xyz + z2 = x3 − 5

has no integer solutions.
Note that the special case asserting that  has no integer

solutions is already of interest.
y2 = x3 − 5

The problem originated from the question “What is the smallest
unsolved diophantine equation?” that was posed by user Zidane in
MathOverflow [1]. In this question, the notion of size of a polynomial is the
following one:
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for , defineP (x1, … , xd) = ∑
i1,…,id

ai1,…,idx
i1
1  . . . xid

d ∈ � [x1, … , xd]

|P| (x1, … , xd) = ∑
i1,…,id

|ai1,…,id| xi1
1  . . . xid

d .

Then, the size  of  is defined as . Bogdan Grechuk [2]
considered the first part of the problem: “ for which smallest  does one not
know if there exists an integral solution of ?”

h (P) P |P| (2, … ,  2)
P

P (x) = 0
The first non-trivial example of such a polynomial  was obtained in the case

when  and, that corresponded to the equation
. Will Sawin showed that this equation has no non-

trivial solution. The next ‘unknown’ diophantine equation that appeared on the
scene was  with , and this was solved later by the
user Servaes. Finally for , Grechuk asked for possible solutions for the
two Diophantine equations  (which he himself
solved later) and . The last equation gained quite a bit of
popularity in the social media thanks to the blog ‘theHigherGeometer’, where
David Roberts posed this problem as a ‘fruit equation’ [3]. This is what we solve
here.

P
h (P) = 22

x2 + y2 − z2 = xyz − 2

y(x3 − y) = z2 + 2 h (P) = 26
h (P) = 29

y (x2 + 2) = 2zx + 2z2 + 1
y2 − xyz + z2 = x3 − 5

Proof of Theorem 1
Fix a prospective candidate  that gives an integral solution. Then

we are looking for an integral solution of the equation
x = k

y2 − kyz + z2 = k3 − 5. (1)
We divide the proof into two cases.

Case 1:  is evenk
Then (1) becomes

(y −
kz
2 )2

− (k2

4
− 1) z2 = k3 − 5.

Rewriting in terms of  and , this becomes the Pell's
equation

d = 1
2k u = y − 1

2kz

u2 − (d2 − 1) z2 = 8d3 − 5. (2)
If  is odd, then  is a multiple of 8 and hence, the left-hand side and
right-hand side of (2) are respectively congruent modulo 8 to a perfect
square and ; this is impossible.

d d2 − 1

−5
If  is even, the left and right side of (2) are congruent modulo 4 to

 and  respectively; once again this is impossible.
d

u2 + z2 −5
We conclude that there is no solution of (1) with even .k
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Case 2:  is odd.k
Viewing (1) modulo 2, we obtain

y2 + yz + z2 = 0 (mod 2) .
This implies . This implies that left side of (1) is
congruent to 0 modulo 4. As a consequence, we obtain
or equivalently . Rewriting (1) as

y ≡ z ≡ 0 (mod 2)
k3 − 5 ≡ 0 (mod 4)

k ≡ 1 (mod 4)

(y −
kz
2 )2

− (k2 − 4) z2

4
= k3 − 5.

and substituting  and , (1) becomes the Pell's equationz = 2v u = y − vk

u2 − (k2 − 4) v2 = k3 − 5. (3)
We need to find integral solutions of the Brahmagupta-Pell equation

, for integers  (mod 4). We divide the
proof again into some cases.
u2 − (k2 − 4) v2 = k3 − 5 k ≡ 1

Case 2a: k ≡ 1 (mod 12)
In this case,  and . Modulo 3, (3) gives us

. As a consequence, we see there is no solution in this case.
3 | (k + 2) k3 ≡ 1 (mod 3)

u2 ≡ 2 (mod 3)

Case 2b: k ≡ 9 (mod 12)
Note that in this case we have , hence .k − 2 ≡ 7 (mod 12) 6 |⁄ (k − 2)
First observe that if all the prime divisors of  are congruent to

, then  is congruent to , which contradicts
the fact that . Thus there exists a prime  such that

 and  divides . This implies ,
hence . Modulo , (3) gives us 

k − 2
±1 modulo 12 k − 2 ±1 modulo 12

k − 2 ≡ 7 (mod 12) p
p ≡ 5 or 7 (mod 12) p k − 2 k ≡ 2 (mod p)

k3 ≡ 8 (mod p) p

u2 ≡ 3 (mod p) .
By quadratic reciprocity, this equation has no solution as 3 is a square
modulo  if, and only if, .p p ≡ ±1 (mod 12)

Case 2c: k ≡ 5 (mod 12)
In this case, we have . Modulo 3, (3) gives us3 | (k − 2)

u2 ≡ 0 (mod 3) .
Writing  and , (3) becomesu = 3w k = 12r + 5

3w2 − (4r + 1)(12r + 7)v2 = 26.32r3 + 24.32.5r2 + 22.3.52r + 40. (4)
Modulo 3, (4) gives us

− (r + 1) v2 ≡ 1 (mod 3) .
The above equation implies , say . Then,

; so, . If all the prime divisors of
r ≡ 1(mod3) r = 3s + 1

k = 36s + 17 k − 2 = 3 (12s + 5)
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 are congruent to  modulo 12, then  is
congruent to  modulo 12, which contradicts the fact that

. Thus there exists a prime  such that
 and  divides . This implies .

12s + 5 = 1
3 (k − 2) ±1 1

3 (k − 2)
±1

1
3 (k − 2) ≡ 5 (mod 12) p
p ≡ 5 or 7 (mod 12) p k − 2 k ≡ 2 (mod p)

Modulo , (3) gives us . By quadratic reciprocity, this
equation has no solution.

p u2 ≡ 3 (mod p)

We make some comments which may be of interest to readers familiar
with the basics of the theory of elliptic curves. Briefly speaking, elliptic
curves over  are cubic equations of the form
where , ,  are rational numbers and the discriminant of the cubic on the
right is not zero. The set of points  that are solutions of the
above equation possess a composition that equips it with the structure of an
abelian group. The so-called Mordell-Weil theorem asserts that this group of
rational solutions is a finitely generated abelian group (more generally, one
considers number fields and not just ; the case of  was treated by
Mordell earlier). This group of rational points is usually called the Mordell-
Weil group of the elliptic curve over . It is a subtle point to decide whether
a given elliptic curve can have rational points but no integral points because
the latter may not form a group.

� y2 + axy = x3 + bx + c
a b c

(x, y) ∈ �2

� �

�

The main result, Theorem 1, can be rephrased as a statement that certain
elliptic curves have no integer points:

For any integer , the elliptic curve  given by the Weierstrass equation
 has no integral points.

k Ek
y2 − kxy = x3 − (k2 + 5)

Remarks
For , the above assertion on elliptic curves can also be verified

using LMFDB [4]. We note that  over  given by .
We also remark that even when  does not have integral solutions, it may
have rational solutions; that is, it need not have trivial Mordell-Weil group.

|k| ≤ 5
Ek�E−k � (x, y) → (x, −y)
Ek

For example, using LMFDB [4] we see that  has Mordell-Weil group
isomorphic to  generated by . In other words, the fruit equation

 has the rational solution .

E1
� (101

16 , −821
64 )

y2 − xyz + z2 = x3 − 5 (101
16 , −821

64 , 1)
On the other hand , , ,  have trivial Mordell-Weil group.E0 E2 E3 E4

The curve  has minimal Weirstrass equation
obtained via the change of variables . Using
LMFDB [4] we see that this elliptic curve  has
Mordell-Weil group isomorphic to  generated by , which gives us
a rational point (of infinite order)  for .

E5 y2 + xy = x3 − 13x − 13
(x, y) → (x + 2,  2x − y − 1)

y2 + xy = x3 − 13x − 13
� (−71

64 , 593
512)

(−199
64 , −4289

512 ) y2 − 5xy = x3 − 30
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107.16 An expression for the prime-composite characteristic
function

Introduction
We define the prime-composite characteristic function as the function

on the set of natural numbers that is equal to 1 for all primes, 0 for all
composites, and is not defined otherwise.

Proposition
For all naturals , the prime-composite characteristic function is

equal to:
n ≠ 4

C (n) =
n

n − 1 {(n − 1)!
n }

where  is the fractional part of  [1].{x} x

Proof
The proof hinges on the evaluation of the fractional part :

- if  is a prime, then  by virtue of Wilson's theorem [1],n {(n − 1)!
n } =

n − 1
n

- if  is a composite different from 4, then  divides  and the braces
evaluate to 0 [2].

n n (n − 1)!
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