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Introduction

If the finite group G has a 2-Sylow subgroup S of order 20+1, containing
a cyclic subgroup of index 2, then in general S may be one of the following
six types [8]:

(i) cyclic;
(ii) Abelian of type (a, 1), a > 1;
(iii) dihedral1;
(iv) generalized quaternion;
(v) {a, 0}, a2" = /9* = 1, a ' = a2"~1+1, a ^ 3;
(vi) (a, ft), a2" = /92 = 1, a ' = a2""1-1, a > 3.

In cases (i)and (ii), Burnside's theorem shows that G has a normal 2-comple-
ment. Case (iii) is of considerable interest, as it occurs with the simple
groups PSL(2, q), and has been extensively treated (see the bibliography
in [7]). Case (iv) has been dealt with in [5]. In this paper we consider the
two remaining cases.

In case (v), G is easily shown to have a normal 2-complement. This
is done in.§ 1. Case (vi) is more interesting (and more difficult). Specific
results can be obtained if additional assumptions are made. The main result
of the paper is a determination of the structure of G when the centralizer of
an involution has an Abelian 2-complement. In particular, it is shown that
the only simple groups then occurring are the finite projective group
PSL(3, 3) and the Mathieu group M u on 11 letters. These results are ob-
tained in § 4, and two applications are given in § 5.

I wish to thank the referee for pointing out a number of inaccuracies
in the original manuscript of this paper.

* Most of this work was done at the Third Summer Research Institute of the Australian
Mathematical Society at Canberra, 8 January—15 February, 1963.

1 The non-cyclic group of order 4 is to be understood as dihedral.
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1.

We begin by recalling some useful facts. If S is a ^>-Sylow subgroup
of the finite group G, the focal group S* of S in G is the group generated by
all quotients a'cr1, where a and a' are elements of S conjugate in G. The main
property of S* is the following (see [10]):

S* is normal in S, and SjS* is isomorphic to the largest Abelian p-factor
.group of G.

THEOREM 1. Let G be a finite group with 2-Sylow subgroup of form

S = {a, /?}, a2' = /?2 = 1, x» = a*-1*, a ^ 3.

Then, G has a normal 2-complement.

PROOF. It is easily seen that the elements of 5 of order 2* are, for
b > 1, the elements of form

a2 +ni o r a2 + 1.2 ^

where n is an integer. For b = 1, we have also the element 8. It follows that
if a and a' are elements of the same order in S then a' a'1 is either an even
power of a, or the product of such a power with B. Thus the focal group S*
is contained in {a2, 0}, and so is a proper subgroup of S. Thus, G has a non-
trivial Abelian 2-factor group, and we can find a normal subgroup H of
index 2 in G. H has as 2-Sylow subgroup a subgroup T of index 2 in S. Thus,
T = {a2, y}, where y is an element of S. Since a? lies in the centre of S, T is
Abelian, either cyclic or of type (a—1,1). Since a— 1 > 1, it follows that the
automorphism group of T is a 2-group. Burnside's theorem [8] yields a
normal 2-complement for H, and this is also a normal 2-complement for G.

2.

From now on G will always denote a finite group with 2-Sylow sub-
group of the form

S = {a, /S}, a2" = P* = 1, a" = a2""1-1, a ^ 3.

We put T = a2""1, n = a2""", and write p ~ a to mean that p is conjugate to
a in G, p r^ a for the negation of this statement.

LEMMA 1. The focal group of S in G is given by

S* = (i) {a2} , */ a/? ^ n and, j 3 ^ T;

(ii) {a2, /?}, if a/9 •+> n and B ~ T;

(iii) {a2, a/?}, »'/ ccB ~ 7t a«i (3TOT;

(iv) S , »/ a/? ~ si awrf /? <~ T.
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PROOF. The elements of S not in {a} are f), a2/S, a*/3, • • •, forming a
conjugacy class of S of elements of order 2, and a/3, a3/?, a*/3, • • •, forming
another conjugacy class of elements of order 4. An even power and an odd
power of a cannot be conjugate in G, as they are of different orders. The
two elements n and rr1 of order 4 in {a} are conjugate in S. It is now easy to
calculate S, with the results stated.

THEOREM 2. Let G be a finite group with 2-Sylow subgroup of the form

S = {a, P}, a2' = /J2 = 1, a ' = a ^ ' - l , a ^ 3.

Then, one of the following holds:
I. G has a normal 2-compiement.

II. G has a normal subgroup of index 2, which has no normal subgroup
of index 2 and has dihedral 2-Sylow subgroup.

III . G has a normal subgroup of index 2, which has no normal subgroup
of index 2 and has 2-Sylow subgroup of generalized quaternion type.

IV. G has no normal subgroup of index 2, the involutions of G form a
single conjugacy class in G, and the centralizer in G of any involution is a
group of type III .

PROOF. Let G/Gs be the largest Abelian 2-factor group of G. As stated
previously, this is isomorphic to SjS*. Gz has S* as 2-Sylow subgroup.

If case (i) of Lemma 1 holds, S* is cyclic, so that by Burnside's theorem
G2 has a normal 2-complement, which is a normal 2-complement for G.

If cases (ii) or (iii) hold, then (G : Gt) = 2, and Ga can have no normal
subgroup of index 2, for otherwise Gt would have a proper characteristic
subgroup K such that Gz/K is a 2-group. Then GjK would be a 2-group of
order exceeding 2, and G would have a factor group of order 4, a contradic-
tion. Since {a2, /S} is dihedral and {a2, a/?} is of generalized quaternion type,
we have the alternatives II, III asserted.

If case (iv) of Lemma 1 holds, we have G = Gt, and it remains to verify
that the centralizer C(T) in G of the involution T is of type III. C(T) contains
S since x e C(S). Now, a/3 is conjugate in G to n:

a/5 = n*, /teG.

Since (a/?)2 = T = n*, we have T = •c>t, i.e. ft e C(T), and a/3 is conjugate in
C(T) to n. Since /3 is not conjugate to T in C(r), case (iii) of Lemma 1 applies
to C(T), SO that C(x) is of type III.

3.

3. This section is devoted to giving some examples of finite groups with
2-Sylow subgroup S of the type being discussed, in which the centralizer of
the involution T in the centre of S has an Abelian 2-complement.
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(1). S itself.
(2). If q = r2, where r is a power of an odd prime number, we define a

group H (q) in the following way: H (q) is the subgroup of the group PFL (2, q)
of all one-dimensional projective semi-linear transformations over GF(q)
(cf. [6], where these are called projective collineations) generated by
PSL (2, q) and a semi-linear transformation a relative to the automorphism

a : x -*• xr

of GF(q) of order 2. a is defined by taking a basis and letting a be represented
by the semi-linear transformation relative to a having matrix

_ ,'b 0\ (0 b
T = | « , I , or I , Q ) '

according as r == 1 (mod 4), or r = — 1 (mod 4), where b is an element of
GF(q) having multiplicative order 2°, the exact power of 2 dividing q— 1.

a2 is the projective linear transformation represented by the matrix

\ 0 1 / 'T°T=(b+ °\ or I

Since r + 1 (respectively r—1) is exactly divisible by 2, it follows that
a2 e PSL (2, q) and that a has order 2°. Since PSL (2, q) is normal in
PJ!L(2, q), H(q) is an extension of PSL(2, q) by a group of order 2. Thus
H(q) has order (q—l)q(q-\-l), and has 2-Sylow subgroup S of order 2a+1.

Let (t be the involution in PSL (2, q) represented by the matrix

- ( - ! D-
Then, a* a is represented by the matrix

o
or

/ - i o \
\ o -fe'+y-

Since 6'-1 = — 1 in the first case, and 6r+1 = — 1 in the second case, a'a
may be represented by the diagonal matrix

( - ; ? ) •
But, this is equal to (TT)2*"*, which represents a2*"1. Thus,

a" = a2*"1"!,

and so {«, 0} is a 2-Sylow subgroup of H{q), and is of the required type.
(We note that q< = r2 = 1 (mod 8), so that a ^ 3.)

The centranzer of r = a2""1 in PSL (2, q) has cyclic 2-complement,
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and this is a 2-complement of the centralizer of x in H[q), since (H(q):
PSL(2, q))=2.

(3). GL{2, 3) is a group of order 48 whose 2-Sylow subgroup S is
generated by

- ( = : - ! ) • ' - ( J - ' ) •
It is easily checked that a8 = jS2 = 1, u? = a3, so that S is of the required
type. The centralizer of T = a4 is the whole of GL(2, 3), which has a cyclic
2-complement.

(4). PSL(3, 3) = SL(3,3) is a group of order 5616. If T is an involution
in this group, then with respect to a suitable basis x has matrix

The elements of C(x) are then represented by matrices

where I , I is an element of GL{2, 3) and / is its determinant. Clearly

C(x) is isomorphic with GL(2, 3), and so PSL(S, 3) is a group of the required
type.

(5) The Mathieu group M u of order 7920 is a quadruply transitive
permutation group of degree 11. It may be regarded as a transitive extension
of the group H(9) taken as acting on the points of a projective line L over
GF(9) [15]. In particular, the 2-Sylow subgroup of Mn is a group of order
16 of the required type. If x is an involution of if (9), x has two fixed points
in L, and so three fixed points a, b, c as an element of M u . The subgroup
fixing a, b, c is a quaternion group and so contains only one involution.
Hence C(T) consists of all permutations of M u permuting a, b, c amongst
themselves, and so, by triple transitivity, its order is 48. Thus C(T) has a
cyclic 2-complement. (In fact, C(x) can be shown to be isomorphic with
GL(2, 3)).

4.

4. We now assume that
(*) G is a finite group with 2-Sylow subgroup

S = {«, /?}, a?° = j32 = 1, a? = a2""1-1, a ^ 3,

such that, for x = a2""1, C(x) has an Abelian 2-complement.
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Let K be the largest normal odd order subgroup of G. We shall prove
that G\K must be isomorphic to one of the groups of § 3.

LEMMA 2. A finite group H with an Abelian 2-complement is solvable,
and every subgroup and quotient group of H has an Abelian 2-complement.

PROOF. Let S be a 2-Sylow subgroup and C an Abelian 2-complement of
H. Since S and C are nilpotent of relatively prime orders and H = SC, H is
solvable, by a theorem of Wielandt [14]. If L is any subgroup of H, then L
is solvable, and so by Hall's extension of Sylow's theorems [9], L has a
2-complement D. Also, D is conjugate to a subgroup of C and so is Abelian.
If N is any normal subgroup of G, then (G : CN) is a divisor of (G : C)
and so is a power of 2. CN/N is isomorphic to C/C n N and so is Abelian
of odd order, and is an Abelian 2-complement of G/N.

LEMMA 3. If G is a group satisfying the condition (*) and K is any
normal subgroup of odd order in G, then G/K also satisfies (*),

PROOF. Let f = xK. We need only prove that the centralizer C(f)
of f in G\K has an Abelian 2-complement. If C(f) = LjK, then {r}K is
normal in L, since L centralizes T(mod if). Hence, if XeL, {T} and {TA}
are 2-Sylow subgroups of {t}K, and so

TA = T ' ,

for some /xeK. Thus, A e C(T)/J, ^ C(t)K. Since C(r) ^ L, we have L =
C(x)K, and so C(f) is isomorphic to C(T)/C(T) n K. The result now follows
from Lemma 2.

Using this lemma, we can assume also that
(**) G has no non-trivial normal subgroup of odd order.

We now consider the cases II, III, IV of Theorem 2 in turn.

Case II. G has a normal subgroup G2 of index 2 such that G2 has no
normal subgroup of index 2, and has dihedral 2-Sylow subgroup {a2, f}}
of order 2°. By Lemma 2, the centralizer of r in G2 has an Abelian 2-comple-
ment. The largest odd order normal subgroup of G2 is normal in G, and so is
trivial, by the assumption (**). By a theorem of Gorenstein and Walter [7],
G2 is isomorphic with the alternating group A7 of degree 7, or with PSL (2, q),
for some odd prime power q. The first case is impossible, as a would induce
an automorphism of order 8 in G2, contradicting the fact that none of the
automorphisms of A7 (which may all be regarded as induced by elements of
the symmetric group S7) is of order 8. We may therefore identify G2 with
PSL(2, q).

The automorphisms of PSL(2, q) are all obtained by conjugation of
SL(2, q) by semi-linear transformations (cf. [6]; contragredient transforma-
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tion of SL(2, q) can easily be seen to be equivalent with conjugation by a
semi-linear transformation). Let 0 be a semi-linear transformation inducing
the same automorphism of G2 as a does. 02 induces the same automorphism
of G2 as a2, which is represented by a linear transformation. Since PSL(2, q)
has trivial centralizer in the group PFL(2, q), it follows that 02 is linear.
Hence, if a is the automorphism of GF(q) associated with 0, then a2 = 1.

If a = 1, G would be isomorphic with a subgroup of PGL(2, q), and so
would have dihedral 2-Sylow subgroup, a contradiction.

Thus, a is of order 2. Then q = 1 (mod 8), since q = r2, where GF(r)
is the fixed field of a. This implies that 2" is the exact power of 2 dividing
q— 1. The involutions x, fl can be represented by the matrices

/ - I 0\ /0 - 1
I 0 I)' \l

If 0 has matrix form T, then since 0 leaves x fixed and T" = x, T must
commute (projectively) with x. It follows that we may take

T r\ lb °\ t-\ (° b\

If case (i) holds, then a2"1-2 = /}"jff = /S«/9 = 0T0 is represented by the
matrix

/I 0 \

Since its order is 2"-1, 6 is an element of GF(q) having multiplicative order
2". Now, a2 is represented by the matrix

T"T

Since this has order 2*-1, r+1 is not divisible by 4. Hence r = 1 (mod 4),
and we have that G is isomorphic with the group H(q) defined in § 3.

Case (ii) gives the same result in the same way.

Case III. G has a normal subgroup G2 of index 2 such that G2 has no
normal subgroup of index 2, and has generalized quaternion 2-Sylow sub-
group {a*, afi) of order 2". Again G2 has no non-trivial normal subgroup of
odd order, by the assumption (**). By a theorem of Brauer and Suzuki [5],
G8 has only one involution x.

T = {x} is normal in G, and so, by the assumption (*), G has an Abelian
2-complement. G/T has dihedral 2-Sylow subgroup, and, by Lemma 2,
the centralizer of an involution in GjT has an Abelian 2-complement. By
the result of Gorenstein and Walter, G[T has an odd order normal subgroup
NjT such that G/N is isomorphic with PGL(2, q), for some odd q. By Burn-
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side's theorem, N has a normal 2-complement V, which is normal in G.
By the assumption (*•), V is trivial, so that N = T. By Lemma 2, G is
solvable, and so q = 3. Hence there is an isomorphism

d : G/T ~+PGL(2, 3).

Since 0 maps GJT on PSL(2,3), and Ga has only one involution, it follows
from a result of Schur [12] that the restriction of 0 to GJT is induced by an
isomorphism of Ga on SL(2,3). We can identify G2 with SL{2, 3), so that 0
is the identity map on GJT. The element (0T)9 of PGL (2,3) can be represen-
ted by an element /? of GL (2,3). Now /? and j? induce the same automorphism
on G8 = SL (2, 3) since they induce the same automorphism on GJT =
PSL(2, 3), and no two automorphisms of SL(2, 3) give the same auto-
morphism of PSL(2, 3). Since ft* induces the same inner automorphism of
SL(2, 3) as /Ja = 1. p lies in the centre {T} of SL(2, 3). If pi = r, the 2-
Sylow subgroup of GL(2,3) would be of generalized quaternion type, which
is not so. Hence J3* = 1, and G is isomorphic to GL(2, 3).

Case IV. G has no normal subgroup of index 2, the involutions of G
are all conjugate in G, and the centralizer H = C(T) is a group of type III.
By Lemma 3 and what we have just proved, H has a normal subgroup A
of odd order such that

(1) H/A ** GL(2, 3).

The Abelian 2-complement of H contains A, and so A is Abelian. We shall
show that A is trivial.

The irreducible characters of H with kernel containing A (i.e. the irre-
ducible characters of HI A) are given by Table 1, in which p is an element of H
whose coset p with respect to A has order 3, and a> is a square root of —2.

TABLE 1

Vl
Vl
<p*
<pt
V*
V*
<Pi

1

1
1
2
3
3
4
2
2

T

1
1
2
3
3

- 4
- 2
- 2

<x«

1
1
2

- 1
- 1

0
0
0

P

1
1

-I
0
0
1

— 1
- 1

pr

1
1
J
0
0

- 1
1
1

If

I
- 1

0
- 1

1
0
0
0

a

1
- 1

0
1

- 1
0
CO

— CO

a-1

1
— 1

0
1

- 1
0

— CO

CO

Let D be the set of all roots of r in G, i.e. the elements a of G such that T
is a power of a. D is a subset of H. If in general the coset of an element a of H
with respect to A is denoted by a, then because A has odd order, a is a root
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of T if and only if d is a root of f. The classes of HI A consisting of roots of f
are those represented by the cosets of r, a2, pr, a and a"1. Now it is easily
checked that the module of generalized characters of H/A which vanish
on H—D has as a basis the generalized characters

= <P»—<Pi.

= <Pi+<Pt—<Ps>

Denote by %t(I) the sum of the values on all the involutions of G
of the (ordinary) irreducible character x% of G, and by <pt(J) the sum of the
values on all the involutions of H of the character <pt of H.

LEMMA 4. Let 0 = ^ib)<pj,0' = ^tyy, be generalized characters of H,
which vanish on H—D. If the induced generalized characters of G are 0* =

then

| 0, if' a is conjugate in G to no element of D,
- | (ff)f if aeD

(iii) r1 It XtW'ctldeg Xt = *"» 2» Vi

where g = |G|, A = \H\.
These facts are due to Suzuki; an outline of their derivation is given

in [13].
Using this lemma and the Frobenius reciprocity law, we easily see that

for the generalized characters (2) we have

where l c is the trivial character of G, Xi, Xi > ' ' ' > Xi a r e distinct non-trivial
irreducible characters of G, and e, elt ea, e3 are all ± 1 .

Since all elements of D are 2-singular, Lemma 4(i) implies that 4>f
vanishes on all 2-regular elements of G. By Theorem 6 of [4], the same holds
for the part of 0* consisting of characters of the principal 2-block i ^ of G.
Since a single character does not vanish on all 2-regular elements, it follows
that Xi and x% u e m # i - By considering the other 0* in turn, we see that
Xlt • • •, Xt all belong to Bx.
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If a is any 2-regular element of H, then

(3) Z , ( w ) = 2 <*«?,(*) ( • = ! . • " . 7 ) ,
i

where the y>t are modular irreducible characters of H and the dit are rational
integers, the generalized decomposition numbers [1] of %i with respect to r.
By Brauer's Second Main Theorem on blocks [1], du, = 0 unless ipt lies in a
block b oiH such that B, = bG. This is so if and only if b — bt, the principal
2-block of H[2]. Since A is of odd order, this may be considered as the
principal 2-block of H/A.

From Table 1, HjA has only one 2-block, with two modular irreducible
characters, the trivial character y>t and the character y>2 given by

(4) V?(l) = 2, Wtip) = - 1 .

The Cartan invariants of \ can be calculated to have the values

(5) c u = 8, c12 = czl = 4, cM = 6.

Lemma 4(i) gives relations amongst the values of the %t on x and rp.
Using (3) and (4), we can deduce relations amongst the generalized de-
composition numbers, and find that they are as in Table 2, in which b, c, d, e
are rational integers.

TABLE 2

Xi Xt Xi Xi Xt X» Xi

Vi

V.

1 be (6+l)e be be (d-b)el (3-<*)«, -de,

0 ce ce (c—2)e (c—2)e («—c)«, (2—e)e, —ee,

By the orthogonality relations on the generalized decomposition
numbers [1], we have, using (5), that

(6) H
(7) c*-

If d were not 1
+<P = 5, and

f-c2+

or 2,
so

(c-2)*+(c-2)

then (3—d)*+t

+ (d-b)2+(3—d)*+t
2+(e—c)*+{2—e)*+

i* ^ 9, contradicting

f2<

<"S

(6).

i 8 ,

Hence, (3-d)2

Thus we must have b = 0, d = 1, and equality holds in (6). If c ^ 1, then
ca+(c—2)2 ^ 4, contradicting (7). Hence c = 1, and

It follows that c = 1, and equality holds in (7). This implies that the
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generalized decomposition numbers with respect to T of any other irreducible
character % of Bx are 0, and hence that %(T) = 0. But since % lies in Bx,

gx(r)/h deg % = gjh (mod 2)

by [4]. As gjh is odd, we have a contradiction. Thus 1G, %i> Xs>'' '• Xi ^
the only characters in Bx.

The values of b, c, d, e found give the generalized decomposition num-
bers on substitution in Table 2. By (3), if ae A, then

Xtira) = 2e, XxixPa) = Xi(TP*<*) = —«.
( /

Xt(ra) = 4e
Now let « = \A\, ax = |̂ 4 n C(/3)|. Since the centraUzer of p in

is of order 4, by the structure of GL(2, 3), it follows that the centralizer
CH(P) of (i in 2? is a subgroup of 5^4. Since S.4 is a split extension of A,
we have

C*G») = Cs(fi)(A n COS)),

and so |CH(/S)| = 4ax. Since every involution in H is conjugate either to x
or to (I, we can calculate the values of the <Pi(J), and find

VoV) = l + l*«/«i. VxU) = 1

On applying Lemma 4 to <P,, using these values and the values of the ^ ( T )
given by (8), and the fact that all involutions are conjugate in G to r, we
obtain the formula

(9) g =

where fx = deg Xi- The same procedure with 0i gives

where /s = deg Xt • Comparison with (9) and simplification leads to the
equation

fl(2efl-l)(ef1-8)+2s2fs(sf1+l)(n~16ef1+i)-nEfl(ef1+ir = 0.

This can be solved to give /B in terms of /x. We obtain

If the first case held, then lef^ — X would be a divisor of e/x+l, which is
possible only if jx = 1, or /, = 2 and e = 1. But /i > 1 since ^i(^) = ± 2 ,
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and we cannot have /x = 2, e = 1, by the formula (9). Thus we must have
the second case. Hence

72 = 8^+1) = 0 (mod (e/x-8)) .

Now, by (9), fx = 2e(mod 8), for else g would be divisible by 2s. Also,
fl =fi 2s, as we have seen. It follows that we must have

e = 1, /x = 10 or 26.

We consider these two possibilities in turn.
(a) /x = 10. Then «2/6 = 44, so that e2 = 1, /„ = 44. The degrees of the

Xi may all be found by using Lemma 4(i). We have, putting ft = deg %it

A = 10, /2 = 11, / , = 10, /4 = 10, / , == 55, / , = 44, / , = 45.

Now Xi is characterized as the only irreducible character of degree 10 in the
block By which has value 2 on involutions of G. It follows that Xx is rational-
valued, since a field automorphism transforms X\ into a character with the
same properties. The kernel of the representation corresponding to X\
is of odd order since it does not contain x, and so is trivial, by the assumption
(**). Now, by a theorem of Schur [11], a prime p can occur in the order g
with exponent at most

Thus, g is a divisor of 2*36527 • 11. Now, by (9),

g = 7920a3/a* = 2*325

Hence a%ja\ is a divisor of 3*5-7 and so also is a.
If a is an element of prime order p in A, then by rationality of Xx>

Xi(°) = Zif*1) = • • • = Xii**-1) = 10-mp,

where m is a positive integer. By (8), we have

ZiM = XiM = • • • = XA™"-1) = 2-

It follows that if ip is any irreducible character of L = {T, <T} whose kernel
does not contain a, then by the orthogonality relations y occurs in the re-
striction #i|.L with multiplicity \m. It follows that m is even. Also, since
there are 2(^—1) such characters ip, 2{p—l) ^ 10, and so p = 3 or 5.
Thus a divides 3*5. For p = 3, m = 2 or 4, and for p = 5, m = 2.

Suppose that a is an element of order 5 in Ax = A n C(0). Since 0 is
conjugate to r, say fl* = x, we have that

ax = a" e C(T) = H.

Since elements of H not in A have orders divisible by 2 or 3, at e A. Thu ,
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for any *', ((to*)1' = ra\, and we have

Xi(P*) = Z i K ) = 2.
Similarly, %x (T/SC*) = 2. Now, if y> is any irreducible character otj= {T, /?, a}
whose kernel does not contain a, then by the orthogonality relations, the
multiplicity of y> in %X\J is \, which is impossible. Thus 5 is not a divisor of
ai — MJI- It follows that 5 does not divide a, since otherwise a'/oj would be
divisible by 5s.

Now let a be an element of order 3 in A1. Then, as before, /?cr* is conjugate
to ra{ for all *, where ax is an element of order 3 in H. A conjugate of ax

lies either in A or in the coset of p or p~l with respect to A. It follows from
(8) that

= 2 or - 1 .

Similarly, Xi(TPa) = Xi(rPa2) = 2 or — 1. We have seen that Xi(a) = Xi{°2)
— 4 or —2, and

ZiM = Xi(fi) = ZiW) = Xi(ra) = Zl(r<Ta) = 2.
Suppose that x^o) = 4. Then if y> is an irreducible character of J = {T, /3, ff}
whose kernel does not contain a or r, the multiplicity of y in XilJ as calcu-
lated by means of the orthogonality relations is \, \ or £, which is impossible.
Hence Xi(a) = — 2.

If Ax had an elementary Abelian subgroup of order 9, the sum of the
values of %x on this subgroup would be —6, which is not a multiple of 9.
Thus Ax must be cyclic. Suppose that Ax has a subgroup A2 of order 9.
Since the primitive 9-th roots of 1 are algebraically conjugate and Xi *s

rational-valued, the values of Xi o n the elements of order 9 of A2 are all
equal. Now if y is a faithful irreducible character of A2, the multiplicity
of y> in fol/la is calculated to be f, which is impossible. Hence ax = \AX\ = 1
or 3.

If ax = 1, then «3 divides 3*, and so a — 1 or 3. If ax = 3, then a3

divides 36, and so a = 3 or 9. If a = 9, then A is elementary Abelian, since
A = AxxA'x, where A'x is the subgroup of A consisting of elements inverted
by conjugation by /?.

Suppose that « ^ 1 . We consider the centralizer CH(A) of A in H.
If a = 3, then since HICH(A) is isomorphic to a subgroup of the auto-
morphism group of A, (H : CH(A)) ^ 2. If a = 9, then Ca(A) D fcM,
and so HjCH{A) is isomorphic both to a factor group of PGL(2, 3) and to a
subgroup of GL(2, 3) (the automorphism group of A). Hence, (H : CH[A))
iS 6. Thus, in either case,

CH(A)2TA,

where T = {a2, a/?}. Now it follows that
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Since this has a normal 2-complement, the principal 2-block of C(a2)
contains only the trivial modular character, and has Cartan invariant 8.
Thus each %,• has at most one non-vanishing generalized decomposition
number d{ with respect to a2, and

for any 2-regular element a of C(a2). By applying Lemma 4(i) to the
we see that the dt are given by

dx = m, d2 = m—3, dz = dt = m—1, d% = m-\-n—3, <f8 — n, d7 =

where m and n are rational integers. By the orthogonality relations on
generalized decomposition numbers,

l+>n2+(m-3)i+2(m-2)2+(m+n-3)i+n2+(n+l)* = 8.

It easily follows that m = 2, n = 0
Now consider the group

where a is an element of order 3 in A. This has 21 elements of orders 2, 4, 6 or
12, on all of which the value of X\ is 2, one element on which Xi has value 10,
and two elements a, <r2 of order 3 on which the value of ̂  is 4 or —2. If
^(or) = 4, the sum of the values of x\ o n ^ i would be 60, which is not divis-
ible by the order 24 of Tx. Hence xAa) = — 2. But now if y is an irreducible
character of 7\ whose kernel does not contain a, then the multiplicity
of y) in Xil̂ "i is computed by means of the orthogonality relations to be \,
which is impossible.

Thus, in this case, a = ' .
(b) /j = 26. In this case, /„ = 12, ea == I, by (10). Lemma 4(i) gives

h = 27, / , = 26, U = 26, /, = 39, /, = 13.

Since x« is the only irreducible character of degree 12 in the block Bx, x»
is rational-valued. The kernel of the corresponding representation is trivial,
by the assumption (**). By the theorem of Schur [11], g is a divisor of
^ • S ' T ' l l - l S . By (9),

g = 5616«3/a2 = 243313a3/af.

Thus a3jal is a divisor of 3S537211, and so also is a.
If a is an element of prime order p in A, then as before

*(*) = X*(°*) = • • • = Xsi"'-1) = 12-mp,

where m is a positive integer. By (8),

*.(*) = fc(w) = • • • = *,(«»•-») = 4.
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As in case (a), consideration of the restriction of %% to L = {T, a) shows that
m is even. The multiplicity in %t\L of the non-trivial irreducible character
of L whose kernel contains a is calculated to be 4—\m (p—1). Hence £w (p—1)
jS 4, and so p = 3, m — 2 or 4; or p = 5, m = 2; and «3/#? divides 3653.

As before, At = A n C(fi\ cannot contain an element of order 5, and
so a is divisible by 5 to at most the first power.

If a is an element of order 3 in Ax, then as in case (a) we can calculate
the values of %e on all the elements of {r, /?, a}, with the two possible values
6, 0 for #6(<r) = Xeia2)- The value 6 leads to a contradiction. Thus
ZeM = 0.

As in case (a), A1 is of order 1 or 3, and A is the direct product of an
elementary Abelian group of order dividing 9 with a cyclic group of order
dividing 5. The automorphism group of A is therefore the direct product of a
subgroup of GL{2, 3) with a cyclic 2-group. It follows as before that

CH{A) 2 TA,

where T = {a2, aft}. Now the same method as before applied to T{a),
where a is an element of order 3 or 5 in A, leads to a contradiction. Thus
again a = 1.

We have proved therefore that H «» GL(2,3). Now a theorem of
Brauer [3] shows that G is isomorphic either to Mu or to PSL(3, 3). (The
condition that G = G' in the hypothesis of Brauer's theorem is unnecessary
in the present case, as may be seen from Theorem 6 of the appendix. Alter-
natively, we may note that G' is a group of type IV, and so has the same
order as G, by what has been proved.)

These results, together with Lemma 3, immediately imply the following

THEOREM 3. Let G be a finite group with 2-Sylow subgroup of the form

S = {a, p}, a2" = 0* = 1, a ' = a2"1-1, a ^ 3.

/ / the centralizer of the involution a2""1 has an Abelian 2-complement and K
is the largest normal subgroup of odd order in G, then GjK is isomorphic to one
of the groups S, GL(2, 3) PSL(3, 3), Mn, or H[q) for some q.

COROLLARY. The only simple groups satisfying the hypotheses of Theorem 3
are PSI(3,3) and Mu.

5.

In this section we derive some consequences of the foregoing results.
We denote by / the subgroup of the group FL(2, 9) of all semi-linear

transformations of a two-dimensional vector space over GF(9) generated by
SL{2, 3) (regarded as a subgroup of SL(2, 9) taken as a group of matrices)
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and the transformation y with matrix

(b 0\
\0 -bj'

semi-linear relative to the non-trivial automorphism of GF(9), where b is a
generator of the multiplicative group of GF(9). J is characterized as the
extension of SL(2, 3) by an element y such that y2 = T, the involution of
SL (2, 3), and y induces an outer automorphism of SL (2, 3). / has generalized
quaternion 2-Sylow subgroup.

THEOREM 4. Let G be a finite group whose 2-Sylow subgroup S has a
cyclic subgroup of index 2. / / the centralizer in G of an involution in the centre
of S has an Abelian 2-completnent and K is the largest normal subgroup of odd
order in G, then G/K is isomorphic to one of the groups S, SL(2, 3), J, GL(2, 3),
PSL(3,3), Mu, A7, PSL(2, q), PGL(2, q) or H(q) for some odd q.

PROOF. The 2-Sylow subgroup of G is as indicated in the introduction.
Now Burnside's theorem, the result of Gorenstein and Walter [7], and our
theorems give the asserted structure of G in every case except that in which 5
is of generalized quaternion type. In this case, G = GjK has only one
involution, by the result of Brauer and Suzuki [5]. By the proof of Lemma 3,
the centralizer Q of this involution has an Abelian 2-complement. If T is the
subgroup of order 2 in G, then if N/T is the largest odd order normal sub-
group of G/T, N has a normal 2-complement V, by Burnside's theorem. V is
normal in G and hence is trivial, by the maximality of K. Now G/T has an
Abelian 2-complement, satisfies the conditions of the Gorenstein-Walter
theorem, and has no nontrivial normal subgroup of odd order. By Lemma 2,
GjT is solvable, and thus G/T is a 2-group, or isomorphic to PSL(2,3) or to
PGL{2, 3). In the first case, G <* S. If G/T s* PSL(2,3), then by the result
of Schur [12], G ** SL(2, 3). Now, if G/T P» PGL{2, 3), then the argument
used in Case III of § 4 shows that G ?& J.

THEOREM 5. Let G be a finite group with a subgroup of order 4 which is
its own centralizer in G. If G possesses an involution whose centralizer has an
Abelian 2-complement, and K is the largest normal subgroup of odd order in G,
then either GjK is isomorphic to one of the groups PSL(3,3), M u , / , GL(2, 3)
SL(2, 3), H(q), PGL(2, q), PSL(2, q) (q odd), or A.,; or else Kis a 2-complement
for G.

PROOF. If K is not a 2-complement for G, then by Theorem II of [7]
either

(i) the 2-Sylow subgroup of G is of the type considered in Theorem 3,
and G has no subgroup of index 2;

(ii) G/K is isomorphic to SL(2, q), PGL{2,q), PSL{2, q) {q odd),
or A7; or
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(iii) G/K has a subgroup GJK of index 2 isomorphic to one of the groups
named in (ii).

If (i) holds. Theorem 3 shows that G[K is isomorphic to PSL(3, 3)
or Afu.

If the SL(2, q) case holds in (ii) or (iii), then q = 3, by solvability
(Lemma 2). It remains to consider the case (iii).

If GJK is isomorphic to SL(2, 3), then the 2-Sylow subgroup S of G
is an extension of a quaternion group of order 8 by a group of order 2.
There are four such extensions. For S to contain a self-centralizing subgroup
of order 4, S must be either of generalized quaternion type or of the type
considered in Theorem 3. Thus GjK is isomorphic to J or to GL(2, 3), by
Theorem 4.

In all other cases of (iii), S is an extension of a dihedral group by a
group of order 2. An examination of these extensions shows that S must be
either dihedral or of the type considered in Theorem 3. By Theorem 4,
G/K is isomorphic to GL(2, 3), PGL(2, q) or H(q) for some q.

Appendix

For completeness we give a proof of the case of Brauer's theorem needed
for the proof of Theorem 3.

THEOREM 6. Let G be a finite group with no subgroup of index 2, such
that the centralizer in G of an involution in the centre of a 2-Sylow subgroup
of G is isomorphic to GL{2, 3). Then G is isomorphic either to Mu or to
PSL(3,3).

PROOF. We have Case IV of § 4, with A = {1}, and retain the notations
used and results found there. Since <P,, • • •, <PS generate the module of
generalized characters of H which vanish on H—D, any generalized charac-
ter of H orthogonal to all the <Pt must vanish on D. In particular, if % is any
irreducible character of G distinct from 1Q, Xi>' "> Xi> then, by Frobenius
reciprocity, the restriction x\H is orthogonal to all the &{, so that x vanishes
on D and so on all 2-singular elements of G. By the orthogonality relations
on the 2-Sylow subgroup S,

( " ) deg x = 0 (mod 16), x ^ l c , Xl, • • •, Xi.

Again, by Frobenius reciprocity, (xi\H)— <po+<P3+<P»+<Pi a n d {x^\H)+n
are orthogonal to all the # , . Thus the values of x%> X<s o n D c a n be found:

X«(<?) = — <Psia). f o r

As in § 4, we have two possibilities.
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(a) /j = 10. Then, g = 7920 = 24325 • 11. Since the sum of the squares
of the degrees of the irreducible characters of G is equal to g, and since

f-l-i/f=612,
1

it follows from (11) that there are two more irreducible characters, each of
degree 16. Thus there are 10 irreducible characters in all, and G has 10
conjugacy classes. Six of these are represented by 1 and the elements
T, a2, pr, a and a"1 of D. We denote these classes by <1>, <2>, <4>, <6>, <8>,
<8>'.

Since the order of H is not divisible by 11, the centralizer C u in G of an
11-Sylow subgroup S u is of odd order. Thus the order of the normalizer
Nn of S u is not divisible by 4. Since (G :iVu) = 1 (mod 11), we must have
\NU\ = 55. We cannot have C u = Nn, since then G would have 10 classes
of elements of order 11. Thus C u = S u , and G has two classes <11>, <11>'
of elements of order 11. The remaining two classes must contain elements of
order 3 and 5, and we denote these by <3>, <5>. Since there are no elements
of order 10, 15 or 55, an element of order 5 generates its own centralizer.
Now the orders of all the centralizers of all elements not of order 3 are known,
and so the sizes of all the classes may be computed.

The values of Xi on <1>, <2>, <4>, <6>, <8> and <8>' are known, by (12).
Xi is of 5-defect 0 and so vanishes on <5>. If X\ had value 10 on an element of
order 11, the kernel of the representation .S? corresponding to Xi would be
of order 11 or 33, so that S u would be normal in G, a contradiction. Hence,
since %i is rational, %i has value —1 on <11>, <H>'. By the orthogonality
relations, the value of Xi on <3> is 1. All the values of Xi have been found,
and we have

(13) xM = 10, or = 1.

= 0, a e <8>, <8>', <5>,
= 1, <T6<3>.

We have seen that a 5-Sylow subgroup Ss is its own centralizer. Since
there is only one class of.elements of order 5, we have that the normalizer
iV5 of S5 is a split extension of S5 by a cyclic group F of order 4. Let SCR

denote the subspace of the representation space of ^C, the representation
corresponding to X\> consisting of those vectors left fixed by the subgroup
R of G. The dimension dim JSf* is given by the average value of Xi on R.
Thus we can compute that JS?"5 is a subspace of dimension 2 in the space
JZ"', which is of dimension 4. Now F is conjugate in G to {a2}, and so is
contained in a quaternion group Q. Zfl is a subspace of £fF of dimension 3.
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If M = {Q, Ns}, then &M = &> n &K>, and so dim SeM ^ 1. Since & is
irreducible, it follows that M is a proper subgroup of G.

Since the number of 5-Sylow subgroups of M is (M : iV8) = 1 (mod 5),
we have

\M\ = 20(ff»+l),

where w is an odd integer, since \M\ is divisible by 8. If n > 7, then (G : M)
^ 6, so that G has a transitive permutation representation of degree r£ 6.
Since G has no non-trivial irreducible characters of degree less than 10,
this representation would be trivial, contradicting the fact that M is proper.
If n = 1, then M has six 5-Sylow subgroups, and M has a permutation
representation 01 of degree 6. Then the kernel of dt is the intersection L of all
the conjugates of Nb in M. If a 5-Sylow subgroup S5 were contained in L,
then S5 would be normal in L and so in M, a contradiction. If L contained an
element a of order 2, then for a non-trivial element ft in S5, if <? = &$(o),
p = @(fj.), d transforms p into p~x, which is distinct from p, contradicting
the assumption that a = 1. Thus L is trivial and 0t is faithful. But, this is
impossible since M contains a quaternion subgroup, which can have no
faithful permutation representation of degree 6. We cannot have n = 3 or 5,
since then \M\ would not divide \G\. Hence n = 7, (G : M) = 11, and G
has a transitive permutation representation 0* of degree 11. The degrees of
the irreducible characters of G being known, it follows that the character of
& i s h+Xi, h+Xs or 1G+Xi- By (3), we have X,(T) = &(T) = - 2 .
Thus the character of & is l c + f t . By (13), only the identity of G is repre-
sented by a permutation leaving 4 letters fixed. In particular, & is faithful.
Since |G| = 11 • 10- 9- 8, !?(G) is quadruply transitive. By a theorem of
Jordan (cf. [8], Theorem 5.8.1), G is isomorphic to Mu.

(b) /i = 26. Then, g = 5616 = 2*3313. Now,

f-l-i/?=1024,
I

and so, by (11), G has four more irreducible characters, each of degree 16,
and so G has 12 conjugacy classes, six of which, denoted <1>, <2>, <4>, <6>,
<8>, <8>' are represented by 1 and the elements r, a2, pr, a and or1 of D.
By considering the number of 13-Sylow subgroups of G we see that the
normalizer 2V]3 and the centralizer C13 of a 13-Sylow subgroup S13 have orders
39, 13. Thus G has four classes <13>, <13>', <13>", <13>'" of elements of
order 13. This accounts for all but 728 of the elements of G.

Of the two remaining classes, one is the class <3> of the element p of
order 3. The other must contain elements of order 3 or 9. Suppose a is of
order 9. Then since a does not commute with elements of order 2 or 13, the
number of conjugates of a is 2* 13 = 208 or 2*3 • 13 = 624. The first case is
impossible since it would imply that |<3>| = 520, not a divisor of 5616.
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Thus a has 624 conjugates, and generates its own centralizer. In particular
the 3-Sylow group S3 is non-Abelian. Since all elements of order 9 are con-
jugate, the normalizeriV ({<;}) must transform the elements of order 9 in {a}
transitively. Hence |JV({<r})| = 2-33, and there are 2*13=104 cyclic sub-
groups of order 9 in G.

Since |<3>| = 104, there are 52 subgroups of order 3 in G, all conjugate.
Each cyclic subgroup of order 9 contains exactly one such subgroup. Hence
each subgroup of order 3 must be contained in exactly two cyclic subgroups
of order 9. But, by the structure of S3 ([8], § 4.4), the centre of Ss is contained
in three cyclic subgroups of order 9, a contradiction.

Hence G has no elements of order 9, and the remaining class <3>'
contains elements of order 3. Now let a, a' be non-conjugate elements
of order 3, a an element of the centre of S3. The order |C(cr)| is not divisible
by 4, since otherwise C(a) would have an Abelian subgroup of order 12,
contradicting the fact that the centralizer of an involution contains no such
subgroup. Since |C(<r)| is also not divisible by 13 but is divisible by 3s,
the number of conjugates of a is 2*13 or 2*13. The second case is impossible
as it gives a size 520 for the class of a'. Hence a has 2s 13 = 104 conjugates,
and a' has 624 conjugates. |C(or)| = 2 • 3s, and |C(or')| = 3*. Thus a is con-
jugate to p, so that a e <3>, a' e <3>'. Also S3 is non-Abelian of exponent 3.

The values of Xt on <1>, <2>, <4>, <6>, <8>, <8>' are known, by (12).
If x« had value 12 on an element of order 13, the kernel of the representation
corresponding to x» would be of order 13, 3 • 13, 3* • 13 or 3S13. In any case it
would have a normal 13-Sylow subgroup or normal 3-Sylow subgroup which
would be normal in G, a contradiction. Hence, since x* is rational, its value
on <13>, <13>', <13>", <13>"' is — 1 . By the orthogonality relations, the
values of %e on <3>, <3>' are found. We have

(14) z,(<r) = 12. a = 1
= 4, a e <2>
= 0, a e <4>, <8>, <8>', <3>'
= 1, a e <6>
= - 1 , <re <13>, <13>', <13>"
= 3, a e <3>.

Let S3 be a 3-Sylow subgroup of G whose centre contains (and so is
generated by) the element p. Since \C(p)\ = 2 • 33, and p is conjugate to p'1,
the normalizer N({p}) = C*{p) has order 223S. S3 is characteristic in C(p),
which is normal in C*(j>). Hence S3 is normal in C*(p). C*(p) contains the
involution T, and also, by the structure of C(T) CS GL(2, 3), an involution fi
which transforms p into its inverse and commutes with x. {r, /*} acts as a
group of automorphisms of the elementary Abelian group S3/0>}, which
therefore has a subgroup £//{/>} of order 3, invariant under {T, /<}. Now {T, /*}
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acts as a group of automorphisms of the elementary Abelian group U.
Since neither t nor /u centralizes U, we may assume that

U={p, A}, P- = P, P" = p~\ 7J = A-», A" = A.

Thus we know the structure of the subgroup

M = {T, p, p, X}

of order 36. M contains 15 involutions, 12 elements of order 6, and 8 elements
of order 3. Let n be the number of elements of M belonging to <3>. Then the
sum of the values of Xe on M is 84+ 3n. Since this must be divisible by the
order 36 of M, n — 8. Thus all elements of order 3 in M belong to <3>, and
the average value of Xt on M is 3, i.e. dim SCM = 3, where SC is the represen-
tation corresponding to x%> an<i '&u the subspace of the representation space
consisting of vectors left fixed by M. dim j ^ 1 ' 1 is computed to be 2. Since
T = {r, /x, p} is a subgroup of both M and C{r), £PM and J?CiT) are subspaces
of :S?r, which has dimension 4. Thus 3CM n ^?°(T)Jias dimension at least 1,
and L = {M, C(r)} is a proper subgroup of G.

Clearly \L\ is divisible by 2432, and so (G : L) is a divisor of 3 • 13. Let 0>
be the transitive permutation representation of G on the right cosets of L.
If (G : L) = 3, G would have a nontrivial irreducible character of degree
^ 2, which is not so. If (G : L) = 39, then C (T) is a subgroup of L of index 3.
The intersection of the conjugates of C(r) in Z. is a subgroup of index 3 or 6
in L, and so is either C(T) or its unique subgroup K of index 2. Since r
generates the centre of both C(T) and K, it follows that {T} is normal in L,
so that L Q C(T), a contradiction. Hence, (G : L) = 13.

L is not normal in G, since otherwise G would have 13 characters of degree
1. Hence L is its own normalizer, and we may regard & as a permutation
representation of G on the conjugates Llt- • •, Lu of L, which we call lines.
The character of 0* must be l + ^ 4 , since all non-trivial irreducible characters
of G apart from x» have degree exceeding 12. Thus & is doubly transitive, and
faithful, by (14). We identify ^»(G) with G.

By (14), if or e <3>, then l+#6(a) = 4, so that a fixes exactly 4 lines.
We define a /KM'M* to be such a set of 4 lines. By double transitivity, any two
lines belong to at least one point.

If Lx, Lg are two lines, let alt a2 be elements of <3> each fixing both
Lx, Lt, i.e. lying in Lx n L2. Lx n L2 contains no elements of order 4, since
these each fix only one line. Hence the 2-Sylow subgroup of Lx n L2 is of
elementary Abelian type, and so of order at most 4 since G contains no ele-
mentary Abelian subgroup of order 8. Lx n L? contains no elements of <3>
since these fix no lines. In particular Lx n Lt does not contain a 3-Sylow
subgroup of G.

Suppose Lx n L2 has non-normal 3-Sylow subgroup V. If \V\ — 9,
then \LX n L2\ = 36. V is its own normalizer in Lxn L2, and so, by Burn-
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side's theorem, Lx n L9 has normal 2-Sylow subgroup W. The centralizer C
of W in Lt n L2 must have order 12. We may assume ax e C. If Lx, L2

belong to more than one point, we may assume that there is a line Ls fixed
by ax but not fixed by a2 • Lx n L2 n L3 is a proper subgroup of Lx n L2.
If Li is the fourth line fixed by ax, then the three involutions in Lx n L2

commute with ax and so permute Lx, L2, L3, L4 amongst themselves.
Since they each fix Lt and L2, at least one of them fixes all four lines. Hence
\LX n L2n L3\ is even, and so is 6 or 12, since Lx n L2 has no subgroup of
order 18. If \LX n L2 n L3\ = 6, then computation shows that the average
value of l+#e on Lx n Lt n L3, which is the number of transitive consti-
tuents of Lxn L2n L3, is 5. Lx, L2 and Ls form three of these constituents.
This leaves two constituents whose sizes are divisors of 6 whose sum is 10.
But there are no such numbers. Hence \Lt n L? n L3\ = 12. Now the number
of constituents is found to be 4, again giving a contradiction.

Now take \V\ = 3, so that \LX n L2\ = 12 and Lx n L2 is isomorphic
to the alternating group At. As before, if Llt Z,2 belong to more than one
point we can take a line L3 fixed by o1 but not by a2. Lxn L2n L3 is a
proper subgroup of Lx n L2 and so is of order 3. If Lt is the fourth line fixed
by alt then C(ax) permutes LX,L2,L3, L4 amongst themselves. Since axe<3>,
C{ax) contains a 3-Sylow subgroup of G. As 4! is divisible by 3 to the first
power only, there is a subgroup of order 32 fixing Lx,L2,L3,Li, and this is
a contradiction.

If Lx n L2 has normal 3-Sylow subgroup, then ax and a2 commute,
and so if the lines left fixed by o, are Lx, L2, L3, X4 then <r2 permutes these
amongst themselves and leaves Lx, L2 fixed. Since a2 has order 3, a2

leaves Lx, L2, L3, Lt all fixed. This completes the proof that the two lines
Lx, L2 belong to exactly one point.

If £ is a line, each point of L lies on four lines, three of which are distinct
from L. There are 12 lines distinct from L, each of which meets L in exactly
one point. Hence L has four points. Thus there are four points on each line
and four lines on each point, so that the number of points is 13, the number
of lines. Now by [8], Theorem 20.8.1, we have a projective'plane ^ which
being of order 3 is Desarguesian. Clearly G is a group of collineations of &.
Since PSZ.(3,3), the full collineation group of <3, has order 5616, the order
of G, we have G ?vPSL(3, 3).

This finishes the proof of Theorem 6.
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