ON FINITE GROUPS WHOSE 2-SYLOW SUBGROUPS HAVE CYCLIC SUBGROUPS OF INDEX 2 *

W. J. WONG
(received 20 May, 1963)

Introduction

If the finite group G has a 2 -Sylow subgroup S of order 2^{a+1}, containing a cyclic subgroup of index 2 , then in general S may be one of the following six types [8]:
(i) cyclic;
(ii) Abelian of type ($a, 1$), $a>1$;
(iii) dihedral ${ }^{1}$;
(iv) generalized quaternion;
(v) $\{\alpha, \beta\}, \alpha^{2^{a}}=\beta^{2}=1, \alpha^{\beta}=\alpha^{2^{a-1}+1}, a \geqq 3$;
(vi) $\{\alpha, \beta\}, \alpha^{2^{a}}=\beta^{2}=1, \alpha^{\beta}=\alpha^{2^{\alpha-1}-1}, a \geqq 3$.

In cases (i) and (ii), Burnside's theorem shows that G has a normal 2-complement. Case (iii) is of considerable interest, as it occurs with the simple groups $\operatorname{PSL}(2, q)$, and has been extensively treated (see the bibliography in [7]). Case (iv) has been dealt with in [5]. In this paper we consider the two remaining cases.

In case (v), G is easily shown to have a normal 2 -complement. This is done in.§ l. Case (vi) is more interesting (and more difficult). Specific results can be obtained if additional assumptions are made. The main result of the paper is a determination of the structure of G when the centralizer of an involution has an Abelian 2-complement. In particular, it is shown that the only simple groups then occurring are the finite projective group $\operatorname{PSL}(3,3)$ and the Mathieu group M_{11} on 11 letters. These results are obtained in § 4, and two applications are given in § 5.

I wish to thank the referee for pointing out a number of inaccuracies in the original manuscript of this paper.

[^0]
1.

We begin by recalling some useful facts. If S is a p-Sylow subgroup of the finite group G, the focal group S^{*} of S in G is the group generated by all quotients $\sigma^{\prime} \sigma^{-1}$, where σ and σ^{\prime} are elements of S conjugate in G. The main property of S^{*} is the following (see [10]):
S^{*} is normal in S, and S / S^{*} is isomorphic to the largest Abelian p-factor group of G.

Theorem 1. Let G be a finite group with 2-Sylow subgroup of form

$$
S=\{\alpha, \beta\}, \alpha^{2^{\alpha}}=\beta^{2}=1, \alpha^{\beta}=\alpha^{2^{\sigma-1}+1}, a \geqq 3
$$

Then, G has a normal 2-complement.
Proof. It is easily seen that the elements of S of order 2^{b} are, for $b>1$, the elements of form

$$
\alpha^{2^{a-b}+n 2^{a-b+1}} \quad \text { or } \quad \alpha^{2^{a-b}}+n 2^{a-b+1} \beta,
$$

where n is an integer. For $b=1$, we have also the element β. It follows that if σ and σ^{\prime} are elements of the same order in S then $\sigma^{\prime} \sigma^{-1}$ is either an even power of α, or the product of such a power with β. Thus the focal group S^{*} is contained in $\left\{\alpha^{2}, \beta\right\}$, and so is a proper subgroup of S. Thus, G has a nontrivial Abelian 2 -factor group, and we can find a normal subgroup H of index 2 in G. H has as 2-Sylow subgroup a subgroup T of index 2 in S. Thus, $T=\left\{\alpha^{2}, \gamma\right\}$, where γ is an element of S. Since α^{2} lies in the centre of S, T is Abelian, either cyclic or of type ($a-1,1$). Since $a-1>1$, it follows that the automorphism group of T is a 2 -group. Burnside's theorem [8] yields a normal 2-complement for H, and this is also a normal 2-complement for G.

2.

From now on G will always denote a finite group with 2-Sylow subgroup of the form

$$
S=\{\alpha, \beta\}, \alpha^{2^{a}}=\beta^{2}=1, \alpha^{\beta}=\alpha^{2^{a-1}-1}, a \geqq 3 .
$$

We put $\tau=\alpha^{2^{\alpha-1}}, \pi=\alpha^{2^{\alpha-2}}$, and write $\rho \sim \sigma$ to mean that ρ is conjugate to σ in $G, \rho \nsim \sigma$ for the negation of this statement.

Lemma 1. The focal group of S in G is given by

$$
\begin{aligned}
& S^{*}=\text { (i) } \quad\left\{\alpha^{2}\right\}, \text { if } \alpha \beta \sim \pi \text { and } \beta \propto \tau \text {; } \\
& \text { (ii) }\left\{\alpha^{2}, \beta\right\} \text {, if } \alpha \beta \nsim \pi \text { and } \beta \sim \tau \text {; } \\
& \text { (iii) }\left\{\alpha^{2}, \alpha \beta\right\} \text {, if } \alpha \beta \sim \pi \text { and } \beta \sim \tau \text {; } \\
& \text { (iv) } S, \text { if } \alpha \beta \sim \pi \text { and } \beta \sim \tau \text {. }
\end{aligned}
$$

Proof. The elements of S not in $\{\alpha\}$ are $\beta, \alpha^{2} \beta, \alpha^{4} \beta, \cdots$, forming a conjugacy class of S of elements of order 2 , and $\alpha \beta, \alpha^{3} \beta, \alpha^{5} \beta, \cdots$, forming another conjugacy class of elements of order 4. An even power and an odd power of α cannot be conjugate in G, as they are of different orders. The two elements π and π^{-1} of order 4 in $\{\alpha\}$ are conjugate in S. It is now easy to calculate S, with the results stated.

Theorem 2. Let G be a finite group with 2-Sylow subgroup of the form

$$
S=\{\alpha, \beta\}, \alpha^{2^{a}}=\beta^{2}=1, \alpha^{\beta}=\alpha^{2^{a-1}}-1, a \geqq 3 .
$$

Then, one of the following holds:
I. G has a normal 2-complement.
II. G has a normal subgroup of index 2, which has no normal subgroup of index 2 and has dihedral 2-Sylow subgroup.
III. G has a normal subgroup of index 2, which has no normal subgroup of index 2 and has 2-Sylow subgroup of generalized quaternion type.
IV. G has no normal subgroup of index 2, the involutions of G form a single conjugacy class in G, and the centralizer in G of any involution is a group of type III.

Proof. Let G / G_{2} be the largest Abelian 2-factor group of G. As stated previously, this is isomorphic to $S / S^{*} . G_{2}$ has S^{*} as 2-Sylow subgroup.

If case (i) of Lemma 1 holds, S^{*} is cyclic, so that by Burnside's theorem G_{2} has a normal 2-complement, which is a normal 2-complement for G.

If cases (ii) or (iii) hold, then ($G: G_{2}$) $=2$, and G_{2} can have no normal subgroup of index 2 , for otherwise G_{2} would have a proper characteristic subgroup K such that G_{2} / K is a 2 -group. Then G / K would be a 2 -group of order exceeding 2 , and G would have a factor group of order 4, a contradiction. Since $\left\{\alpha^{2}, \beta\right\}$ is dihedral and $\left\{\alpha^{2}, \alpha \beta\right\}$ is of generalized quaternion type, we have the alternatives II, III asserted.

If case (iv) of Lemma 1 holds, we have $G=G_{2}$, and it remains to verify that the centralizer $C(\tau)$ in G of the involution τ is of type III. $C(\tau)$ contains S since $\tau \in C(S)$. Now, $\alpha \beta$ is conjugate in G to π :

$$
\alpha \beta=\pi^{\mu}, \quad \mu \in G .
$$

Since $(\alpha \beta)^{2}=\tau=\pi^{2}$, we have $\tau=\tau^{\mu}$, i.e. $\mu \in C(\tau)$, and $\alpha \beta$ is conjugate in $C(\tau)$ to π. Since β is not conjugate to τ in $C(\tau)$, case (iii) of Lemma 1 applies to $C(\tau)$, so that $C(\tau)$ is of type III.

3.

3. This section is devoted to giving some examples of finite groups with 2-Sylow subgroup S of the type being discussed, in which the centralizer of the involution τ in the centre of S has an Abelian 2-complement.
(1). S itself.
(2). If $q=r^{2}$, where r is a power of an odd prime number, we define a group $H(q)$ in the following way: $H(q)$ is the subgroup of the group $P \Gamma L(2, q)$ of all one-dimensional projective semi-linear transformations over $G F(q)$ (cf. [6], where these are called projective collineations) generated by $\operatorname{PSL}(2, q)$ and a semi-linear transformation α relative to the automorphism

$$
\sigma: x \rightarrow x^{r}
$$

of $G F(q)$ of order $2 . \alpha$ is defined by taking a basis and letting α be represented by the semi-linear transformation relative to σ having matrix

$$
T=\left(\begin{array}{ll}
b & 0 \\
0 & 1
\end{array}\right), \quad \text { or } \quad\left(\begin{array}{ll}
0 & b \\
1 & 0
\end{array}\right)
$$

according as $r \equiv 1(\bmod 4)$, or $r \equiv-1(\bmod 4)$, where b is an element of $G F(q)$ having multiplicative order 2^{a}, the exact power of 2 dividing $q-1$.
α^{2} is the projective linear transformation represented by the matrix

$$
T^{\sigma} T=\left(\begin{array}{ll}
b^{r+1} & 0 \\
0 & 1
\end{array}\right), \quad \text { or } \quad\left(\begin{array}{ll}
b^{r-1} & 0 \\
0 & 1
\end{array}\right) .
$$

Since $r+1$ (respectively $r-1$) is exactly divisible by 2 , it follows that $\alpha^{2} \in P S L(2, q)$ and that α has order 2^{a}. Since $P S L(2, q)$ is normal in $P \Gamma L(2, q), H(q)$ is an extension of $\operatorname{PSL}(2, q)$ by a group of order 2 . Thus $H(q)$ has order $(q-1) q(q+1)$, and has 2 -Sylow subgroup S of order 2^{a+1}.

Let β be the involution in $\operatorname{PSL}(2, q)$ represented by the matrix

$$
V=\left(\begin{array}{rr}
0 & \mathrm{I} \\
-1 & 0
\end{array}\right)
$$

Then, $\alpha^{\beta} \alpha$ is represented by the matrix

$$
V^{-1} T^{\sigma} V T=\left(\begin{array}{ll}
b & 0 \\
0 & b^{r}
\end{array}\right), \quad \text { or } \quad\left(\begin{array}{rc}
-1 & 0 \\
0 & -b^{r+1}
\end{array}\right) .
$$

Since $b^{r-1}=-1$ in the first case, and $b^{r+1}=-1$ in the second case, $\alpha^{\beta} \alpha$ may be represented by the diagonal matrix

$$
\left(\begin{array}{rr}
-1 & 0 \\
0 & 1
\end{array}\right)
$$

But, this is equal to $\left(T^{\sigma} T\right)^{2^{a-2}}$, which represents $\alpha^{2^{a-1}}$. Thus,

$$
\alpha^{\beta}=\alpha^{2^{a-1}-1}
$$

and so $\{\alpha, \beta\}$ is a 2-Sylow subgroup of $H(q)$, and is of the required type. (We note that $q=r^{2} \equiv 1(\bmod 8)$, so that $a \geqq 3$.)

The centralizer of $\tau=\alpha^{\alpha^{2-1}}$ in $\operatorname{PSL}(2, q)$ has cyclic 2 -complement,
and this is a 2-complement of the centralizer of τ in $H(q)$, since ($H(q)$: $\operatorname{PSL}(2, q))=2$.
(3). $G L(2,3)$ is a group of order 48 whose 2 -Sylow subgroup S is generated by

$$
\alpha=\left(\begin{array}{rr}
-1 & 1 \\
-1 & -1
\end{array}\right), \quad \beta=\left(\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right)
$$

It is easily checked that $\alpha^{8}=\beta^{2}=1, \alpha^{\beta}=\alpha^{3}$, so that S is of the required type. The centralizer of $\tau=\alpha^{4}$ is the whole of $G L(2,3)$, which has a cyclic 2-complement.
(4). $\operatorname{PSL}(3,3)=S L(3,3)$ is a group of order 5616. If τ is an involution in this group, then with respect to a suitable basis τ has matrix

$$
\left(\begin{array}{rrr}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right) .
$$

The elements of $C(\tau)$ are then represented by matrices

$$
\left(\begin{array}{lll}
f^{-1} & 0 & 0 \\
0 & b & c \\
0 & d & e
\end{array}\right)
$$

where $\left(\begin{array}{ll}b & c \\ d & e\end{array}\right)$ is an element of $G L(2,3)$ and f is its determinant. Clearly $C(\tau)$ is isomorphic with $G L(2,3)$, and so $\operatorname{PSL}(3,3)$ is a group of the required type.
(5) The Mathieu group M_{11} of order 7920 is a quadruply transitive permutation group of degree 11. It may be regarded as a transitive extension of the group $H(9)$ taken as acting on the points of a projective line L over $G F(9)$ [15]. In particular, the 2-Sylow subgroup of M_{11} is a group of order 16 of the required type. If τ is an involution of $H(9), \tau$ has two fixed points in L, and so three fixed points a, b, c as an element of M_{11}. The subgroup fixing a, b, c is a quaternion group and so contains only one involution. Hence $C(\tau)$ consists of all permutations of M_{11} permuting a, b, c amongst themselves, and so, by triple transitivity, its order is 48 . Thus $C(\tau)$ has a cyclic 2 -complement. (In fact, $C(\tau)$ can be shown to be isomorphic with $G L(2,3))$.

4.

4. We now assume that
(*) G is a finite group with 2-Sylow subgroup

$$
S=\{\alpha, \beta\}, \quad \alpha^{2^{a}}=\beta^{2}=1, \quad \alpha^{\beta}=\alpha^{2^{a-1}-1}, \quad a \geqq 3
$$

such that, for $\tau=\alpha^{\mathbf{2}^{\mathbf{a - 1}}}, C(\tau)$ has an Abelian 2-complement.

Let K be the largest normal odd order subgroup of G. We shall prove that G / K must be isomorphic to one of the groups of § 3.

Lemma 2. A finite group H with an Abelian 2-complement is solvable, and every subgroup and quotient group of H has an Abelian 2-complement.

Proof. Let S be a 2-Sylow subgroup and C an Abelian 2-complement of H. Since S and C are nilpotent of relatively prime orders and $H=S C, H$ is solvable, by a theorem of Wielandt [14]. If L is any subgroup of H, then L is solvable, and so by Hall's extension of Sylow's theorems [9], L has a 2-complement D. Also, D is conjugate to a subgroup of C and so is Abelian. If N is any normal subgroup of G, then $(G: C N)$ is a divisor of $(G: C)$ and so is a power of $2 . C N / N$ is isomorphic to $C / C \cap N$ and so is Abelian of odd order, and is an Abelian 2-complement of G / N.

Lemma 3. If G is a group satisfying the condition (*) and K is any normal subgroup of odd order in G, then G / K also satisfies (*).

Proof. Let $\bar{\tau}=\tau K$. We need only prove that the centralizer $C(\bar{\tau})$ of $\bar{\tau}$ in G / K has an Abelian 2 -complement. If $C(\bar{\tau})=L / K$, then $\{\tau\} K$ is normal in L, since L centralizes $\tau(\bmod K)$. Hence, if $\lambda \in L,\{\tau\}$ and $\left\{\tau^{\lambda}\right\}$ are 2 -Sylow subgroups of $\{\tau\} K$, and so

$$
\tau^{\lambda}=\tau^{\mu}
$$

for some $\mu \in K$. Thus, $\lambda \in C(\tau) \mu \leqq C(\tau) K$. Since $C(\tau) \leqq L$, we have $L=$ $C(\tau) K$, and so $C(\bar{\tau})$ is isomorphic to $C(\tau) / C(\tau) \cap K$. The result now follows from Lemma 2.

Using this lemma, we can assume also that
(**) G has no non-trivial normal subgroup of odd order.
We now consider the cases II, III, IV of Theorem 2 in turn.
Case II. G has a normal subgroup G_{2} of index 2 such that G_{2} has no normal subgroup of index 2, and has dihedral 2-Sylow subgroup $\left\{\alpha^{2}, \beta\right\}$ of order 2^{a}. By Lemma 2, the centralizer of τ in G_{2} has an Abelian 2-complement. The largest odd order normal subgroup of G_{2} is normal in G, and so is trivial, by the assumption ($* *$). By a theorem of Gorenstein and Walter [7], G_{2} is isomorphic with the alternating group A_{7} of degree 7 , or with $\operatorname{PSL}(2, q)$, for some odd prime power q. The first case is impossible, as α would induce an automorphism of order 8 in G_{2}, contradicting the fact that none of the automorphisms of A_{7} (which may all be regarded as induced by elements of the symmetric group S_{7}) is of order 8 . We may therefore identify G_{2} with PSL $(2, q)$.

The automorphisms of $\operatorname{PSL}(2, q)$ are all obtained by conjugation of $S L(2, q)$ by semi-linear transformations (cf. [6]; contragredient transforma-
tion of $S L(2, q)$ can easily be seen to be equivalent with conjugation by a semi-linear transformation). Let θ be a semi-linear transformation inducing the same automorphism of G_{2} as α does. θ^{2} induces the same automorphism of G_{2} as α^{2}, which is represented by a linear transformation. Since $\operatorname{PSL}(2, q)$ has trivial centralizer in the group $P \Gamma L(2, q)$, it follows that θ^{2} is linear. Hence, if σ is the automorphism of $G F(q)$ associated with θ, then $\sigma^{2}=1$.

If $\sigma=1, G$ would be isomorphic with a subgroup of $P G L(2, q)$, and so would have dihedral 2-Sylow subgroup, a contradiction.

Thus, σ is of order 2 . Then $q \equiv 1(\bmod 8)$, since $q=r^{2}$, where $G F(r)$ is the fixed field of σ. This implies that 2^{a} is the exact power of 2 dividing $q-1$. The involutions τ, β can be represented by the matrices

$$
\left(\begin{array}{rr}
-1 & 0 \\
0 & 1
\end{array}\right), \quad\left(\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right) .
$$

If θ has matrix form T, then since θ leaves τ fixed and $\tau^{\sigma}=\tau, T$ must commute (projectively) with τ. It follows that we may take

$$
T=(\mathrm{i})\left(\begin{array}{ll}
b & 0 \\
0 & 1
\end{array}\right), \quad \text { or }(\mathrm{ii})\left(\begin{array}{ll}
0 & b \\
1 & 0
\end{array}\right)
$$

If case (i) holds, then ${\alpha^{2 a-1}-2}^{2^{a-1}} \beta^{\alpha} \beta=\beta^{\theta} \beta=\beta^{T} \beta$ is represented by the matrix

$$
\left(\begin{array}{ll}
1 & 0 \\
0 & b^{2}
\end{array}\right)
$$

Since its order is $2^{a-1}, b$ is an element of $G F(q)$ having multiplicative order 2^{a}. Now, α^{2} is represented by the matrix

$$
T^{\sigma} T=\left(\begin{array}{ll}
b^{r+1} & 0 \\
0 & 1
\end{array}\right)
$$

Since this has order $2^{a-1}, r+1$ is not divisible by 4 . Hence $r \equiv 1(\bmod 4)$, and we have that G is isomorphic with the group $H(q)$ defined in § 3.

Case (ii) gives the same result in the same way.
Case III. G has a normal subgroup G_{2} of index 2 such that G_{2} has no normal subgroup of index 2, and has generalized quaternion 2-Sylow subgroup $\left\{\alpha^{2}, \alpha \beta\right\}$ of order 2^{α}. Again G_{2} has no non-trivial normal subgroup of odd order, by the assumption (**). By a theorem of Brauer and Suzuki [5], G_{2} has only one involution τ.
$T=\{\tau\}$ is normal in G, and so, by the assumption (*), G has an Abelian 2-complement. G / T has dihedral 2-Sylow subgroup, and, by Lemma 2, the centralizer of an involution in G / T has an Abelian 2 -complement. By the result of Gorenstein and Walter, G / T has an odd order normal subgroup N / T such that G / N is isomorphic with $P G L(2, q)$, for some odd q. By Burn-
side's theorem, N has a normal 2 -complement V, which is normal in G. By the assumption (**), V is trivial, so that $N=T$. By Lemma 2, G is solvable, and so $q=3$. Hence there is an isomorphism

$$
\theta: G / T \rightarrow P G L(2,3) .
$$

Since θ maps G_{2} / T on $\operatorname{PSL}(2,3)$, and G_{8} has only one involution, it follows from a result of Schur [12] that the restriction of θ to G_{2} / T is induced by an isomorphism of G_{2} on $S L(2,3)$. We can identify G_{2} with $S L(2,3)$, so that θ is the identity map on G_{2} / T. The element $(\beta T)^{\theta}$ of $P G L(2,3)$ can be represented by an element β of $G L(2,3)$. Now β and β induce the same automorphism on $G_{2}=S L(2,3)$ since they induce the same automorphism on $G_{2} / T=$ $\operatorname{PSL}(2,3)$, and no two automorphisms of $S L(2,3)$ give the same automorphism of $\operatorname{PSL}(2,3)$. Since β^{2} induces the same inner automorphism of $S L(2,3)$ as $\beta^{2}=1, \beta^{2}$ lies in the centre $\{\tau\}$ of $S L(2,3)$. If $\beta^{2}=\tau$, the 2 Sylow subgroup of $G L(2,3)$ would be of generalized quaternion type, which is not so. Hence $\beta^{2}=1$, and G is isomorphic to $G L(2,3)$.

Case IV. G has no normal subgroup of index 2, the involutions of G are all conjugate in G, and the centralizer $H=C(\tau)$ is a group of type III. By Lemma 3 and what we have just proved, H has a normal subgroup A of odd order such that

$$
\begin{equation*}
H / A \approx G L(2,3) . \tag{1}
\end{equation*}
$$

The Abelian 2-complement of H contains A, and so A is Abelian. We shall show that A is trivial.

The irreducible characters of H with kernel containing A (i.e. the irreducible characters of H / A) are given by Table 1 , in which ρ is an element of H whose coset $\bar{\rho}$ with respect to A has order 3, and ω is a square root of $\mathbf{- 2}$.

Table 1

	1	τ	α^{2}	ρ	$\rho \tau$	β	α	α^{-1}
φ_{0}	1	1	1	1	1	1	1	1
φ_{1}	1	1	1	1	1	-1	-1	-1
φ_{2}	2	2	2	-1	-1	0	0	0
φ_{3}	3	3	-1	0	0	-1	1	1
φ_{4}	3	3	-1	0	0	1	-1	-1
φ_{5}	4	-4	0	1	-1	0	0	0
φ_{8}	2	-2	0	-1	1	0	ω	$-\omega$
φ_{7}	2	-2	0	-1	1	0	$-\omega$	ω

Let D be the set of all roots of τ in G, i.e. the elements σ of G such that τ is a power of $\sigma . D$ is a subset of H. If in general the coset of an element σ of H with respect to A is denoted by $\bar{\sigma}$, then because A has odd order, σ is a root
of τ if and only if $\bar{\sigma}$ is a root of $\bar{\tau}$. The classes of H / A consisting of roots of $\bar{\tau}$ are those represented by the cosets of $\tau, \alpha^{2}, \rho \tau, \alpha$ and α^{-1}. Now it is easily checked that the module of generalized characters of H / A which vanish on $H-D$ has as a basis the generalized characters

$$
\begin{align*}
& \Phi_{1}=\varphi_{0}+\varphi_{2}-\varphi_{4} \tag{2}\\
& \Phi_{2}=\varphi_{2}-\varphi_{6}, \\
& \Phi_{3}=\varphi_{6}-\varphi_{7}, \\
& \Phi_{4}=\varphi_{1}+\varphi_{4}-\varphi_{5}, \\
& \Phi_{5}=\varphi_{1}+\varphi_{2}-\varphi_{3} .
\end{align*}
$$

Denote by $\chi_{i}(I)$ the sum of the values on all the involutions of G of the (ordinary) irreducible character χ_{i} of G, and by $\varphi_{j}(J)$ the sum of the values on all the involutions of H of the character φ_{i} of H.

Lemma 4. Let $\Phi=\sum_{j} b_{j} \varphi_{j}, \Phi^{\prime}=\sum_{j} b_{j}^{\prime} \varphi_{j}$ be generalized characters of H, which vanish on $H-D$. If the induced generalized characters of G are $\Phi^{*}=$ $\sum_{i} c_{i} \chi_{i}, \Phi^{\prime *}=\sum_{i} c_{i}^{\prime} \chi_{i}$, then
(i) $\Phi^{*}(\sigma)=\left\{\begin{array}{l}0, \quad \text { if } \sigma \text { is conjugate in } G \text { to no element of } D \text {, } \\ \Phi(\sigma), \quad \text { if } \quad \sigma \in D .\end{array}\right.$
(ii) $\sum_{i} c_{i} c_{i}^{\prime}=\sum_{j} b_{j} b_{j}^{\prime}$.
(iii) $g^{-1} \sum_{i} \chi_{i}(I)^{2} c_{i} / \operatorname{deg} \chi_{i}=h^{-1} \sum_{j} \varphi_{j}(J)^{2} b_{j} / \operatorname{deg} \varphi_{j}$,
where $g=|G|, h=|H|$.
These facts are due to Suzuki; an outline of their derivation is given in [13].

Using this lemma and the Frobenius reciprocity law, we easily see that for the generalized characters (2) we have

$$
\begin{aligned}
& \Phi_{1}^{*}=1_{G}+\varepsilon\left(\chi_{1}-\chi_{2}\right), \\
& \Phi_{2}^{*}=\varepsilon\left(\chi_{1}-\chi_{3}\right), \\
& \Phi_{3}^{*}=\varepsilon\left(\chi_{3}-\chi_{4}\right), \\
& \Phi_{4}^{*}=\varepsilon \chi_{2}+\varepsilon_{1} \chi_{5}+\varepsilon_{2} \chi_{6}, \\
& \Phi_{5}^{*}=\varepsilon \chi_{1}+\varepsilon_{1} \chi_{5}+\varepsilon_{3} \chi_{7},
\end{aligned}
$$

where l_{G} is the trivial character of $G, \chi_{1}, \chi_{2}, \cdots, \chi_{7}$ are distinct non-trivial irreducible characters of G, and $\varepsilon, \varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}$ are all ± 1.

Since all elements of D are 2 -singular, Lemma 4 (i) implies that Φ_{i}^{*} vanishes on all 2-regular elements of G. By Theorem 6 of [4], the same holds for the part of Φ_{1}^{*} consisting of characters of the principal 2-block B_{1} of G. Since a single character does not vanish on all 2-regular elements, it follows that χ_{1} and χ_{2} lie in B_{1}. By considering the other Φ_{i}^{*} in turn, we see that x_{1}, \cdots, x_{7} all belong to B_{1}.

If σ is any 2 -regular element of H, then

$$
\begin{equation*}
\chi_{i}(\tau \sigma)=\sum_{j} d_{i j} \psi_{j}(\sigma) \quad(i=1, \cdots, 7) \tag{3}
\end{equation*}
$$

where the ψ_{i} are modular irreducible characters of H and the $d_{i j}$ are rational integers, the generalized decomposition numbers [1] of χ_{i} with respect to τ. By Brauer's Second Main Theorem on blocks [1], $d_{i j}=0$ unless ψ_{j} lies in a block b of H such that $B_{1}=b^{G}$. This is so if and only if $b=b_{1}$, the principal 2-block of $H[2]$. Since A is of odd order, this may be considered as the principal 2-block of H / A.

From Table 1, H / A has only one 2-block, with two modular irreducible characters, the trivial character ψ_{1} and the character ψ_{2} given by

$$
\begin{equation*}
\psi_{2}(1)=2, \quad \psi_{2}(\rho)=-1 \tag{4}
\end{equation*}
$$

The Cartan invariants of b_{1} can be calculated to have the values

$$
\begin{equation*}
c_{11}=8, \quad c_{12}=c_{21}=4, \quad c_{22}=6 \tag{5}
\end{equation*}
$$

Lemma 4 (i) gives relations amongst the values of the χ_{i} on τ and $\tau \rho$. Using (3) and (4), we can deduce relations amongst the generalized decomposition numbers, and find that they are as in Table 2, in which b, c, d, e are rational integers.

Table 2

	1_{a}	χ_{1}	χ_{3}	χ_{3}	χ_{4}	χ_{5}	χ_{8}	χ_{1}
ψ_{1}	1	$b \varepsilon$	$(b+1) \varepsilon$	$b \varepsilon$	$b \varepsilon$	$(d-b) \varepsilon_{1}$	$(3-d) \varepsilon_{3}$	$-d \varepsilon_{3}$
φ_{1}	0	$c \varepsilon$	$c \varepsilon$	$(c-2) \varepsilon$	$(c-2) \varepsilon$	$(e-c) \varepsilon_{1}$	$(2-e) \varepsilon_{2}$	$-e \varepsilon_{3}$

By the orthogonality relations on the generalized decomposition numbers [1], we have, using (5), that

$$
\begin{gather*}
1+b^{2}+(b+1)^{2}+b^{2}+b^{2}+(d-b)^{2}+(3-d)^{2}+d^{2} \leqq 8 \tag{6}\\
c^{2}+c^{2}+(c-2)^{2}+(c-2)^{2}+(e-c)^{2}+(2-e)^{2}+e^{2} \leqq 6 \tag{7}
\end{gather*}
$$

If d were not 1 or 2 , then $(3-d)^{2}+d^{2} \geqq 9$, contradicting (6). Hence, $(3-d)^{2}$ $+d^{2}=5$, and so

$$
3 b^{2}+(b+1)^{2}+(d-b)^{2} \leqq 2
$$

Thus we must have $b=0, d=1$, and equality holds in (6). If $c \neq 1$, then $c^{2}+(c-2)^{2} \geqq 4$, contradicting (7). Hence $c=1$, and

$$
(e-1)^{2}+(2-e)^{2}+e^{2} \leqq 2
$$

It follows that $e=1$, and equality holds in (7). This implies that the
generalized decomposition numbers with respect to τ of any other irreducible character χ of B_{1} are 0 , and hence that $\chi(\tau)=0$. But since χ lies in B_{1},

$$
g \chi(\tau) / h \operatorname{deg} \chi \equiv g / h(\bmod 2)
$$

by [4]. As g / h is odd, we have a contradiction. Thus $1_{G}, \chi_{1}, \chi_{2}, \cdots, \chi_{7}$ are the only characters in B_{1}.

The values of b, c, d, e found give the generalized decomposition numbers on substitution in Table 2. By (3), if $\sigma \in A$, then

$$
\begin{align*}
& \chi_{1}(\tau \sigma)=2 \varepsilon, \chi_{1}(\tau \rho \sigma)=\chi_{1}\left(\tau \rho^{2} \sigma\right)=-\varepsilon, \tag{8}\\
& \chi_{6}(\tau \sigma)=4 \varepsilon_{2}, \chi_{6}(\tau \rho \sigma)=\chi_{6}\left(\tau \rho^{2} \sigma\right)=\varepsilon_{2}
\end{align*}
$$

Now let $a=|A|, a_{1}=|A \cap C(\beta)|$. Since the centralizer of $\bar{\beta}$ in $H \mid A$ is of order 4, by the structure of $G L(2,3)$, it follows that the centralizer $C_{H}(\beta)$ of β in H is a subgroup of $S A$. Since $S A$ is a split extension of A, we have

$$
C_{H}(\beta)=C_{S}(\beta)(A \cap C(\beta))
$$

and so $\left|C_{H}(\beta)\right|=4 a_{1}$. Since every infolution in H is conjugate either to τ or to β, we can calculate the values of the $\varphi_{i}(J)$, and find

$$
\begin{aligned}
& \varphi_{0}(J)=1+12 a / a_{1}, \quad \varphi_{1}(J)=1-12 a / a_{1} \\
& \varphi_{2}(J)=2, \quad \varphi_{3}(J)=3-12 a / a_{1}, \quad \varphi_{4}(J)=3+12 a / a_{1}, \\
& \varphi_{5}(J)=-4, \quad \varphi_{6}(J)=\varphi_{7}(J)=-2
\end{aligned}
$$

On applying Lemma 4 to Φ_{1}, using these values and the values of the $\chi_{i}(\tau)$ given by (8), and the fact that all involutions are conjugate in G to τ, we obtain the formula

$$
\begin{equation*}
g=2^{9} 3^{2} a^{3} f_{1}\left(f_{1}+\varepsilon\right) / a_{1}^{2}\left(f_{1}-2 \varepsilon\right)^{2} \tag{9}
\end{equation*}
$$

where $f_{1}=\operatorname{deg} \chi_{1}$. The same procedure with Φ_{4} gives

$$
9 /\left(\varepsilon f_{1}+1\right)-1 /\left(\varepsilon f_{1}+\varepsilon_{2} f_{8}+1\right)+16 / \varepsilon_{2} f_{8}=2^{10} 3^{2} a^{3} / a_{1}^{2} g
$$

where $f_{6}=\operatorname{deg} \chi_{6}$. Comparison with (9) and simplification leads to the equation

$$
f_{6}^{2}\left(2 \varepsilon f_{1}-1\right)\left(\varepsilon f_{1}-8\right)+2 \varepsilon_{2} f_{6}\left(\varepsilon f_{1}+1\right)\left(f_{1}^{2}-16 \varepsilon f_{1}+4\right)-16 \varepsilon f_{1}\left(\varepsilon f_{1}+1\right)^{2}=0
$$

This can be solved to give f_{6} in terms of f_{1}. We obtain

$$
\begin{gather*}
\varepsilon_{2} f_{6}=-2 \varepsilon f_{1}\left(\varepsilon f_{1}+1\right) /\left(2 \varepsilon f_{1}-1\right), \quad \text { or } \\
\varepsilon_{2} f_{6}=8\left(\varepsilon f_{1}+1\right) /\left(6 f_{1}-8\right) . \tag{10}
\end{gather*}
$$

If the first case held, then $2 \varepsilon f_{1}-1$ would be a divisor of $\varepsilon f_{1}+1$, which is possible only if $f_{1}=1$, or $f_{1}=2$ and $\varepsilon=1$. But $f_{1}>1$ since $\chi_{1}(\tau)= \pm 2$,
and we cannot have $f_{1}=2, \varepsilon=1$, by the formula (9). Thus we must have the second case. Hence

$$
72 \equiv 8\left(\varepsilon f_{1}+1\right) \equiv 0\left(\bmod \left(\varepsilon f_{1}-8\right)\right)
$$

Now, by (9), $f_{1} \equiv 2 \varepsilon(\bmod 8)$, for else g would be divisible by 2^{5}. Also, $f_{1} \neq 2 \varepsilon$, as we have seen. It follows that we must have

$$
\varepsilon=1, \quad f_{1}=10 \quad \text { or } 26 .
$$

We consider these two possibilities in turn.
(a) $f_{1}=10$. Then $\varepsilon_{2} f_{\mathrm{s}}=44$, so that $\varepsilon_{2}=1, f_{\mathrm{b}}=44$. The degrees of the χ_{i} may all be found by using Lemma $4(\mathrm{i})$. We have, putting $f_{i}=\operatorname{deg} \chi_{i}$,

$$
f_{1}=10, f_{2}=11, f_{3}=10, f_{4}=10, f_{5}=55, f_{6}=44, f_{7}=45
$$

Now χ_{1} is characterized as the only irreducible character of degree 10 in the block B_{1} which has value 2 on involutions of G. It follows that χ_{1} is rationalvalued, since a field automorphism transforms χ_{1} into a character with the same properties. The kernel of the representation corresponding to χ_{1} is of odd order since it does not contain τ, and so is trivial, by the assumption (**). Now, by a theorem of Schur [11], a prime p can occur in the order g with exponent at most

$$
[10 /(p-1)]+[10 / p(p-1)]+\left[10 / p^{2}(p-1)\right]+\cdots
$$

Thus, g is a divisor of $2^{4} 3^{6} 5^{2} 7 \cdot 11$. Now, by (9),

$$
g=7920 a^{3} / a_{1}^{2}=2^{4} 3^{2} 5 \cdot 11 a^{3} / a_{1}^{2}
$$

Hence a^{3} / a_{1}^{2} is a divisor of $3^{4} 5 \cdot 7$ and so also is a.
If σ is an element of prime order p in A, then by rationality of χ_{1},

$$
\chi_{1}(\sigma)=\chi_{1}\left(\sigma^{2}\right)=\cdots=\chi_{1}\left(\sigma^{p-1}\right)=10-m p,
$$

where m is a positive integer. By (8), we have

$$
\chi_{1}(\tau)=\chi_{1}(\tau \sigma)=\cdots=\chi_{1}\left(\tau \sigma^{p-1}\right)=2 .
$$

It follows that if ψ is any irreducible character of $L=\{\tau, \sigma\}$ whose kernel does not contain σ, then by the orthogonality relations ψ occurs in the restriction $\chi_{1} \mid L$ with multiplicity $\frac{1}{2} m$. It follows that m is even. Also, since there are $2(p-1)$ such characters $\psi, 2(p-1) \leqq 10$, and so $p=3$ or 5 . Thus a divides $3^{4} 5$. For $p=3, m=2$ or 4 , and for $p=5, m=2$.

Suppose that σ is an element of order 5 in $A_{1}=A \cap C(\beta)$. Since β is conjugate to τ, say $\beta^{\mu}=\tau$, we have that

$$
\sigma_{1}=\sigma^{\mu} \in C(\tau)=H .
$$

Since elements of H not in A have orders divisible by 2 or $3, \sigma_{1} \in A$. Thu ,
for any $i,\left(\beta \sigma^{i}\right)^{\mu}=\tau \sigma_{1}^{i}$, and we have

$$
\chi_{1}\left(\beta \sigma^{i}\right)=\chi_{1}\left(\tau \sigma_{1}^{i}\right)=2
$$

Similarly, $\chi_{1}\left(\tau \beta \sigma^{i}\right)=2$. Now, if ψ is any irreducible character of $J=\{\tau, \beta, \sigma\}$ whose kernel does not contain σ, then by the orthogonality relations, the multiplicity of ψ in $\chi_{1} \mid J$ is $\frac{1}{2}$, which is impossible. Thus 5 is not a divisor of $a_{1}=\left|A_{3}\right|$. It follows that 5 does not divide a, since otherwise a^{3} / a_{1}^{2} would be divisible by 5^{3}.

Now let σ be an element of order 3 in A_{1}. Then, as before, $\beta \sigma^{i}$ is conjugate to $\tau \sigma_{1}^{i}$ for all i, where σ_{1} is an element of order 3 in H. A conjugate of σ_{1} lies either in A or in the coset of ρ or ρ^{-1} with respect to A. It follows from (8) that

$$
\chi_{1}(\beta \sigma)=\chi_{1}\left(\beta \sigma^{2}\right)=2 \text { or }-1 .
$$

Similarly, $\chi_{1}(\tau \beta \sigma)=\chi_{1}\left(\tau \beta \sigma^{2}\right)=2$ or -1 . We have seen that $\chi_{1}(\sigma)=\chi_{1}\left(\sigma^{2}\right)$ $=4$ or -2 , and

$$
\chi_{1}(\tau)=\chi_{1}(\beta)=\chi_{1}(\tau \beta)=\chi_{1}(\tau \sigma)=\chi_{1}\left(\tau \sigma^{2}\right)=2
$$

Suppose that $\chi_{1}(\sigma)=4$. Then if ψ is an irreducible character of $J=\{\tau, \beta, \sigma\}$ whose kernel does not contain σ or τ, the multiplicity of ψ in $\chi_{1} \mid J$ as calculated by means of the orthogonality relations is $\frac{1}{4}, \frac{1}{2}$ or $\frac{3}{4}$, which is impossible. Hence $\chi_{1}(\sigma)=-2$.

If A_{1} had an elementary Abelian subgroup of order 9 , the sum of the values of χ_{1} on this subgroup would be -6, which is not a multiple of 9 . Thus A_{1} must be cyclic. Suppose that A_{1} has a subgroup A_{2} of order 9. Since the primitive 9 -th roots of 1 are algebraically conjugate and χ_{1} is rational-valued, the values of χ_{1} on the elements of order 9 of A_{2} are all equal. Now if ψ is a faithful irreducible character of A_{2}, the multiplicity of ψ in $\chi_{1} \mid A_{2}$ is calculated to be $\frac{4}{3}$, which is impossible. Hence $a_{1}=\left|A_{1}\right|=1$ or 3.

If $a_{1}=1$, then a^{3} divides 3^{4}, and so $a=1$ or 3 . If $a_{1}=3$, then a^{3} divides 3^{6}, and so $a=3$ or 9 . If $a=9$, then A is elementary Abelian, since $A=A_{1} \times A_{1}^{\prime}$, where A_{1}^{\prime} is the subgroup of A consisting of elements inverted by conjugation by β.

Suppose that $a \neq 1$. We consider the centralizer $C_{H}(A)$ of A in H. If $a=3$, then since $H / C_{H}(A)$ is isomorphic to a subgroup of the automorphism group of $A,\left(H: C_{H}(A)\right) \leqq 2$. If $a=9$, then $C_{H}(A) \supseteqq\{\tau\} A$, and so $H / C_{H}(A)$ is isomorphic both to a factor group of $P G L(2,3)$ and to a subgroup of $G L(2,3)$ (the automorphism group of A). Hence, $\left(H: C_{H}(A)\right.$) $\leqq 6$. Thus, in either case,

$$
C_{H}(A) \supseteqq T A
$$

where $T=\left\{\alpha^{2}, \alpha \beta\right\}$. Now it follows that

$$
C\left(\alpha^{2}\right)=\{\alpha\} A
$$

Since this has a normal 2 -complement, the principal 2-block of $C\left(\alpha^{2}\right)$ contains only the trivial modular character, and has Cartan invariant 8. Thus each χ_{i} has at most one non-vanishing generalized decomposition number d_{i} with respect to α^{2}, and

$$
\chi_{i}\left(\alpha^{2} \sigma\right)=d_{i},
$$

for any 2-regular element σ of $C\left(\alpha^{2}\right)$. By applying Lemma 4(i) to the Φ_{i}, we see that the d_{i} are given by
$d_{1}=m, d_{2}=m-3, d_{3}=d_{4}=m-2, d_{5}=m+n-3, d_{6}=n, d_{7}=n+1$, where m and n are rational integers. By the orthogonality relations on generalized decomposition numbers,

$$
1+n^{2}+(m-3)^{2}+2(m-2)^{2}+(m+n-3)^{2}+n^{2}+(n+1)^{2}=8 .
$$

It easily follows that $m=2, n=0$
Now consider the group

$$
T_{1}=T\{\sigma\}=T \times\{\sigma\},
$$

where σ is an element of order 3 in A. This has 21 elements of orders $2,4,6$ or 12 , on all of which the value of χ_{1} is 2 , one element on which χ_{1} has value 10 , and two elements σ, σ^{2} of order 3 on which the value of χ_{1} is 4 or -2 . If $\chi_{1}(\sigma)=4$, the sum of the values of χ_{1} on T_{1} would be 60 , which is not divisible by the order 24 of T_{1}. Hence $\chi_{1}(\sigma)=-2$. But now if ψ is an irreducible character of T_{1} whose kernel does not contain σ, then the multiplicity of ψ in $\chi_{1} \mid T_{1}$ is computed by means of the orthogonality relations to be $\frac{1}{2}$, which is impossible.

Thus, in this case, $a=1$.
(b) $f_{1}=26$. In this case, $f_{6}=12, \varepsilon_{2}=1$, by (10). Lemma 4(i) gives

$$
f_{2}=27, f_{3}=26, f_{4}=26, f_{5}=39, f_{7}=13 .
$$

Since χ_{6} is the only irreducible character of degree 12 in the block B_{1}, χ_{6} is rational-valued. The kernel of the corresponding representation is trivial, by the assumption (**). By the theorem of Schur [11], g is a divisor of $2^{4} 3^{8} 5^{5} 7^{2} 11 \cdot 13$. By (9),

$$
g=5616 a^{3} / a_{1}^{2}=2^{4} 3^{3} 13 a^{3} / a_{1}^{2}
$$

Thus a^{3} / a_{1}^{2} is a divisor of $3^{5} 5^{3} 7^{2} 11$, and so also is a.
If σ is an element of prime order p in A, then as before

$$
\chi_{\theta}(\sigma)=\chi_{6}\left(\sigma^{2}\right)=\cdots=\chi_{6}\left(\sigma^{p-1}\right)=12-m p,
$$

where m is a positive integer. By (8),

$$
\chi_{6}(\tau)=\chi_{6}(\tau \sigma)=\cdots=\chi_{6}\left(\tau \sigma^{p-1}\right)=4 .
$$

As in case (a), consideration of the restriction of χ_{B} to $L=\{\tau, \sigma\}$ shows that m is even. The multiplicity in $\chi_{0} \mid L$ of the non-trivial irreducible character of L whose kernel contains σ is calculated to be $4-\frac{1}{2} m(p-1)$. Hence $\frac{1}{2} m(p-1)$ $\leqq 4$, and so $p=3, m=2$ or 4 ; or $p=5, m=2$; and a^{3} / a_{1}^{2} divides $3^{5} 5^{3}$.

As before, $A_{1}=A \cap C(\beta)$ cannot contain an element of order 5 , and so a is divisible by 5 to at most the first power.

If σ is an element of order 3 in A_{1}, then as in case (a) we can calculate the values of χ_{6} on all the elements of $\{\tau, \beta, \sigma\}$, with the two possible values 6,0 for $\chi_{6}(\sigma)=\chi_{6}\left(\sigma^{2}\right)$. The value 6 leads to a contradiction. Thus $\chi_{6}(\sigma)=0$.

As in case (a), A_{1} is of order 1 or 3 , and A is the direct product of an elementary Abelian group of order dividing 9 with a cyclic group of order dividing 5. The automorphism group of A is therefore the direct product of a subgroup of $G L(2,3)$ with a cyclic 2 -group. It follows as before that

$$
C_{H}(A) \supseteq T A
$$

where $T=\left\{\alpha^{2}, \alpha \beta\right\}$. Now the same method as before applied to $T\{\sigma\}$, where σ is an element of order 3 or 5 in A, leads to a contradiction. Thus again $a=1$.

We have proved therefore that $H \approx G L(2,3)$. Now a theorem of Brauer [3] shows that G is isomorphic either to M_{11} or to $\operatorname{PSL}(3,3)$. (The condition that $G=G^{\prime}$ in the hypothesis of Brauer's theorem is unnecessary in the present case, as may be seen from Theorem 6 of the appendix. Alternatively, we may note that G^{\prime} is a group of type IV, and so has the same order as G, by what has been proved.)

These results, together with Lemma 3, immediately imply the following
Theorem 3. Let G be a finite group with 2-Sylow subgroup of the form

$$
S=\{\alpha, \beta\}, \alpha^{2^{\alpha}}=\beta^{2}=1, \alpha^{\beta}=\alpha^{2^{\alpha-1}-1}, a \geqq 3 .
$$

If the centralizer of the involution ${\alpha^{2^{a-1}}}^{\text {has }}$ an Abelian 2 -complement and K is the largest normal subgroup of odd order in G, then $G \mid K$ is isomorphic to one of the groups $S, G L(2,3) \operatorname{PSL}(3,3), M_{11}$, or $H(q)$ for some q.

Corollary. The only simple groups satisfying the hypotheses of Theorem 3 are $\operatorname{PSL}(3,3)$ and M_{11}.

5.

In this section we derive some consequences of the foregoing results. We denote by J the subgroup of the group $\Gamma L(2,9)$ of all semi-linear transformations of a two-dimensional vector space over $G F(9)$ generated by $S L(2,3)$ (regarded as a subgroup of $S L(2,9)$ taken as a group of matrices)
and the transformation γ with matrix

$$
\left(\begin{array}{rr}
b & 0 \\
0 & -b
\end{array}\right)
$$

semi-linear relative to the non-trivial automorphism of $G F(9)$, where b is a generator of the multiplicative group of $G F(9) . J$ is characterized as the extension of $S L(2,3)$ by an element γ such that $\gamma^{2}=\tau$, the involution of $S L(2,3)$, and γ induces an outer automorphism of $S L(2,3) . J$ has generalized quaternion 2 -Sylow subgroup.

Theorem 4. Let G be a finite group whose 2-Sylow subgroup S has a cyclic subgroup of index 2 . If the centralizer in G of an involution in the centre of S has an Abelian 2-complement and K is the largest normal subgroup of odd order in G, then G / K is isomorphic to one of the groups $S, S L(2,3), J, G L(2,3)$, $\operatorname{PSL}(3,3), M_{11}, A_{7}, \operatorname{PSL}(2, q), \operatorname{PGL}(2, q)$ or $H(q)$ for some odd q.

Proof. The 2-Sylow subgroup of G is as indicated in the introduction. Now Burnside's theorem, the result of Gorenstein and Walter [7], and our theorems give the asserted structure of G in every case except that in which S is of generalized quaternion type. In this case, $\vec{G}=G / K$ has only one involution, by the result of Brauer and Suzuki [5]. By the proof of Lemma 3, the centralizer \bar{G} of this involution has an Abelian 2 -complement. If T is the subgroup of order 2 in G, then if N / T is the largest odd order normal subgroup of $\bar{G} / T, N$ has a normal 2-complement V, by Burnside's theorem. V is normal in \bar{G} and hence is trivial, by the maximality of K. Now \bar{G} / T has an Abelian 2-complement, satisfies the conditions of the Gorenstein-Walter theorem, and has no nontrivial normal subgroup of odd order. By Lemma 2, \vec{G} / T is solvable, and thus \bar{G} / T is a 2 -group, or isomorphic to $\operatorname{PSL}(2,3)$ or to $P G L(2,3)$. In the first case, $\bar{G} \approx S$. If $\bar{G} / T \approx P S L(2,3)$, then by the result of Schur [12], $\bar{G} \approx S L(2,3)$. Now, if $\bar{G} / T \approx P G L(2,3)$, then the argument used in Case III of $\S 4$ shows that $\bar{G} \approx J$.

Theorem 5. Let G be a finite group with a subgroup of order 4 which is its own centralizer in G. If G possesses an involution whose centralizer has an Abelian 2-complement, and K is the largest normal subgroup of odd order in G, then either G / K is isomorphic to one of the groups $\operatorname{PSL}(3,3), M_{11}, J, G L(2,3)$ $S L(2,3), H(q), P G L(2, q), P S L(2, q)$ (q odd), or A_{7}; or else K is a 2 -complement for G.

Proof. If K is not a 2 -complement for G, then by Theorem II of [7] either
(i) the 2 -Sylow subgroup of G is of the type considered in Theorem 3, and G has no subgroup of index 2 ;
(ii) G / K is isomorphic to $S L(2, q), \operatorname{PGL}(2, q), \operatorname{PSL}(2, q)$ (q odd), or A_{7}; or
(iii) G / K has a subgroup G_{0} / K of index 2 isomorphic to one of the groups named in (ii).

If (i) holds, Theorem 3 shows that G / K is isomorphic to $\operatorname{PSL}(3,3)$ or M_{11}.

If the $S L(2, q)$ case holds in (ii) or (iii), then $q=3$, by solvability (Lemma 2). It remains to consider the case (iii).

If G_{0} / K is isomorphic to $S L(2,3)$, then the 2 -Sylow subgroup S of G is an extension of a quaternion group of order 8 by a group of order 2. There are four such extensions. For S to contain a self-centralizing subgroup of order $4, S$ must be either of generalized quaternion type or of the type considered in Theorem 3. Thus G / K is isomorphic to J or to $G L(2,3)$, by Theorem 4.

In all other cases of (iii), S is an extension of a dihedral group by a group of order 2. An examination of these extensions shows that S must be either dihedral or of the type considered in Theorem 3. By Theorem 4, G / K is isomorphic to $G L(2,3), P G L(2, q)$ or $H(q)$ for some q.

Appendix

For completeness we give a proof of the case of Brauer's theorem needed for the proof of Theorem 3.

Theorem 6. Let G be a finite group with no subgroup of index 2, such that the centralizer in G of an involution in the centre of a 2 -Sylow subgroup of G is isomorphic to $G L(2,3)$. Then G is isomorphic either to M_{11} or to $\operatorname{PSL}(3,3)$.

Proof. We have Case IV of $\S 4$, with $A=\{1\}$, and retain the notations used and results found there. Since $\Phi_{1}, \cdots, \Phi_{5}$ generate the module of generalized characters of H which vanish on $H-D$, any generalized character of H orthogonal to all the Φ_{i} must vanish on D. In particular, if χ is any irreducible character of G distinct from $1_{G}, \chi_{1}, \cdots, \chi_{7}$, then, by Frobenius reciprocity, the restriction $\chi \mid H$ is orthogonal to all the Φ_{i}, so that χ vanishes on D and so on all 2 -singular elements of G. By the orthogonality relations on the 2 -Sylow subgroup S,

$$
\begin{equation*}
\operatorname{deg} \chi \equiv 0(\bmod 16), \quad \chi \neq 1_{G}, \chi_{1}, \cdots, \chi_{7} \tag{11}
\end{equation*}
$$

Again, by Frobenius reciprocity, $\left(\chi_{1} \mid H\right)-\varphi_{0}+\varphi_{3}+\varphi_{6}+\varphi_{7}$ and $\left(\chi_{6} \mid H\right)+\varphi_{5}$ are orthogonal to all the Φ_{i}. Thus the values of χ_{1}, χ_{6} on D can be found:

$$
\begin{align*}
& \chi_{1}(\sigma)=1-\varphi_{3}(\sigma)-\varphi_{6}(\sigma)-\varphi_{7}(\sigma), \\
& \chi_{6}(\sigma)=-\varphi_{5}(\sigma), \text { for } \sigma \in D . \tag{12}
\end{align*}
$$

As in § 4, we have two possibilities.
(a) $f_{1}=10$. Then, $g=7920=2^{4} 3^{2} 5 \cdot 11$. Since the sum of the squares of the degrees of the irreducible characters of G is equal to g, and since

$$
g-1-\sum_{1}^{7} f_{i}^{2}=512,
$$

it follows from (11) that there are two more irreducible characters, each of degree 16. Thus there are 10 irreducible characters in all, and G has 10 conjugacy classes. Six of these are represented by 1 and the elements $\tau, \alpha^{2}, \rho \tau, \alpha$ and α^{-1} of D. We denote these classes by $\langle 1\rangle,\langle 2\rangle,\langle 4\rangle,\langle 6\rangle,\langle 8\rangle$, $\langle 8\rangle^{\prime}$.

Since the order of H is not divisible by 11, the centralizer C_{11} in G of an 11-Sylow subgroup S_{11} is of odd order. Thus the order of the normalizer N_{11} of S_{11} is not divisible by 4 . Since $\left(G: N_{11}\right) \equiv 1(\bmod 11)$, we must have $\left|N_{11}\right|=55$. We cannot have $C_{11}=N_{11}$, since then G would have 10 classes of elements of order 11. Thus $C_{11}=S_{11}$, and G has two classes $\langle 11\rangle,\langle 11\rangle^{\prime}$ of elements of order 11. The remaining two classes must contain elements of order 3 and 5 , and we denote these by $\langle 3\rangle,\langle 5\rangle$. Since there are no elements of order 10,15 or 55 , an element of order 5 generates its own centralizer. Now the orders of all the centralizers of all elements not of order 3 are known, and so the sizes of all the classes may be computed.

The values of χ_{1} on $\langle 1\rangle,\langle 2\rangle,\langle 4\rangle,\langle 6\rangle,\langle 8\rangle$ and $\langle 8\rangle$ ' are known, by (12). χ_{1} is of 5 -defect 0 and so vanishes on $\langle 5\rangle$. If χ_{1} had value 10 on an element of order 11, the kernel of the representation \mathscr{L} corresponding to χ_{1} would be of order 11 or 33 , so that S_{11} would be normal in G, a contradiction. Hence, since χ_{1} is rational, χ_{1} has value -1 on $\langle 11\rangle,\langle 11\rangle^{\prime}$. By the orthogonality relations, the value of χ_{1} on $\langle 3\rangle$ is 1 . All the values of χ_{1} have been found, and we have

$$
\begin{align*}
\chi_{1}(\sigma) & =10, \sigma=1 \tag{13}\\
& =2, \sigma \in\langle 2\rangle,\langle 4\rangle \\
& =-1, \sigma \in\langle 6\rangle,\langle 11\rangle,\langle 11\rangle^{\prime} \\
& =0, \sigma \in\langle 8\rangle,\langle 8\rangle^{\prime},\langle 5\rangle \\
& =1, \sigma \in\langle 3\rangle
\end{align*}
$$

We have seen that a 5 -Sylow subgroup S_{5} is its own centralizer. Since there is only one class of elements of order 5 , we have that the normalizer N_{5} of S_{5} is a split extension of S_{5} by a cyclic group F of order 4. Let \mathscr{L}^{R} denote the subspace of the representation space of \mathscr{L}, the representation corresponding to χ_{1}, consisting of those vectors left fixed by the subgroup R of G. The dimension $\operatorname{dim} \mathscr{L}^{R}$ is given by the average value of χ_{1} on R. Thus we can compute that $\mathscr{L}^{N_{s}}$ is a subspace of dimension 2 in the space \mathscr{L}^{F}, which is of dimension 4. Now F is conjugate in G to $\left\{\alpha^{2}\right\}$, and so is contained in a quaternion group $Q . \mathscr{L}^{e}$ is a subspace of \mathscr{L}^{F} of dimension 3.

If $M=\left\{Q, N_{s}\right\}$, then $\mathscr{L}^{M}=\mathscr{L}^{Q} \cap \mathscr{L}^{N_{5}}$, and so $\operatorname{dim} \mathscr{L}^{M} \geqq 1$. Since \mathscr{L} is irreducible, it follows that M is a proper subgroup of G.

Since the number of 5 -Sylow subgroups of M is $\left(M: N_{5}\right) \equiv 1(\bmod 5)$, we have

$$
|M|=20(5 n+1)
$$

where n is an odd integer, since $|M|$ is divisible by 8 . If $n>7$, then ($G: M$) $\leqq 6$, so that G has a transitive permutation representation of degree $\leqq 6$. Since G has no non-trivial irreducible characters of degree less than 10 , this representation would be trivial, contradicting the fact that M is proper. If $n=1$, then M has six 5 -Sylow subgroups, and M has a permutation representation \mathscr{R} of degree 6 . Then the kernel of \mathscr{R} is the intersection L of all the conjugates of N_{5} in M. If a 5 -Sylow subgroup S_{5} were contained in L, then S_{5} would be normal in L and so in M, a contradiction. If L contained an element σ of order 2 , then for a non-trivial element μ in S_{5}, if $\bar{\sigma}=\mathscr{R}(\sigma)$, $\bar{\mu}=\mathscr{R}(\mu), \bar{\sigma}$ transforms $\bar{\mu}$ into $\bar{\mu}^{-1}$, which is distinct from $\bar{\mu}$, contradicting the assumption that $\bar{\sigma}=1$. Thus L is trivial and \mathscr{R} is faithful. But, this is impossible since M contains a quaternion subgroup, which can have no faithful permutation representation of degree 6 . We cannot have $n=3$ or 5 , since then $|M|$ would not divide $|G|$. Hence $n=7,(G: M)=11$, and G has a transitive permutation representation \mathscr{P} of degree 11. The degrees of the irreducible characters of G being known, it follows that the character of \mathscr{P} is $1_{G}+\chi_{1}, 1_{G}+\chi_{3}$ or $1_{G}+\chi_{4}$. By (3), we have $\chi_{3}(\tau)=\chi_{4}(\tau)=-2$. Thus the character of \mathscr{P} is $1_{G}+\chi_{1}$. By (13), only the identity of G is represented by a permutation leaving 4 letters fixed. In particular, \mathscr{P} is faithful. Since $|G|=11 \cdot 10 \cdot 9 \cdot 8, \mathscr{P}(G)$ is quadruply transitive. By a theorem of Jordan (cf. [8], Theorem 5.8.1), G is isomorphic to M_{11}.
(b) $f_{1}=26$. Then, $g=5616=2^{4} 3^{3} 13$. Now,

$$
g-1-\sum_{1}^{7} f_{i}^{2}=1024
$$

and so, by (11), G has four more irreducible characters, each of degree 16, and so G has 12 conjugacy classes, six of which, denoted $\langle 1\rangle,\langle 2\rangle,\langle 4\rangle,\langle 6\rangle$, $\langle 8\rangle,\langle 8\rangle^{\prime}$ are represented by 1 and the elements $\tau, \alpha^{2}, \rho \tau, \alpha$ and α^{-1} of D. By considering the number of 13 -Sylow subgroups of G we see that the normalizer N_{13} and the centralizer C_{13} of a 13-Sylow subgroup S_{13} have orders 39, 13. Thus G has four classes $\langle 13\rangle,\langle 13\rangle^{\prime},\langle 13\rangle^{\prime \prime},\langle 13\rangle^{\prime \prime \prime}$ of elements of order 13. This accounts for all but 728 of the elements of G.

Of the two remaining classes, one is the class $\langle 3\rangle$ of the element ρ of order 3. The other must contain elements of order 3 or 9 . Suppose σ is of order 9. Then since σ does not commute with elements of order 2 or 13, the number of conjugates of σ is $2^{4} 13=208$ or $2^{4} 3 \cdot 13=624$. The first case is impossible since it would imply that $|\langle 3\rangle|=520$, not a divisor of 5616 .

Thus σ has 624 conjugates, and generates its own centralizer. In particular the 3-Sylow group S_{3} is non-Abelian. Since all elements of order 9 are conjugate, the normalizer $N(\{\sigma\})$ must transform the elements of order 9 in $\{\sigma\}$ transitively. Hence $|N(\{\sigma\})|=2 \cdot 3^{3}$, and there are $2^{3} 13=104$ cyclic subgroups of order 9 in G.

Since $|\langle 3\rangle|=104$, there are 52 subgroups of order 3 in G, all conjugate. Each cyclic subgroup of order 9 contains exactly one such subgroup. Hence each subgroup of order 3 must be contained in exactly two cyclic subgroups of order 9 . But, by the structure of S_{3} ([8], §4.4), the centre of S_{3} is contained in three cyclic subgroups of order 9 , a contradiction.

Hence G has no elements of order 9, and the remaining class $\langle 3\rangle^{\prime}$ contains elements of order 3. Now let σ, σ^{\prime} be non-conjugate elements of order 3, σ an element of the centre of S_{3}. The order $|C(\sigma)|$ is not divisible by 4, since otherwise $C(\sigma)$ would have an Abelian subgroup of order 12, contradicting the fact that the centralizer of an involution contains no such subgroup. Since $|C(\sigma)|$ is also not divisible by 13 but is divisible by 3^{3}, the number of conjugates of σ is $2^{3} 13$ or $2^{4} 13$. The second case is impossible as it gives a size 520 for the class of σ^{\prime}. Hence σ has $2^{3} 13=104$ conjugates, and σ^{\prime} has 624 conjugates. $|C(\sigma)|=2 \cdot 3^{3}$, and $\left|C\left(\sigma^{\prime}\right)\right|=3^{2}$. Thus σ is conjugate to ρ, so that $\sigma \in\langle 3\rangle, \sigma^{\prime} \in\langle 3\rangle^{\prime}$. Also S_{3} is non-Abelian of exponent 3.

The values of χ_{6} on $\langle 1\rangle,\langle 2\rangle,\langle 4\rangle,\langle 6\rangle,\langle 8\rangle,\langle 8\rangle^{\prime}$ are known, by (12). If χ_{6} had value 12 on an element of order 13, the kernel of the representation corresponding to χ_{6} would be of order $13,3 \cdot 13,3^{2} \cdot 13$ or $3^{3} 13$. In any case it would have a normal 13-Sylow subgroup or normal 3-Sylow subgroup which would be normal in G, a contradiction. Hence, since χ_{6} is rational, its value on $\langle 13\rangle,\langle 13\rangle^{\prime},\langle 13\rangle^{\prime \prime},\langle 13\rangle^{\prime \prime \prime}$ is -1 . By the orthogonality relations, the values of χ_{6} on $\langle 3\rangle,\langle 3\rangle^{\prime}$ are found. We have

$$
\begin{align*}
\chi_{0}(\sigma) & =12, \sigma=1 \tag{14}\\
& =4, \sigma \in\langle 2\rangle \\
& =0, \sigma \in\langle 4\rangle,\langle 8\rangle,\langle 8\rangle^{\prime},\langle 3\rangle^{\prime} \\
& =1, \sigma \in\langle 6\rangle \\
& =-1, \sigma \in\langle 13\rangle,\langle 13\rangle^{\prime},\langle 13\rangle^{\prime \prime},\langle 13\rangle^{\prime \prime \prime} \\
& =3, \sigma \in\langle 3\rangle .
\end{align*}
$$

Let S_{3} be a 3 -Sylow subgroup of G whose centre contains (and so is generated by) the element ρ. Since $|C(\rho)|=2 \cdot 3^{3}$, and ρ is conjugate to ρ^{-1}, the normalizer $N(\{\rho\})=C^{*}(\rho)$ has order $2^{2} 3^{3} . S_{3}$ is characteristic in $C(\rho)$, which is normal in $C^{*}(\rho)$. Hence S_{3} is normal in $C^{*}(\rho) . C^{*}(\rho)$ contains the involution τ, and also, by the structure of $C(\tau) \approx G L(2,3)$, an involution μ which transforms ρ into its inverse and commutes with $\tau .\{\tau, \mu\}$ acts as a group of automorphisms of the elementary Abelian group $S_{3} /\{\rho\}$, which therefore has a subgroup $U /\{p\}$ of order 3 , invariant under $\{\tau, \mu\}$. Now $\{\tau, \mu\}$
acts as a group of automorphisms of the elementary Abelian group U. Since neither τ nor μ centralizes U, we may assume that

$$
U=\{\rho, \lambda\}, \rho^{\tau}=\rho, \rho^{\mu}=\rho^{-1}, \lambda^{\tau}=\lambda^{-1}, \lambda^{\mu}=\lambda .
$$

Thus we know the structure of the subgroup

$$
M=\{\tau, \mu, \rho, \lambda\}
$$

of order 36. M contains 15 involutions, 12 elements of order 6 , and 8 elements of order 3 . Let n be the number of elements of M belonging to $\langle 3\rangle$. Then the sum of the values of χ_{6} on M is $84+3 n$. Since this must be divisible by the order $\mathbf{3 6}$ of $M, n=8$. Thus all elements of order $\mathbf{3}$ in M belong to $\langle\mathbf{3}\rangle$, and the average value of χ_{6} on M is 3 , i.e. $\operatorname{dim} \mathscr{L}^{M}=3$, where \mathscr{L} is the representation corresponding to χ_{6}, and \mathscr{L}^{M} the subspace of the representation space consisting of vectors left fixed by M. $\operatorname{dim} \mathscr{L}^{(\tau)}$ is computed to be 2 . Since $T=\{\tau, \mu, \rho\}$ is a subgroup of both M and $C(\tau), \mathscr{L}^{M}$ and $\mathscr{L}^{C(\tau)}$ are subspaces of \mathscr{L}^{T}, which has dimension 4. Thus $\mathscr{L}^{M} \cap \mathscr{L}^{(t)}$ has dimension at least 1 , and $L=\{M, C(\tau)\}$ is a proper subgroup of G.

Clearly $|L|$ is divisible by $2^{4} 3^{2}$, and so ($G: L$) is a divisor of $3 \cdot 13$. Let \mathscr{P} be the transitive permutation representation of G on the right cosets of L. If $(G: L)=3, G$ would have a nontrivial irreducible character of degree $\leqq 2$, which is not so. If $(G: L)=39$, then $C(\tau)$ is a subgroup of L of index 3 . The intersection of the conjugates of $C(\tau)$ in L is a subgroup of index $\mathbf{3}$ or 6 in L, and so is either $C(\tau)$ or its unique subgroup K of index 2 . Since τ generates the centre of both $C(\tau)$ and K, it follows that $\{\tau\}$ is normal in L, so that $L \subseteq C(\tau)$, a contradiction. Hence, $(G: L)=13$.
L is not normal in G, since otherwise G would have 13 characters of degree 1. Hence L is its own normalizer, and we may regard \mathscr{P} as a permutation representation of G on the conjugates L_{1}, \cdots, L_{13} of L, which we call lines. The character of \mathscr{P} must be $1+\chi_{6}$, since all non-trivial irreducible characters of G apart from χ_{6} have degree exceeding 12 . Thus \mathscr{P} is doubly transitive, and faithful, by (14). We identify $\mathscr{P}(G)$ with G.

By (14), if $\sigma \in\langle 3\rangle$, then $1+\chi_{6}(\sigma)=4$, so that σ fixes exactly 4 lines. We define a point to be such a set of 4 lines. By double transitivity, any two lines belong to at least one point.

If L_{1}, L_{2} are two lines, let σ_{1}, σ_{2} be elements of $\langle 3\rangle$ each fixing both L_{1}, L_{2}, i.e. lying in $L_{1} \cap L_{2} . L_{1} \cap L_{2}$ contains no elements of order 4, since these each fix only one line. Hence the 2 -Sylow subgroup of $L_{1} \cap L_{2}$ is of elementary Abelian type, and so of order at most 4 since G contains no elementary Abelian subgroup of order 8. $L_{1} \cap L_{\mathrm{p}}$ contains no elements of 〈3> since these fix no lines. In particular $L_{1} \cap L_{2}$ does not contain a 3-Sylow subgroup of G.

Suppose $L_{1} \cap L_{2}$ has non-normal 3-Sylow subgroup V. If $|V|=9$, then $\left|L_{1} \cap L_{2}\right|=36 . V$ is its own normalizer in $L_{1} \cap L_{2}$, and so, by Burn-
side's theorem, $L_{1} \cap L_{\text {, }}$, has normal 2 -Sylow subgroup W. The centralizer C of W in $L_{1} \cap L_{2}$ must have order 12 . We may assume $\sigma_{1} \in C$. If L_{1}, L_{2} belong to more than one point, we may assume that there is a line L_{3} fixed by σ_{1} but not fixed by $\sigma_{2} . L_{1} \cap L_{2} \cap L_{3}$ is a proper subgroup of $L_{1} \cap L_{2}$. If L_{4} is the fourth line fixed by σ_{1}, then the three involutions in $L_{1} \cap L_{2}$ commute with σ_{1} and so permute $L_{1}, L_{2}, L_{3}, L_{4}$ amongst themselves. Since they each fix L_{1} and L_{2}, at least one of them fixes all four lines. Hence $\left|L_{1} \cap L_{2} \cap L_{3}\right|$ is even, and so is 6 or 12 , since $L_{1} \cap L_{2}$ has no subgroup of order 18. If $\left|L_{1} \cap L_{2} \cap L_{3}\right|=6$, then computation shows that the average value of $1+\chi_{6}$ on $L_{1} \cap L_{2} \cap L_{3}$, which is the number of transitive constituents of $L_{1} \cap L_{2} \cap L_{3}$, is $5 . L_{1}, L_{2}$ and L_{3} form three of these constituents. This leaves two constituents whose sizes are divisors of 6 whose sum is 10 . But there are no such numbers. Hence $\left|L_{1} \cap L_{9} \cap L_{3}\right|=12$. Now the number of constituents is found to be 4 , again giving a contradiction.

Now take $|V|=3$, so that $\left|L_{1} \cap L_{2}\right|=12$ and $L_{1} \cap L_{2}$ is isomorphic to the alternating group A_{4}. As before, if L_{1}, L_{2} belong to more than one point we can take a line L_{3} fixed by σ_{1} but not by $\sigma_{2} . L_{1} \cap L_{2} \cap L_{3}$ is a proper subgroup of $L_{1} \cap L_{2}$ and so is of order 3. If L_{4} is the fourth line fixed by σ_{1}, then $C\left(\sigma_{1}\right)$ permutes $L_{1}, L_{2}, L_{3}, L_{4}$ amongst themselves. Since $\sigma_{1} \in\langle 3\rangle$, $C\left(\sigma_{1}\right)$ contains a 3 -Sylow subgroup of G. As 4 ! is divisible by 3 to the first power only, there is a subgroup of order 3^{2} fixing $L_{1}, L_{2}, L_{3}, L_{4}$, and this is a contradiction.

If $L_{1} \cap L_{2}$ has normal 3-Sylow subgroup, then σ_{1} and σ_{2} commute, and so if the lines left fixed by σ_{1} are $L_{1}, L_{2}, L_{3}, L_{4}$ then σ_{2} permutes these amongst themselves and leaves L_{1}, L_{2} fixed. Since σ_{2} has order 3, σ_{2} leaves $L_{1}, L_{2}, L_{3}, L_{4}$ all fixed. This completes the proof that the two lines L_{1}, L_{2} belong to exactly one point.

If L is a line, each point of L lies on four lines, three of which are distinct from L. There are 12 lines distinct from L, each of which meets L in exactly one point. Hence L has four points. Thus there are four points on each line and four lines on each point, so that the number of points is 13 , the number of lines. Now by [8], Theorem 20.8.1, we have a projective plane \mathscr{G} which being of order 3 is Desarguesian. Clearly G is a group of collineations of \mathscr{G}. Since $\operatorname{PSL}(3,3)$, the full collineation group of \mathscr{G}, has order 5616 , the order of G, we have $G \approx \odot P S L(3,3)$.

This finishes the proof of Theorem 6.

References

[1] Brauer, R., Zur Darstellungstheorie der Gruppen endlicher Ordnung II, Math. Zeitschr. 72, 25-46 (1959).
[2] Brauer, R., On blocks of representations of finite groups, Proc. Nat. Acad. Sci. U.S.A. 47, 1888-1890 (1961).
[3] Brauer, R., On the structure of groups of finite order, Proc. International Congress of Mathematicians, Amsterdam, 1954, vol. I, 209-217.
[4] Brauer, R. and Nesbitt, C., On the modular characters of groups, Annals of Math. 42, 556-590 (1941).
[5] Brauer, R. and Suzuki, M., On finite groups of even order whose 2-Sylow group is a quaternion group, Proc. Nat. Acad. Sci. U.S.A. 45, 1757-1759 (1959).
[6] Dieudonné, J., La géométrie des groupes classiques, Berlin, Springer, 1955.
[7] Gorenstein, D. and Walter, J. H., On finite groups with dihedral Sylow 2-subgroups, Illinois Jour. Math. 6, 553-593 (1982).
[8] Hall, M., The theory of groups, New York, Macmillan, 1959.
[9] Hall, P., A note on soluble groups, Jour. London Math. Soc. 3, 98-105 (1928).
[10] Higman, D. G., Focal series in finite groups, Canadian Jour. Math. 6, 477-497 (1953).
[11] Schur, I., Uber eine Klasse von endlichen Gruppen linearer Substitutionen, Sitzungsber. Preuss. Akad. (1905), 77-91.
[12] Schur, I., Untersuchungen über die Darstellung der endlichen Gruppen durch gebrochene lineare Substitutionen, Jour. für die reine u. angew. Math. 132, 85-137 (1907).
[13] Suzuki, M., Applications of group characters, Proc. Symposia in Pure Math. I, Providence, R.I., (1959).
[14] Wielandt, H., Uber Produkte von nilpotenten Gruppen, Illinois Jour. Math. 2, 611-618 (1958).
[15] Witt, E., Die 5-fach transitiven Gruppen von Mathieu, Abh. Math. Sem. Univ. Hamburg, 12, 256-264 (1938).

University of Otago.

[^0]: * Most of this work was done at the Third Summer Research Institute of the Australian Mathematical Society at Canberra, 8 January- 15 February, 1963.

 1 The non-cyclic group of order 4 is to be understood as dihedral.

