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Abstract

A semigroup S is called .E-inversive if for every a € S there is an x € S such that (ax)1 = ax. A
construction of all £-inversive subdirect products of two £-inversive semigroups is given using
the concept of subhomomorphism introduced by McAlister and Reilly for inverse semigroups.
As an application, E-unitary covers for an is-inversive semigroup are found, in particular for
those whose maximum group homomorphic image is a given group. For this purpose, the explicit
form of the least group congruence on an arbitrary .E-inversive semigroup is given. The special
case of full subdirect products of a semilattice and a group (that is, containing all idempotents
of the direct product) is investigated and, following an idea of Petrich, a construction of all
these semigroups is provided. Finally, all periodic semigroups which are subdirect products of
a semilattice or a band with a group are characterized.

1980 Mathematics subject classification (Amer. Math. Soc.) (1985 Revision): 20 M 10.

1. Introduction

A semigroup S is called E-inversive if for every a € S there exists x e S such
that ax G Es, the set of all idempotents of S. This concept was introduced
by G. Thierrin (1955) and was studied by Petrich (1967) and in a somewhat
different form by Lallement and Petrich (1966). This class of semigroups
recently reappeared in a paper by Hall and Munn (1985). The special case
of jE-inversive semigroups with commuting idempotents, called E-dense, was
considered by Margolis and Pin (1987). We note that the definition is not
one-sided (see Thierrin (1955)).
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LEMMA 1. Let S be a semigroup; if for all a e S there is an x e S such
that ax € Es, then there exists y e S with ay, ya e Es.

PROOF. Put y = xax; then ay — axax = ax € Es and

(ya)2 = (xaxa)(xaxa) — x(ax)ia = (xax)a = ya,

hence ya e Es.

Consequently, one can say that 5 is is-inversive if and only if I(a) =
{x e S\ax,xa e Es) / 0 for every a&S.

EXAMPLES. (1) Regular semigroups (a = axa implies that ax e Es).
(2) Periodic semigroups and in particular, finite semigroups (a" € Es,

n > 1, implies that a • an~x e Es).
(3) Eventually regular semigroups (an regular for some n > 1 implies that

a"xa" = a" and a(a"~lx) e Es for some x € S).
(4) Bruck-semigroups over monoids are is-inversive, since for every

(m,a,n) eS: (m,a,n)(n+ l,(aa)~l,m+ 1) = (m+ l,e, m + 1) e Es. (Note
that S is regular if and only if the monoid T is regular.)

(5) Generalized Brandt-semigroups over a semigroup are .E-inversive, since
for every (i,a,j) e S there is (k,b,l) eS (k £ j) such that (i,a,j)(k,b,l) =
QeEs,if\I\>l.

(6) Rees-matrix semigroups over a group with zero and arbitrary sandwich
matrix, S = ^°(I,G,M;P), are £-inversive, since for arbitrary (i,a,X) € S
we have: if there is some k € / with pXk = 0, then (i,a,X)(k, a,k) — 0 e Es;
if pXj ^ 0 for all j <E I then (/,a,A)(/,/7~1a-1pA~',A) € Es. (Note that S is
regular if and only if P is regular).

(7) Semigroups S which contain idempotents and are totally ordered with
respect to the natural partial order

a < b if and only if a = xb — by, xa = a = ay for some x,y e S1,

(see Mitsch (1986)) are is-inversive. In fact, if a e S and a > e for some
e 6 Es, then e — xa = ay and ay e Es; if a < e, then a — xe — ey, xa = a
implies that a1 = (xe)(ey) = x(ey) = xa - a hence aa = aeEs.

(8) Let B be a band, T a regular semigroup of endomorphisms of B; on
5 = B x T define the multiplication (e,a)(f,P) = (ea(f),ao /?). S is E-
inversive since for any (e, a) e S there exist fi e T with a o j 8 o a = a and
/ = 0(e) € B such that [e,a)(f,p) e Es. (Note that S is not regular in
general; it suffices to consider for B the two element chain and for T the
semigroup consisting of the two constant mappings of B.)

The following propositions give some elementary facts on is-inversive
semigroups. The first of them is known (see Petrich (1973a), p. 18).
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PROPOSITION 2. If for every element a of a semigroup S there is exactly one
x € S such that ax e Es, then X is a group.

PROOF. Suppose that there are two idempotents e,f e Es; then there
exists x € S such that efx e E$. Since e • e = e e Es we conclude by
hypothesis that fx = eeEs, and again since f • f = f e Es, that x - f;
hence e = fx = f2 = f. Next, let a e S; then by Lemma 1 there exists
y e S such that ya 6 £^ = {e}. Since ya = e then yae = e2 = e e Es
and by hypothesis ae = a. Since for every a e S there is an x € S with
ax e Es = {e}, S is a group.

PROPOSITION 3. Le/ 5 fe aw E-inversive semigroup without zero; then the
following are equivalent:

(i) S is weakly cancellative {that is, ax = bx and xa = xb imply a = b);
(ii) S is trivially ordered with respect to its natural partial order,

(iii) S is completely simple.

PROOF, (i) implies (ii). Let a < b for some a,b e S; then a = xb = by,
xa = a = ay(x,y e Sl). Thus yxa = ya = yxb and ayx = ax = byx; by
hypothesis we conclude a = b.

(ii) implies (iii). Let a e S; then ax e £5 for some x e S and axa =
(ax)a = a(xa) with (ax)a;ca = axa and axa(xa) = axa. Thus axa < a
in the natural partial order, by hypothesis, axa = a, that is, S is regular.
Since by hypothesis every idempotent of S is primitive, we conclude that S
is completely simple (see Petrich (1973a)).

(iii) implies (i). This follows by elementary calculation in the representa-
tion of S as a Rees matrix semigroup over a group.

PROPOSITION 4. Let S be an E-inversive semigroup. Then the following are
equivalent:

(i) 5 is left cancellative,
(ii) 5 is a right group;

(iii) S is trivially ordered with respect to its natural order and Esa c aS
for all ae.S.

PROOF, (i) implies (ii). Let asS andx € /(a); then xa € Es andEs ^ 0 .
We show that S is right simple; for every b € S, e e Es we have eb = e(eb),
thus by hypothesis, b = eb. Let a e S, a' e /(a); then aa' e £5 and we have
b = a(a'b). Hence S is a right group.

(ii) implies (iii). This follows by calculation in the representation of S as
the direct product of a group and a right zero semigroup.
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(iii) implies (i). If xa = xb then x'xa = x'xb for some x' € I(x). So
x'xa = ay and x'xb = bz for some y, z € S, by hypothesis. Hence c =
x'xa = ay and c = x'xb = bz so c < a, c < b (see Mitsch (1986)). Thus
c = a = b.

Lallement and Petrich (1966) considered the case with zero. They denned
a semigroup 5 with zero to be O-inversive if for every a € S, a / 0, there is
some x eS such that ax € £s\{0}, and weakly O-cancellative if ax = bx ^ 0,
ya = yb ^ 0 imply a = b.

PROPOSITION 5. Let S be an O-inversive semigroup. Then the following are
equivalent:

(i) S is weakly O-cancellative,
(ii) S is primitive regular,

(iii) S\{0} is trivially ordered with respect to its natural partial order.

PROOF, (i) if and only if (ii). This equivalence was shown by Lallement
and Petrich (1966).

(ii) implies (iii). This follows by calculations in the representation of
5 as 0-direct sum of completely 0-simple semigroups (that is, Rees matrix
semigroups over groups with zero).

(iii) implies (ii). Let a e S, a ^ 0; then ax € £s\{0} for some x € S.
Since axa < a and axa ^ 0, we conclude axa = a, hence S is regular. Since
every nonzero idempotent of S is primitive, we obtain that S is primitive
regular.

2. Subdirect products

It is easy to see that every direct product of J?-inversive semigroups is again
2s-inversive. So is every homomorphic image, but not every subsemigroup of
an £-inversive semigroup (in the group (Z, +) the subsemigroup (N, +) is not
2s-inversive).

A semigroup isomorphic with a subsemigroup H of the direct product of
two semigroups 5, T is called subdirect product ofS and T if the two projec-
tions 7Ti: H —* S, 7ti(s,t) = s, and %i: H -+ T, ni(s,t) = t are surjective. It
is well-known, that a semigroup H is a subdirect product of two semigroups
S and T if and only if there are congruences p, x on H such that p n x = e;
in this case S = H/p and T = H/x. Since S and T are homomorphic images

https://doi.org/10.1017/S1446788700035199 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700035199


70 H. Mitsch [5]

of H we have:

LEMMA 6. IfH is an E-inversive semigroup which is a subdirect product of
two semigroups S and T, then S and T are E-inversive.

Conversely, a subdirect product of two is-inversive semigroups is not E-
inversive in general. Let S = T = (Z, +) and H be the subsemigroup of S x T
generated by {(1,1), ( - 1 , -3)} . Then H is a subdirect product of S and T
which are is-inversive; but H is not, because ( -1 , -1) is the only solution of
(1,1) + (x,y) = (0,0), but does not belong to H.

The problem of when a subdirect product of two inverse semigroups is
again inverse, was considered by McAlister and Reilly (1977) and Petrich
and Reilly (1983). In the first paper mentioned the concept of subhomo-
morphism of inverse semigroups was introduced in order to construct all
subdirect products of two inverse semigroups which are inverse.

The appropriate generalization to the is-inversive case is the following.

DEFINITION. Let S, T be two is-inversive semigroups. A mapping a: S —>
&(T) (the power set of T) is called surjective subhomomorphism ofS onto
T if the following conditions are satisfied:

(i) so. ^ 0 for all s e S;
(ii) (sia){S2a) C ( s ^ a for all s\,s2 € S;

s€S

(iv) for every t esa (s eS,t eT) there are
s' e I(s), t' € I{i) such that t' e s'a.

The existence of surjective subhomomorphisms will be seen to be a neces-
sary and sufficient condition for subdirect products of two £-inversive semi-
groups to be again is-inversive.

THEOREM 7. Let S and T be E-inversive semigroups and let a be a surjective
subhomomorphism ofS onto T. Then n(S, T,a) — {(s,t) e S x T\t € sa} is
an E-inversive semigroup which is a subdirect product ofS and T. Conversely,
every E-inversive semigroup which is a subdirect product ofS and T can be
obtained in this way.

PROOF. Sufficiency, n = n(S, T,a) is a semigroup by condition (ii). It is a
subdirect product of S and T by (i) and (iii). It is is-inversive, since (s, t) en
implies t e sa, so that by condition (iv) there are s' e I(s), t' G I(t) with
/' e s'a, hence (s', t') e n and {s, t)(s', t') = (ss1, tt') e En.

Necessity. For any is-inversive semigroup H which is a subdirect product
of S and T define a: S -• 3°{T) by sa = {t e T\(s, t) e H} for every seS.
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Since H is a subdirect product of 5" and T, for every s e T there is some
t € T with (s, t) e H, hence t € sa and (i) is satisfied, (ii) holds since H
is a subsemigroup of 5" x T, and (iii) holds because it is a subdirect product
of S and T. Finally, let t e sa(s eS,t e T). Then (5, t) € / / , so that there
is {x,y) € i / such that (s,t)(x,y),{x,y)(s,t) € £ # (by Lemma 1). Hence
xs,sx € Es, yt, ty € ET and (*,>>) e / / , thus x e /(s), y € /(*) and >> e xa,
that is, (iv) holds. Evidently, H = n{S, T,a).

3. .E-unitary covers

McAlister and Reilly (1977) used surjective subhomomorphisms of inverse
semigroups for the construction of .E-unitary covers of inverse semigroups.
Recall that a semigroup S with idempotents is called E-unitary if ea, e £ E$,
a € S imply a € Es. Note that this condition is equivalent to: ae, e e Es,
a G S imply a e Es (see the proof of Lemma 2.1 in Howie and Lallement
(1965)). In this section we shall consider is-unitary covers for ij-inversive
semigroups S. A semigroup P is called an E-unitary cover ofS if P is E-
unitary and if there is an idempotent separating homomorphism of P onto
S.

In the following we shall give some sufficient conditions for the construc-
tion of jE"-unitary, £"-inversive covers for an arbitrary i?-inversive semigroup.
The first is the existence of a group G and of a surjective subhomomorphism
with the following property:

DEFINITION. Let S be an £-inversive semigroup and let G be a group; a
subhomomorphism a of S into G is called unitary if 1 e sa for some s e S
implies that s e £5.

THEOREM 8. Let S be an E-inversive semigroup. If there exist a group G
and a unitary surjective subhomomorphism a ofS onto G, then n(S,G,a) is
an E-inversive, E-unitary cover ofS.

PROOF. By Theorem 7, P = n(S, G,a) is ^-inversive. It is also ^-unitary,
since (s,g)(e, \),{e, 1) € EP C {(t,a) e 5 x G\t e Es, a = 1 e G} imply
(se, g) € EP, hence g = 1 and (s, 1) e P. Thus 1 e sa by definition of P and
s eEs since a is unitary; hence (s, g) € Ep. S is a homomorphic image of /*
under the projection TII (S, g) = 5 for all (s, g) e P which evidently separates
idempotents of P.

McAlister and Reilly (1977) considered particular ^-unitary covers of in-
verse semigroups, namely those whose maximum group homomorphic image
is a given group. The general concept is the following.
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DEFINITION. Let S be a semigroup and let G be a group; then a semigroup
P is called an is-unitary cover of S through G if (i) P is an ̂ -unitary cover of
S and (ii) P/o = G where a is the least group congruence on P (if a exists).

For .E-inversive semigroups S the existence of the least group congruence
was noted by Hall and Munn (1985). We shall give an explicit form of it in
the proposition below. It is strongly reminiscent of that of the least group
congruence on a regular semigroup described by Feigenbaum (1979).

PROPOSITION 9. Let S be an E-inversive semigroup. Then the least group
congruence on S is given by

aab if and only ifxa = by for some x,y eU,

where U is the intersection of all subsemigroups T ofS such that ( l j f j C T
and (2) ata', a'ta eT for every teT, aeS and a' € I {a).

PROOF. We first show that for every subsemigroup T of S satisfying (1)
and (2) of the proposition, the relation

aojb if and only if xa = by for some x,y GT

is a group congruence on S.
Since (aa')a = a(a'a) with aa', a'a e Es Q T for a' e I(a) then a is

reflexive, a is symmetric since aojb implies xa = by(x,y e T), thus

a(a'xy • xa • b'b) = (aa'xy • by • b')b for a' e I{a), b' € I(b)

and baja. a is transitive because aojb, bojc imply

xa = by, zb = cv(x,y, z, v e T),

thus
(zx)a = z(xa) = z{by) = (zb)y = (cv)y = c(vy)

and aorc. Then a is a congruence since aojb, c e S imply xa = by(x,y e T),
thus

(bcc'b'x)ac = bc{db'byc) for b' e I(b), c' e I{c),

hence acajbc, and

(cxaa'c')ca = cb(ya'c'ca) for a' e I(a), d e I(c),

hence caajcb. S/ar contains a unique idempotent, because aar,bor €
ES/aT, imply a2ara, b2aTb, thus xa = a2y, bt = sb2 (x,y,st, e T) and

a(a'x a ay- a'b'bt • b'b) = (aa'x • xa • a'b' • sbb • b')b

foTa'eI(a),b'eI(b),

hence aoj = bar.
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Finally, suppose (ax)or and (ay)aj are idempotents of S/GT- Since
\Es/aT\ = 1 then axaTay so (yy'a'a)xoTy(y'a'ay). Hence for some w,z € 7\
(wyy'a'a)x = y{y'a'ayz). Thus x<7r.V and XOT = yor- Since S/crr is £ -
inversive then by Proposition 2, S/or is a group.

Conversely, let T be a group congruence on S and let T = {t € S\tx is
the identity of S/x}. Clearly Es C 7\ For each a e S and a' € I(a), a'x
is the group inverse of ax e S /T. SO for any t e T, (ata')x — {aa')x is
the identity of S/x. Thus at a' e 7\ and likewise a'ta e 7\ It is easy to
see that aT < x. Let axb; then ab'xbb' for ft' e /(ft) and ab' e 7\ Hence
(ftft' • ab'ba')a = b(b'ab'b • a'a) and aojb; so x = oj- Clearly U satisfies (1)
and (2) and a = an.

If y/: S —• T is a homomorphism of semigroups define ker y = {.s €
Also, if p is a congruence on S define ker/? = {s € 5 | J / ) e .Es//,

COROLLARY 10. Let S be an E-unitary, E-inversive semigroup with least
group congruence a. Then ker a = U = Es.

PROOF. Suppose e,feEs and x e I(ef). Then e, e(fx) e Es and since S
is £-unitary, fx e Es. Likewise x e £5. But then (ef)x, xeEssoefe Es.
Thus Es is a subsemigroup of S. If a € S and a' e /(a) then for each n e N ,
« >2,

{aea')n = a(ea''ae)n~x a' = a(ea'ae)a' = {aea'f.

Hence (aea1)2, (aea1)3 e Es, so aea' e Es since 5 is .E-unitary. Likewise
a'ea e Es. Thus £.? = C/.

Since Es/a = {e<r} for any e G E$ then a e kero- if and only if aa = ea.
In this case xa = ey for some x,y e Es by Proposition 9; so x,xa € £5 and
therefore a e £5. Thus ker a = Es.

First we give a sufficient condition for the existence of an E-unitary, E-
inversive cover of an E-inversive semigroup through a group.

THEOREM 11. Let S be an E-inversive semigroup and let G be a group.
If there is a surjective, unitary subhomomorphism a of S onto G, then P =
n{S, G, a) is an E-unitary, E-inversive cover ofS through G.

PROOF. By Theorem 8, P is an E-inversive, E-unitary cover of 5. We have
to show that P/o = G, where a is the least group congruence on P given in
Proposition 9.

By Theorem 7, P is a subdirect product of S and G. Thus G is a homo-
morphic image of P under the projection 112(0, g) = g for all (a,g) e P.
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Since G is a group, a <%ion^x (the congruence induced by 712 on P). Con-
versely, suppose {a,g)(n2 ° it2l)(b,h); then (a,g)n2 = (b,h)n2 and g = h.
Since P is is-inversive, for (ft, g) = (ft, A) e P there exists (x,y) e P such
that (b,g){x,y) = (bx,gy) e EP = {{e, 1) e P\e e Es}. Hence bx e £ s

and gy = 1, that is y = g~l. Thus (x,g~l) e P and (ftx, 1) e £p. Conse-
quently, (xa, 1) = (x, £-1)(a, g) € P. Hence 1 e (xa)a by definition of P,
and xa e £5 (since a is unitary); thus (xa, 1) € Ep. Therefore,

{bx, l){a,g) = (bxa,g) = (6,*)(xa, 1) = (b,h)(xa, 1)

with (bx, 1), (xa, 1) e Ep c U. Hence (a,g)a(b,h), thus 7r2 O rej1 < a and
equality follows. Consequently, P/a — P/712 on^1 = G.

Petrich and Reilly (1983) gave a construction of all unitary, surjective
subhomomorphisms of an inverse semigroup onto a group. Their result can
be generalized to £-inversive semigroups.

THEOREM 12. Let S be an E-inversive semigroup and G be a group. Then
a is a unitary surjective subhomomorphism of S onto G if and only if a =
(f>~' o y for some E-inverse semigroup R and some surjective homomorphisms
(f>: R—> S and y/: R —> G such that ker i// c

PROOF. Sufficiency follows by a straightforward generalization of the cor-
responding proof for inverse semigroups by Petrich and Reilly (1983).

Suppose a is a unitary surjective subhomomorphism from S onto G. By
Theorem 11, P = n(S, G,a) is an is-unitary, is-inversive cover of S through
G. Let it\\ P —> S and 712'• P —* G be the projection mappings. By the proof
of Theorem 11,712071^' is the least group congruence on P, so by Corollary
10, ker7t2 = Ep. Clearly ker 711 D Ep, so by the sufficiency of the condition
of the theorem there is a unitary surjective subhomomorphism ft = n^1 o 712
from S onto G. It follows easily that

n(S, G,$) = {(pnupn2) \p<=P} = P.

So for s € S,

sfi = {geG\ (s,g) € x(S,G,fi)} = {geG\(s,g)eP} = sa.

Thus a = 0 = 71 j " 1 o 7T2.

The converse of Theorem 11 (and Theorem 8) can now be proved.

THEOREM 13. Let S be an E-inversive semigroup, Gbea group and P be an
E-inversive, E-unitary cover ofS through G. Then there is a unitary surjective
subhomomorphism a ofS onto G such that n(S, G, a) is a homomorphic image
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ofP, and n(S, G,a) is an E-unitary cover ofS through G. Furthermore, if P
is also a subdirect product ofS and G then P = n(S, G, a).

PROOF. There are surjective homomorphisms <f>: P —> S and y/\ P —* G
such that yi o y/~l is the least group congruence on P. By Corollary 10,
Ep = ker y/ C ker</>. By Theorem 12 we may choose a = <f>~x o y/; for by
Theorem 11, n{S, G, a) is an ^-unitary cover of S through G, and there is
a homomorphism 6: P -* n(S,G,a) given by p8 = {p<f>,py/). Also 6 is
surjective, since for (s,g) e n(S, G,a) then g e s(<f>~1 o y/), so there exists
p eP such thatp<j> = s,py/ = g.

Now suppose that P is also a subdirect product of S and G. Then by
Theorem 7, P = n(S,G,fi) for some surjective subhomomorphism /? of S
onto <J. Let n\: P —» S and 7r2: P —• G be the projections. We may choose
<f> = 7C\. Since ly o ^~ ' is the least group congruence on P then y/ o y/~l <
7T2O7TJ1. Hence if ad — bd for some a,b € P then a</> = 6<̂>, a^ = fe^ whence
OTTI = bn\, aji2 = biti. But P is a subdirect product of S and G, so a = ft.
Thus 5 is an isomorphism.

4. Subdirect products of semilattices and groups

Regular semigroups S which are a subdirect product of a semilattice Y
and a group G were characterized by Howie and Lallement (1965), see also
Petrich (1973 b), as sturdy semilattices of groups, that is strong semilattice of
groups with injective linking homomorphisms (or equivalently, as Zs-unitary
Clifford semigroups). They have the additional property, that ( a , l ) e S for
every a e Y. We shall characterize all subdirect products of Y and G with
this property. Note that every subdirect product of Y and G is £-inversive.

DEFINITION. A subdirect product H of a semigroup S and a group G is
called./«//, if (e, 1) e H for ever e e Es.

THEOREM 14. For a semigroup S the following are equivalent:

(i) S is a full subdirect product of a semilattice and a group;
(ii) S is an E-inversive sturdy semilattice ofcancellative monoids;

(iii) S is an E-inversive sturdy semilattice of weakly cancellative monoids;
(iv) 5 is an E-inversive sturdy semilattice of trivially ordered monoids;
(v) 5 is an E-inversive sturdy semilattice of monoids with a single idem-

potent.
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PROOF, (i) implies (ii). Let (a,g) e 5; then for g~l e G there is P 6
Y with (fi,g~l) e 5, hence (a.sXjS,,?-1) = (ajff.l) e £ s . Thus 5 is E-
inversive. For every a e Y define 5 a = ({a} x G)nS. Since by hypothesis
(a, 1) e 5 for every a e Y, Sa ^ 0 for every aeY. Sa is easily seen to
be cancellative submonoid of 5. For every 0 < a inY and every (a, g) e 5,
also (/?, g) = (a, g)(fi, 1) e 5 by hypothesis. Hence the mapping pai£: Sa ->
Sp, (a, g)9a,p = (/?> g) is defined for all /? < a. It is easily shown that all
0>Q)yj are injective homomorphisms satisfying the conditions which show that
5 = \Ja€Y Sa is a sturdy semilattice of the semigroups Sa, aeY.

(ii) implies (iii). Every cancellative semigroup is weakly cancellative.
(iii) implies (iv). Let aeY and a < b in Sa; then a = xb = by, xa = a =

ay(x,y € Sl). Thus xa = a = xb and 6y = a = ay, hence (yx)a = (yx)b
and fe(yx) = a{yx). By hypothesis it follows that a = b.

(iv) implies (v). Since e <\a for every e € .Esa, l o the identity of 5"a, we
have by hypothesis e = \a and E$a = {la}.

(v) implies (i). Since S is a sturdy semilattice Y of semigroup 5Q(a e T),
by Petrich (1973 b) S is a full subdirect product of Y and the semigroup 5/0,
where 6 is the congruence on 5 defined by:

adb if and only if a(pa<afi = b<pPtaP {a eSa,be Sfi).

We show that 5/0 admits a unique idempotent which is the identity of
5/0. Since every homomorphism maps the unique idempotent l a e 5 a onto
the unique idempotent lafi e Safi and since \a(pa,ap = {\a<pa,ap)<pap,ap we
have

Let / denote the 0-class containing all the identity elements 1O (a e Y).
Clearly / is the identity of 5/0. Suppose ad e ES/e and a e Sa for some
a e 7 . 5 a is a monoid so a2 e 5 a . We have a2da so a2<pa<a = apQ,a and
hence a2 = a in 5 a . Thus a = l a and therefore a0 = / . Since 5/0 is
is-inversive it follows easily that 5/0 is a group.

Petrich (1973 b) gave a construction of all regular semigroup which are a
subdirect product of a band (semilattice Y) and a group G. Following his
ideas we can generalize it to that of all semigroups which are full subdirect
products of Y and G.

THEOREM 15. Let Y be a semilattice and G be a group. Suppose that
there is a mapping fof(Y, <) into the lattice (^(G), c) of all submonoids of
G ordered by inclusion, which is order-inverting and satisfies \Ja€Y

 af — G-
Then 5 = {(a, a) e Y x G \ a e af} is an E-inversive semigroup which is a
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full subdirect product of Y and G. Conversely, every such semigroup can be
constructed in this way.

PROOF. Sufficiency. S is a semigroup: (a, a), (ft, b) e S imply that a e
af C (ap)f, b e pf C (a£) / , thus ab € ( a £ ) / and (a)M&) e S. S is
a subdirect product of 7 and G, since a / ̂  0 for every a e Y and since
(7 = \Ja€Y

 af- It is fuU> since every af e ^((7) is a submonoid of G with
identity 1 (the identity of G), hence l e a / and ( a , l ) e 5 for every a e Y .

Necessity. Let S be a full subdirect product of Y and G; define a / = {a e
(7 | (a, a) e 5} for every aeY. It is easy to see that af is a submonoid of
G, so that the mapping / : Y -> ^(G) , a -+ a / is defined. If a < P in Y
and x e £ / , then a = afi and (jff.Jt) e 5, thus (a,x) = (a, 1)0?,*) € 5 by
hypothesis and x € af, that is, / is order-inverting. Since S is a subdirect
product of Y and G, also the second property is satisfied by / . Evidently,
S = {(a,a)eYxG\aeaf}.

Finally we give a characterization of all periodic semigroups which can be
represented as a subdirect product of a semilattice and a group. They are
the same as the regular ones found by Howie and Lallement (1965); see also
Petrich (1973 b) and the beginning of this section. Note that every periodic
semigroup is £-inversive.

THEOREM 16. Let S be a periodic (in particular, finite) semigroup. Then
S is a subdirect product of a semilattice and a group if and only ifS is an
E-unitary Clifford-semigroup.

PROOF. Sufficiency. By Howie and Lallement (1965), every ii-unitary Clif-
ford semigroup is a subdirect product of a semilattice and a group.

Necessity. Let S be a periodic semigroup which is a subdirect product of
a semilattice Y and a group G. For every aeY define Sa = ({a} x G) n S.
Sa ^ 0 since S is a subdirect product of Y and G. We show that for every
a e Y, Sa is a group. First, each Sa is a cancellative semigroup; it is periodic,
since S is. Thus for every a eSa, the semigroup (a) generated by a in Sa is
finite, hence a group. So Sa is a cancellative union of groups, and is therefore
a group. It follows that 5 is a full subdirect product. By the proof of Theorem
14, (i) implies (ii), then S is a sturdy semilattice Y of groups Sa (aeY).
Thus S is an JE-unitary Clifford semigroup.

This result can be extended to a characterization of all periodic semigroups
which are subdirect products of a band B and a group G. Again, the regular
case was considered by Howie and Lallement (1965), see also Petrich (1973b),
who obtained the same class of semigroups as given in the following result.
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THEOREM 17. A periodic semigroup S is a subdirect product of a band B
and a group G if and only ifS is a band of groups and Es is a unitary subset.

PROOF. By Howie and Lallement (1965), the condition is sufficient. Ne-
cessity: By the same proof as of Theorem 16, S is the union of the groups
Sa = ({a} x G)(IS, a € B. Also, it is easily shown that S is ^-unitary. Since
Green's relation %? on S is given by (a, a)%?{fi, b) if and only if a = /?, it
follows immediately that 3? is a congruence. Hence S is a band of groups
(see Petrich (1973b).
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