
THE COARSENESS OF THE COMPLETE GRAPH 
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To P. Erdos on duplicating the cube for the last time, 26:3:67 

1. The coarseness, c(G), of a graph G is the maximum number of edge-
disjoint, non-planar subgraphs of G. We consider only the complete graph, 
Kp, on p vertices here. For p = 3r, Erdôs conjectured that the coarseness 
was (2), but it has been shown (1) that 

(1) c(Kp) = ( y + [|r], p = Sr ^ 30, 

where square brackets denote integer part. 
In § 2 we investigate the other cases where p = 3r, determining the coarse

ness exactly for r ^ 5 and within one otherwise. In § 3 we consider the case 
p = 3r + 1, with exact results except when r = 4 or r = 3n + 2 ^ 5, when 
the result is again within one. For r = 6n see Rosa (3). Section 4 provides the 
complete solution for p = 3r + 2 and the results are summarized in the final 
section. 

2. The "gas, water, electricity" graph Ks,z, formed by joining each of 
three vertices to each of three others, is non-planar. On joining each of r 
triads of points to every other, forming (2) ^3,3 graphs, one sees immediately 
that 

(2) c(K9) è Q , P = 3r. 

We show that equality holds in (2) for r ^ 5, considering first the case r = 5. 
Kuratowski's theorem (2) states that a non-planar graph contains a sub

graph homeomorphic to K5 or Kz,z. Figures 1 and 2 are examples of graphs 
homeomorphic to K5 and to X3>3, respectively, the numbered vertices being 
"essential", and the lettered ones "false". On noting that each "false" vertex 
requires an additional edge (with two extremities), it will be seen that the 
arguments which follow, and which are applied to "essential" vertices, carry 
at least as much weight, if "false" vertices are also present. 

Suppose that K15 contains eleven edge-disjoint non-planar subgraphs (i.e., 
that inequality holds in (2)), of which x are K5 homeomorphs and y are 
i£3)3 homeomorphs. Since these have at least ten and nine edges, respectively, 

(3) (?) x + y = ll, 
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-P^ ^ 3 3 

FIGURE 1 FIGURE 2 

(4) 1Q* + 9y ^ ( X
2
5J = 105. 

Together, these imply x ^ 6. We consider three separate cases i (i = 1, 2, 3) 
and obtain a contradiction in each. 

(4 + i) Si - 3 g x g 3* - 1, i = 1, 2, 3. 

In cases 1 and 2, the arguments involve only the numbers of edges at vertices 
in the non-planar graphs. Here and later, when we speak of a vertex "belonging 
to" a K& or i£3>3 graph, or homeomorph, we mean that the vertex is "essential" 
in the previously mentioned sense, i.e., that its valence is greater than two. 

Case 1 (x = 0, 1, 2). There are at least 15 — 5x vertices which belong to 
no K5 graph. Since i£3,3 is trivalent, each such vertex has at least two inci
dent edges which are in none of the i£3,3 graphs to which it belongs. Therefore 

y g {105 - 10x - (15 - 5x)}/9, 

x + y ^ (90 + 4s)/9 S 98/9 < 11, 

by (5), contrary to (3). 

Case 2 (x = 3, 4, 5). Let z be the number of vertices which belong to three 
K5 graphs. Each such vertex then belongs to no other non-planar graph, while 
any other vertex belongs to at most four of them. Hence 

5x + 63/ ^ 3s + 4(15 - z). 

By (3), 6 ^ x — z, and since in this case x < 6 and z is non-negative, we again 
have a contradiction. 

Case 3 (x = 6). In this case each of the graphs must be a "genuine" K5 

or i£3,3 and each vertex belongs to exactly two of the K5 graphs. We label 
the six K5 graphs as 0, 1, 2, 3, 4, 5 so that each vertex can be identified 
by an unordered pair of these digits. In a given i£3)3 no digit can appear 
three times, for suppose 05, 15, 25 do appear. These all belong to the same 
K5, so must be in the same triad of the i£3)3. However, only the vertex 34 is 
adjacent to each of these, and not contained in a K5 with any. Since a i£3(3 

has twelve occurrences of digits, each must occur twice, both occurrences 
being in the same triad. Without loss we may assume that one KZfZ has 
01, 02, 12 and 34, 35, 45 as its triads. The vertex 01 must belong to a second 
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i£3>3, which necessarily contains at least one of 34, 35, 45 in the other triad, 
which is impossible. This completes the proof that Ku has coarseness 10. 

Now assume 

(?) c(KSr) £ Q + 1. r < 5. 

To the r triads of points involved, adjoin 5 — r triads, each joined to each 
other and to the initial r to produce i£3)3 graphs, as in (2), and we have 

c{Kn) ^ Q + 1 + (5 ~ r ) + r(5 - r) = 11, 

which we have just seen to be impossible. Note that (1) and (2) are equal 
for r S 4. 

For 6 ^ r ^ 9 we are unable to decide between equality in (2) and (1). 

3. For p = 3r + 1, we first give a maximal decomposition of i£ i9 into 
nineteen i£3(3 graphs, due to D. Kleitman and others. Number the vertices 
0, 1, 2, . . . , 18 and form one i£3)3 by joining 0, 1, 2 to 3, 6, 9. Permute the 
vertices cyclically, modulo 19, to obtain the other eighteen graphs. 

To obtain a maximal decomposition of K2s, label the vertices with a digit 
from {0, 1, . . . , 6} and a letter from {A, B, C, D]. First form six i£3,3 graphs 
with the following pairs of triads 

0A 2B 1C 0A 4£ 0C 0A 0B 0C 0A 0B 5D 0A SB 0D 0A 3C 2D 

1A 0B 0D 2A 3C 3D 4JB 5C 4£> 3A 2C 0D 5B 0C ID 0B IC 5D 

and then permute the digits cyclically modulo .7 to obtain 6 X 6 other graphs. 
These forty-two i£3)3 graphs are edge-disjoint. 

We use these decompositions to prove 

(8) c(Kp) ^ ( y + 2[*r], p = Zr + 1 ^ 19. 

Let p = 3r + 1, r = 3n + m with 0 ^ m ^ 2, n ^ 2. If n is even, take 
\n copies of Ki9 with one vertex common to all, and m triads of vertices. Par
tition the eighteen other vertices of each i£ i9 into \n sets of six triads, and 
join each triad to every other not in the same set, giving 

19(*«) + 6 2 (*f ) + 0mm + (™) = ( j ) + 2n 

KZy% graphs. If n is odd (and at least 3), take one K2z and \{n — 3) copies 
of i£i9, with a vertex common to all, and m triads of vertices. Partition as 
before into \{n — 3) sets of six triads and a set of nine. Join the triads, giving 

42 + 19{i(n - 3)! + 54{i(« - 3)} + 3 6 ( i ( w ~ 3 ) ) + Zmn + (™) = 

(Ù r
2) + 2n 
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i£3 i 3 graphs, and completing the proof of (8). 

Since a non-planar graph has a t least nine edges, 

(9) c(Kv) ^ ( y + Br], p = Zr+l. 

If r ^ 2 (mod 3) and £ ^ 19, the inequalities (8) and (9) imply equal i ty 
in each. For p = 9?z + 7 there is a gap of one. If equali ty is to be a t ta ined 
in (9), it can be shown tha t the subgraphs are all homeomorphic to i£3 ,3 

graphs, and t h a t jus t two or three are homeomorphs, the remainder being 
genuine i£3 ( 3 graphs. 

We now turn to the small values of r. I t is readily seen t h a t c(K±) = 0, 
C(KT) = 1. Since K10 has forty-five edges, if it were the union of five non-
planar graphs, each would be a genuine i£3)3 graph. We show t h a t it is not 
possible to obtain even four such graphs. If there were four, they would have 
4 X 6 = 24 vertices, with three edges a t each; so there are vertices which 
belong to three i£3)3 graphs. Label such a vertex 0 and let the others be 
1, 2, . . . , 9. Wi thou t loss we may assume tha t three of the i£3>3 graphs con
tain vertices 

0 . . 0 . . 0 . . 
1 2 3 4 5 6 7 8 9 

and t h a t the first of these is either 

0 4 7 0 4 5 
1 2 3 ° r 1 2 3 . 

By considering vertex 4, we see t h a t the second is to be completed by two of 

0 4 7 . 
the three vertices 7, 8, 9. In the first case, , if 7 is included in 

0 7 . 0 . . 
4 5 6 ' 7 8 9 

cannot be completed, since 7 is already connected to 1, 2, 3, 4, 5, and 6. Hence 
the first two are 

0 4 7 0 8 9 
1 2 3 a n d 4 5 6 

and again 7 ' ft cannot be completed. Wi thou t loss we m a y therefore 
7 o y 

assume t h a t three of the i£3 ,3 graphs are 

0 4 5 0 7 8 0 1 2 
1 2 3 4 5 6 7 8 9 . 

T h e remaining edges form the planar graph shown in Figure 3, so t h a t four 
edge-disjoint i£3f3 graphs cannot be found. However, c(Ki0) — 4, since we 
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7 9 

FIGURE 3 

may decompose K10 into four if 3)3 homeomorphs, for example, the first four 
in the scheme 

0 4 5 
6 

1 2 3 

0 7 8 

4 5 6 

0 2 3 
1 

7 8 9 

3 6 9 
5 8 
4 1 2 

10 14 15 
7 

11 12 13 

8 9 10 

7 14 15 

10 12 13 
11 

8 9 6 

6 7 13 
9 15 
12 11 14 

0 1 2 
10 11 12 

0 1 2 
13 14 15 

3 4 5 
10 11 12 

3 4 5 
13 14 15 

where the three vertices in the top row are each joined to the three in the 
last row, except that 5 is joined to 3 via 6 in the first, 2 is joined to 8 via 1 
in the third, and the fourth is illustrated by Figure 2, with X = 8 and Y = 5. 
To see that c(Ku) ^ 7, adjoin three new vertices, forming three more if3,3 
graphs on joining them to the triads 123, 456, and 789. The whole of the 
above scheme shows that c(K16) ^ 12. The second set of four if3,3 homeo
morphs is obtained from the first by adding 10 to the digits 0, 1, 2, 3, 4, 5 
and permuting the digits 6, 7, 8, 9 cyclically. The if6,e graph formed from 
the sets of vertices 0, 1, 2, 3, 4, 5 and 10, 11, 12, 13, 14, 15 furnishes the final 
four K3,3 graphs of the scheme. All edges are used except the four (1, 7), 
(5,9), (6, 15), and (8, 11). 

4. For the case p = 3r + 2, the coarseness is 

(10) c(K„) = ( y + [(14r + 1)/15], p = Zr + 2. 

We first show that it is no greater than this, by obtaining a contradiction 
to the assumption that we can find x K5 graphs and y K3|3 graphs, as in 
§ 2, such that 

(ID 

As in (4), 

(12) 

(?) x + y > ( y + (14?- + 1)/15. 

10x + 9y g ( 3 r + 2 ) , 
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and (11) and (12) imply 

(13) x<i(Sr + 2). 

There are at least 3r + 2 — 5x vertices which belong to no K5 graph. Since 
each vertex has 3r + 1 incident edges, the trivalence of i£3)3 ensures that 
each such vertex has an unused incident edge. 

Therefore, 

lOx + 9j> = | (9r2 + 9r + 2) - £(3r + 2 - ox), 

x + y^(£\+ (15r + 3x)/18 < Q + (14r + 1)/15 

by (13), contradicting (11). 
To complete the proof of (10) we next decompose K-Q0 into 135 non-planar 

graphs. Join i, i + 10, i + 20, i + 30, i + 40 for * = 0, 1, 2, . . . , 9 to form 
ten K5 graphs. Form one hundred i£3)3 graphs 

i i + 1 i + 2 i i + 1 i + 2 

i + 3 i + 6 i + 9 i + 13 i + 16 i + 19 

by letting i run through a complete set of residues modulo 50. Finally, form 
twenty-five more Kz,z graphs 

i i+1 i+2 
(i = 0 ,1 ,2 , . . . , 2 4 ) , 

i + 23 i + 26 i + 29 

where the additions are again modulo 50. This proves (10) for r = 16. For 
r = 1, choose K5 and proceed inductively up to r = 15. First, if there is an 
edge AB of Kv which is not in a non-planar graph, we add three points 
C, D, E forming a Kb graph with A, B and \{p — 2) i£3)3 graphs with triads 
of other points of Kv. In this case 

c{Kp+,) ^c(Kp)+\(p+l). 

If there is no such edge AB, we take just the \(p — 2) i£3)3 graphs, and in 
this case 

c(Kv+i) è c(K,) + \(p - 2). 

This gives the following table, with p = 3r + 2, 

r 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

c(Xp) 1 2 5 9 14 20 27 35 44 54 65 76 89 103 118 

The only constructions of the second type are for r = 2 and r = 12. 
To confirm (10) generally, let p = 3r + 2, r = 15w + m + 1, 0 =" m S 14, 

w ^ 0. Take n copies of the X50 construction, together with one i£3w+5 (as 
above), so that each of these n + 1 complete graphs have a K$ graph in 
common. Partition the remaining vertices of the complete graphs into n sets 
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of fifteen triads and one set of m triads, and join each triad to every other 
not in the same set, to produce a total of 

134H + 1 5 2 W + 15wn + \ ~ ^ ) + (14(«» + 1) + 1)/15 = 

( 2 ) + (14r + 1)/15 

non-planar graphs. 

5. We conclude with a summary of what is known about the coarseness of 
the complete graph. 

For p = 3r, c(Kp) = (£) + ftr], r * 10, 

c(Kp) = ( y , r S 5. 

Forp = 3r+l, fy + 2[$r] £ c(Kp) £ fy + [%r], r ^ 3, 4, 

c(^io) = 4, 7 g c(X13) £ 8. 

For p = 3r + 2, <;(iQ = Q + (14r + 1)/15. 

We conjecture the following results in the only cases which are still in doubt: 

p = 13 18 21 24 27 9rc + 7 

(?) c(Kp) = 7 15 21 28 36 |(9rc2 + 13» + 2), 

and note that if any of these are incorrect, then the true values are greater 
by one. 
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