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LYUBEZNIK NUMBERS OF LOCAL RINGS AND
LINEAR STRANDS OF GRADED IDEALS

JOSEP ÀLVAREZ MONTANER and KOHJI YANAGAWA

Abstract. In this work, we introduce a new set of invariants associated to

the linear strands of a minimal free resolution of a Z-graded ideal I ⊆R =

k[x1, . . . , xn]. We also prove that these invariants satisfy some properties

analogous to those of Lyubeznik numbers of local rings. In particular, they

satisfy a consecutiveness property that we prove first for the Lyubeznik table.

For the case of squarefree monomial ideals, we get more insight into the

relation between Lyubeznik numbers and the linear strands of their associated

Alexander dual ideals. Finally, we prove that Lyubeznik numbers of Stanley–

Reisner rings are not only an algebraic invariant but also a topological invariant,

meaning that they depend on the homeomorphic class of the geometric realiza-

tion of the associated simplicial complex and the characteristic of the base field.

§1. Introduction

Let A be a Noetherian local ring that admits a surjection from an

n-dimensional regular local ring (R,m) containing its residue field k, and let

I ⊆R be the kernel of the surjection. In [13], Lyubeznik introduced a new

set of invariants λp,i(A) as the pth Bass number of the local cohomology

module Hn−i
I (R). That is,

λp,i(A) := µp(m, Hn−i
I (R)) = dimk ExtpR(k, Hn−i

I (R)),

and they depend only on A, i and p, but not on the choice of R or the

surjection R−→A. In the seminal works of Huneke and Sharp [10] and

Lyubeznik [13], it is proven that these Bass numbers are all finite. Denoting

d= dimA, Lyubeznik numbers satisfy the following properties1.

(i) λp,i(A) 6= 0 implies 06 p6 i6 d.

(ii) λd,d(A) 6= 0.
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(iii) Euler characteristic: ∑
06p,i6d

(−1)p−iλp,i(A) = 1.

Therefore, we can collect them in the so-called Lyubeznik table:

Λ(A) =

 λ0,0 · · · λ0,d

. . .
...

λd,d

 ,

and we say that the Lyubeznik table is trivial if λd,d = 1 and the rest of

these invariants vanish.

Despite their algebraic nature, Lyubeznik numbers also provide some

geometrical and topological information, as was already pointed out in [13].

For instance, in the case of isolated singularities, Lyubeznik numbers can be

described in terms of certain singular cohomology groups in characteristic

zero (see [6]) or étale cohomology groups in positive characteristic (see [4, 5]).

The highest Lyubeznik number λd,d(A) can be described using the so-

called Hochster and Huneke graph, as has been proved in [15, 31]. However,

very little is known about the possible configurations of Lyubeznik tables

except for low-dimension cases [12, 24] or the just mentioned case of isolated

singularities.

In Section 2, we give some new constraints to the possible configurations

of Lyubeznik tables. Namely, the main result, Theorem 2.1, establishes some

consecutiveness of the nonvanishing superdiagonals of the Lyubeznik tables

using spectral sequence arguments.

In Section 3, we introduce a new set of invariants associated to the

linear strands of a minimal free resolution of a Z-graded ideal I ⊆R=

k[x1, . . . , xn]. It turns out that these new invariants satisfy some analogous

properties to those of Lyubeznik numbers, including the aforementioned

consecutiveness property. Moreover, we provide a Thom–Sebastiani type

formula for these invariants, which is a refinement of the formula for Betti

numbers given by Jacques and Katzman in [11]. This section should be of

independent interest, and we hope it can be further developed in future

work.

In the rest of the paper, we treat the case where I is a monomial ideal in

a polynomial ring R= k[x1, . . . , xn], and m = (x1, . . . , xn) is the graded

maximal ideal. Bass numbers are invariant with respect to completion,
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so we consider λp,i(R/I) = λp,i(R̂/IR̂), where R̂= k[[x1, . . . , xn]]. In this

sense, our study on the Lyubeznik tables of monomial ideals is a (very)

special case of that for local rings. However, advanced techniques in

combinatorial commutative algebra are very effective in this setting, and

we can go much further than the general case, so we hope that monomial

ideals are good test cases for the study of Lyubeznik tables.

Since local cohomology modules satisfy H i
I(R)∼=H i√

I
(R), we often

assume that a monomial ideal I is squarefree, that is, I =
√
I. In this

case, I coincides with the Stanley–Reisner ideal I∆ of a simplicial complex

∆⊆ 2{1,...,n}. More precisely,

I = I∆ :=

(∏
i∈F

xi | F ⊆ {1, . . . , n}, F 6∈∆

)
.

The Stanley–Reisner ring R/I∆ is one of the most fundamental tools in

combinatorial commutative algebra, and it is known that R/I∆ reflects

topological properties of the geometric realization |∆| of ∆ in several ways.

In Section 4, we get a deeper insight to the relation, given by the

first author and Vahidi in [1], between Lyubeznik numbers of monomial

ideals and the linear strands of their associated Alexander dual ideals. In

particular, we give a different approach to the fact proved in [2] that if R/I∆

is sequentially Cohen–Macaulay, then its Lyubeznik table is trivial. We also

provide a Thom–Sebastiani type formula for Lyubeznik numbers.

One of the main results of this paper is left for Section 5. Namely,

Theorem 5.3 states that Lyubeznik numbers of Stanley–Reisner rings are

not only algebraic invariants but also topological invariants, meaning that

the Lyubeznik numbers of R/I∆ depend on the homeomorphic class of the

geometric realization |∆| of ∆ and the characteristic of the base field.

The proof of this result is quite technical and is irrelevant to the other

parts of the paper, so we decided to put it in the final section. We also

remark that this result holds in a wider setting. More precisely, if R is a

normal simplicial semigroup ring that is Gorenstein, and I is a monomial

ideal, then the corresponding result holds. We work in this general setting,

since the proof is the same as in the polynomial ring case.

§2. Consecutiveness of nontrivial superdiagonals of the

Lyubeznik table

It seems to be a very difficult task to give a full description of the possible

configurations of Lyubeznik tables of any local ring, and only a few results
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26 J. ÀLVAREZ MONTANER AND K. YANAGAWA

can be found in the literature. The aim of this section is to give some

constraints to the possible configurations of Lyubeznik tables, aside from

the Euler characteristic formula.

Let (R,m) be a regular local ring of dimension n containing its residue

field k, and let I ⊆R be any ideal with dimR/I = d. For each j ∈ N with

06 j 6 d, set

ρj(R/I) =

d−j∑
i=0

λi,i+j(R/I).

For example, ρ0(R/I) (resp. ρ1(R/I)) is the sum of the entries in the

diagonal (resp. superdiagonal) of the Lyubeznik table Λ(R/I). Clearly,∑
j∈N(−1)jρj(R/I) = 1. We say that ρj(R/I) is nontrivial if

ρj(R/I)>

{
2, if j = 0,

1, if j > 1.

Clearly, Λ(R/I) is nontrivial if and only if ρj(R/I) is nontrivial for some j.

It is easy to see that λ0,d(R/I) = 0 if d> 1 and λ0,d(R/I) = 1 if d= 0.

That is, ρd(R/I) is always trivial.

A key fact that we use in this section is that local cohomology modules

have a natural structure over the ring of k-linear differential operators

DR|k (see [13, 14]). In fact, they are DR|k-modules of finite length (see [3,

Theorem 2.7.13] and [13, Example 2.2] for the case of characteristic zero and

[14, Theorem 5.7] in positive characteristic). In particular, Lyubeznik num-

bers are nothing but the length as a DR|k-module of the local cohomology

modules Hp
m(Hn−i

I (R)). That is,

λp,i(R/I) = lengthDR|k
(Hp

m(Hn−i
I (R))).

The DR|k-module length, which will be denoted simply as e(−), is an

additive function. That is, given a short exact sequence of holonomic DR|k-

modules 0−→M1−→M2−→M3−→0, we have

e(M2) = e(M1) + e(M3).

The main result of this section is the following.

Theorem 2.1. Let (R,m) be a regular local ring of dimension n

containing its residue field k, and let I ⊆R be any ideal with dimR/I = d.

Then, we have the following.
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• If ρj(R/I) is nontrivial for some j with 0< j < d, then either ρj−1(R/I)

or ρj+1(R/I) is nontrivial.

• If ρ0(R/I) is nontrivial, then so is ρ1(R/I).

Proof. Consider Grothendieck’s spectral sequence

Ep,n−i2 =Hp
m(Hn−i

I (R)) =⇒Hp+n−i
m (R).

This is a spectral sequence of DR|k-modules where λp,i(R/I) = e(Ep,n−i2 ).

Notice also that the local cohomology modules Hr
m(R) vanish for all r 6= n,

and in this case e(Hn
m(R)) = 1.

We prove the assertion by contradiction. Therefore, assume that ρj(R/I)

is nontrivial for some 0< j < d, but both ρj−1(R/I) and ρj+1(R/I) are

trivial. (The case j = 0 can be proved by a similar argument.) We have

some p, i with i= p+ j such that λp,i(R/I) 6= 0 (equivalently, Ep,n−i2 6= 0).

Consider the maps on E2-terms

Ep−2,n−i+1
2

d2−→ Ep,n−i2

d′2−→ Ep+2,n−i−1
2 .

We show that d2 = d′2 = 0.

Consider first the case j > 1. We have Ep−2,n−i+1
2 = Ep+2,n−i−1

2 = 0 just

because e(Ep−2,n−i+1
2 ) = λp−2,i−1(R/I) and e(Ep+2,n−i−1

2 ) = λp+2,i+1(R/I)

concern ρj+1(R/I) and ρj−1(R/I), respectively. Therefore, d2 = d′2 = 0 is

satisfied trivially. When j = 1, that is, the case when (p+ 2, n− i− 1) =

(d, n− d), we have

Ed−4,n−d+2
2

d2−→ Ed−2,n−d+1
2

d′2−→ Ed,n−d2 .

The triviality of ρ2(R/I) and ρ0(R/I) means that Ed−4,n−d+2
2 = 0 and λd,d =

e(Ed,n−d2 ) = 1, so d2 = 0. Now, we assume that the map d′2 : Ed−2,n−d+1
2 →

Ed,n−d2 is nonzero. Then, Im d′2 = Ed,n−d2 due to the fact that Ed,n−d2 is a

simple DR|k-module. It follows that Ed,n−d3 = Ed,n−d2 /Im d′2 = 0, so

0 = Ed,n−d3 = Ed,n−d4 = · · ·= Ed,n−d∞ .

On the other hand, since ρ0(R/I) is trivial, we have

0 = Ei,n−i2 = Ei,n−i3 = · · ·= Ei,n−i∞ ,
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for all i < d. Therefore, we get a contradiction since, by the general theory

of spectral sequences, there exists a filtration

(2.1) 0⊆Fnn ⊆ · · · ⊆ Fn1 ⊆Hn
m(R),

where Ei,n−i∞ = Fni /Fni+1.

Anyway, we have shown that d2 = d′2 = 0 in all cases, and this implies

that Ep,n−i3 = Ep,n−i2 6= 0. Now, we consider the maps on E3-terms,

Ep−3,n−i+2
3

d3−→ Ep,n−i3

d′3−→ Ep+3,n−i−2
3 .

Since Ep−3,n−i+2
3 and Ep+3,n−i−2

3 concern ρj+1(R/I) and ρj−1(R/I), respec-

tively, we have d3 = d′3 = 0 by the same argument as above. Hence,

we have Ep,n−i4 = Ep,n−i3 6= 0. Repeating this argument, we have 0 6=
Ep,n−i2 = Ep,n−i3 = · · ·= Ep,n−i∞ , so we get a contradiction with the fact that

Hp+n−i
m (R) = 0. (Recall that j = i− p 6= 0.)

The behavior of the consecutive superdiagonals is reflected in the follow-

ing example.

Example 2.2. Let I ⊆R= k[[x1, . . . , x8]] be the Alexander dual ideal

of the edge ideal of an 8-cycle; that is, I∨ = (x1x2, x2x3, . . . , x7x8, x8x1).

Using the results of [1], we get the Lyubeznik table

Λ(R/I) =



0 0 0 0 1 0 0
0 0 0 0 0 0

0 0 0 1 0
0 0 1 0

0 0 0
0 1

1


.

Notice that ρ0(R/I) being trivial does not imply that ρ1(R/I) = 0.

Remark 2.3. Using similar spectral sequence arguments to those

considered in Theorem 2.1, Kawasaki [12] and Walther [24] described the

possible Lyubeznik tables for rings up to dimension two. Namely, their result

is as follows.

• If d= 2, then λ2,2(R/I)− 1 = λ0,1(R/I), and the other Lyubeznik num-

bers are 0.
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If we take a careful look at the spectral sequence we can also obtain the

following.

• If d> 3, then λ2,d(R/I) = λ0,d−1(R/I), and

λ1,d−1(R/I)6 λ3,d(R/I) 6 λ1,d−1(R/I) + λ0,d−2(R/I)

6 λ3,d(R/I) + λ2,d−1(R/I).

For d= 3, we can refine the last inequality; that is,

λ1,2(R/I) + λ0,1(R/I) = λ3,3(R/I) + λ2,2(R/I)− 1.

Indeed, using the filtration (2.1), we have

d∑
i=0

e(Ei,n−r−i∞ ) = e(Hn−r
m (R)) =

{
1, if r = 0,

0, otherwise.

Then, the result follows considering the differentials d2 : E0,n−d+1
2 −→

E2,n−d
2 , d2 : E1,n−d+1

2 −→ E3,n−d
2 , d2 : E0,n−d+2

2 −→ E2,n−d+1
2 and d3 :

E0,n−d+2
3 −→ E3,n−d

3 . Finally, we point out that E0,n−d+1
3 = E0,n−d+1

∞ ,

E1,n−d+1
3 = E1,n−d+1

∞ , E2,n−d
3 = E2,n−d

∞ , E0,n−d+2
4 = E0,n−d+2

∞ and E3,n−d
4 =

E3,n−d
∞ .

§3. Linear strands of minimal free resolutions of Z-graded ideals

Throughout this section, we consider Z-graded ideals I in the polynomial

ring R= k[x1, . . . , xn]. In particular, I is not necessarily a monomial ideal.

For simplicity, we assume that I 6= 0. The minimal Z-graded free resolution

of I is an exact sequence of free Z-graded modules:

(3.1) L•(I) : 0 // Ln
dn // · · · // L1

d1 // L0
// I // 0,

where the ith term is of the form

Li =
⊕
j∈Z

R(−j)βi,j(I),

and the matrices of the morphisms di : Li −→ Li−1 do not contain invertible

elements. The Betti numbers of I are the invariants βi,j(I). Notice that
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Li ∼=Rβi(I) as underlying R-modules, where, for each i, we set βi(I) :=∑
j∈Z βi,j(I). Hence, (3.1) implies that∑

06i6n

(−1)iβi(I) = rankR(I) = 1.

Given r ∈ N, we also consider the r-linear strand of L•(I):

L<r>• (I) : 0 // L<r>n

d<r>
n // · · · // L<r>1

d<r>
1 // L<r>0

// 0,

where

L<r>i =R(−i− r)βi,i+r(I),

and the differential d<r>i : L<r>i −→ L<r>i−1 is the corresponding component

of di.

Remark 3.1. Sometimes, we also consider the minimal Z-graded free
resolution L•(R/I) of the quotient ring R/I:

(3.2)

L•(R/I) : 0 // Ln

dn // · · · // L1

d1 // L0 = R // R/I // 0 .

Its truncation at the first term L>1(R/I) gives a minimal free resolution

L•(I) of I. For r > 2, L<r>• (I) is isomorphic to the (r − 1)-linear strand

L<r−1>
• (R/I) up to translation. However, this is not true for r = 1, since

L<0>
• (R/I) starts from the 0th term R, which is irrelevant to L<1>

• (I).

To the minimal Z-graded free resolution of I we may associate a set of

invariants that measure the acyclicity of the linear strands as follows. Let

K denote the field of fractions Q(R) of R, and set

νi,j(I) := dimK[Hi(L<j−i>• (I)⊗R K)].

Since the complex L<r>• (I)⊗R K is of the form

0 // Kβn,n+r(I)
∂<r>
n // · · · // Kβ1,1+r(I)

∂<r>
1 // Kβ0,r(I) // 0,

we have νi,j(I)6 βi,j(I) for all i, j (if i > j then νi,j(I) = βi,j(I) = 0), and

n∑
i=0

(−1)iνi,i+r(I) =
n∑
i=0

(−1)iβi,i+r(I)

for each r. If we mimic the construction of the Betti table, we may also

consider the ν-table of I:
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νi,i+r(I) 0 1 2 · · ·

0 ν0,0(I) ν1,1(I) ν2,2(I) · · ·
1 ν0,1(I) ν1,2(I) ν2,3(I) · · ·
...

...
...

...

Next, we consider some basic properties of ν-numbers. It turns out

that they satisfy analogous properties to those of Lyubeznik numbers. For

instance, these invariants satisfy the following Euler characteristic formula.

Lemma 3.2. For a Z-graded ideal I, we have∑
i,j∈N

(−1)iνi,j(I) = 1.

Proof. The assertion follows from the computation below:∑
i,j∈N

(−1)iνi,j(I) =
∑
i,r∈N

(−1)iνi,i+r(I)

=
∑
r∈N

∑
06i6n

(−1)iνi,i+r(I)

=
∑
r∈N

∑
06i6n

(−1)iβi,i+r(I)

=
∑

06i6n

∑
r∈N

(−1)iβi,i+r(I)

=
∑

06i6n

(−1)iβi(I)

= 1.

We can also single out a particular nonvanishing ν-number. For each

i ∈ N, let I<i> denote the ideal generated by the homogeneous component

Ii = {f ∈ I | deg(f) = i} ∪ {0}. Then, we have the following.

Lemma 3.3. If I is a Z-graded ideal with l := min{i | Ii 6= 0}, then we

have ν0,l(I) 6= 0.

Proof. It is easy to see that there is a surjection H0(L<l>• (I))� I<l>.

Since dimR I<l> = n, we have H0(L<l>• (I)⊗R K)∼=H0(L<l>• (I))⊗R K 6= 0.
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This fact allows us to consider the following notion.

Definition 3.4. Let I be a Z-graded ideal, and set l := min{i | Ii 6= 0}.
We say that I has a trivial ν-table if ν0,l(I) = 1 and the rest of these

invariants vanish.

3.1 Componentwise linear ideals

It might be an interesting problem to find necessary and/or sufficient

conditions for a Z-graded ideal to have a trivial ν-table. In this direction,

we have the following relation to the notion of componentwise linear ideals.

Definition 3.5. (Herzog and Hibi [8]) We say that a Z-graded ideal I

is componentwise linear if I<r> has a linear resolution for all r ∈ N; that is,

βi,j(I<r>) = 0 unless j = i+ r.

Römer [20] and the second author [25, Theorem 4.1] independently

showed that I is componentwise linear if and only if Hi(L<r>• (I)) = 0 for all

r and all i> 1.

Proposition 3.6. A componentwise linear ideal I has a trivial ν-table.

Proof. Since I is componentwise linear, we have Hi(L<r>• (I)) = 0 for

all r and all i> 1, and hence νi,j(I) = 0 for all j and all i> 1. Now, the

assertion follows from Lemmas 3.2 and 3.3.

The converse of the above proposition is not true. For example, in

Corollary 3.13 below, we show that if I1 6= 0, then it has a trivial ν-table.

However, there is no relation between being componentwise linear and

I1 6= 0.

3.2 Consecutiveness of nontrivial columns of the ν-tables

For a Z-graded ideal I ⊆R and i ∈ N, set

νi(I) =
∑
j∈N

νi,j(I).

If we denote L•(I) :=
⊕

r∈N L<r>• (I), then

νi(I) = dimK Hi(L•(I)⊗R K).

By Lemma 3.2, we have
∑n

i=0(−1)iνi(I) = 1. We say that νi(I) is nontrivial

if

νi(I)>

{
2, if i= 0,

1, if i> 1.
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Clearly, the ν-table of I is nontrivial if and only if νi(I) is nontrivial

for some i. If n> 1, we have proj.dimRI 6 n− 1, and hence νn(I) = 0. In

particular, νn(I) is always trivial.

The main result of this subsection is the following.

Theorem 3.7. Let I be a Z-graded ideal of R. Then, we have the

following.

• If νj(I) is nontrivial for 16 j 6 n− 1, then either νj−1(I) or νj+1(I) is

nontrivial.

• If ν0(I) is nontrivial, then so is ν1(I).

In order to prove the theorem, we reconstruct L•(I) using a spectral

sequence. Let L•(I) be the minimal free resolution of I as before. Consider

the m-adic filtration L•(I) = F0L• ⊃ F1L• ⊃ · · · of L•(I), where FiL• is a

subcomplex whose component of homological degree j is miLj . For any given

R-module M , we regard gr (M) :=
⊕

i∈N miM/mi+1M as an R-module via

the isomorphism grR=
⊕

i∈N mi/mi+1 ∼=R= k[x1, . . . , xn]. Since each Lj
is a free R-module,

⊕
p+q=−j

Ep,q0 =

⊕
p>0

mpLj/m
p+1Lj

= gr Lj

is isomorphic to Lj (if we identify grR with R), while we have to forget

the original Z-grading of Lj . Since L•(I) is a minimal free resolution, dp,q0 :

Ep,q0 → Ep,q+1
0 is the zero map for all p, q, and hence Ep,q0 = Ep,q1 . It follows

that

E(1)
j :=

⊕
p+q=−j

Ep,q1 =
⊕

p+q=−j
Ep,q0

is isomorphic to Lj under the identification R∼= grR. Collecting the maps

dp,q1 : Ep,q1 (= mpLj/m
p+1Lj)−→ Ep+1,q

1 (= mp+1Lj−1/m
p+2Lj−1)

for p, q with p+ q =−j, we have the R-morphism d
(1)
j : E(1)

j → E(1)
j−1, and

these morphisms make E(1)
• a chain complex of R-modules. Under the

isomorphism E(1)
j
∼= Lj , E

(1)
• is isomorphic to L•(I) =

⊕
r∈NL<r>• (I). Hence,

we have

E(2)
j :=

⊕
p+q=−j

Ep,q2
∼=Hj(L•(I))
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and νj(I) = dimK(E(2)
j ⊗R K). Collecting the maps dp,q2 : Ep,q2 → Ep+2,q−1

2 ,

we have the R-morphism

d
(2)
j : E(2)

j (∼=Hj(L•(I)))−→ E(2)
j−1 (∼=Hj−1(L•(I))).

Moreover, we have the chain complex

· · · −→ E(2)
j+1

d
(2)
j+1−→ E(2)

j

d
(2)
j−→ E(2)

j−1 −→ · · ·

of R-modules whose jth homology is isomorphic to E(3)
j :=

⊕
p+q=−jE

p,q
3 .

For all r > 4, E(r)
j :=

⊕
p+q=−jE

p,q
r satisfies the same property.

By the construction of spectral sequences, if

r >max{k | βj,k(I) 6= 0} −min{k | βj−1,k(I) 6= 0},

then the map dp,qr : Ep,qr → Ep+r,q−r+1
r is zero for all p, q with p+ q =−j,

and hence d
(r)
j : E(r)

j → E(r)
j−1 is zero. This implies that E(r)

j is isomorphic to

E(∞)
j :=

⊕
p+q=−j

Ep,q∞

for r� 0.

Proof of Theorem 3.7. We prove the assertion by contradiction using the

spectral sequence introduced above. First, assume that νj(I) is nontrivial

for some 26 j 6 n− 1, but both νj−1(I) and νj+1(I) are trivial. (The cases

j = 0, 1 can be proved using similar arguments, and we make a few remarks

later.) Then, we have E(2)
j ⊗R K 6= 0 and E(2)

j+1 ⊗R K = E(2)
j−1 ⊗R K = 0. It

follows that E(3)
j ⊗R K 6= 0, since it is the homology of

E(2)
j+1 ⊗R K−→ E(2)

j ⊗R K−→ E(2)
j−1 ⊗R K.

Similarly, we have E(3)
j−1 ⊗R K = E(3)

j+1 ⊗R K = 0. Repeating this argument,

we have E(r)
j ⊗R K 6= 0 for all r > 4. Hence, Ep,q∞ 6= 0 for some p, q with

p+ q =−j. However, this contradicts the facts that

Ep,qr =⇒H−p−q(L•(I))

and Hj(L•(I)) = 0. (Recall that j > 0 now.)
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Next, we assume that ν1(I) is nontrivial, but ν0(I) and ν2(I) are trivial.

That is,

E(2)
1 ⊗R K 6= 0, E(2)

0 ⊗R K∼= K and E(2)
2 ⊗R K = 0.

As we have seen above, we must have E(r)
1 = 0 for r� 0. Since E(r)

2 ⊗R K = 0

for all r now, if d
(r)
1 ⊗R K : E(r)

1 ⊗R K−→ E(r)
0 ⊗R K are the zero maps for

all r, then E(r)
1 ⊗R K∼= E(2)

1 ⊗R K 6= 0 for all r, and this is a contradiction.

Therefore, there is some r > 2 such that d
(r)
1 ⊗R K is not zero. If s is

the minimum among these r, d
(s)
1 ⊗R K : E(s)

1 ⊗R K−→ (E(s)
0 ⊗R K)∼= K is

surjective. Hence, E(r)
0 ⊗R K = 0 for all r > s, and E(∞)

0 ⊗R K = 0. However,

since E(∞)
0
∼= grH0(L•(I))∼= gr (I) and dimR I = n, we have dimR(gr (I)) =

n and hence E(∞)
0 ⊗R K 6= 0. This is a contradiction. The case when ν0(I)

is nontrivial can be proved in a similar way.

3.3 Thom–Sebastiani type formulas

Let I, J be Z-graded ideals in two disjoint sets of variables, say

I ⊆R= k[x1, . . . , xm] and J ⊆ S = k[y1, . . . , yn]. The aim of this sub-

section is to describe the ν-numbers of IT + JT , where T =R⊗k S =

k[x1, . . . , xm, y1, . . . , yn], in terms of those of I and J , respectively. When

we just consider Betti numbers, we have the following results due to Jacques

and Katzman [11].

Proposition 3.8. (Cf. [11, Lemma 2.1]) Let L•(R/I) and L•(S/J) be

minimal graded free resolutions of R/I and S/J , respectively. Then,

(L•(R/I)⊗R T )⊗T (L•(S/J)⊗S T )

is a minimal graded free resolution of T/IT + JT .

Hence, Betti numbers satisfy the following relation.

Corollary 3.9. (Cf. [11, Corollary 2.2]) The Betti numbers of T/IT +

JT have the following form:

βi,j(T/IT + JT ) =
∑

k+k′=i
l+l′=j

βk,l(T/IT )βk′,l′(T/JT ).

Hence, we have

βi,j(IT + JT ) = βi,j(IT ) + βi,j(JT ) +
∑

k+k′=i−1
l+l′=j

βk,l(IT )βk′,l′(JT ).
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Our aim is to extend the result in [11] to the case of ν-numbers. To such

purpose, it is more convenient to consider separately the case of ideals with

degree one elements. Thus, let I ⊆R be any Z-graded ideal and assume for

simplicity that J is principally generated by an element of degree 1; for

example, J = (y)⊆ S.

Lemma 3.10. Let I ⊆R= k[x1, . . . , xm] and J = (y)⊆ S = k[y] be

Z-graded ideals, and set T =R⊗k S = k[x1, . . . , xm, y]. For r > 2, the

r-linear strand L<r>• (IT + JT ) is the mapping cone of the chain map

×y : (L<r>• (IT ))(−1)→ L<r>• (IT ).

Proof. It is easy to see that a minimal T -free resolution L•(T/IT +

JT ) of T/IT + JT is given by the mapping cone of the chain map ×y :

L•(T/IT )(−1)→ L•(T/IT ), where L•(T/IT ) is a minimal T -free resolution

of T/IT . Since the operation of taking the r-linear strand commutes with

the operation of taking the mapping cone, we are done.

The general case is more involved. Assume now that I ⊆R=

k[x1, . . . , xm] and J ⊆ S = k[y1, . . . , yn] are Z-graded ideals such that I1 = 0

and J1 = 0. Let L•(I) be a minimal graded R-free resolution of I, and

let L•(J) be a minimal graded S-free resolution of J , and consider their

extensions L•(IT ) and L•(JT ) to T =R⊗k S = k[x1, . . . , xm, y1, . . . , yn].

Lemma 3.11. Under the previous assumptions, the r-linear strand

L<r>• (IT + JT ) is

L<r>• (IT + JT ) = L<r>• (IT )⊕ L<r>• (JT )

⊕

( ⊕
a+b=r+1

(L<a>• (IT )⊗T L<b>• (JT ))[−1]

)
.

Here, for a chain complex C•, C•[−1] denotes the translated complex whose

component of homological degree j is Cj−1.

Proof. Consider the minimal Z-graded free resolutions of R/I and S/J ,

respectively,

L•(R/I) : 0 // Lm
dm // · · · // L1

d1 // L0
// R/I // 0,

L′•(S/J) : 0 // L′n
d′n // · · · // L′1

d′1 // L′0 // S/J // 0,
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where L0 =R and L′0 = S. According to Proposition 3.8, the minimal
Z-graded free resolution L•(T/IT + JT ) has the form2

· · · //

L2 ⊗ L′0⊕
L1 ⊗ L′1⊕
L0 ⊗ L′2

∂2 //
L1 ⊗ L′0⊕
L0 ⊗ L′1

∂1 // L0 ⊗ L′0 // T/IT + JT // 0 ,

where, for any given xi ⊗ yp−i ∈ Li ⊗ L′p−i, we have

∂p(xi ⊗ yp−i) = di(xi)⊗ yp−i + (−1)ixi ⊗ d′p−i(yp−i) ∈ (Li−1 ⊗ L′p−i)

⊕ (Li ⊗ L′p−i−1).

To describe the r-linear strand L<r>• (IT + JT ) of the ideal IT + JT ,

we must consider the truncation at the first term of the above resolution

and take a close look at the free modules and the components of the cor-

responding differentials. Recall that L<r−1>
• (R/I) corresponds to L<r>• (I)

for all r > 2. It is easy to see that both

L<r>• (IT ) : 0 −→ L<r−1>
m ⊗ L′0 −→ · · · −→ L<r−1>

2 ⊗ L′0
−→ L<r−1>

1 ⊗ L′0 −→ 0

and

L<r>• (JT ) : 0 −→ L0 ⊗ L′<r−1>
n −→ · · · −→ L0 ⊗ L′<r−1>

2

−→ L0 ⊗ L′<r−1>
1 −→ 0

are subcomplexes of L<r>• (IT + JT ). Moreover, L<r>• (IT ) and L<r>• (JT )

are direct summands of L<r>• (IT + JT ). In fact, since I1 = J1 = 0, the linear

parts of the maps Li ⊗ L′1→ Li ⊗ L′0 and L1 ⊗ L′j → L0 ⊗ L′j vanish.

In order to obtain the remaining components of L<r>• (IT + JT ), we must

consider the r-linear strand of

· · · //

L3 ⊗ L′1
⊕

L2 ⊗ L′2
⊕

L1 ⊗ L′3

∂4 //
L2 ⊗ L′1
⊕

L1 ⊗ L′2

∂3 // L1 ⊗ L′1
∂2 // 0

∂1 // 0.

2By an abuse of notation, we denote (Li ⊗R T ) ⊗T (L′j ⊗S T ) simply as Li ⊗ L′j .

https://doi.org/10.1017/nmj.2017.10 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2017.10
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This complex starts at the second term (i.e., the term of homological

degree 1), and the first term of the r-linear strand is
⊕

a+b=r+1L
<a>
0 (IT )⊗T

L<b>0 (JT ). If we take a close look at the free summands of these components

and their differentials, we obtain the following description:⊕
a+b=r+1

(L<a>• (IT )⊗T L<b>• (JT ))[−1].

Therefore, we are done.

The main result of this subsection is the following.

Proposition 3.12. The ν-numbers of IT + JT have the following form.

(i) If I1 6= 0 or J1 6= 0, then IT + JT has a trivial ν-table.

(ii) If I1 = 0 and J1 = 0, then we have

νi,j(IT + JT ) = νi,j(IT ) + νi,j(JT ) +
∑

k+k′=i−1
l+l′=j

νk,l(IT )νk′,l′(JT ).

Proof. (i) If J1 6= 0, we may assume that yn ∈ J without loss of generality.

Now, we have J = (f1, . . . , fr, yn), where f1 . . . , fr are homogeneous poly-

nomials in k[y1, . . . .yn−1]. Set R′ := k[x1, . . . , xm, y1, . . . , yn−1], S′ = k[yn],

and let I ′ = IR′ + (f1, . . . , fr) be an ideal in R′ (note that f1 . . . , fr
are elements in R′), and let J ′ = (yn) be an ideal in S′. Then, we have

T =R⊗k S =R′ ⊗k S
′, and IT + JT = I ′T + J ′T . This means that we

may assume that J = (y)⊆ S = k[y] from the beginning. For r > 2, the

r-linear strand L<r>• (IT + JT ) is given by the mapping cone of the chain

map ×y : (L<r>• (IT ))(−1)→ L<r>• (IT ) by Lemma 3.10. Hence, L<r>• (IT +

JT )⊗T K is given by the mapping cone of the chain map

×y : L<r>• (IT )⊗T K−→ L<r>• (IT )⊗T K,

where K is the field of fractions of T . Clearly, this is the identity map, and

its mapping cone is exact. This means that Hi(L<r>• (IT + JT )⊗T K) = 0

for all r > 2 and all i.

On the other hand, (IT + JT )<1> is a complete intersection ideal gen-

erated by degree-1 elements, and hence we have dimK Hi(L<1>
• (I)⊗T K) =

δ0,i. Summing up, we see that IT + JT has a trivial ν-table.

(ii) Follows immediately from Lemma 3.11.

The following is just a rephrasing of part (i) of the previous result.
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Corollary 3.13. Let I ⊆R be a Z-graded ideal with I1 6= 0, then I has

a trivial ν-table.

The following is another corollary of Proposition 3.12.

Corollary 3.14. With the same notation as in Proposition 3.12, if

I1 = J1 = 0, then IT + JT always has a nontrivial ν-table.

Proof. Set l := min{i | Ii 6= 0} and l′ := min{i | Ji 6= 0}. Then, we have

ν1,l+l′(IT + JT )> ν0,l(IT )ν0,l′(JT )> 0 by Proposition 3.12(ii).

§4. Lyubeznik numbers versus ν-numbers for monomial ideals

In [26], the second author showed that, via Alexander duality, the study

of local cohomology modules with supports in monomial ideals can be

translated into the study of the minimal free resolutions of squarefree

monomial ideals. This fact was later refined by Vahidi and the first author

in [1] in order to study Lyubeznik numbers of squarefree monomial ideals in

terms of the linear strands of their Alexander dual ideals. The aim of this

section is to go further in this direction.

In the following, we only consider monomial ideals in the polynomial ring

R= k[x1, . . . , xn], and m = (x1, . . . , xn) denotes the graded maximal ideal.

Recall that Lyubeznik numbers are well defined in this nonlocal setting since

they are invariant with respect to completion, so we consider λp,i(R/I) =

λp,i(R̂/IR̂), where R̂= k[[x1, . . . , xn]]. For a vector a = (a1, . . . , an) ∈ Nn,

set supp(a) := {i | ai 6= 0} ⊆ {1, . . . , n}. For each 16 i6 n, let ei ∈ Zn be

the ith standard vector. The following notion was introduced by the second

author, and serves as a powerful tool for combinatorial commutative algebra.

Definition 4.1. We say that a finitely generated Nn-graded R-module

M =
⊕

a∈NnMa is squarefree if the multiplication map Ma 3 y 7−→ xiy ∈
Ma+ei is bijective for all a ∈ Nn and all i ∈ supp(a).

The theory of squarefree modules is found in [25, 26, 28, 29]. Here, we

list some basic properties.

• For a monomial ideal I, it is a squarefree R-module if and only if I =√
I (equivalently, the Stanley–Reisner ideal I∆ for some ∆). The free

module R itself and the Zn-graded canonical module ωR =R(−1) are

squarefree. Here, 1 = (1, 1, . . . , 1) ∈ Nn. The Stanley–Reisner ring R/I∆

is also squarefree.
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• Let M be a squarefree R-module, and let L• be its Zn-graded minimal

free resolution. Then, the free module Li and the syzygy module Syzi(M)

are squarefree for each i. Moreover, ExtiR(M, ωR) is squarefree for all i.

• Let *modR be the category of Zn-graded finitely generated R-modules,

and let SqR be its full subcategory consisting of squarefree modules.

Then, SqR is an abelian subcategory of *modR. We have an exact

contravariant functor A from SqR to itself. The construction of A is

found in (for example) [29]. Here, we just remark that A(R/I∆)∼= I∆∨ ,

where ∆∨ := {F ⊆ {1, . . . , n} | ({1, . . . , n} \ F ) 6∈∆} is the Alexander

dual simplicial complex of ∆.

In this framework, we have the following description of Lyubeznik

numbers.

Theorem 4.2. [26, Corollary 3.10] Let R= k[x1, . . . , xn] be a polyno-

mial ring, and let I∆ be a squarefree monomial ideal. Then, we have

λp,i(R/I∆) = dimk[Extn−pR (Extn−iR (R/I∆, ωR), ωR)]0 <∞.

For a squarefree R-module M , the second author defined the

cochain complex D (M) of squarefree R-modules satisfying H i(D (M))∼=
Extn+i

R (M, ωR) for all i (see [29, Section 3]). By [25, Theorem 4.1] or [28,

Theorem 3.8], we have the isomorphism

(4.1) A ◦D (Extn−iR (R/I∆, ωR))∼= (L<n−i>• (I∆∨))[−i]

of cochain complexes of Zn-graded R-modules3. Here, for a cochain complex

C•, C•[−i] means the −ith translation of C•. More precisely, it is the

cochain complex whose component of cohomological degree j is Cj−i, and

we regard a chain complex C• as the cochain complex whose component of

cohomological degree j is C−j .

The following is a variant of a result given by the first author and Vahidi.

Theorem 4.3. (Cf. [1, Corollary 4.2]) Let I∆ ⊆R= k[x1, . . . , xn] be a

squarefree monomial ideal. Then, we have

λp,i(R/I∆) = νi−p,n−p(I∆∨).

3Our situation is closer to that of [25, Theorem 4.1] ([29] works in a wider context).
However, [25] does not recognize D and A as individual operations, but treats the
composition A ◦D . In fact, A ◦D corresponds to the operation F•(−) of [25] up to
translation.
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Proof. By (4.1) and the construction of A, we have an isomorphism

([D (Extn−iR (R/I∆, ωR)]0
∗
)∼= (L<n−i>• (I∆∨))1[−i]

of cochain complexes of k-vector spaces. Here, (−)∗ means the k-dual. We

also remark that, for a squarefree module M , we have

dimk M1 = rankRM = dimK M ⊗R K.

Thus, we have the following computation:

λp,i(R/I∆) = dimk [Extn−pR (Extn−iR (R/I, ωR), ωR)]0

= dimk[H−p(D (Extn−iR (R/I, ωR)))]0

= dimk[Hi−p(L<n−i>• (I∆∨))]1

= dimK Hi−p(L<n−i>• (I∆∨))⊗R K

= νi−p,n−p(I∆∨).

As mentioned in the introduction, for a local ring A containing a field,

we have ∑
06p,i6n

(−1)p−iλp,i(A) = 1.

In the monomial ideal case, this equation is an immediate consequence of

Lemma 3.2 and Theorem 4.3.

As a special case of Theorem 2.1, the Lyubeznik tables of monomial

ideals in R= k[x1, . . . , xn] satisfy the consecutiveness property of nontrivial

superdiagonals. However, this also follows from the consecutiveness property

of nontrivial columns of the ν-tables (Theorem 3.7) via Theorem 4.3. In this

sense, both “consecutiveness theorems” are related.

4.1 Sequentially Cohen–Macaulay rings

Let M be a finitely generated graded module over the polynomial

ring R= k[x1, . . . , xn]. We say that M is sequentially Cohen–Macaulay if

Extn−iR (M, R) is either a Cohen–Macaulay module of dimension i or the

0 module for all i. The original definition is given by the existence of a

certain filtration (see [22, III, Definition 2.9]). However, it is equivalent

to the above one by [22, III, Theorem 2.11]. The sequentially Cohen–

Macaulay property of a finitely generated module over a regular local ring

is defined/characterized in the same way.

In [2], the first author showed that the sequentially Cohen–Macaulay

property implies the triviality of Lyubeznik tables in positive characteristic
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as well as in the case of squarefree monomial ideals. Using Proposition 3.6,

we can give a new proof/interpretation of this result for the case of monomial

ideals.

Proposition 4.4. (Cf. [2, Theorem 3.2]) Let I be a monomial ideal of

the polynomial ring R= k[x1, . . . , xn] such that R/I is sequentially Cohen–

Macaulay. Then, the Lyubeznik table of R/I is trivial.

Proof. By [9, Theorem 2.6], R/
√
I is sequentially Cohen–Macaulay

again. Hence, we may assume that I is the Stanley–Reisner ideal I∆ of a

simplicial complex ∆. Herzog and Hibi [8] showed that R/I∆ is sequentially

Cohen–Macaulay if and only if I∆∨ is componentwise linear. Now, the

assertion immediately follows from Proposition 3.6 and Theorem 4.3.

The converse of Proposition 4.4 is not true. That is, even if R/I has a

trivial Lyubeznik table, it need not be sequentially Cohen–Macaulay. For

example, if I is the monomial ideal

(x1, x2) ∩ (x3, x4) ∩ (x1, x5) ∩ (x2, x5) ∩ (x3, x5) ∩ (x4, x5)

in R= k[x1, . . . , x5], then R/I has a trivial Lyubeznik table, but this ring

is not sequentially Cohen–Macaulay. Since all associated primes of I have

the same height, it is the same to say that R/I is not Cohen–Macaulay.

However, R/I does not even satisfy Serre’s condition (S2).

In Proposition 4.5 below, we see that if a monomial ideal I has height 1

(i.e., admits a height one associated prime), then the Lyubeznik table of

R/I is trivial. Of course, R/I need not be sequentially Cohen–Macaulay in

this situation.

4.2 Thom–Sebastiani type formulas

Let I ⊆R= k[x1, . . . , xm] and J ⊆ S = k[y1, . . . , yn] be squarefree mono-

mial ideals in two disjoint sets of variables. Let ∆1 and ∆2 be the simplicial

complexes associated to I and J by the Stanley–Reisner correspondence;

that is, I = I∆1 and J = I∆2 . Then, the sum IT + JT = I∆1∗∆2 corresponds

to the simplicial join of the two complexes. Let ∆∨1 (resp. ∆∨2 ) be the

Alexander dual of ∆1 (resp. ∆2) as a simplicial complex on {1, 2, . . . , m}
(resp. {1, 2, . . . , n}). Set I∨ := I∆∨1

⊆R and J∨ := I∆∨2
⊆ S. Then, it is easy

to see that

A(T/IT )∼= I∨T, A(T/JT )∼= J∨T and

A(T/IT ∩ JT )∼= I∨T + J∨T,

where A denotes the Alexander duality functor of Sq T .
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Proposition 4.5. The Lyubeznik numbers of T/IT ∩ JT have the

following form.

(i) If either the height of I or the height of J is 1, then T/IT ∩ JT has a

trivial Lyubeznik table.

(ii) If both the height of I and the height of J are > 2, then we have

λp,i(T/IT ∩ JT ) = λp,i(T/IT ) + λp,i(T/JT )

+
∑

q+r=p+dim T
j+k=i+dim T−1

λq,j(T/IT )λr,k(T/JT )

= λp−n,i−n(R/I) + λp−m,i−m(S/J)

+
∑
q+r=p
j+k=i−1

λq,j(R/I)λr,k(S/J).

Proof. The assertion easily follows from Proposition 3.12 and Theo-

rem 4.3, but for completeness we will make a few remarks.

(i) Recall that, for a simplicial complex ∆, the height of I∆ is 1 if and

only if [I∆∨ ]1 6= 0.

(ii) The last equality follows from the fact that

λp,i(T/IT ) = λp−n,i−n(R/I) and λp,i(T/JT ) = λp−m,i−m(S/J),

which can be seen from Theorem 4.3 and the construction of linear strands.

Example 4.6. It is well known that local cohomology modules as well as

free resolutions depend on the characteristic of the base field, so Lyubeznik

numbers depend on the characteristic as well. The most recurrent example

is the Stanley–Reisner ideal associated to a minimal triangulation of P2
R;

that is, the ideal in R= k[x1, . . . , x6]:

I =
(
x1x2x3, x1x2x4, x1x3x5, x2x4x5, x3x4x5, x2x3x6,

x1x4x6, x3x4x6, x1x5x6, x2x5x6

)
.

Its Lyubeznik table has been computed in [1, Example 4.8]. Namely, in

characteristic zero and two respectively, we have

ΛQ(R/I) =


0 0 0 0

0 0 0
0 0

1

 , ΛZ/2Z(R/I) =


0 0 1 0

0 0 0
0 1

1

 .
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One can slightly modify this example and use Proposition 4.5 to obtain

some interesting behavior of Lyubeznik numbers.

• The ideal J = I ∩ (x7) in R= k[x1, . . . , x7] has a trivial Lyubeznik table

in any characteristic, so we obtain an example where the local cohomology

modules depend on the characteristic but Lyubeznik numbers do not.

• The ideal J = I ∩ (x7, x8) ∩ (x9, x10) in R= k[x1, . . . , x10] satisfies

1 = λQ6,7(R/J) 6= λ
Z/2Z
6,7 (R/J) = 2,

and both Lyubeznik numbers are different from zero.

§5. Lyubeznik table is a topological invariant

While the other sections treat the case where R is a regular local ring or

a polynomial ring, in this section we work in a slightly different situation.

Here, the ring R means a normal semigroup ring. When R is simplicial

and Gorenstein, the second author proved in [27] that the local cohomology

modules Hr
I (R) have finite Bass numbers for radical monomial ideals I ⊂R.

In fact, without these conditions, Bass numbers are out of control and can

be infinite (see [7] for details).

Before going to the main result of this section (Theorem 5.3), we introduce

the setup that we work with. For more details, we refer to [27].

Let C ⊂ Zn be an affine semigroup (i.e., C is a finitely generated additive

submonoid of Zn), and let R := k[xc | c ∈ C]⊂ k[x±1
1 , . . . , x±1

n ] be the

semigroup ring of C over k. Here, xc denotes the monomial
∏n
i=1 x

ci
i for

c = (c1, . . . , cn) ∈ C. Regarding C as a subset of Rn = R⊗Z Zn, let P :=

R>0C ⊂ Rn be the polyhedral cone spanned by C. We always assume that

ZC = Zn, Zn ∩ P = C and C ∩ (−C) = {0}. Thus, R is a normal Cohen–

Macaulay integral domain of dimension n with the graded maximal ideal

m := (xc | 0 6= c ∈ C). We say that R is simplicial if the cone P is spanned

by n vectors in Rn. The polynomial ring k[x1, . . . , xn] is a typical example

of a simplicial semigroup ring k[C] for C = Nn. Clearly, R=
⊕

c ∈Ck xc

is a Zn-graded ring. We say that a Zn-graded ideal of R is a monomial

ideal, and we denote by *modR the category of finitely generated Zn-graded

R-modules and degree preserving R-homomorphisms.

Let L be the set of nonempty faces of the polyhedral cone P . Note that

{0} and P itself belong to L. Regarding L as a partially ordered set by

inclusion, R is simplicial if and only if L is isomorphic to the power set

2{1,...,n}. For F ∈ L, pF := (xc | c ∈ C \ F ) is a prime ideal of R. Conversely,
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any monomial prime ideal is of the form pF for some F ∈ L. Note that

R/pF ∼= k[xc | c ∈ C ∩ F ] for F ∈ L. For a point c ∈ C, we always have

a unique face F ∈ L whose relative interior contains c . Here, we denote

s(c ) = F .

The following is a generalization of the notion of squarefree modules (see

Definition 4.1) to this setting.

Definition 5.1. [27] We say that a module M ∈ *modR is squarefree

if it is C-graded (i.e., Ma = 0 for all a 6∈ C), and the multiplication map

Ma 3 y 7−→ xby ∈Ma+b is bijective for all a, b ∈ C with s(a + b) = s(a).

For a monomial ideal I, R/I is a squarefree R-module if and only if

I is a radical ideal (i.e.,
√
I = I). We say that ∆⊆ L is an order ideal

if ∆ 3 F ⊃ F ′ ∈ L implies F ′ ∈∆. If ∆ is an order ideal, then I∆ := (xc |
c ∈ C, s(c ) 6∈∆)⊆R is a radical monomial ideal. Conversely, any radical

monomial ideal is of the form I∆ for some ∆. Clearly,

[R/I∆]c ∼=

{
k, if c ∈ C and s(c ) ∈∆,

0, otherwise.

If R is simplicial, an order ideal ∆ is essentially a simplicial complex on

the vertices 1, 2, . . . , n. If R is the polynomial ring k[x1, . . . , xn], then R/I∆

is nothing but the Stanley–Reisner ring of the simplicial complex ∆.

For each F ∈ L, take some c (F ) ∈ C ∩ rel-int(F ) (i.e., s(c (F )) = F ). For

a squarefree R-module M and F, G ∈ L with G⊃ F , [27, Theorem 3.3] gives

a k-linear map

ϕMG,F :Mc (F )→Mc (G).

These maps satisfy ϕMF,F = Id and ϕMH,G ◦ ϕMG,F = ϕMH,F for all H ⊃G⊃ F .

We have Mc
∼=Mc ′ for c , c ′ ∈ C with s(c ) = s(c ′). Under these isomor-

phisms, the maps ϕMG,F do not depend on the particular choice of c (F ).

Let SqR be the full subcategory of *modR consisting of squarefree

modules. As shown in [27], SqR is an abelian category with enough

injectives. For an indecomposable squarefree module M , it is injective in

SqR if and only if M ∼=R/pF for some F ∈ L.

Let ωR be the Zn-graded canonical module of R. It is well known that

ωR is isomorphic to the radical monomial ideal (xc | c ∈ C, s(c ) = P ). As

shown in [27, Proposition 3.7], we have ExtiR(M, ωR) ∈ SqR for M ∈ SqR.
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5.1 Lyubeznik numbers

Let R= k[C] be a normal simplicial semigroup ring that is Gorenstein,

and let I be a monomial ideal of R. As in the polynomial ring case, we set

the Lyubeznik numbers as

λp,i(R/I) := µp(m, Hn−i
I (R)).

Work of the second author in [27] states that this set of invariants are

well defined in this framework. Namely, Theorem 4.2 holds verbatim in this

situation.

Theorem 5.2. [27, Corollary 5.12] Let R= k[C] be a normal simplicial

semigroup ring that is Gorenstein, and let I∆ be a radical monomial ideal.

Then, we have

λp,i(R/I∆) = dimk[Extn−pR (Extn−iR (R/I∆, ωR), ωR)]0 <∞.

Notice that in this setting we have that whenever we have a multi-

graded isomorphism k[C]/I∆
∼= k[C ′]/I∆′ between quotients of Gorenstein

normal simplicial semigroup rings by radical monomial ideals, then the

corresponding Lyubeznik numbers coincide. This multigraded framework

slightly differs from the original situation for regular local rings stated

in [13]. However, as stated in [27, Remark 5.14], if ∆∼= ∆′ as simplicial

complexes, then R/I∆ and R′/I∆′ have the same Lyubeznik numbers. In this

sense, to study the Lyubeznik numbers of a quotient R/I∆ of a Gorenstein

normal simplicial semigroup ring R by a radical monomial ideal I∆, we may

assume that R is a polynomial ring and R/I∆ is a Stanley–Reisner ring. In

Theorem 5.3, we prove a stronger result.

It is also worth pointing out that several features of Lyubeznik numbers

are still true in this setting. In what follows, we assume that I is a monomial

ideal of R.

(1) As in the polynomial ring case, we have the Euler characteristic

equation ∑
06p,i6d

(−1)p−iλp,i(R/I) = 1.

Moreover, the statements corresponding to Theorem 2.1 (the consecutive-

ness of nontrivial lines) still hold. In fact, we may assume that I is a radical

ideal, and hence I = I∆ for some simplicial complex ∆, and then reduce to

the case when R is a polynomial ring as in [27, Remark 5.14 (b)].
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If we assume that I =
√
I, Proposition 4.4 also holds in the present

situation. However, we cannot drop this assumption, since we have no idea

whether the condition of being sequentially Cohen–Macaulay is preserved

after taking radicals. What is known is that if R/I is Cohen–Macaulay, then

so is R/
√
I (see [30, Theorem 6.1]). Hence, if R/I is Cohen–Macaulay, then

the Lyubeznik table of R/I is trivial.

(2) For a radical monomial ideal I∆ with dimR/I∆ = d, the highest

Lyubeznik number

λd,d(R/I∆) = dimk[Extn−dR (Extn−dR (R/I∆, ωR), ωR)]0

has a simple topological (or combinatorial) meaning. In fact, to study this

number, we may assume that R is a polynomial ring, and we can use a

combinatorial description of

Extn−dR (Extn−dR (R/I∆, ωR), ωR)

given in [22, p. 96]. Roughly speaking, λd,d(R/I∆) is the number of

“connected in codimension-one components” of |∆|. (This result holds in

a much wider context; see [31].) In particular, if R/I∆ satisfies Serre’s

condition (S2), then λd,d(R/I∆) = 1, while the converse is not true.

5.2 Lyubeznik table is a topological invariant

Recall that if R= k[C] is simplicial, then an order ideal ∆ of L is

essentially a simplicial complex, and hence it has the geometric realization

|∆|. It is natural to ask how Lyubeznik numbers of R/I∆ depend on |∆|.
The next theorem shows that Lyubeznik numbers are not only algebraic

invariants but also topological invariants.

Theorem 5.3. Let R= k[C] be a simplicial normal semigroup ring that

is Gorenstein, and let I∆ ⊂R be a radical monomial ideal. Then, λp,i(R/I∆)

depends only on the homeomorphism class of |∆| and char(k).

Bearing in mind Theorem 5.2, it suffices to show that

dimk[Extn−pR (Extn−iR (R/I∆, ωR), ωR)]0

depends only on the topology of |∆| and char(k). For this statement, the

assumption that R is simplicial and Gorenstein is irrelevant. (If R is not

simplicial, then ∆ is essentially a CW complex.) In [19, Theorem 2.10],

Okazaki and the second author showed that the invariant that is (essentially)

equal to

depthR(Extn−iR (R/I∆, ωR)) = min{j | Extn−jR (Extn−iR (R/I∆, ωR), ωR) 6= 0}
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depends only on |∆| and char(k) for each i. Our proof here uses similar

arguments to the aforementioned result. To do so, we have to recall some

previous work of the second author in [28].

Recall that P = R>0C is a polyhedral cone associated with the semigroup

ring R= k[C]. We have a hyperplane H ⊂ Rn such that B :=H ∩ P is an

(n− 1)-polytope (an (n− 1)-simplex, if R is simplicial). For F ∈ L, set |F |
to be the relative interior of the face F ∩H of B. We can regard an order

ideal ∆⊆ L as a CW complex (a simplicial complex, if R is simplicial) whose

geometric realization is |∆| :=
⋃
F∈∆ |F | ⊆B.

For F ∈ L,

UF :=
⋃

F ′∈L, F ′⊃F
|F ′|

is an open set of B. Note that {UF | {0} 6= F ∈ L} is an open covering of B.

In [28], from M ∈ SqR, we constructed a sheaf M+ on B. More precisely,

the assignment

Γ(UF , M
+) =Mc (F )

for each F 6= {0} and the map

ϕMF,G : Γ(UG, M
+) =Mc (G) −→Mc (F ) = Γ(UF , M

+)

for F, G 6= {0} with F ⊃G (equivalently, UG ⊃ UF ) define a sheaf. Note that

M0 is irrelevant to M+.

For example, (R/I∆)+ ∼= j∗k|∆|, where k|∆| is the constant sheaf on |∆|
with coefficients in k, and j is the embedding map |∆| ↪→B. Similarly, we

have that (ωR)+ ∼= h!kB◦ , where kB◦ is the constant sheaf on the relative

interior B◦ of B, and h is the embedding map B◦ ↪→B. Note that (ωR)+ is

the orientation sheaf of B with coefficients in k.

Let ∆⊆ L be an order ideal, and set X := |∆| ⊆B. For M ∈ SqR, M is

an R/I∆-module (i.e., ann(M)⊃ I∆) if and only if Supp(M+) := {x ∈B |
(M+)x 6= 0} ⊆X. In this case, we have

H i(B;M+)∼=H i(X;M+|X)

for all i. Here, M+|X is the restriction of the sheaf M+ to the closed set

X ⊆B. Combining this fact with [28, Theorem 3.3], we have the following.

Theorem 5.4. (Cf. [28, Theorem 3.3]) With the above situation, we

have

H i(X;M+|X)∼= [H i+1
m (M)]0 for all i> 1,
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and an exact sequence

(5.1) 0−→ [H0
m(M)]0 −→M0 −→H0(X;M+|X)−→ [H1

m(M)]0 −→ 0.

In particular, [H i+1
m (R/I∆)]0 ∼= H̃ i(X; k) for all i> 0, where H̃ i(X; k)

denotes the ith reduced cohomology of X with coefficients in k.

Recall that X admits Verdier’s dualizing complex D•X with coefficients

in k. For example, D•B is quasi-isomorphic to (ωR)+[n− 1]. The first half of

(1) of the next theorem is a restatement of [28, Theorem 4.2], and the rest

is that of [30, Lemma 5.11].

Theorem 5.5. [28, Theorem 4.2] and [30, Lemma 5.11] With the above

notation, we have the following.

(1) Supp(Extn−iR (M, ωR)+)⊆X and

Extn−iR (M, ωR)+|X ∼= Ext1−i(M+|X ,D•X).

Moreover, for i> 2, we have

[Extn−iR (M, ωR)+]0 ∼= Ext1−i(M+|X ,D•X).

(2) Via the isomorphisms in (1), for i> 2, the natural map

Ext1−i(M+|X ,D•X)−→ Γ(X; Ext1−i(M+|X ,D•X))

coincides with the middle map

[Extn−iR (M, ωR)]0 −→ Γ(X; Extn−iR (M, ωR)+|X)

of the sequence (5.1) for Extn−iR (M, ωR) ∈ SqR.

The Proof of Theorem 5.3. We show that the dimension of

[Extn−pR (Extn−iR (R/I∆, ωR), ωR)]0 (∼= [Hp
m(Extn−iR (R/I∆, ωR))∗]0)

depends only on X and char(k). If p> 2, then we have

[Hp
m(Extn−iR (R/I∆, ωR))]0 ∼=Hp−1(X; Ext1−i(kX ,D•X))

by Theorems 5.4 and 5.5 (1). The right-hand side of the equation clearly

depends only on X and char(k) for each p, i. Next, we consider the case p=

0, 1. By Theorem 5.4, H0
m(Extn−iR (R/I∆, ωR)) and H1

m(Extn−iR (R/I∆, ωR))
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are the kernel and the cokernel of the map

[Extn−iR (R/I∆, ωR)]0 −→ Γ(X; Extn−iR (R/I∆, ωR)+|X),

respectively. If i> 2, the above map is equivalent to the natural map

Ext1−i(kX ,D•X)−→ Γ(X; Ext1−i(kX ,D•X))

by Theorem 5.5 (2), and the dimensions of its kernel and cokernel are

invariants of X.

It remains to show the case (p= 0, 1 and) i= 0, 1. Clearly,

ExtnR(R/I∆, ωR) 6= 0 if and only if ExtnR(R/I∆, ωR) = k, if and only if I∆ =

m, if and only if X = ∅. Hence, λ0,0(R/I∆) 6= 0 if and only if λ0,0(R/I∆) = 1,

if and only if X = ∅. On the other hand, it is easy to check that λ1,1(R/I∆)

is always trivial; that is,

λ1,1(R/I∆) =

{
1, if dim(R/I∆) = 1(i.e., dim |∆|= 0),

0, otherwise.

(The same is true for the local ring case using the spectral sequence

argument as in the proof of Theorem 2.1 or adapting the techniques used

in [24].) Hence, the remaining case is only λ0,1(R/I∆), but the following fact

holds.

Claim. If R= k[C] is a simplicial normal semigroup ring that is Goren-

stein, then we have

λ0,1(R/I∆) =

{
c− 1, if dim(R/I∆)> 2 (i.e., dim |∆|> 1),

0, otherwise,

where c is the number of connected components of |∆′| := |∆| \
{isolated points}.

Let us prove the claim. We may assume that dim(R/I∆)> 0. If

dim(R/I∆) = 1, then R/I∆ is Cohen–Macaulay, and the assertion is clear.

Therefore, we may assume that dim(R/I∆)> 2. First, we consider the case

when I∆ does not have one-dimensional associated primes; equivalently, |∆|
does not admit isolated points (i.e., |∆|= |∆′|). Then, we have

dimR(Extn−1
R (R/I∆, ωR))< 1.

Since Extn−1
R (R/I∆, ωR) is a squarefree module, we have

Extn−1
R (R/I∆, ωR) = [Extn−1

R (R/I∆, ωR)]0.
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We also have

[Extn−1
R (R/I∆, ωR)]0 ∼= [H1

m(R/I∆)]0 ∼= H̃0(X; k)∼= kc−1,

where the second isomorphism follows from the last statement of Theo-

rem 5.4. Hence,

λ0,1(R/I∆) = dimk[ExtnR(Extn−1
R (R/I∆, ωR), ωR)]0

= dimk[ExtnR(kc−1, ωR)]0 = c− 1,

and we are done.

Therefore, we now consider the case where I∆ admits one-dimensional

associated primes. Set I := I∆′ . Then, there is a monomial ideal J of R with

I∆ = I ∩ J and dimR/J = 1. Note that I + J = m. The short exact sequence

0→R/I∆→R/I ⊕R/J →R/m (∼= k)→ 0 yields the exact sequence

0 −→ Extn−1
R (R/I, ωR)⊕ Extn−1

R (R/J, ωR)−→ Extn−1
R (R/I∆, ωR)

−→ k−→ 0.(5.2)

Since Lyubeznik numbers of type λ1,1(−) are always trivial, we have

[Extn−1
R (Extn−1

R (R/I∆, ωR), ωR)]0 = [Extn−1
R (Extn−1

R (R/I, ωR), ωR)]0 = 0

and [Extn−1
R (Extn−1

R (R/J, ωR), ωR)]0 = k. It is also clear that

ExtnR(Extn−1
R (R/J, ωR), ωR) = 0.

Thus, applying Ext•R(−, ωR) to (5.2), we obtain

0 −→ [Extn−1
R (Extn−1

R (R/J, ωR), ωR)]0 (∼= k)−→ [ExtnR(k, ωR)]0 (∼= k)

−→ [ExtnR(Extn−1
R (R/I∆, ωR), ωR)]0

−→ [ExtnR(Extn−1
R (R/I, ωR), ωR)]0 −→ 0.

Since [ExtnR(Extn−1
R (R/I, ωR), ωR)]0 ∼= kc−1, as we have shown above, it

follows that

[ExtnR(Extn−1
R (R/I∆, ωR), ωR)]0 ∼= kc−1,

and we are done.
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Example 5.6. This example concerns the final step of the proof of

Theorem 5.3. Let R= k[x1, . . . , x7] be a polynomial ring, and consider the

monomial ideal

I∆ = (x2, x3, x4, x5, x6, x7) ∩ (x1, x4, x5, x6, x7)

∩ (x1, x2, x3, x6, x7) ∩ (x1, x2, x3, x4, x5).

Then, |∆| consists of one isolated point and three segments; see Figure 1.

Therefore, |∆′|, which is |∆| \ {v1}, consists of three segments. We have

λ0,1(R/I∆) = 3− 1 = 2.

Figure 1.

∆ in Example 5.6.
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