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Background. Difuse large B-cell lymphoma (DLBCL) is an aggressive B-cell lymphomawith high heterogeneity.Tere is an unmet
need to investigate valid indicators for the diagnosis and therapy of DLBCL. Methods. GEO database was utilized to screen for
diferentially expressed genes (DEGs) and diferential miRNAs in DLBCL tissues. Te Gene Ontology (GO) and the Kyoto
Encyclopedia of Genes and Genomes (KEGG) were applied to analyse DEGs. Ten multiple databases were searched for related
miRNAs within DLBCL, TNF receptor-associated factor 5 (TRAF5) and NF-kappa B (NF-κB) signaling pathways. Te KOBAS
database was used to assist in the screening of miRNAs of interest and construct the regulatory network of miRNA-mRNA.
Finally, the expression level and diagnostic performance of miRNAs were analyzed with GEO datasets, and DEGs were identifed
from the GEPIA database. Results. DEGs were signifcantly concentrated in the NF-κB signaling pathway and cytokine-cytokine
receptor interaction, and involved in the process of immune response and protein binding. MiR-15a-5p, miR-147a, miR-192-5p,
miR-197-3p, miR-532-5p, and miR-650 were revealed to be targeting TRAF5 and participating in NF-κB signaling pathway and
might impact the apoptosis and signal transduction of DLBCL. In the GEPIA database, TRAF5 was signifcantly overexpressed in
DLBCL. Te expression of miR-197-3p was upregulated within GEO datasets, while the rest of the miRNAs were downregulated
in DLBCL. Conclusions. Subsets of miRNAs may participate in the NF-κB signaling pathway by co-targeting TRAF5 and could be
prospective biomarkers exploring the pathogenesis of DLBCL.

1. Introduction

Difuse large B-cell lymphoma (DLBCL) is a frequently
occurring type of non-Hodgkin lymphoma (NHL) in adults
[1]. DLBCL patients have signifcant heterogeneity in clinical
manifestations, pathological characteristics, biological be-
haviors and molecular genetics, which are a group of highly
heterogeneous B-cell malignant lymphoma [1, 2]. Currently,
the outcomes of DLBCL patients have been signifcantly
improved due to the contribution of chemotherapy with
rituximab combined with cyclophosphamide, doxorubicin,
vincristine, and prednisone (R-CHOP) [2, 3]. About 60%–
70% of patients might receive long-term remission post frst-

line treatment, while 30%–40% of patients may experience
recurrence or nonresponse, and the median survival time of
primary and secondary refractory DLBCL was only
4.4months [4, 5]. Terefore, the treatment strategies for
patients with inefective frst-line treatments, early relapses,
or refractory DLBCL have always been challenging in clinic
[1]. Exploring the pathogenesis and identifying efective
indicators for the diagnosis and treatment of DLBCL are
signifcantly necessary.

In recent years, abnormal stimulation of NF-kappa B
(NF-κB) signaling pathway was proposed to be one potential
pathogenesis of DLBCL [6, 7]. It has been demonstrated that
the activation of NF-κB was caused by mutations in multiple
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genes, one of which was TNF receptor-associated factor 5
(TRAF5), and the deregulation of TRAF5 may promote the
malignant transformation of DLBCL [8]. TRAF5, a signal
transduction protein, belongs to the TNF receptor-
associated factor (TRAF) family and has been reported to
be involved in the positive activation of the NF-κB signaling
pathway [9]. However, the function and mechanism of
TRAF5 in DLBCL remain unclarifed. Aberrant miRNAs
were hypothesized to be potential mechanisms initiating the
formation and development of B-cell lymphomas, andmight
even be biomarkers for diagnosis, classifcation, treatment
response or prognosis in primary DLBCL [10]. It is worth
noting that TRAF5, miRNAs and their regulatory roles in
the NF-κB signaling pathway were rarely reported in
DLBCL. With the prevalence of microarray technology and
the establishment of various bioinformatics databases, ef-
fective tools and novel approaches have been accessible for
exploring biomarkers and revealing the mechanisms of
tumorigenesis and disease progression [11]. Terefore, this
current study aims to explore the relationship of TRAF5,
miRNAs, and the NF-κB signaling pathway in DLBCL based
on bioinformatics analysis.

In the present research, diferentially expressed genes
(DEGs) and diferential miRNAs of DLBCL were screened
out from the GEO database [12], and the DAVID database
was utilized to assess the functions and signal pathways of
DEGs [13]. Multiple miRNA databases were integrated to
search for the DLBCL-related miRNAs, target genes, and
signal pathways, and potential miRNA-mRNA regulatory
networks were constructed. Finally, GEO datasets were
carried out to identify the expression level and diagnostic
performance of miRNAs, and DEGs were acquired from the
GEPIA database [14]. Te present study provided novel
lights into the molecular regulation mechanisms of miRNAs
and target genes in DLBCL and may facilitate the identif-
cation of promising biomarkers for an individualized
therapy strategy.

2. Materials and Methods

2.1.MicroarrayData. Te GEO database (https://www.ncbi.
nlm.nih.gov/geo/) was performed to search for gene and
miRNA datasets of DLBCL, with the search term of lym-
phoma. Te inclusion criteria of microarray datasets were as
follows: (1) the studies using tissue samples of primary
DLBCL from the human species; (2) patients without im-
mune diseases or other tumors, and no relevant treatments
received; and (3) nontumor lymphoid tissues as negative
controls. Te deadline for retrieving the GEO database was
June 30, 2021.

2.2. Screening of DEGs. In the GEO database, GEO2R
(http://www.ncbi.nlm.nih.gov/geo/geo2r) [12] was carried
out to analyse the fold change of DEGs in DLBCL patients.
In this study, signifcant DEGs were screened out when |
LogFC| (fold change)> 1 and adjusted P< 0.05. Te DEGs
repeated in more than fve out of 15 microarrays were se-
lected for subsequent analysis.

2.3. GO, KEGG and PPI Analysis of DEGs. In DAVID da-
tabase (https://david.abcc.ncifcrf.gov/) [13], Gene Ontology
(GO) and Kyoto Encyclopedia of Genes and Genomes
(KEGG) enrichment analysis were employed to clarify the
biological functions of DEGs. Adjusted P value< 0.05 was
established as the threshold. Te STRING database (https://
string-db.org/) was utilized to construct protein-protein
interaction (PPI) network of DEGs [15].

2.4. Retrieval of miRNA Data. (1) Te diferential miRNAs
between the DLBCL group and the control group were
analyzed using the GEO2R function in the GEO database. In
addition, HMDD (http://www.cuilab.cn/hmdd) [16] and
miRWalk (http://mirwalk.umm.uni-heidelberg.de/) [17]
were applied to seek for DLBCL-related miRNAs; (2)
TRAF5-related miRNAs were acquired from ENCORI
(http://www.sysu.edu.cn/) [18], miRWalk, miRDB (http://
mirdb.org/) [19] and DIANA-TarBase (http://diana.imis.
athena-innovation.gr/DianaTools) [20]; and (3) miRNAs
associated with NF-κB signaling pathway were predicted by
miRPathDB (https://mpd.bioinf.uni-sb.de/) [21], miRWalk,
and DIANA databases. Te above miRNA data sets were
intersected to obtain hub miRNA sets which concurrently
related to the DLBCL, TRAF5, and NF-κB signaling
pathway.

2.5. Prediction of miRNA Targets and Pathways, and Con-
struction of miRNA-mRNA Network. Targets of hub miR-
NAs were predicted by 10 databases in fve online software
program, including ENCORI, miRWalk, miRPathDB,
miRDB, and TargetScan (http://www.targetscan.org/) [22].
To reduce the false positive rate, target genes that repeated in
more than three out of 10 databases were retained, and
miRNAs were selected for further analysis in the case of
TRAF5 repeated more than three times. GO and KEGG
enrichment of the target genes were analyzed via the KOBAS
database (http://kobas.cbi.pku.edu.cn/) [23] (P< 0.05). If
TRAF5 was concentrated in the NF-κB signaling pathway
and involved in apoptosis and signal transduction, the
corresponding miRNA was considered to be likely to target
TRAF5 and participate in the NF-κB signaling pathway. And
then the corresponding miRNA and its target genes involved
in NF-κB signaling pathway were integrated. Finally, the
miRNA-mRNA regulatory network involved in NF-κB
signaling pathway was obtained, and Cytoscape was used for
visualization [24].

2.6. Expression of TRAF5 and miRNAs. Te relative ex-
pression quantity of miRNAs in the GEO database was
extracted. Diferential expression levels of miRNAs were
identifed between the DLBCL group and the control group,
and receiver operating characteristic (ROC) curve was
utilized to evaluate diagnostic performance of miRNAs.
Meanwhile, diferential expression of TRAF5 and other
target genes between DLBCL and the control group was
identifed using the GEPIA database (http://gepia.cancer-
pku.cn/) [14].
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2.7. Statistical Analysis. SPSS 22.0 was applied for data
analysis. Graphpad Prism 7.0 was used for plotting. Sta-
tistical signifcance of each two groups was calculated by the
Student’s t-test. P< 0.05 revealed statistical signifcance.

3. Results

3.1. Screening Results of DEGs. A total of 15 gene expression
profle datasets were screened out from GEO database
(GSE60-GPL174 [25], GSE60-GPL175 [25], GSE60-GPL176
[25], GSE2350-GPL91 [26], GSE3892 [27], GSE9327 [28],
GSE12195 [8], GSE12453 [29], GSE15225 [30], GSE23647
[31], GSE25639 [32], GSE32018 [33], GSE44337 [34],
GSE56315 [35], and GSE126247 [36]) (Figure 1), including
20034 DEGs. In order to reduce the false positive rate, a total
of 243 DEGs that appeared in more than fve microarrays
were selected for subsequent analysis.

3.2. Enrichment Analysis of DEGs. Te biological process
(BP) of the 243 DEGs was mainly focused on the chemokine-
mediated signaling pathway, immune response, cell adhesion
and infammatory response. Te cellular component (CC)
was mainly existed in the extracellular region, external side of
plasma membrane, cytosol, and cell surface. Molecular
function (MF) was primarily involved in protein binding,
chemokine activity, and protein homodimerization activity
(Figures 2(a)–2(c)). Furthermore, KEGG pathway was
markedly enriched in hematopoietic cell lineage, cytokine-
cytokine receptor interaction, ECM-receptor interaction,
chemokine signaling pathway, and the NF-κB signaling
pathway (Figure 2(d)). Te PPI network of DEGs-encoded
proteins was displayed in Figure 2(e). In addition, TRAF5 was
identifed to be participated in the NF-κB signaling pathway

and being involved in apoptosis and signal transduction in
BP. Te CC of TRAF5 was distributed in the cytosol, and the
MF of TRAF5 was associated with protein binding.

3.3. Screening Results of miRNAs. (1) A total of 541 difer-
entially DLBCL-related miRNAs were obtained from GEO
datasets (GSE29493 and GSE117063), HMDD, and miRWalk
databases. All miRNAs with statistical signifcance from GEO
datasets were shown in Figure 3; (2)Tere were 2056miRNAs
associated with TRAF5 that were predicted in ENCORI,
miRWalk, DIANATarBase, andmiRDB databases; (3) A total
of 2139 miRNAs connected with NF-κB signaling pathway
were selected from the DIANA, miRWalk, and miRPathDB
databases. After the intersection of the above three miRNA
data sets, 163 miRNAs that were concurrently related to the
DLBCL, TRAF5, and NF-κB signaling pathway were obtained
(the Venn diagram is shown in Figure 4).

3.4. Prediction and Enrichment Analysis of miRNA Target
Genes. Target genes of 163 miRNAs were predicted using
ENCORI, miRWalk, miRPathDB, TargetScan, and miRDB.
Te miRNAs were selected for further analysis in the case of
TRAF5 repeated more than three times, and the target genes
were retained, which were predicted by more than three
databases. In the KOBAS database, the target genes (in-
cluding TRAF5) of miR-15a-5p, miR-147a, miR-192-5p,
miR-197-3p, miR-532-5p, and miR-650 were all simulta-
neously enriched in the NF-κB signaling pathway (the
screening process is provided in Figure 5). In the GO
analysis, TRAF5 was involved in apoptosis and signal
transduction in all six miRNAs. Te function and pathway
analysis of TRAF5 in miRNAs are summarized in Figure 6.
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Figure 1: Volcano plots of DEGs detected in 15 datasets from GEO database. Red, blue, and black dots denote upregulated genes,
downregulated genes, and nonsignifcant genes, respectively.
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3.5. Analysis of the miRNA-mRNA Network. MiR-15a-5p,
miR-147a, miR-192-5p, miR-197-3p, miR-532-5p, andmiR-650
with corresponding target genes involved in theNF-κB signaling
pathway were constructed into a visualized miRNA-mRNA
regulatory network (Figure 7). In addition to targeting
TRAF5, miRNAs also participated in the NF-κB signaling
pathway by regulating other 38 target genes, such as myeloid
diferentiation primary response 88 (MYD88), X-linked in-
hibitor of apoptosis (XIAP), B-cell lymphoma 2 (BCL2), and
interleukin-1 receptor-associated kinase 1 (IRAK1).

3.6. Expression of miRNA and TRAF5 in DLBCL.
Information of screened miRNAs of the two GEO datasets are
displayed in Table 1. In GEO database, miR-15a-5p, miR-192-
5p, miR-532-5p, and miR-650 were downregulated in DLBCL

tissues (Figures 8(a)–8(c)), while miR-197-3p was highly
expressed in DLBCL compared with the control group
(Figure 8(d)). ROC curves indicated that the above miRNAs
displayed high diagnostic value in DLBCL, and the area under
curve (AUC) were 0.878 (P<0.001), 0.840 (P< 0.01), 0.912 (P
<0.001), 1.000 (P< 0.001), and 0.840 (P< 0.01), respectively
(Figures 8(e)–8(h)). In GEPIA database, higher expression of
TRAF5 was identifed in DLBCL than in the control group
(Figure 9(a)). Meanwhile, other target genes of miRNAs
participating in NF-κB signaling pathway were also analyzed,
and a total of 20 target genes were overexpressed in DLBCL,
such as BCL2, IRAK1, and XIAP (Figures 9(b)–9(u)). In
contrast, four target genes were presented with inverse ex-
pression in DLBCL, including MYD88, toll like receptor 4
(TLR4), TNF superfamily member 14 (TNFSF14) and the
tripartite motif containing 25 (TRIM25) (Figures 9(v)–9(y)).

0 5 10 15 20 25 30

immune response
chemokine-mediated signaling pathway

inflammatory response
cell adhesion

positive regulation of T cell migration
platelet degranulation

chemotaxis
response to drug

response to peptide hormone
cell chemotaxis

BP

P-Value
Count

(a)

P-Value
Count

0 10 20 30 40 50 60 70 80

extracellular space
external side of plasma membrane

extracellular region
extracellular exosome

extracellular matrix
platelet alpha granule lumen

cell surface
proteinaceous extracellular matrix

cytosol
perinuclear region of cytoplasm

CC

(b)

P-Value
Count

0 50 100 150 200

protein binding
collagen binding

chemokine activity
identical protein binding

protein homodimerization activity
integrin binding

fibronectin binding
chemoattractant activity

protease binding
serine-type endopeptidase activity

MF

(c)

P-Value
Count

0 5 10 15 20 25

Cytokine-cytokine receptor interaction
Chemokine signaling pathway

Cell cycle
Hematopoietic cell lineage
ECM-receptor interaction

NF-kappa B signaling pathway
Pathways in cancer

HTLV-I infection
Focal adhesion

Osteoclast differentiation
KEGG

(d)

FYB

CSF1R

CTSD

CXCR6

STAT1
CYBB

ENO1

MS4A6A

GPNMB

DAPK1

DUSP2
ADARB1

ITGA4

STK4

SEC62

CSTA

CCL4

ANXA1

MBNL1

AIF1

TXN

MKI67

TPD52

NGFRAP1

TRAF5

GIMAP6

MAF

CBX5

VCAM1

CALR

CDC6

CCL18

MELK

LAG3

STRBP

LGALS3

GNPDA1

TNC

CREG1

CD55

PTPRM

BUB1

PLK1

LGMN

LTB

SRGN

TOX

CXCL12

IL32

OPTN

MAPK12

CYFIP1

CCNB1

APOE

STIL

CLU

KIF23

POLQ

ADA

FCER2

RAD51

CD3D

STOM

GBP2

GIMAP7

CELF2

SLC2A5

ALDOA

FGL2

ADAM28

MT2A

TIMP1

GZMH

RAC1

RHOBTB3

IGF2BP3

RARRES2

MAD2L1

CXCL9

ZBTB20 COL1A1

FCER1G

SERPINA1
ITGA6

TNFRSF1A

ENPP2

SPARCL1

CCND2

TFRC

MGST2

CXCR4

VWF

ATP1B1

BATF

PNISR

SPARC

CHEK1

ASPM

P4HB

TYMS

CTSC

BANK1

MAP3K1

PCNA

ASF1B

GINS2

VEGFA

MEF2C

TPM2

FOXO1

RARRES1

TMEM97

DSP

TTK

RRM2

MMP9

ENG

COL1A2

CDT1

CXCL13

TSC22D1

BTG1

GLIPR1

ENSP00000485396

CCL21

GPX1

TNFSF10

LMNB1

CEBPD

HCK

MT1G

CTSK

GNAS

CD8A

TYROBP

JUN

FCRL1

BIRC5

EMP1

ID2

IL2RB

CDC20

IL6ST

CKS2

PPP2R5C

ATM

CCNA2

IFITM3

MT1X

ADTRP

H2AFX

FBRSL1

ATF5

CSRP2

RGL1

MGEA5

CTSA

CTSL

NFIA

SAMHD1

FTL

MYLK

YES1

PLXND1

GZMB

AURKA

CD63

TXNIP

PTPRC

CENPF

THY1

ELF1

PAICS

GNS

MXRA5

CXCL10

DUSP6

PRF1

CCR1

GNG7

EPAS1

IL1R1

KIAA0430

COL6A1

DDR2

CD47

BLVRA

SMCHD1

ETS2

MCM4

TIMP3

IGFBP5

KIAA0125

GZMA

ZNF652

KIF2C

SEPP1

CENPE

LGALS1

PLK4

RASSF6

CTSB

GRAP

TUBB

NINJ1

NR1H3

TIMP2

FN1

TOP2A

HSD11B1 KIF15

LYZ

ALOX5
LDHA

CD163

CYP27A1

CRTAM

SF1

CCL5

GZMK

CCL8

PBK

NEK2

DTL

SERPINF1

APOC1

MOB3B

GPR29

PTPRF

POSTN

CD2

CHI3L1

PSMB2

ATOX1

SLC31A2

TM4SF1

CYP27B1

KDM4C
JMJD1C

(e)

Figure 2: GO, KEGG, and PPI analyses of 243 DEGs. (a-c) GO functional enrichment analysis (top 10), including BP, CC, and MF.
(d) KEGG pathway enrichment analysis (top 10). (e) PPI network of DEGs.
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Figure 3: Heatmaps of signifcantly expressed miRNAs in GEO datasets. (a) 76 miRNA expression profles in GSE117063. (b) 457 miRNA
expression profles in GSE29493.
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Figure 4: Intersection of miRNAs associated with DLBCL, TRAF5, and NF-kappa B signaling pathway.
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4. Discussion

In recent years, variations, trends, and associations of tumor
samples can be rapidly accessed through computational
investigations and bioinformatics, which have enhanced the
discovery and analysis of the mutual regulation of miRNAs,
target genes, and signaling pathways in tumors [11]. In the
research of malignant mesothelioma (MM) [37], miR-
323a-3p was upregulated in mesothelial cell models of pleura
which exposed to fuoro-edenite fbers, and miR-101-3p was
downregulated in MMcell, which were in concordance with
GEO datasets. In subsequent studies of tissue samples, the
translational data of miR-101-3p was consistent with pre-
vious bioinformatics analysis, which revealed signifcantly
low expression in MM [38]. Chen et al. [39] found eight key
miRNAs and 14 genes of colon cancer via bioinformatics
analysis, and most of which have been verifed in previous
experiments. In addition, downregulated miRNAs and
overexpressed genes were screened from the online analysis
of Hepatitis B virus-related hepatocellular carcinoma, and
the results were consistent with the real-time PCR and
previous laboratory fndings [40]. Overall, these studies have
provided evidence of the reliability and feasibility of bio-
informatics analysis for clinical tumors.

Te molecular mechanisms of DLBCL have been in-
tensively studied, but the pathogenesis of DLBCL is in-
tricacy, and the relationships among molecular markers,
signaling pathways, and regulatory mechanisms are

complicated [1, 2]. Bioinformatics has been widely applied to
data mining, which revealed great signifcance in exploring
the pathogenesis and precise treatment strategies of DLBCL
[41]. On the basis of GEO datasets, B-cell lymphoma 6
(BCL6) was identifed as a target gene of miR-30 and in-
volved in ibrutinib resistance of DLBCL, and cell experiment
was consistent with the computational result [42]. In the
study by Li et al. [43], overexpression of cyclin D2 (CCND2)
and activation of the Wnt pathway in the activated B-cell
(ABC) subtype of DLBCL were validated by bioinformatics
and experiments. Our study revealed that TRAF5 was in-
volved in apoptosis, signal transduction, and protein binding
of DLBCL. TRAF5 participated in the NF-κB signaling
pathway together with C-X-C motif chemokine ligand 12
(CXCL12), C-C motif chemokine ligand 21 (CCL21), in-
terleukin 1 receptor type 1 (IL1R1), vascular cell adhesion
molecule 1 (VCAM1), CCL4, ATM serine/threonine kinase
(ATM), lymphotoxin beta (LTB), and TNF receptor su-
perfamily member 1A (TNFRSF1A).

Te NF-κB signaling pathway is one of the crucial
regulatory mechanisms of apoptosis and participates in
multiple stages of B lymphocytes development [6]. In
lymphoma, the continuous excitation of NF-κB can prevent
cell diferentiation, inhibit apoptosis, and promote pro-
liferation of tumor cells, and meanwhile increase in-
fammatory response, tumor microvascular formation, and
metastasis [44–46]. More recently, a number of studies
revealed that micromolecule targeted inhibitors could
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pathway related miRNA

take the intersection
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Figure 5: Flow chart of miRNAs screening that target TRAF5 in DLBCL and participate in NF-kappa B signaling pathway.
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suppress tumor progression via restraining NF-κB signaling
[47–49]. Terefore, it is thought to be a promising thera-
peutic target to block the abnormal stimulation of the NF-κB
signaling pathway in cancer. Te abnormalities of MYD88,
mucosa associated lymphoid tissue lymphoma translocation
gene 1 (MALT1), B-cell lymphoma 10 (BCL10), and other
functional driver genes may lead to the excitation of the NF-
κB signaling pathway in DLBCL, promoting proliferation of

tumor cells, and ultimately leading to tumorgenesis of
DLBCL [50]. In Compagno group’s study [8], the activation
of NF-κB in DLBCL was aroused by multiple genes, in-
cluding TRAF5, NF-κB inhibitor alpha (NFKBIA) and TNF
receptor-associated factor 3 (TRAF3). To a certain extent,
this experimental research verifed the reliability of our
calculation results. Te missing or activated genes may
accelerate the occurrence of lymphoma via causing wrong
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stimulation of NF-κB signaling pathway [6]. However, the
functional consequences of these disordered genes in
DLBCL have not been thoroughly identifed.

Previous studies have demonstrated that TRAF5 could
bind to cell membrane or intracellular receptors such as
CD30, CD40, and latent membrane protein 1 (LMP1) and
stimulate downstream related signal transduction pathways
[51]. Te stimulation ultimately activates NF-κB signaling
pathway and performs a variety of signifcant functions in
regulating cell cycle, inhibiting apoptosis, participating in
infammatory response, and immune regulation [9, 51, 52].
However, TRAF5 has rarely been reported in lymphoma.
Guo et al. [53] found that TRAF5 mRNA was more highly
expressed in Hodgkin’s lymphoma (HL) cell line than that in
normal B lymphocytes, and the aberrant expression of CD30
inhibited the expression of endogenous TRAF5 protein.
Horie et al. [54] proved that TRAF5 assembled in the

cytoplasm of H-RS cells in HL and also congregated near the
cell membrane together with CD30, indicating that TRAF5
and CD30 were jointly mediated the activation of NF-κB.
Te study of Sutherland et al. [55] has clarifed that TRAF5
could combine with the cytoplasmic domain of CD40 to
activate NF-κB signaling pathway, and then inhibit apo-
ptosis in B lymphoma cells of mouse. Te above studies
indicated that TRAF5 was aberrantly overexpressed in
lymphoma. In our current study with GEPIA data, the
overexpression of TRAF5 was discovered in DLBCL tissues,
indicating that TRAF5 may be a promising molecular target
and play potential roles in DLBCL. However, further re-
search is warranted to look into the mechanism of TRAF5 in
DLBCL.

As we know, the abnormal expression of miRNAs can
change the production of target mRNAs and the expression
of downstream proteins, leading to defects in the cell cycle

PLCG1

IKBKB

hsa-miR-532-5p

CXCL12

CD40

NFKB1

hsa-miR-147a

MALT1

TAB3

BCL2

hsa-miR-650CXCL2

TRAF1

MYD88

TNFSF14

EDA2R

XIAP

TAB1

IL1R1

EDA

PRKCB

CARD10

MAP3K7

TRAF5

TRIM25

TRAF3

hsa-miR-15a-5p

EDARADD

DTLATM

hsa-miR-192-5p

PLAU BCL10

IRAK1

TLR4

PARP1

CFLAR

BIRC2

TRAF6

CYLD

UBE2I

SYK

hsa-miR-197-3p

CHUK

TNFAIP3

Figure 7: Te miRNA-mRNA regulatory network of miR-15a-5p, miR-147a, miR-192-5p, miR-197-3p, miR-532-5p, miR-650, and the
targeted genes participating in NF-kappa B signaling pathway. Rectangle nodes represent miRNAs, and oval nodes represent mRNAs.

Table 1: Information of screened miRNAs in GEO datasets.

miRNA ID logFC P value Adj P

val Platform GEO ID

hsa-miR-15a-5p −1.59 5.29E− 05 3.40E− 04 GPL25327 GSE117063 Downregulated
hsa-miR-192-5p −2.5126 1.20E− 04 6.72E− 04 GPL25327 GSE117064 Downregulated
hsa-miR-197-3p 1.1644 1.11E− 03 3.57E− 03 GPL25327 GSE117065 Upregulated
hsa-miR-532-5p −2.9023 2.68E− 04 1.29E− 03 GPL25327 GSE117066 Downregulated
hsa-miR-650 −7.4085 9.56E− 21 1.49E− 20 GPL9081 GSE29493 Downregulated
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Figure 8: Scatter diagrams and ROC curves analysis for the diferential expression of miRNAs between the DLBCL and control group in
GEO database. (a–d) MiR-15a-5p, miR-192-5p, miR-532-5p, and miR-650 were downregulated in DLBCL. (e) MiR-197-3p was upregulated
in DLBCL. (f–j) ROC curves presented excellent diagnostic performance of each miRNA. ∗P< 0.05, ∗∗P< 0.01, ∗∗∗P< 0.001.
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Figure 9: Continued.
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and apoptosis mechanisms [56]. In this current study
originating from GEO data, the expression of miR-15a-5p,
miR-192-5p, miR-532-5p, and miR-650 were extremely
lower in DLBCL compared with the control group, while
miR-197-3p was of high expression in DLBCL, and all
miRNAs showed dominant diagnostic value. Tese results
might require further validation by clinical patient cohorts,
and detection of the expression level of miRNAs through
body fuids could be one of the prospective approaches in the
era of liquid biopsy. Based on bioinformatics analysis, these
miRNAs were identifed to participate in the NF-κB sig-
naling pathway by co-targeting TRAF5, thereby afecting
apoptosis and signal transduction of DLBCL. However, the
mechanism of each miRNA has not been thoroughly in-
vestigated in DLBCL. In the study of nucleus pulposus cells
of mouse, Zhang et al. [57] found the downregulation of
miR-15a-5p inhibited infammation and apoptosis through
NF-κB pathway. Overexpression of miR-147a exhibited poor
prognosis in hepatitis C virus-positive DLBCL patients [58].
Li and Huang [59] demonstrated that upregulation of miR-
147a inhibited the MyD88/TRAF6/NF-κB pathway to alle-
viate endothelial cell damage induced by high glucose. Te
higher expression of miR-532-5p was reported in previous
research on the plasma of DLBCL patients [60]. In addition,
Zhang et al. [61] clarifed that decreased miR-532-5p ex-
pression indicated a poor prognosis of gastric cancer, and
the inhibition of miR-532-5p promoted angiogenesis, me-
tastasis, and NF-κB activity. MiR-650 was also found to be
upregulated in glioma, inducing the activation of NF-κB
pathway, and promoting migration, proliferation, and in-
vasion of glioma cells [62]. Hence, miRNAs play vital roles in

various diseases, and its abnormal expression in DLBCLmay
activate NF-κB signaling pathway via stimulating the acti-
vation of multiple target genes. At last, miRNAs also pre-
sented to target other 38 genes, such as BCL2, XIAP, IRAK1,
and MYD88, to participate in the NF-κB signaling pathway
based on our analysis of the miRNA-mRNA network. Tis
complex regulatory network may participate in the malig-
nant transformation of B lymphocytes and ultimately lead to
the occurrence and development of DLBCL.

Tere are several limitations for current study. First, the
GEO2R online tool of the GEO database was utilized for data
analysis in order to minimize the heterogeneity of results
during the integration of diferentially expressed genes.
Although GEO is the most comprehensive and commonly
used database, which data is always shared with other da-
tabases, there are still some datasets not included due to
distinct experimental platforms, designs, materials, se-
quencing methods, and data types. Second, the current
bioinformatics analysis was conducted as a preliminary
study without validation by clinical cohorts or experimental
research. Clinical, in vivo, and in vitro research are needed to
further support our fndings.

5. Conclusion

In conclusion, this study indicated that miR-15a-5p, miR-
147a, miR-192-5p, miR-197-3p, miR-532-5p, and miR-650
might participate in NF-κB signaling pathway by co-
targeting TRAF5 and afect the apoptosis and signal
transduction of DLBCL. Tis study provides a theoretical
basis for in-depth research on the molecular regulation
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Figure 9: GEPIA database analyzed mRNA expression levels associated with target genes that participated in NF-kappa B signaling
pathway. (a–u) TRAF5, ATM, BCL2, BCL10, BIRC2, CD40, CXCL12, DTL, IRAK1, MALT1, MAP3K7, NFKB1, PARP1, PLAU, PLCG1,
SYK, TAB1, TRAF1, TRAF3, UBE2I, and XIAP were signifcantly increased in DLBCL. (v–y) MYD88, TLR4, TNFSF14 and TRIM25,
notably, decreased in DLBCL. Te red color represents DLBCL samples, and the gray color represents normal control samples. ∗P< 0.05.
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mechanism of DLBCL and provides evidence to explore new
diagnostic biomarkers and cancer-targeted therapeutic
drugs. However, these results still need to be verifed by
extensive experiments.
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[33] C. Gómez-Abad, H. Pisonero, C. Blanco-Aparicio et al.,
“PIM2 inhibition as a rational therapeutic approach in B-cell
lymphoma,” Blood, vol. 118, no. 20, pp. 5517–5527, 2011.

[34] V. S. Tompkins, S. S. Han, A. Olivier et al., “Identifcation of
candidate B-lymphoma genes by cross-species gene expres-
sion profling,” PLoS One, vol. 8, no. 10, Article ID e76889,
2013.

[35] K. Dybkær, M. Bøgsted, S. Falgreen et al., “Difuse large B-cell
lymphoma classifcation system that associates normal B-cell
subset phenotypes with prognosis,” Journal of Clinical On-
cology, vol. 33, no. 12, pp. 1379–1388, 2015.

[36] A. Magi, M. Masselli, C. Sala et al., “Te ion channels and
transporters gene expression profle indicates a shift in ex-
citability and metabolisms during malignant progression of
Follicular Lymphoma,” Scientifc Reports, vol. 9, no. 1, p. 8586,
2019.

[37] V. Filetti, L. Falzone, V. Rapisarda et al., “Modulation of
microRNA expression levels after naturally occurring
asbestiform fbers exposure as a diagnostic biomarker of
mesothelial neoplastic transformation,” Ecotoxicology and
Environmental Safety, vol. 198, Article ID 110640, 2020.

[38] V. Filetti, C. Loreto, L. Falzone et al., “Diagnostic and
prognostic value of three microRNAs in environmental
asbestiform fbers-associated malignant mesothelioma,”
Journal of Personalized Medicine, vol. 11, p. 1205, 2021.

[39] W. Chen, C. Gao, Y. Liu, Y. Wen, X. Hong, and Z. Huang,
“Bioinformatics analysis of prognostic miRNA signature and

potential critical genes in colon cancer,” Frontiers in Genetics,
vol. 11, p. 478, 2020.

[40] D. P. Huang, Y. H. Zeng, W. Q. Yuan et al., “Bioinformatics
analyses of potential miRNA-mRNA regulatory Axis in HBV-
related hepatocellular carcinoma,” International Journal of
Medical Sciences, vol. 18, no. 2, pp. 335–346, 2021.

[41] Q. Huang, F. Liu, and J. Shen, “Bioinformatic validation
identifes candidate key genes in difuse large-B cell lym-
phoma,” Personalized Medicine, vol. 16, no. 4, pp. 313–323,
2019.

[42] J. Li, Y. Huang, Y. Zhang et al., “Identifcation BCL6 andmiR-
30 family associating with Ibrutinib resistance in activated B-
cell-like difuse large B-cell lymphoma,” Medical Oncology,
vol. 38, no. 4, p. 33, 2021.

[43] Q. Li, Y. Meng, L. Hu, A. Charwudzi, W. Zhu, and Z. Zhai,
“Integrative analysis of hub genes and key pathway in two
subtypes of difuse large B-cell lymphoma by bioinformatics
and basic experiments,” Journal of Clinical Laboratory
Analysis, vol. 35, no. 11, Article ID e23978, 2021.

[44] R. M. Young, A. L. Shafer, J. D. Phelan, and L. M. Staudt, “B-
cell receptor signaling in difuse large B-cell lymphoma,”
Seminars in Hematology, vol. 52, no. 2, pp. 77–85, 2015.

[45] X. Jin, Q. Shi, Q. Li et al., “CRL3-SPOP ubiquitin ligase
complex suppresses the growth of difuse large B-cell lym-
phoma by negatively regulating theMyD88/NF-κB signaling,”
Leukemia, vol. 34, no. 5, pp. 1305–1314, 2020.

[46] Y. L. Zhang, M. H. Z. Guang, H. Q. Zhuo et al., “Carflzomib
inhibits constitutive NF-κB activation in mantle cell lym-
phoma B cells and leads to the induction of apoptosis,” Acta
Haematologica, vol. 137, no. 2, pp. 106–112, 2017.

[47] H. Yu, L. Lin, Z. Zhang, H. Zhang, and H. Hu, “Targeting NF-
κB pathway for the therapy of diseases: mechanism and
clinical study,” Signal Transduction and Targeted Terapy,
vol. 5, no. 1, p. 209, 2020.

[48] L. Yu, Y. Sun, J. Su, and X. Li, “Bismahanine exerts anticancer
efects on human cervical cancer cells by inhibition of growth,
migration and invasion via suppression of NF-kB signalling
pathway,” J buon, vol. 25, no. 1, pp. 93–98, 2020.

[49] E. Y. Lim, J. Park, Y. T. Kim, and M. J. Kim, “Imipramine
inhibits migration and invasion in metastatic castration-
resistant prostate cancer PC-3 cells via AKT-mediated NF-
κB signaling pathway,” Molecules, vol. 25, no. 20, p. 4619,
2020.

[50] M. Tome, J. E. Charton, C. Pelzer, and S. Hailfnger, “An-
tigen receptor signaling to NF- B via CARMA1, BCL10, and
MALT1,” Cold Spring Harbor Perspectives in Biology, vol. 2,
no. 9, p. a003004, 2010.

[51] J. M. Hildebrand, Z. Yi, C. M. Buchta, J. Poovassery,
L. L. Stunz, and G. A. Bishop, “Roles of tumor necrosis factor
receptor associated factor 3 (TRAF3) and TRAF5 in immune
cell functions,” Immunological Reviews, vol. 244, no. 1,
pp. 55–74, 2011.

[52] M. R. Zinatizadeh, B. Schock, G. M. Chalbatani, P. K. Zarandi,
S. A. Jalali, and S. R. Miri, “Te Nuclear Factor Kappa B (NF-
kB) signaling in cancer development and immune diseases,”
Genes & Diseases, vol. 8, no. 3, pp. 287–297, 2021.

[53] F. Guo, A. Sun, W. Wang et al., “TRAF1 is involved in the
classical NF-κB activation and CD30-induced alternative
activity in Hodgkin’s lymphoma cells,” Molecular Immunol-
ogy, vol. 46, no. 13, pp. 2441–2448, 2009.

[54] R. Horie, T. Watanabe, K. Ito et al., “Cytoplasmic aggregation
of TRAF2 and TRAF5 proteins in the Hodgkin-Reed-
Sternberg cells,” American Journal Of Pathology, vol. 160,
no. 5, pp. 1647–1654, 2002.

Genetics Research 13

https://doi.org/10.1155/2022/3222253 Published online by Cambridge University Press

https://doi.org/10.1155/2022/3222253


[55] C. L. Sutherland, D. L. Krebs, and M. R. Gold, “An 11-amino
acid sequence in the cytoplasmic domain of CD40 is sufcient
for activation of c-Jun N-terminal kinase, activation of
MAPKAP kinase-2, phosphorylation of I kappa B alpha, and
protection of WEHI-231 cells from anti-IgM-induced growth
arrest,” Journal of Immunology, vol. 162, no. 8, pp. 4720–4730,
1999.

[56] D. P. Bartel, “MicroRNAs: genomics, biogenesis, mechanism,
and function,” Cell, vol. 116, no. 2, pp. 281–297, 2004.

[57] S. Zhang, S. Song, Y. Zhuang et al., “RETRACTED: role of
microRNA-15a-5p/Sox9/NF-κB axis in infammatory factors
and apoptosis of murine nucleus pulposus cells in in-
tervertebral disc degeneration,” Life Sciences, vol. 277, Article
ID 119408, 2021.

[58] C. Augello, U. Gianelli, F. Savi et al., “MicroRNA as potential
biomarker in HCV-associated difuse large B-cell lymphoma,”
Journal of Clinical Pathology, vol. 67, no. 8, pp. 697–701, 2014.

[59] X. Q. Li and T. Y. Huang, “Notoginsenoside R1 alleviates high
glucose-induced infammation and oxidative stress in
HUVECs via upregulating miR-147a,”Te Kaohsiung Journal
of Medical Sciences, vol. 37, no. 12, pp. 1101–1112, 2021.

[60] D. Khare, N. Goldschmidt, A. Bardugo, D. Gur-Wahnon,
I. Z. Ben-Dov, and B. Avni, “Plasma microRNA profling:
exploring better biomarkers for lymphoma surveillance,”
PLoS One, vol. 12, no. 11, Article ID e0187722, 2017.

[61] J. X. Zhang, Z. H. Chen, D. L. Chen et al., “LINC01410-miR-
532-NCF2-NF-kB feedback loop promotes gastric cancer
angiogenesis and metastasis,” Oncogene, vol. 37, no. 20,
pp. 2660–2675, 2018.

[62] S. Jin, X. Li, Y. Dai, C. Li, and D. Wang, “NF-κB-
mediatedmiR-650 plays oncogenic roles and activates AKT/
ERK/NF-κB pathways by targeting RERG in glioma cells,”
Cellular Oncology, vol. 43, no. 6, pp. 1035–1048, 2020.

14 Genetics Research

https://doi.org/10.1155/2022/3222253 Published online by Cambridge University Press

https://doi.org/10.1155/2022/3222253



