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Abstract
Anosov representations of hyperbolic groups form a rich class of representations that are closely related to geometric
structures on closed manifolds. Any Anosov representation 𝜌 : Γ → 𝐺 admits cocompact domains of discontinuity
in flag varieties 𝐺/𝑄 [GW12, KLP18] endowing the compact quotient manifolds 𝑀𝜌 with a (𝐺,𝐺/𝑄)–structure.
In general, the topology of 𝑀𝜌 can be quite complicated.

In this article, we will focus on the special case when Γ is a the fundamental group of a closed (real or complex)
hyperbolic manifold N and 𝜌 is a deformation of a (twisted) lattice embedding Γ → Isom◦(HK) → 𝐺 through
Anosov representations. In this case, we prove that 𝑀𝜌 is a smooth fiber bundle over N, and we describe the
structure group of this bundle and compute its invariants. This theorem applies in particular to most representations
in higher rank Teichmüller spaces, as well as convex divisible representations, AdS-quasi-Fuchsian representations
and H𝑝,𝑞–convex cocompact representations.

Even when 𝑀𝜌 → 𝑁 is a fiber bundle, it is often very difficult to determine the fiber. In the second part of the
paper, we focus on the special case when N is a surface, 𝜌 a quasi-Hitchin representation into Sp(4,C), and 𝑀𝜌

carries a (Sp(4,C),Lag(C4))–structure. We show that in this case the fiber is homeomorphic to CP2#CP2.
This fiber bundle 𝑀𝜌 → 𝑁 is of particular interest in the context of possible generalizations of Bers’ double

uniformization theorem in the context of higher rank Teichmüller spaces, since for Hitchin-representations it
contains two copies of the locally symmetric space associated to 𝜌(Γ). Our result uses the classification of smooth
4–manifolds, the study of the SL(2,C)–orbits of Lag(C4) and the identification of Lag(C4) with the space of
(unlabelled) regular ideal hyperbolic tetrahedra and their degenerations.
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1. Introduction

A (𝐺, 𝑋)–manifold is a topological manifold that is locally modelled on a G–homogeneous space X.
This means that the manifold is equipped with local charts with values in a model space X and transition
functions with values in a Lie group G acting transitively on X. The theory of (𝐺, 𝑋)–manifolds plays an
important role in Thurston’s geometrization program, but extends far beyond it. In particular, (𝐺, 𝑋)–
structures capture many geometric structures beyond Riemannian metrics – for example, projective or
affine structures on manifolds.

The simplest examples of (𝐺, 𝑋)–manifolds are quotients of X by a discrete subgroup of G acting
freely and properly discontinuously – the complete (𝐺, 𝑋)–manifolds. A larger class of examples arises
more generally from quotients of an open domain Ω of X. These are sometimes called Kleinian (𝐺, 𝑋)–
manifolds.

The terminology Kleinian comes from the theory of Kleinian groups. A Kleinian group Γ is a (non-
elementary) discrete subgroup of isometries of the hyperbolic 3–space H3. Its action on the boundary
at infinity 𝜕∞H

3 � CP1 has a minimal invariant limit set ΛΓ and is properly discontinuous on the
complement ΩΓ, called the domain of discontinuity. The quotient Γ\ΩΓ is (at least when Γ is torsion-
free) a Riemann surface equipped with a complex projective structure. The group Γ is convex-cocompact
when the action of Γ onH3 �ΩΓ is cocompact. The quotient then gives a conformal compactification of
the hyperbolic 3–manifold Γ\H3. Convex-cocompact Kleinian groups and the corresponding hyperbolic
3–manifolds play a central role in Thurston’s hyperbolization theorem.

In recent years, the theory of convex-cocompact subgroups in rank one Lie groups has been gener-
alized to the higher rank setting through the theory of Anosov representations, introduced by Labourie
[Lab06] and, more generally, by Guichard–Wienhard [GW12]. A strong connection between Anosov
representations and (𝐺, 𝑋)–manifolds has been established through the construction of domains of
discontinuity by Guichard–Wienhard [GW12] and then by Kapovich–Leeb–Porti [KLP18].

Let G be a semisimple Lie group and P a parabolic subgroup of G. Informally, a P–Anosov rep-
resentation of a Gromov hyperbolic group Γ into G is a homomorphism 𝜌 : Γ → 𝐺 that admits a
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𝜌–equivariant continuous embedding of the boundary at infinity 𝜕∞Γ of Γ into the flag variety 𝐺/𝑃,
which preserves the dynamics of the action of Γ on its boundary (see Definition 2.1). Anosov represen-
tations are quasi-isometric embeddings and are stable under small perturbations. Guichard–Wienhard
proved in [GW12] that, for some parabolic subgroup Q (possibly different from P), a P–Anosov rep-
resentation 𝜌 : Γ → 𝐺 defines a properly discontinuous and cocompact action of Γ on an open subset
Ω𝜌 ⊂ 𝐺/𝑄, which is the complement of a disjoint union of Schubert subvarieties parametrized by 𝜕∞Γ
(see Definition 2.4). The precise parabolic subgroups Q for which this construction works have been
systematically described by Kapovich–Leeb–Porti [KLP18]. We call the domains of discontinuity Ω𝜌

obtained by their constructions flag domains of discontinuity.
This associates to an Anosov representation 𝜌 : Γ → 𝐺 of a torsion-free group Γ a closed manifold

𝑀𝜌 = Γ\Ω𝜌 equipped with a Kleinian (𝐺,𝐺/𝑄)–structure. Even though the topological type of 𝑀𝜌

only depends on the connected component of 𝜌 in the space of P–Anosov representations [GW12],
it is very difficult to determine the topology of 𝑀𝜌. Even in the case of convex-cocompact subgroups
of a hyperbolic space of dimension ≥ 4, the topology of 𝑀𝜌 is still very mysterious, and many wild
phenomena can occur (see Section 1.4 for an example with a surface group), suggesting that a systematic
answer is impossible. Nonetheless, important classes of examples of Anosov representations arise from
deformations of uniform lattices in Lie groups of real rank 1 into a higher rank Lie group. For such
representations, the topology of 𝑀𝜌 becomes more tractable.

1.1. Part 1: Deformations of rank 1 lattices

In the first part of the paper, we prove a general fibration theorem for the quotients of flag domains of
discontinuity associated to Anosov deformations of a rank 1 lattice into a higher rank Lie group.

Let H be a connected semisimple Lie group of real rank 1 with finite center, and Γ a torsion-
free uniform lattice in H. Denote by 𝜌0 : Γ → 𝐻 the identity representation. Let G be a connected
semisimple Lie group with finite center, and 𝜄 : 𝐻 → 𝐺 a faithful representation. Then 𝜄 ◦ 𝜌0 is a
P–Anosov representation of Γ in G for some parabolic subgroup P: we will call 𝜄 ◦ 𝜌0 an 𝜄–lattice
representation. The set Anosov𝑃 (Γ, 𝐺) of P–Anosov representations of Γ into G is an open subset
of Hom(Γ, 𝐺) containing the 𝜄–lattice representation 𝜄 ◦ 𝜌0. We call a representation 𝜌 : Γ → 𝐺 a
P–Anosov deformation of 𝜄 ◦ 𝜌0 if 𝜌 belongs to the connected component of 𝜄 ◦ 𝜌0 in Anosov𝑃 (Γ, 𝐺).

Let us now fix any parabolic subgroup Q of G such that P–Anosov representations in G admit a
cocompact flag domain of discontinuity in 𝐺/𝑄. For 𝜌 ∈ Anosov𝑃 (Γ, 𝐺), we denote the domain by
Ω𝜌 ⊂ 𝐺/𝑄 and the closed quotient manifold by𝑀𝜌 = 𝜌(Γ)\Ω𝜌. Finally, we denote by 𝑆𝐻 the symmetric
space of H. Our first main result is the following:

Theorem A (see Theorem 3.1). For𝐻, Γ, 𝐺, 𝜄, 𝑃, 𝑄 as above, let 𝜌 : Γ → 𝐺 be a P–Anosov deformation
of 𝜄 ◦ 𝜌0. Then Ω𝜌 admits a smooth Γ–equivariant fibration onto 𝑆𝐻 . In particular, 𝑀𝜌 is a smooth
fiber bundle over the negatively curved locally symmetric space Γ\𝑆𝐻 , and Ω𝜌 deformation retracts to
a closed manifold of dimension dim(𝐺/𝑄) − dim(𝑆𝐻 ).

This theorem was obtained independently by Davalo [Dav24] with different methods (see Section 1.3).
It comes with companion theorems (see Theorem 3.3 and Corollary 3.4 below) that describe the structure
group and the invariants of the fiber bundle.

Let us emphasize that Theorem A applies to every (!) cocompact flag domain of discontinuity.
Even for a given representation, and a given flag variety, there can be many different cocompact flag
domains of discontinuity (see [Ste18]). The theorem further applies when we consider the representation
𝜌 : Γ → 𝐺 → 𝐺 ′ as an Ansosov representation into a larger Lie group, and all the flag domains of
discontinuity constructed in flag varieties of 𝐺 ′. See [GW12] and [GGKW17] for examples of how one
can play around with such embeddings into larger groups.

An important source of applications of Theorem A is when an entire connected component of
the representation variety Hom(Γ, 𝐺) consists of Anosov representations. For fundamental groups of
closed surfaces with negative Euler characteristic (which we call surface groups from now on), such
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components are called higher rank Teichmüller components, and most of them contain representations
that factor through a compact extension of PSL(2,R). Therefore, Theorem A gives a positive answer to
[Wie18, Conjecture 13] in most cases, as well as a complete answer to a conjecture by Dumas–Sanders
[DS20, Conjecture 1.1]. More precisely, we have the following.

Corollary B. Let Γ = 𝜋1 (Σ) be a surface group, and C ⊂ Hom(Γ, 𝐺) be a higher rank Teichmüller
component that contains a twisted Fuchsian representation. Then for every representation 𝜌 ∈ C, every
parabolic subgroup Q and every cocompact flag domain of discontinuity Ω𝜌 ⊂ 𝐺/𝑄, the quotient
manifold 𝑀 = 𝜌(𝜋1 (Σ))\Ω is homeomorphic to a fiber bundle 𝑀 → Σ. In particular, the composition
𝜋1 (𝑀) → 𝜋1 (Σ)

𝜌
→ 𝐺 is the holonomy of a Kleinian (𝐺,𝐺/𝑄)–structure on M.

Let us mention a list of interesting examples for which Theorem A and Corollary B apply.

1. Hitchin components. Let Γ = 𝜋1 (Σ) be a surface group and G a split real simple linear group. The
group 𝐻 = SL(2,R) admits a principal representation 𝜄0 : 𝐻 → 𝐺. Given a Fuchsian representation
𝜌0 : Γ → 𝐻, the composition 𝜄0 ◦ 𝜌0 is called a principal Fuchsian representation in G. The repre-
sentations of the connected component of 𝜄0 ◦ 𝜌0 in Hom(Γ, 𝐺) are called Hitchin representations.
Hitchin representations are Anosov with respect to the minimal parabolic subgroup 𝑃𝑚𝑖𝑛 < 𝐺 or,
equivalently, with respect to any parabolic subgroup 𝑃 < 𝐺 [Lab06, FG06]. They are thus P–Anosov
deformations of the lattice representation 𝜄0 ◦ 𝜌0, and Theorem A applies.

2. P–quasi-Hitchin representations. Theorem A also applies to deformations of Hitchin representations
into complex Lie groups. For this, we embed G into its complexification 𝐺C, and we consider the
principal Fuchsian representation 𝜄0◦𝜌0 : Γ → 𝐺 < 𝐺C as taking values in𝐺C. This representation is
Anosov with respect to any parabolic subgroup 𝑃C < 𝐺C. However, not every continuous deformation
of 𝜄0 ◦ 𝜌0 will be Anosov. We define the set of P–quasi-Hitchin representation to be the connected
component of the space of P–Anosov representations in 𝐺C containing the principal Fuchsian
representations. When 𝐺 = PSL(2,R), this is precisely the set of quasi-Fuchsian representations.
Note that, in higher rank, this set might depend on the choice of parabolic subgroup P.

The geometry of 𝑃𝑚𝑖𝑛–quasi-Hitchin representations in PSL(𝑛,C) has been studied by Dumas–
Sanders [DS20]. In particular, they proved that flag domains of discontinuity Ω𝜌 satisfy a Poincaré
duality of rank dim(𝐺/𝑄) − 2 and computed the cohomology of 𝑀𝜌. They conjectured that 𝑀𝜌

admits a fibration over the surface Σ. Theorem A applies in this situation and thus gives a positive
answer to their conjecture.

3. Positive representations. The Hitchin component is one example of a higher rank Teichmüller com-
ponent. Other examples are formed by maximal representations, and more generally by spaces of
Θ–positive representations introduced in [GW18, GW]. Here, Θ is a subset of the set of simple roots
Δ . Hitchin representations are Δ–positive representations. Maximal representations into Hermitian
groups of tube type are {𝛼}–positive for a specific choice of 𝛼 ∈ Δ . There are two further families of
Lie groups that admit Θ–positive structures and Θ–positive representations. When G is a Lie group
carrying a Θ–positive structure, then there is a special simple three-dimensional Θ–principal sub-
group in G; see [GW]. Contrary to the principal subgroup of a split real Lie group, this H might have
a compact centralizer, so there is a compact extension H of the Θ–principal subgroup that embeds
into G. We choose a discrete and faithful representation 𝜌0 : 𝜋1 (Σ) → 𝐻 and call 𝜄◦ 𝜌0 : 𝜋1 (Σ) → 𝐺
a twisted Θ–principal embedding. This representation is 𝑃Θ–Anosov, where 𝑃Θ is the parabolic sub-
group determined by Θ. In fact, any deformation of 𝜄 ◦ 𝜌0 is 𝑃Θ–Anosov [GLW, BGL+24], and thus,
Theorem A applies.

Note that there are cases where not every Θ–positive representation arises from a de-
formation of a principal or Θ–principal Fuchsian representation. In particular, when 𝐺 =
Sp(4,R), SO(2, 3), SO(𝑛, 𝑛 + 1), there are connected components of the space of Θ–positive repre-
sentations where every representation is Zariski-dense. In particular, Theorem A does not apply to
these components. When𝐺 = Sp(4,R), SO(2, 3), it has been proven by other means that the quotient
manifolds 𝑀𝜌 are fiber bundles over Σ; see the discussion in Section 1.3.

https://doi.org/10.1017/fms.2025.4 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2025.4


Forum of Mathematics, Sigma 5

4. P–quasi-positive representations. Similarly to the discussion of quasi-Hitchin representations, when
G admits a Θ–positive structure, we can embed G into its complexification 𝐺C, and any Θ–positive
representation 𝜌 : 𝜋1 (Σ) → 𝐺 < 𝐺C will be P–Anosov for a set of parabolic subgroups determined
by Θ. Thus, we can define the set of P–quasi-positive representations as the connected components
of the space of P–Anosov representations into 𝐺C containing a Θ–positive representation into G.
Theorem A then applies to the components of P–quasi-positive representations that contain a twisted
Θ–principal embedding.

Applications of Theorem A are not limited to representations of surface groups. There are
notably interesting examples of Anosov deformations of fundamental groups of higher dimensional
hyperbolic manifolds.

5. Convex divisible representations. The fundamental group 𝜋1 (𝑀) of a closed hyperbolic manifold of
dimension 𝑑 ≥ 3 has a natural discrete and faithful embedding 𝜌0 : 𝜋1 (𝑀) → SO(𝑑, 1) � Isom(H𝑑).
In many examples, 𝜌0 can be deformed into SL(𝑑 + 1,R). All such continuous deformations are
Anosov (see Section 2.4 for details), so Theorem A applies to all such deformations, as well as further
small deformations in SL(𝑑 + 1,C).

6. H𝑝,𝑞-convex-cocompact representations. Similarly, the representation 𝜌0 can often be continuously
deformed into SO(𝑑, 𝑑 ′), 𝑑 ′ ≥ 2, and every such deformation remains Anosov (see Section 2.4 for
details). Theorem A thus applies to all such deformations, as well as further small deformations into
SO(𝑑 + 𝑑 ′,C).
Even if we know that 𝑀𝜌 is a fiber bundle over the locally symmetric space Γ\𝑆𝐻 , it seems difficult

in general to determine precisely the topology of the fiber. Explicit descriptions of the fibers have been
given in some cases; see Section 1.3. In fact, the main reason why such a general result as Theorem A
has been previously overlooked seems to be that, in interesting low dimensional situations, there are
explicit and natural H–equivariant fibrations from Ω to 𝑆𝐻 which are not smooth and whose fibers are
not manifolds.

In the proof of Theorem A, the assumption that 𝜌 is a P–Anosov deformation of a rank one lattice
is used crucially in order to reduce to the ‘Fuchsian’ case. Indeed, Guichard–Wienhard proved that the
topology of 𝑀𝜌 is invariant under continuous deformation of 𝜌 in Anosov𝑃 (Γ, 𝐺). We can thus assume
without loss of generality that 𝜌 = 𝜄 ◦ 𝜌0. In that case, the domain Ω𝜌 is H–invariant, and our main
theorem follows from the following general result:
Lemma C (See Lemma 3.5). Let X be a smooth manifold with a proper action of a semisimple Lie
group H. Then there exists a smooth H–equivariant fibration from X to the symmetric space 𝑆𝐻 .

Though this fairly general lemma sounds like a classical result, it seems to have been overlooked by
people in the field. To prove it, we fix an arbitrary torsion-free uniform lattice Γ ⊂ 𝐻, choose a smooth
Γ–equivariant map from X to 𝑆𝐻 , and then take a barycentric average of f under some action of H.

A more precise version of Theorem A (see Theorem 3.3 and Corollary 3.4) shows that 𝑀𝜌 is a
fiber bundle over Γ\𝑆𝐻 associated to an explicit principal K–bundle, where K is a maximal compact
subgroup of H. In order to complete the description of 𝑀𝜌, the only missing element is the topology of
the fiber. The topology of the fiber has been determined in some cases; see Section 1.3. In the second
part of the paper, we determine the fiber in a special low-dimensional case.

1.2. Part 2: Symplectic quasi-Hitchin representations

In the second part of the paper, we focus on P–quasi-Hitchin representations into PSp(4,C), where P
is the stabilizer of a line in CP3. Let Γ be the fundamental group of a closed surface Σ of genus 𝑔 ≥ 2,
embedded as a uniform lattice in 𝐻 = PSL(2,R) via a Fuchsian representation 𝜌0. Let 𝜄0 : PSL(2,R) →
PSp(4,C) be the principal representation. We see 𝜄0 ◦ 𝜌0 as a P–Anosov representation, and we consider
P–quasi-Hitchin representations (i.e., P–Anosov deformations of 𝜄0 ◦ 𝜌0).

Guichard and Wienhard [GW12] show that P–quasi-Hitchin representations 𝜌 : 𝜋1 (Σ) → Sp(4,C)
admit cocompact domains of discontinuity Ω𝜌 in the space Lag(C4) of Lagrangian subspaces of
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C
4, of complex dimension 3. We write as before 𝑀𝜌 = 𝜌(Γ)\Ω𝜌. By topological invariance 𝑀𝜌 is

diffeomorphic to 𝑀𝜄0◦𝜌0 , and Theorem A tells us that this manifold is a smooth fiber bundle over the
hyperbolic surface Σ = Γ\H2.

We prove the following theorem:

Theorem D. Let 𝜌 be a P–quasi-Hitchin representation of a surface group Γ = 𝜋1 (Σ) into PSp(4,C),
and let Ω𝜌 be its flag domain of discontinuity in the space of complex Lagrangians. Then 𝑀𝜌 = 𝜌(Γ)\Ω𝜌

is a smooth fiber bundle over Σ with fiber homeomorphic to CP2#CP
2
.

Remark 1.1. Theorem D does not say anything about the diffeomorphism type of the fiber. This
question is still open, and it is particularly interesting. The question whether CP2#CP

2
admits exotic

smooth structures is open, and it is an important question in the study of smooth 4–manifolds.

The domain of discontinuity Ω𝜌 ⊂ Lag(C2𝑛) is of particular interest in the context of potential
generalizations of Bers’ double uniformization for higher rank Teichmüller spaces. In the case when
𝑛 = 1 and 𝜌 is a Fuchsian representation, Ω𝜌 is the disjoint union of the upper and the lower half disc;
if 𝜌 is a quasi-Fuchsian representation it is precisely the complement of the limit set, and thus consists
of two connected components, whose quotients give rise to the two conformal structures associated
to a quasi-Fuchsian representation. For general n and 𝜌 a Hitchin representation into PSp(2𝑛,R), the
domain of discontinuity Ω𝜌 contains two copies of the symmetric space associated to PSp(2𝑛,R), a
copy of the Siegel upper half space, and a copy of the Siegel lower half space, which are exchanged
by the complex conjugation. However, it also contains other strata, (e.g., all the pseudo-Riemannian
symmetric spaces PSp(2𝑛,R)/PSU(𝑝, 𝑞), 𝑝 + 𝑞 = 𝑛), which are permuted by the complex conjugation.
(For a more detailed discussion, see [Wie16].) The fact that for PSp(4,C) the fiber is CP2#CP

2
appears

to be quite interesting in this respect.
In order to prove Theorem D, we actually have to take quite a bit of a detour. We first give a natural

geometric construction of an H–equivariant continuous fibration 𝜋 from Ω 𝜄0◦𝜌0 to H2. The map 𝜋 is
not smooth, and its fiber F is singular. Nevertheless, the fiber F is homotopy equivalent to the fiber 𝐹 ′

of a smooth equivariant fibration since both are retractions of Ω 𝜄0◦𝜌0 . By carefully studying F, we can
determine its second cohomology and the intersection form on it. Finally, using the classification of
smooth 4–manifolds due to Whitehead, Milnor, Milnor–Hausemoller, Freedman, Serre and Donaldson,
we deduce the homeomorphism type of 𝐹 ′ (which has the same second homology group) and prove the
theorem.

1.3. Related works and perspectives

The topology of flag domains of discontinuity and their quotient manifolds 𝑀𝜌 for Anosov representa-
tions 𝜌 have been studied before in special examples, mainly for Anosov representations of a surface
group 𝜋1 (Σ). We review these results here.

In [GW08], Guichard–Wienhard constructed flag domains of discontinuity in RP3 for Hitchin
representations into PSL(4,R) and PSp(4,R). These domains of discontinuity have two connected
components Ω1 and Ω2. They showed that the quotient manifold 𝜋1 (Σ)\Ω1 is homeomorphic to the
unit tangent bundle 𝑇1𝑆 of the surface and in fact gives rise to convex foliated projective structures of
𝑇1𝑆. The quotient manifold 𝜋1 (𝑆)\Ω2 is a quotient of 𝑇1𝑆 by Z/3Z. They also show that deformations
of quasi-Fuchsian representations (in PSL(2,C) � PO(3, 1)) into PSL(4,R) give rise to projective
structures on 𝑇1𝑆.

The study of Hitchin representations in PSL(4,R) and PSp(4,R) and their domains of discontinuity
in RP3 can be carried out also for lattices in PSL(2,R) that have torsion; see Alessandrini–Lee–
Schaffhauser [ALS23]. There, they show that in this case, the quotientRP3-manifolds are homeomorphic
to certain Seifert-fibered 3–manifolds that depend on the lattice.

In [GW12], determining part of the cohomology of the flag domains of discontinuity played a key role
in showing that the action of 𝜌(Γ) on Ω𝜌 is cocompact. They describe several explicit examples of such
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flag domains of discontinuity – among them, some where 𝑀𝜌 are in fact compact Clifford–Klein forms.
For maximal representations in the symplectic group, and for the domain of discontinuity in RP2𝑛−1,
they announced that 𝑀𝜌 is a fiber bundle over S with fiber O(𝑛)/O(𝑛−2). This in particular also applies
to the components of the space of maximal representations into PSp(4,R) where all representations
are Zariski-dense. This result lead them to conjecture that the quotient manifold 𝑀𝜌 is a compact fibre
bundle over Σ for all higher Teichmüller spaces; see [Wie18, Conjecture 13].

When 𝜌 is a quasi-Hitchin representation into a complex group G, Dumas–Sanders [DS20] computed
the cohomology ring of Ω𝜌 and 𝑀𝜌 for all choices of parabolic subgroups and balanced ideals. They
found that the cohomology of 𝑀𝜌 is the tensor product of the cohomology of Σ with the cohomology
of Ω𝜌 and that, under their hypothesis, Ω𝜌 is a Poincaré duality space. They remarked that this is
compatible with 𝑀𝜌 being a fiber bundle on Σ, and they stated a conjecture [DS20, Conjecture 1.1] that
is a special case of our Theorem A. Interestingly, in their conjecture, they stated that 𝑀𝜌 is a continuous
fiber bundle over Σ because in some examples available at the time, the known fibrations were only
continuous, but not smooth. They verified their conjecture in the special case when 𝐺 = SL(3,C) and
𝐺/𝑄 is the full flag variety.

When 𝐺 = SL(2𝑛,K) with K = R or C, 𝜄 is the principal representation and 𝐺/𝑄 is KP2𝑛−1,
Alessandrini–Davalo–Li [ADL24] proved that M is a fiber bundle over Σ with structure group SO(2),
described the topology of the fiber, and computed the Euler class of the underline SO(2)-bundle. They
used Higgs bundles, as described in the survey paper [Ale19]. In a paper in preparation, Alessandrini–
Li [AL] extend some of these results to the case when 𝐺 = SL(𝑛,K) and 𝐺/𝑄 is a partial flag manifold
parametrizing flags consisting of lines and hyperplanes, and when 𝐺 = SL(4𝑛 + 3,R), 𝐺/𝑄 = S4𝑛+2,
and M is the manifold constructed by Stecker–Treib [ST18].

In [CTT19], Collier–Tholozan–Toulisse studied the case where 𝜌 : 𝜋1 (Σ) → SO(2, 𝑛 + 1) is
a maximal representation of a closed surface group. Such representations admit a flag domain of
discontinuity Ω𝜌 in the space of totally isotropic planes in R2,𝑛+1. The authors prove that such maximal
representations come with an equivariant spacelike embedding of H2 into the pseudo-hyperbolic space
H

2,𝑛 and that the domain Ω𝜌 fibers 𝜌–equivariantly over this spacelike disk, and deduce that 𝑀𝜌 is a
homogeneous fiber bundle over Σ with fiber a Stiefel manifold. The topological invariants of this fiber
bundle turn out to depend on the connected component of 𝜌 as the set of maximal representations. In
particular, for 𝑛 = 3, one obtains circle bundles over Σ whose Euler class varies with the connected
component of maximal representations. Interestingly, there are connected components of the set of
maximal representations into SO(2, 3) that do not contain a representation factoring through PSL(2,R).
For these representations, the fibration of 𝑀𝜌 over Σ is not given by Theorem A.

More generally, let Γ be aH𝑝,𝑞-convex-cocompact subgroup of SO(𝑝, 𝑞 +1) and 𝜌 : Γ → SO(𝑝, 𝑞 +
1). Then Γ admits a Guichard–Wienhard domain of discontinuity Ω𝜌 in SO(𝑝, 𝑞 + 1)/𝑄, where Q is the
stabilizer of a maximal isotropic subspace of R𝑝,𝑞+1. If 𝜕∞Γ is a 𝑝−1-sphere, Seppi, Smith and Toulisse
recently proved that Γ is virtually the fundamental group of an aspherical p-manifold M and that Γ\Ω𝜌

is a smooth fiber bundle over M [SST23]. Interestingly here, the group Γ need not be isomorphic to a
rank one lattice (see [MST23]).

Finally, let us mention that Theorem A was obtained independently by Davalo [Dav24] with a
different method. With the notations above, Davalo associates to a point in Ω 𝜄◦𝜌0 a Buseman function
on the symmetric space of G and shows that the restriction of this Buseman function to the symmetric
space of H admits a unique critical point. The equivariant fibration derived from this construction is
somewhat more explicit than the one in our proof of Theorem A, and its fibers can be expressed as
real projective algebraic varieties. Nevertheless, their topology remains difficult to grasp, even in some
low-dimensional cases such as the one studied in the second part of the paper.

1.4. Wild Kleinian groups

A crucial hypothesis in our Theorem A is that the representation is a deformation of an 𝜄–lattice
representation. We report on an example, by Gromov–Lawson–Thurston [GLT88], showing that this
hypothesis is indeed necessary. They show that one can obtain wild convex-cocompact embeddings of a
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surface group Γ = 𝜋1 (Σ) into Isom(H4) from a ‘twisted necklace’ of 2–spheres in 𝜕∞H4. They construct
such convex-cocompact representations for which 𝑀𝜌 is a nontrivial circle bundle over Σ. Again, by
topological invariance, such 𝜌 cannot be deformed to a Fuchsian representation within the domain
of convex-cocompact representations. Such examples were also obtained independently by Kapovich
[Kap89].

Gromov–Lawson–Thurston also point out that, starting from a knotted necklace, one obtains a
convex-cocompact representation whose limit set is a wild knot. The associated conformal 3–manifold
𝑀𝜌 is then obtained by gluing a circle bundle over a surface with boundary with one or several knot
complements. These examples do not fiber over the surface Σ and their domains of discontinuity have
infinitely generated fundamental group, showing that Theorem A cannot be true in general for Anosov
representations which are not Fuchsian deformations.

For more examples of convex-cocompact subgroups of Isom(H𝑛) with ‘wild’ limit set (e.g., Antoine’s
necklace of Alexander’s horned sphere), we refer to the survey of Kapovich [Kap08].

Outline of the paper

In Section 2, we review the required background on Anosov representations and their domains of
discontinuity. Section 3 is dedicated to the proof of Theorem A. These form the first part of the paper.

The second part of the paper focuses on quasi-Hitchin representations in Sp(4,C). In Section 4,
we describe the action of PSL(2,C) on the Lag(C4) and identify the Lagrangian Grassmannian to the
space of (possibly degenerate) regular ideal tetrahedra in H3. Using this point of view, we construct
a PSL(2,R)–equivariant ‘projection’ from Lag(C4) to H2 that we study more closely in Section 5. In
Section 6, we carefully study the topology of the fiber F of this projection. In particular, we compute
the intersection form on its second cohomology group and conclude the proof of Theorem D using the
topological classification of simply connected 4–manifolds.

Part I
Topology of the quotient of the domain of discontinuity

2. Anosov representations

In this section, we recall the notion of Anosov representation, originally introduced in [Lab06, GW12],
and we discuss several interesting examples. We then review the construction of their flag domains of
discontinuity, based on [GW12, KLP18].

2.1. Definition and properties

There are several equivalent definitions of Anosov representations in literature; see [Lab06, GW12,
KLP17, GGKW17, BPS19, KP22]. Here, we will describe the one that is more suitable for our aims.
Let G be a connected semisimple Lie group with finite center and P a parabolic subgroup of G that is
conjugate to its opposite parabolic subgroup 𝑃op. Two points p and q in 𝐺/𝑃 are called transverse if
there exists 𝑔 ∈ 𝐺 such that 𝑔 Stab𝐺 (𝑝)𝑔−1 = 𝑃 and 𝑔 Stab𝐺 (𝑞)𝑔−1 = 𝑃op.

Let now Γ be a finitely generated hyperbolic group with Gromov boundary 𝜕∞Γ.

Definition 2.1. A representation 𝜌 : Γ → 𝐺 is P–Anosov if there exists a continuous, 𝜌–equivariant map

𝜉 = 𝜉𝜌 : 𝜕∞Γ −→ 𝐺/𝑃

that is

◦ transverse (i.e., 𝜉𝜌 (𝑥) and 𝜉𝜌 (𝑦) are transverse for all 𝑥 ≠ 𝑦 ∈ 𝜕∞Γ);
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◦ strongly dynamics preserving (i.e., for any sequence (𝛾𝑛)𝑛∈N ∈ ΓN with 𝛾𝑛 −→
𝑛→+∞

𝛾+ ∈ 𝜕∞Γ and
𝛾−1
𝑛 −→

𝑛→+∞
𝛾− ∈ 𝜕∞Γ,

𝜌(𝛾𝑛) · 𝑝 −→
𝑛→+∞

𝜉𝜌 (𝛾+)

for all 𝑝 ∈ 𝐺/𝑃 transverse to 𝜉𝜌 (𝛾−)).
A subgroup Γ of G is called Anosov if it is hyperbolic and the inclusion Γ ↩→ 𝐺 is Anosov with respect
to some proper parabolic subgroup P of G.

We denote by Anosov𝑃 (Γ, 𝐺) the subset of Hom(Γ, 𝐺) consisting of P–Anosov representations.
Note that P–Anosov representations are discrete and have finite kernel. In this paper, we will only work
with groups Γ that are torsion-free. For such groups, P–Anosov representations are thus discrete and
faithful.

One of the most important properties of Anosov representations is their structural stablility (i.e.,
Anosov𝑃 (Γ, 𝐺) is open in Hom(Γ, 𝐺)). Structural stability gives a way to construct several Anosov
representations as small deformations of a fixed Anosov representation. This is a major source of
examples, as we will discuss in Section 2.2.

Another important property of P–Anosov representations is that they admit cocompact domains of
discontinuity in boundaries of G (i.e., in homogeneous spaces 𝐺/𝑄, where Q is a proper parabolic
subgroup of G), possibly different from P. We will discuss this property in Section 2.5.

2.2. Construction of Anosov representations via deformation

Let us fix a connected semisimple Lie group H of real rank 1 with finite center, and let 𝐾 ⊂ 𝐻 be its
maximal compact subgroup. The symmetric space 𝑆𝐻 = 𝐻/𝐾 has strictly negative sectional curvature
and is thus Gromov hyperbolic. Recall that a uniform lattice Γ < 𝐻 is a discrete cocompact subgroup of
H. Any such lattice is quasi-isometric to 𝑆𝐻 and is thus a hyperbolic group. Moreover, H has a unique
conjugacy class of parabolic subgroups 𝑃𝐻 . By Guichard–Wienhard [GW12, Thm 5.15], Γ is a 𝑃𝐻–
Anosov subgroup of H. We will always assume that Γ is torsion-free, which is always virtually true by
Selberg’s lemma.
Remark 2.2. Note that the Anosov subgroups of a real rank 1 Lie group H are precisely its quasi-
isometrically embedded (equivalently: quasi-convex, or convex-cocompact) subgroups.

An important case is when H is a compact extension1 of PSL(2,R) (i.e., H admits a surjective
morphism to PSL(2,R) with compact kernel). In that case, 𝑆𝐻 is the hyperbolic planeH2, and a torsion-
free cocompact lattice Γ in H is a surface group (i.e., Γ = 𝜋1 (Σ), where Σ is a closed orientable surface
of genus 𝑔 ≥ 2). A representation 𝜌0 : 𝜋1 (Σ) → PSL(2,R) is called Fuchsian if it is discrete and
faithful (in which case 𝜌0 (𝜋1 (Σ))\H2 is a closed hyperbolic surface diffeomorphic to Σ). Similarly, a
discrete and faithful representation into a compact extension H of PSL(2,R) will be called a twisted
Fuchsian representation. It is the case if and only if its projection to PSL(2,R) is Fuchsian.

Other interesting cases arise when H is (a compact extension of) PO0(1, 𝑛) or PU(1, 𝑛), in which
cases the symmetric space 𝑆𝐻 is respectively the real hyperbolic space H𝑛 = H𝑛

R
and the complex

hyperbolic space H𝑛
C

. The group Γ is then the fundamental group of a closed real hyperbolic or complex
hyperbolic manifold. The other Lie groups of real rank 1 (namely, Sp(1, 𝑛) and F−20

4 ) are slightly less
interesting for this paper since their lattices are superrigid (see below). Still, our Theorem A applies
also to them.

Let us fix a uniform torsion-free lattice Γ ⊂ 𝐻 and an embedding 𝜄 : 𝐻 → 𝐺, where G is a
connected semisimple Lie group G with finite center. By Guichard–Wienhard [GW12, Prop. 4.7], the
representation 𝜄 ◦ 𝜌0 : Γ → 𝐺 is P–Anosov for certain parabolic subgroups P of G (depending only on
G, H and 𝜄). We will call such a representation an 𝜄–lattice representation of Γ in G.

1For example, H can be SL(2, R) , or SL(2, R) × O(𝑛) .
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When H is PSL(2,R), the representation 𝜄 ◦ 𝜌0 : 𝜋1 (Σ) → 𝐺 will be called an 𝜄–Fuchsian repre-
sentation in G. Similarly, when H is a compact extension of PSL(2,R), 𝜄 ◦ 𝜌0 will be called a twisted
𝜄–Fuchsian representation in G.

Using the property of structural stability, we can deform the representation 𝜄 ◦ 𝜌0, obtaining an open
subset of Hom(Γ, 𝐺) entirely consisting of P–Anosov representations of Γ in G. In the following, we
denote by Anosov𝑃, 𝜄,𝜌0 (Γ, 𝐺) the connected component of Anosov𝑃 (Γ, 𝐺) that contains the represen-
tation 𝜄◦ 𝜌0. We will say that a representation of Γ is a P–Anosov deformation of a lattice representation
if it belongs to one of the connected components Anosov𝑃, 𝜄,𝜌0 (Γ, 𝐺). In the special case when H is a
compact extension of PSL(2,R), such representations will be called P–Anosov deformations of a twisted
𝜄–Fuchsian representation.

For this paper, we are particularly interested in P–Anosov deformations of lattice representations
because our Theorem A applies to this special class of Anosov representations. It is a special class,
but it is also rather general since most known Anosov representations fall in this class. This is mainly
because this is the easiest way to construct Anosov representations.

Now, we want to describe the most important examples of such representations. The main source of
examples of interesting deformations of lattice representations come from the case when H is a compact
extension of 𝑃𝑆𝐿(2,R) (i.e., the case of surface groups). These examples are discussed in Section 2.3.
The other important source of examples is the case of uniform lattices in PO0(𝑑, 1) (i.e., fundamental
groups of closed hyperbolic d–manifolds). These examples are discussed in Section 2.4.

Lattices in PU(𝑑, 1) exhibit more rigid behaviour; see [Kli11] and references therein. Still, some of
them admit interesting Zariski dense deformations into higher rank Lie groups, but very few examples
are known. When 𝐻 � Sp(𝑑, 1) or F−20

4 , by a theorem of Corlette [Cor92], Γ is superrigid. In particular,
there are no nontrivial deformations of 𝜄 ◦ 𝜌0 : Γ → 𝐺.

Remark 2.3. All the arguments in this Section 2.2 are more general than the way we presented them.
The hypothesis that Γ is torsion-free is not really needed, and we can also replace the assumption that
Γ is a uniform lattice in H with the more general assumption that Γ is a convex-cocompact subgroup of
H. Also in this higher generality, embeddings of H in other groups G allow to construct open subsets
of Anosov representations in G. In our discussion, however, we restricted our attention to torsion-free
uniform lattices for additional clarity and because our Theorem A works in this special case.

2.3. Anosov representations of surface groups

The case of surface groups is the one that is best understood. When H is a compact extension of
PSL(2,R), Lie theory gives a classification of all representations 𝜄 : 𝐻 → 𝐺, for a simple group G.
Most of the time, twisted 𝜄–Fuchsian representations into G admit small deformations with Zariski dense
image.

In special cases, for particular twisted 𝜄–Fuchsian representations into G, all deformations (not
just small ones) are Anosov. This phenomenon gives rise to the so-called higher rank Teichmüller
components, defined as connected components of the representation variety Hom(𝜋1 (𝑆), 𝐺)/𝐺 that
consist entirely of discrete and faithful representations. They generalize many aspects of classical
Teichmüller spaces, which can be seen as connected components of Hom(𝜋1 (𝑆), PSL(2,R))/PSL(2,R).
An interesting feature for us is that most higher Teichmüller components consist of deformations of
twisted 𝜄–Fuchsian representations.

There are four families of higher rank Teichmüller spaces (see Guichard–Wienhard [GW]). The first
family consists of Hitchin representations, introduced by Hitchin [Hit87]. In fact, Labourie’s original
motivation for defining Anosov representations in [Lab06] was showing that Hitchin representations
form higher rank Teichmüller components. Hitchin representations are defined when G is a split real
simple Lie group. Then G admits a special conjugacy class of representations 𝜄0 : SL(2,R) → 𝐺 called
the principal representation. For this choice, the representation 𝜄0 ◦ 𝜌0 is called a principal Fuchsian
representation in G, and it is Anosov with respect to the minimal parabolic subgroups 𝑃𝑚𝑖𝑛. Hitchin
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components are the connected components containing a principal Fuchsian representation. In particular,
any Hitchin representation is a deformation of a principal Fuchsian representation.

The second family consists of Maximal representations, which are defined when G is a real simple
Lie group of Hermitian type [BIW10]. Maximal representations are in general only Anosov with respect
to a particular maximal parabolic subgroup. Most maximal representations are deformations of twisted
𝜄–Fuchsian representations, but for G locally isomorphic to Sp(4,R), there exist connected components
in the space of maximal representations where every representation is Zariski dense [Got01, GW10,
BGPG12].

The other two families of higher Teichmüller components arise from the notion of Θ–positivity
introduced in [GW18, GW, GLW], which leads to the notion of positive representations. Hitchin rep-
resentations and maximal representations are positive representations, but there are two further fam-
ilies of Lie groups admitting positive representations, Lie groups locally isomorphic to SO(𝑝, 𝑞),
as well as an exceptional family. With a positive structure comes again a special representation
SL(2,R) → 𝐺. This representation might have a compact centralizer, so there is a compact exten-
sion H of SL(2,R) that embeds into G; this is the representation 𝜄. From the classification of the
connected components of positive representations, we see that deformations of twisted 𝜄–Fuchsian rep-
resentations account for most of the connected components; exceptions occur only for SO(𝑝, 𝑝 + 1).
See [GW18], Guichard–Labourie–Wienhard [GLW], Collier [Col15], Aparicio-Arroyo–Bradlow–
Collier–Garcia-Prada–Gothen–Oliveira [AABC+19], Bradlow–Collier–Garcia-Prada–Gothen–Oliveira
[BCGP+], Beyrer–Pozzetti [BP], Beyrer–Guichard–Labourie–Pozzetti–Wienhard [BGL+24] for more
details on positive representations.

Given a representation 𝜌 : 𝜋1 (Σ) → 𝐺 in a higher Teichmüller space, we can embed G into its
complexification 𝐺C. If 𝜌 is Anosov with respect to a parabolic subgroup P, the composition will be
Anosov with respect to the parabolic 𝑃C < 𝐺C. In the complex group not every deformation will be
discrete and faithful, but we can consider the space of Anosov representations Anosov𝑃C (𝜋1 (Σ), 𝐺C)
and the connected component of this space containing 𝜌 : 𝜋1 (Σ) → 𝐺 < 𝐺C. This generalizes the
notion of quasi-Fuchsian representation into PSL(2,C) to this higher rank setting. Of particular interest
to us will be the connected component of Anosov𝑃C (𝜋1 (Σ), 𝐺C) which contains the principal Fuchsian
representation 𝜄0 ◦ 𝜌0. We call this set the quasi-Hitchin space and representations therein quasi-Hitchin
representations. Theorem A applies in particular to quasi-Hitchin representations, and Theorem D
focuses on quasi-Hitchin representations for 𝐺C = Sp(4,C)

2.4. Fundamental groups of hyperbolic manifolds

As mentioned in the introduction, applications of Theorem A are not limited to representations of
surface groups. There are indeed interesting classes of Anosov deformations of fundamental groups of
closed hyperbolic manifolds of higher dimension.

Let Γ = 𝜋1 (𝑀) be the fundamental group of a closed orientable hyperbolic manifold of dimension 𝑑 ≥
3. Then Γ identifies with a uniform torsion-free lattice in SO0(𝑑, 1) � Isom+(H𝑑) via a representation
𝜌0 : Γ → SO0(𝑝, 1). One can construct in every dimension many examples where M contains an
embedded totally geodesic hypersurface. There is then a general ‘bending’ procedure that allows one
to deform the representation 𝜌0 into a higher rank Lie group. We mention two particularly interesting
examples.

Representations dividing a convex set. In a series of four papers, Benoist developed the theory of
divisible convex sets – that is, proper convex subsets of a real projective space admitting a cocompact
action of a discrete group of projective transformations. In particular, taking 𝜄 : SO0(𝑑, 1) → SL(𝑑+1,R)
to be the standard representation, Benoist proved in [Ben05] that any continous deformation 𝜌 : Γ →
SL(𝑑 +1,R) of 𝜄◦ 𝜌0 is discrete, faithful and acts properly discontinuously and cocompactly on an open
strictly convex domain Ω𝜌 of the projective space RP𝑑 . It follows (see [GW12, Proposition 6.1]) that
any continuous deformation of 𝜄 ◦ 𝜌0 is 𝑃1,𝑑-Anosov.
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The domain Ω𝜌 ⊂ RP𝑑 is a flag domain of discontinuity whose quotient is easily described: Ω𝜌 is
contractible and 𝜌(Γ)\Ω𝜌 is diffeomorphic to M. However, it is not the only flag domain of discontinuity
one can associate to a convex divisible representation. There are many flag domains of discontinuity
in other flag varieties of SL(𝑑 + 1,R), as well as flag domains of discontinuities in 𝐺 ′/𝑄 ′ when we
embed SL(𝑑 + 1,R) into a larger Lie group 𝐺 ′. The topology of these domains of discontinuity can be
more complicated. Theorem A applies to all these domains of discontinuity, as long as 𝜌 is in the same
connected component (of Anosov representations) as 𝜄 ◦ 𝜌0.

AdS quasi-Fuchsian andHp,q-convex-cocompact representations. Similarly, consider the embedding
𝜄 : SO0 (𝑑, 1) → SO(𝑑, 2). Barbot and Mérigot proved in [BM12] and [Bar15] that any continuous
deformation 𝜌 of 𝜄 ◦ 𝜌0 into SO(𝑑, 2) is P-Anosov, where P is the stabilizer of an isotropic line.
Moreover, 𝜌 acts properly discontinuously on a convex domain Ω𝜌 contained in the anti-de Sitter
space of dimension 𝑑 + 1, and the quotient 𝜌(Γ)\Ω𝜌 is a globally hyperbolic Cauchy compact anti-de
Sitter spacetime. Barbot and Mérigot call these representations AdS-quasi-Fuchsian. Our main theorem
applies to these representations.

Recently, these results have been generalized to deformations of 𝜄◦ 𝜌0, for 𝜄 : SO0(𝑑, 1) → SO(𝑑, 𝑑 ′)
the standard embedding: Beyrer and Kassel proved in [BK23] that any continuous deformation into
SO(𝑑, 𝑑 ′) is P-Anosov and H𝑑,𝑑′−1-convex-cocompact in the sense of [DGK18]. Our theorem applies
to these deformations, which again exist in many examples. Such groups have in particular a cocompact
flag domain of discontinuity in the space of maximal totally isotropic subspaces of R𝑑,𝑑′ . The topology
of this domain is described in the recent paper [SST23].2

Complex deformations. Note finally that whenever 𝜄◦𝜌0 admits deformations into a real linear algebraic
group G, it also admits deformations into its complexification 𝐺C which are not real. For instance, the
above examples admit respectively Anosov deformations in SL(𝑑 +1,C) and SO(𝑑 + 𝑑 ′,C). Theorem A
applies to such complex deformations as well.

2.5. Domains of discontinuity

A P–Anosov representation 𝜌 : Γ → 𝐺 acts on all homogeneous spaces 𝐺/𝑄, where Q is a proper
parabolic subgroup. The theory of domains of discontinuity, introduced by Guichard–Wienhard [GW12]
and further developed by Kapovich–Leeb–Porti [KLP18], gives conditions for the existence of a 𝜌–
invariant open subset Ω ⊂ 𝐺/𝑄 where the action is properly discontinuous and/or cocompact. We
sketch very briefly this construction here and refer the reader to [KLP18] for details.

The action of P on 𝐺/𝑄 has finitely many orbits which are labelled by elements of 𝑊𝑃\𝑊/𝑊𝑄,
where W is the Weyl group of G and 𝑊𝑃 ,𝑊𝑄 are the subgroups corresponding to P and Q. A subset
I of 𝑊𝑃\𝑊/𝑊𝑄 corresponds to a P–invariant subset 𝐾𝐼 of 𝐺/𝑄 (consisting of the union of the orbits
labelled by elements of I). The set 𝐾𝐼 is closed if and only if I is an ideal for the Bruhat order on W.

Given 𝑥 = 𝑔𝑃 ∈ 𝐺/𝑃, set 𝐾𝐼 (𝑥) = 𝑔𝐾𝐼 (this is well-defined since 𝐾𝐼 is P–invariant). The I–
thickening of a subset 𝐴 ⊂ 𝐺/𝑃 is the set 𝐾𝐼 (𝐴) =

⋃
𝑥∈𝐴 𝐾𝐼 (𝑥). Finally, an ideal is called balanced if

𝐼 ∩ −𝐼 = ∅ and 𝐼 ∪ −𝐼 = 𝑊𝑃\𝑊/𝑊𝑄.
Now, let Γ be a hyperbolic group, 𝜌 : Γ → 𝐺 a P–Anosov representation and 𝜉𝜌 : 𝜕∞Γ → 𝐺/𝑃 the

associated boundary map.
Theorem 2.4 (Kapovich–Leeb–Porti, [KLP18]). If 𝐼 ⊂ 𝑊𝑃\𝑊/𝑊𝑄 is a balanced ideal, then Γ acts
properly discontinuously and cocompactly on the domain

Ω𝜌,𝐼 = (𝐺/𝑄) \ 𝐾𝐼 (𝜉𝜌 (𝜕∞Γ)).

Remark 2.5. If the ideal satisfies 𝐼 ∪ −𝐼 = 𝑊𝑃\𝑊/𝑊𝑄, the construction still gives rise to a domain of
discontinuity, but then the action of Γ on Ω𝜌,𝐼 is not necessarily cocompact.

2The works of Beyrer–Kassel [BK23] and Seppi–Smith–Toulisse [SST23] actually apply to a larger class of groups including
some that are not isomorphic to hyperbolic lattices, such as those constructed in [LM19] and [MST23].
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Remark 2.6. The domain Ω𝜌,𝐼 could a priori be empty, but this requires the topological dimension
of 𝜕∞Γ to equal the codimension of 𝐾𝐼 , which is quite exceptional. In particular, one can always find
a nonempty cocompact flag domain of discontinuity after embedding G into a larger group 𝐺 ′ (see
[GW12, Remark 1.10]).

When Γ is a uniform lattice in a rank 1 subgroup H of G, these domains of discontinuity are actually
preserved by the group H:

Lemma 2.7. Assume Γ is a uniform lattice in a rank 1 Lie group H and 𝜌 = 𝜄 ◦ 𝜌0, where 𝜌0 : Γ → 𝐻
is the inclusion and 𝜄 is an embedding of H into G. Then H preserves Ω𝜌,𝐼 and acts properly on it.

Proof. In this situation, the boundary map 𝜉𝜌 is actually H-equivariant. Hence, its image is H-invariant
and so is the domain Ω𝜌,𝐼 (which only depends on the image of 𝜉𝜌). Now, the properness of the action
of H follows from the proper discontinuity of the action of Γ as a consequence of a general topological
fact (Proposition 2.8 below). �

Proposition 2.8. Let X be a manifold equipped with a smooth action of H and Γ a uniform lattice in H.
Then H acts properly on X if and only if Γ acts properly discontinuously. In that case, the action of Γ is
cocompact if and only if the action of H is.

Proof. Now, let C be a compact subset of H such that Γ𝐶 = 𝐻. Let D be any compact subset of Ω𝜌,𝐼 .
Assume Γ is properly discontinuous. The set

{ℎ ∈ 𝐻 | ℎ · 𝐷 ∩ 𝐷 ≠ ∅}

is contained in 𝐹𝐶, where

𝐹 = {𝛾 ∈ Γ | 𝛾 · (𝐶 · 𝐷) ∩ 𝐷 ≠ ∅}.

Since 𝐶 · 𝐷 is compact, F is finite by proper discontinuity of Γ. Hence, 𝐹𝐶 is compact, proving the
properness of the action of H.

Conversely, if H is properly discontinuous, the set

{𝛾 ∈ Γ | ℎ · 𝐷 ∩ 𝐷 ≠ ∅}

is the intersection of Γ with a compact subset of H, which is thus finite since Γ is discrete.
Assume some compact subset D of X satisfies Γ · 𝐷 = 𝑋 . Then obviously 𝐻 · 𝐷 = 𝑋 . Conversely,

assume 𝐻 · 𝐷 = 𝑋 . Then Γ · (𝐶 · 𝐷) = 𝐻 and 𝐶 · 𝐷 is compact. This proves that cocompactness of Γ
and H are equivalent. �

Remark 2.9. The construction of domains of discontinuity was further generalized by Stecker–Treib
[ST18], who extended it to the case where Q is an oriented parabolic subgroup (i.e., a subgroup of
G lying between a parabolic subgroup and its identity component). The corresponding homogeneous
space 𝐺/𝑄 is called an oriented flag variety. Stecker–Treib [ST18] give conditions for the existence
of (possibly cocompact) domains of discontinuity on 𝐺/𝑄. This generalization is interesting because
some new cocompact domains of discontinuity arise that are not lifts of domains of discontinuity in
the corresponding unoriented flag varieties. We refer the reader to Kapovich–Leeb–Porti [KLP18] and
Stecker–Treib [ST18] for more details. The previous lemma and all the results of Part I apply to these
domains as well.

In order to illustrate the theory, let us now describe the example that will be studied in detail in
Part II of this paper. Consider the case where the group G is Sp(2𝑛,K), where K can be R of C, and
the parabolic subgroup P is the stabilizer of a point in KP2𝑛−1. In this case, 𝐺/𝑃 = KP2𝑛−1. Every
P–Anosov representation 𝜌 : Γ → Sp(2𝑛,K) has an associated 𝜌–equivariant map

𝜉𝜌 : 𝜕∞Γ → KP2𝑛−1.
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We now consider as second parabolic subgroup Q the stabilizer of a Lagrangian subspace in K2𝑛.
Then 𝐺/𝑄 is the Lagrangian Grassmannian Lag(K2𝑛) (i.e., the space of all the Lagrangian subspaces
of K2𝑛). The action of P on 𝐺/𝑄 has only two orbits: a closed orbit consisting of Lagrangian subspaces
containing the line fixed by P, and its complement which is open. In this case, 𝑊𝑃\𝑊/𝑊𝑄 has only
two elements and admits a unique nontrivial ideal I, for which 𝐾𝐼 is the closed P–orbit. This ideal is
balanced.

For each line ℓ ∈ KP2𝑛−1, we have

𝐾ℓ = 𝐾𝐼 (ℓ) = {𝑊 ∈ Lag(K2𝑛) | ℓ ⊂ 𝑊} ⊂ Lag(K2𝑛),

and we define the subset

𝐾𝜌,𝐼 = 𝐾𝐼 (𝜉 (𝜕∞Γ)) =
⋃

𝑡 ∈𝜕∞Γ

𝐾𝜉 (𝑡) ⊂ Lag(K2𝑛).

Guichard and Wienhard [GW12] showed that the complement

Ω𝜌,𝐼 = Lag(K2𝑛) \ 𝐾𝜌,𝐼

is a cocompact domain of discontinuity for 𝜌. Recall that Γ acts freely since it is torsion-free, so we
have that

𝑀𝜌,𝐼 = 𝜌(Γ)\Ω𝜌,𝐼

is a closed manifold endowed with a geometric structure modelled on the parabolic geometry (𝐺, 𝐺/𝑄) =(
Sp(2𝑛,K),Lag(K2𝑛)

)
. Determining the topology of this quotient manifold (and more general such

constructions) is a main focus of this paper.

2.6. Deformations

Consider one of our spaces A = Anosov𝑃, 𝜄,𝜌0 (Γ, 𝐺), defined in Section 2.2. Let Q be a parabolic
subgroup and I a balanced ideal of 𝑊𝑃\𝑊/𝑊𝑄. For every representation 𝜌 ∈ A, we obtain a closed
manifold 𝑀𝜌,𝐼 = 𝜌(Γ)\Ω𝜌,𝐼 endowed with a geometric structure locally modelled on the parabolic
geometry (𝐺,𝐺/𝑄), and whose holonomy factors through3 the representation 𝜌.

Theorem 2.10 (Guichard–Wienhard, [GW12]). Let 𝜌 be a P–Anosov representation of a hyperbolic
group Γ into a semisimple Lie group G and let 𝜌′ be a P–Anosov deformation of 𝜌. Then for any parabolic
subgroup Q of G and any balanced ideal I of 𝑊𝑃\𝑊/𝑊𝑄, there exists a smooth (𝜌, 𝜌′)–equivariant
diffeomorphism from Ω𝜌,𝐼 to Ω𝜌′,𝐼 . In particular, 𝑀𝜌,𝐼 and 𝑀𝜌′,𝐼 are diffeomorphic.

Remark 2.11. The theorem also applies to the quotients of domains of discontinuity constructed by
Stecker–Treib in oriented flag varieties. More generally, it essentially follows from Ehresmann’s fibration
theorem that a smooth family of closed (𝐺, 𝑋)–manifolds is locally topologically trivial.

For a 𝜌 ∈ A = Anosov𝑃, 𝜄,𝜌0 (Γ, 𝐺), the topology of 𝑀𝜌,𝐼 does not depend on 𝜌; hence, we
can denote this smooth manifold by 𝑀𝜌0 , 𝜄,𝐼 . Thus, the space A can be seen as a deformation
space for a family of (𝐺,𝐺/𝑄)–structures on a the fixed closed manifold 𝑀𝜌0 , 𝜄,𝐼 . This is particu-
larly interesting for higher rank Teichmüller spaces because it gives a nice geometric interpretation
of these spaces. It is also interesting for the theory of geometric structures on manifolds because it
gives several interesting examples of closed manifolds with a large deformation space of geometric
structures.

3If Ω𝜌 is not simply connected, then Γ is only a quotient of 𝜋1 (𝑀𝜌) .
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3. Topology of the quotient

3.1. General statement

We can now rephrase Theorem A, which describes the topology of 𝑀𝜌0 , 𝜄,𝐼 constructed from an Anosov
deformation of an 𝜄–lattice representation.

Let us fix a connected semisimple Lie group H of real rank 1 with finite center, a uniform torsion-free
lattice Γ ⊂ 𝐻 and a representation 𝜄 of H into some connected semisimple Lie group G with finite center.
Denote by 𝜌0 the inclusion of Γ into H, let P be a parabolic subgroup of G such that 𝜄 ◦ 𝜌0 is P–Anosov,
and let 𝜌 be a P–Anosov deformation of 𝜄 ◦ 𝜌0. Finally, let 𝑆𝐻 denote the symmetric space of H.

Theorem 3.1. For every parabolic subgroup Q of G and every balanced ideal I of 𝑊𝑃\𝑊/𝑊𝑄, the
domain Ω𝜌,𝐼 is a smooth Γ–equivariant fiber bundle over the symmetric space 𝑆𝐻 , with fiber a closed
manifold 𝔉. In particular, Ω𝜌,𝐼 deformation retracts to 𝔉 and the manifold 𝑀𝜌0 , 𝜄,𝐼 = Γ\Ω𝜌,𝐼 is a fiber
bundle over the locally symmetric space Γ\𝑆𝐻 with fiber 𝔉.

In fact, one can say a bit more on the structure of this bundle. For this, let us recall the notion of fiber
bundle associated to a principal bundle. Let K be a Lie group, 𝑇 → 𝐵 a principal K-bundle and 𝔉 a
smooth manifold equipped with a smooth action of K.

Definition 3.2. Let 𝔈 denote the quotient of 𝑇 × 𝔉 by the diagonal action of K. Then the projection
𝑇 ×𝔉 → 𝑇 factors to a smooth fibration 𝔈 → 𝐵 with fibers diffeomorphic to 𝔉. This fiber bundle is
called the 𝔉-bundle associated to T.

Theorem 3.3. In the setting of Theorem 3.1, the manifold 𝔉 admits a smooth action of the compact
subgroup K, and the manifold 𝑀𝜌0 , 𝜄,𝐼 is the 𝔉–bundle over Γ\𝑆𝐻 associated to the principal K–bundle

Γ\𝐻 → Γ\𝑆𝐻 .

In the previous theorem, the bundle Γ\𝐻 → Γ\𝑆𝐻 must be thought of as an explicit object that
depends only on the lattice Γ. For example, when𝐻 = 𝑃𝑂0(𝑛, 1), Γ\𝑆𝐻 is a closed hyperbolic manifold,
Γ is its fundamental group, and the bundle Γ\𝐻 → Γ\𝑆𝐻 is its frame bundle.

In the special case when H is a compact extension of PSL(2,R), these theorems take an even more
explicit form. In this case, 𝑆𝐻 = H2 is the hyperbolic plane, the group Γ = 𝜋1 (Σ) is a surface group,
and Γ\H2 is the surface Σ. The principal bundle

Γ(Γ)\𝐻 → Σ

depends on the extension H. For example, when𝐻 = PSL(2,R), this bundle is a circle bundle isomorphic
to the unit tangent bundle of Σ (i.e., a circle bundle with Euler class 2𝑔 − 2). When 𝐻 = SL(2,R), this
bundle is the double cover of the unit tangent bundle of Σ (i.e., a circle bundle with Euler class 𝑔 − 1).
For all the interesting groups H, it is possible to understand this bundle explicitly. We will now restate
the previous theorems in the case when 𝐻 = SL(2,R).

Corollary 3.4. Let 𝐻 = SL(2,R), P be a parabolic subgroup of G, Q another parabolic subgroup and
I a balanced ideal of𝑊𝑄\𝑊/𝑊𝑃 . Let 𝜌 be a P–Anosov deformation of an 𝜄–Fuchsian representation of
a surface group 𝜋1 (Σ). Then

◦ Ω𝜌,𝐼 retracts to a closed submanifold 𝔉 of codimension 2 carrying a smooth circle action.
◦ The quotient 𝜌(𝜋1 (Σ))\Ω𝜌,𝐼 is diffeomorphic to a fiber bundle over Σ with fiber 𝔉. This is the 𝔉–

bundle associated to the principal circle bundle of Euler class 𝑔 − 1 over Σ.

One of the main applications of this corollary is for (quasi)-Hitchin representations. Recall that
Hitchin representations are deformations of 𝜄0 ◦ 𝜌0 where 𝜌0 : 𝜋1 (Σ) → SL(2,R) is a Fuchsian
representation and 𝜄0 is the principal representation of SL(2,R) into a real split semisimple Lie group
G, and quasi-Hitchin representations are their 𝑃min–Anosov deformations into its complexification 𝐺C.
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We can also apply Theorems 3.1 and 3.3 to the positive representations that are Anosov deformations
of twisted 𝜄–Fuchsian representations. As discussed in Section 2.3, almost all the positive representations
in the classical groups are of this type, with the only exception of the exceptional components in Sp(4,R)
and SO(𝑝, 𝑝 +1). In order to apply our results to positive representations, we need to consider the group
𝐻 = SL(2,R) × 𝐶 for a certain compact subgroup C. The statement is similar to Corollary 3.4, except
that the structure group of the bundle is now SO(2) ×𝐶. The invariants that characterize the bundle are
the Euler class and the characteristic classes of the C component of 𝜌0.

3.2. Proof of the theorems

A key hypothesis in Theorem 3.1 is the assumption that 𝜌 is a P–Anosov deformation of an 𝜄–Fuchsian
representation 𝜄 ◦ 𝜌0. Indeed, by Guichard–Wienhard’s Theorem 2.10, the topology of 𝑀𝜌,𝐼 does not
change, and we only have to determine it for 𝜌 = 𝜄◦ 𝜌0. The key result for the proof is thus the following.

Lemma 3.5. Let H be a semisimple Lie group with finite center, and 𝐾 ⊂ 𝐻 be its maximal compact
subgroup. Let X be a manifold with a proper action of H. Then there exists an H–equivariant smooth
fibration

𝑝 : 𝑋 → 𝑆𝐻 ,

where 𝑆𝐻 denotes the symmetric space of H.

For the proof, we use the fact that the symmetric space 𝑆𝐻 = 𝐻/𝐾 has non-positive curvature. We
need the notion of barycenter: Given a finite measure of compact support 𝜈 on 𝑆𝐻 , we consider the
function

𝑏 : 𝑆𝐻 → R

defined by

𝑏(𝑦) =
∫

𝑑 (𝑦, 𝑧)2d𝜈(𝑧).

Since 𝑆𝐻 has non-positive curvature, the squared distance function is smooth (as push-forward of the
squared norm under the exponential map), the distance function is convex (see [BGS85, Thm 1.3]),
and hence the squared distance function is strongly convex. This implies that the function b is strongly
convex, and since it is also proper, it has a unique critical point, which is a global minimum. Moreover,
the Hessian of b at the global minimum is positive definite. The barycenter Bar{𝜈} of 𝜈 is defined to be
the unique critical point of b.

Proof of Lemma 3.5. We choose a torsion-free uniform lattice Γ in H. This always exists. See, for ex-
ample, Borel and Harish–Chandra [BHC62]. Then Γ acts freely and properly discontinuously on X
(see Proposition 2.8); hence, the quotient Γ\𝑋 is a manifold. Then Γ is isomorphic to the quotient
𝜋1 (Γ\𝑋)/𝜋1 (𝑋), and we have a homomorphism 𝜓 : 𝜋1 (Γ\𝑋) → Γ = 𝜋1 (Γ\𝑆𝐻 ). Since 𝑆𝐻 is con-
tractible, there exists a map Γ\𝑋 → Γ\𝑆𝐻 inducing 𝜓 (for the details, [Ale03, Prop. 13]). A priori
this map is only continuous, but since smooth maps are dense in the space of continuous maps be-
tween compact manifolds, we can assume that the map is smooth. Lifting this map, we obtain a smooth
Γ-equivariant map

𝑓 : 𝑋 → 𝑆𝐻 .

This allows us to define, for all 𝑥 ∈ 𝑋 , a smooth map 𝐹𝑥 : 𝐻 → 𝑆𝐻 by

𝐹𝑥 (𝑔) = 𝑔 · 𝑓 (𝑔−1 · 𝑥).
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Since f is Γ–equivariant, we have that 𝐹𝑥 (𝑔𝛾) = 𝐹𝑥 (𝑔) for all 𝛾 ∈ Γ. Hence, 𝐹𝑥 descends to a
continuous map 𝐹𝑥 : 𝐻/Γ → 𝑆𝐻 .

Note that we have

𝐹
ℎ ·𝑥 (𝑔) = 𝑔 · 𝑓 (𝑔−1ℎ · 𝑥) = ℎ · 𝐹𝑥 (ℎ−1𝑔). (1)

We can finally define a map 𝑓 : 𝑋 → 𝑆𝐻 as follows:

𝑓 (𝑥) = Bar{𝐹𝑥
∗ 𝜇} ,

where 𝜇 is the Haar measure on 𝐻/Γ, 𝐹𝑥
∗ 𝜇 its push-forward by 𝐹𝑥 , and Bar is the barycenter of a finite

measure with compact support, as defined above. Note that the image of 𝐹𝑥 is compact since 𝐻/Γ is
compact; hence, 𝐹𝑥

∗ 𝜇 does have compact support.
We claim that 𝑓 is H–equivariant. Indeed, for 𝑥 ∈ 𝑋 and 𝑔 ∈ 𝐻, we have

𝑓 (𝑔𝑥) = Bar{𝐹𝑔𝑥
∗ 𝜇}

= Bar{𝑔∗𝐹
𝑥
∗ 𝑔

−1
∗ 𝜇} by (1)

= Bar{𝑔∗𝐹
𝑥
∗ 𝜇} by left invariance of the Haar measure

= 𝑔 · Bar{𝐹𝑥
∗ 𝜇} by equivariance of the barycenter map

= 𝑔 · 𝑓 (𝑥).

The rest follows from the two lemmas below. Lemma 3.6 guarantees that the map 𝑓 is smooth, and
Lemma 3.7 shows that it is an Ehresmann fibration. �

Lemma 3.6. The map 𝑓 , constructed in the proof of Lemma 3.5, is smooth.

Proof. For every 𝑥 ∈ 𝑋 , 𝑓 (𝑥) is the unique critical point of the function

𝑏(𝑦) =
∫
𝑆𝐻

𝑑 (𝑦, 𝑧)2d𝜈(𝑧) ,

where the measure 𝜈 is the push-forward 𝜈 = 𝐹
𝑥
∗ 𝜇. By the change-of-variable formula, this can be

written as

𝑏(𝑦) =
∫
Γ\𝐻

𝑑 (𝑦, 𝐹𝑥 (ℎ))2d𝜇(ℎ) =
∫
Γ\𝐻

𝑑 (𝑦, ℎ 𝑓 (ℎ−1𝑥))2d𝜇(ℎ).

In this setting, the function b depends on the parameter x. To make this more explicit, we write it as
𝑏(𝑥, 𝑦), a smooth function of two variables 𝑥 ∈ 𝑋 and 𝑦 ∈ 𝑆𝐻 . We consider the differential of b with
respect to y:

𝛽(𝑥, 𝑦) = 𝑑𝑦𝑏(𝑥, 𝑦) : 𝑋 × 𝑆𝐻 → 𝑇∗𝑆𝐻 .

Let us fix an 𝑥0 ∈ 𝑋 and the corresponding 𝑦0 = 𝑓 (𝑥0) ∈ 𝑆𝐻 . We choose local coordinates on a
small neighborhood U of 𝑦0 in 𝑆𝐻 . This trivializes the cotangent bundle on U: 𝑇∗𝑈 � 𝑈 × R𝑘 , where
𝑘 = dim(𝑆𝐻 ). Let 𝜋2 : 𝑇∗𝑈 → R𝑘 denote the projection onto the second factor. Now we consider the
composition

𝜋2 ◦ 𝛽(𝑥, 𝑦) = 𝑑𝑦𝑏(𝑥, 𝑦) : 𝑋 ×𝑈 → R𝑘 .

Now, for all x close enough to 𝑥0, the pairs (𝑥, 𝑓 (𝑥)) are precisely the solutions to the equation

𝜋2 ◦ 𝛽(𝑥, 𝑦) = 0.
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We can now apply the implicit function theorem to the function 𝜋2 ◦ 𝛽(𝑥, 𝑦). Consider a tangent vector
to 𝑋 ×𝑈 of the form (0, 𝑢) at a point (𝑥, 𝑓 (𝑥)). Then we have

𝑑𝜋2 (0, 𝑢) : 𝑣 ↦→ Hess𝑦𝑏 𝑓 (𝑥) (𝑢, 𝑣),

where Hess𝑦𝑏 𝑓 (𝑥) (𝑢, 𝑣) denotes the Hessian of the function 𝑏(𝑥, ·) at the point 𝑓 (𝑥) (recall that the
Hessian of a function at critical point is well-defined independently of the local coordinate). Since 𝑏(𝑥, ·)
is strongly convex, Hess𝑦𝑏 𝑓 (𝑥) is positive definite, and the differential of 𝜋2 in the y direction is an
isomorphism from𝑇 𝑓 (𝑥)𝑈 to𝑇∗

𝑓 (𝑥)𝑈 = R𝑘 . Hence, 𝜋2 is a submersion, and the set {(𝑥, 𝑓 (𝑥))} = 𝜋−1
2 (0)

is the graph of a smooth function. �

Lemma 3.7. Let H be a Lie group, and let 𝑋,𝑌 be manifolds equipped with smooth H-actions, where the
action on Y is transitive. Denote by L the stabilizer in H of a point of Y, and identify Y with 𝐻/𝐿. Then,
every H–equivariant map 𝜙 : 𝑋 → 𝑌 is a smooth fiber bundle, associated to the principal L-bundle
𝐻 ↦→ 𝐻/𝐿 (in the sense of Definition 3.2).

Proof. First note that, by homogeneity of Y, the map 𝜙 needs to be onto. We will construct a local
trivialization around every point 𝑦 ∈ 𝑌 . We choose the subgroup L as the stabilizer of y. Hence, L is
acting on the fiber 𝐹 = 𝜙−1(𝑦). Let U be a neighborhood of y in Y that trivializes the bundle 𝐻 → 𝐻/𝐿.
The trivialization is a map 𝑡 : 𝑈 × 𝐿 → 𝐻.

A trivialization of 𝜙 over U is given by the map

𝑇 : 𝑈 × 𝐹 � (𝑢, 𝑓 ) → 𝑡 (𝑢, 𝑒) 𝑓 ∈ 𝑋 ,

where e is the identity of H. Clearly, 𝜙(𝑇 (𝑢, 𝑓 )) = 𝑢, because 𝑡 (𝑢, 𝑒) sends y to u. The map T is 1–
1 because if 𝑡 (𝑢, 𝑒) 𝑓 = 𝑡 (𝑢′, 𝑒) 𝑓 ′, then 𝑢 = 𝑢′ because 𝜙(𝑇 (𝑢, 𝑓 )) = 𝑢, and then by multiplying by
𝑡 (𝑢, 𝑒)−1, we see that 𝑓 = 𝑓 ′. We can also see that the map T is onto 𝜙−1(𝑈) because given 𝑥 ∈ 𝜙−1(𝑈),
let 𝑓 = 𝑡 (𝜙(𝑥), 𝑒)−1𝑥 ∈ 𝐹, and then 𝑥 = 𝑇 (𝜙(𝑥), 𝑓 ).

The construction above shows that every atlas for the bundle 𝐻 → 𝐻/𝐿 induces an atlas for the
bundle 𝜙 : 𝑋 → 𝑌 . It is easy to check that the two atlases have the same transition functions, and hence,
the two bundles are associated. �

The following Proposition 3.8 is similar to Theorems 3.1 and 3.3, but the difference is that it can be
applied to domains of discontinuity that are not necessarily cocompact. Anyway, if the domain is not
cocompact, our conclusion only holds for 𝜄–lattice representations, but does not automatically extend to
their deformations. After that, we will add the hypothesis that the domain of discontinuity is cocompact
and prove the full Theorems 3.1 and 3.3 for their deformations.

Proposition 3.8. Let H be a connected semisimple Lie group with finite center of real rank 1, 𝐾 ⊂ 𝐻
a maximal compact subgroup, and 𝑆𝐻 = 𝐻/𝐾 the symmetric space for H. Let 𝜌0 : Γ → 𝐻 be the
inclusion of a torsion-free uniform lattice in H. Let G be a connected semi-simple Lie group with finite
center, and 𝜄 : 𝐻 → 𝐺 be a representation. Let 𝑃 < 𝐺 be a parabolic subgroup of G such that the
representation 𝜌 = 𝜄 ◦ 𝜌0 is P–Anosov.

Let Q be a parabolic subgroup of G and Ω𝜌,𝐼 ⊂ 𝐺/𝑄 a domain of discontinuity for 𝜌 constructed
from a thickening of a (not necessarily balanced) ideal I. Let 𝑀𝜌,𝐼 = 𝜌\Ω𝜌,𝐼 be the quotient manifold.

Then𝑀𝜌,𝐼 is diffeomorphic to a smooth fiber bundle over 𝑆Γ. The fiber F of the bundle is homotopically
equivalent to the domain Ω𝜌 and carries a K–action that gives the bundle a structure of K–bundle. The
bundle is isomorphic to the K–bundle associated to the K–principal bundle Γ\𝐻 → Γ\𝑆𝐻 via a change
of fiber.

Proof. As we saw in Section 2.2, it was proved in Guichard–Wienhard [GW12, Prop. 4.7] that the
representation 𝜌 is P–Anosov for a certain family of parabolic subgroups described there.

Since Γ is a uniform lattice in H, the group H preserves the domain of discontinuity Ω𝜌 and acts
properly on it by Lemma 2.7. Applying Lemmas 3.5 and 3.7 with 𝑋 = Ω𝜌 and 𝑌 = 𝑆𝐻 , we get a smooth
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H–equivariant fiber bundle map from Ω𝜌 to 𝑆𝐻 , which factors to a smooth fiber bundle map from
M to 𝑆Γ. �

Proof of Theorems 3.1 and 3.3. In Proposition 3.8, we have already proved the theorem for twisted 𝜄–
Fuchsian and for lattice representations. Now, since we are assuming that the domain of discontinuity
is cocompact, it follows from Theorem 2.10 that the topology of M is constant in A. �

Part II
Quasi-Hitchin representations into Sp(4,C)

In the second part of the paper, we will focus on quasi-Hitchin representations into𝐺 = Sp(4,C). We fix
the principal representation 𝜄0 : SL(2,R) → 𝐺 and a Fuchsian representation 𝜌0 : 𝜋1 (Σ) → SL(2,R).
The principal Fuchsian representation 𝜄0 ◦ 𝜌0 is Anosov with reference to every parabolic subgroup P
of G. Recall that a P–quasi-Hitchin representation is a P–Anosov deformation of 𝜄0 ◦ 𝜌0. Our aim is to
determine the topology of the quotient manifolds of the cocompact domains of discontinuity for these
representations.

The group Sp(4,C) has (up to conjugation) three different proper parabolic subgroups, so there are
three flag varieties for us to consider: the projective space CP3, the Lagrangian Grassmannian Lag(C4),
and the full flag variety, which consists of full isotropic flags (i.e., pairs consisting of a line in C4 and a
Lagrangian subspace ofC4 containing that line). The principal Fuchsian representation 𝜄0◦𝜌0 admits four
cocompact domains of discontinuity constructed by a balanced thickening: one in the projective space
CP

3, one in the Lagrangian Grassmannian Lag(C4) (whose construction is described in Section 2.5),
and two in the isotropic full flag variety. The two domains of discontinuity in the isotropic full flags
variety are in fact the pullback of the two domains in CP3 and in Lag(C4) under the natural projection
from the full flag variety to the partial flag varieties; hence, they can be understood from a description of
the latter two. The domain of discontinuity in CP3 was described in Alessandrini–Davalo–Li [ADL24,
Corol. 10.2], where it is proved that the quotient manifold M is diffeomorphic to a fiber bundle over the
surface Σ with fiber S2 × S2.

The only cocompact domain of discontinuity that is not yet understood is the one in Lag(C4). The
second part of this paper is devoted to the description of this domain and its quotient manifold. In
fact, the domain of discontinuity in the Lagrangian Grassmannian is of particular interest because it
contains two copies of the symmetric space associated to Sp(4,R): the Siegel upper half space and
the Siegel lower half space; see [Wie16]. This is very reminiscent of the situation for quasi-Fuchsian
representations, and we hope that a good understanding of the domain of discontinuity and its quotient
manifold might help to shed some light on possible generalizations of the Bers’ double uniformization
theorem for quasi-Hitchin representations.

The construction of the domain of discontinuity in Lag(C4), described in Section 2.5, only uses
the fact that the representation is Anosov with respect to P, where P is the stabilizer of a point
in CP3. We will thus consider a representation 𝜌 in the quasi-Hitchin space QHit𝑃 (Σ, Sp(4,C)) :=
Anosov𝑃, 𝜄0 ,𝜌0 (𝜋1 (Σ), Sp(4,C)).

There is a unique nontrivial ideal I, which allows us to define a cocompact domain of discontinuity
Ω𝜌,𝐼 , with quotient manifold 𝑀𝜌,𝐼 ; see Section 2.5. Since, by Theorem 2.10, the topology of the quotient
manifold does not depend on 𝜌, we can restrict our attention to the case when 𝜌 = 𝜄0 ◦ 𝜌0. With the
representation fixed once for all, we will denote the domain of discontinuity and the quotient manifold
simply by Ω and M, instead of Ω𝜌,𝐼 and 𝑀𝜌,𝐼 .

Our Theorem A gives smooth fibrations

𝑝 : Ω → H2 and 𝑝 : 𝑀 → Σ.

In this second part of the paper, we will study the fiber 𝔉 = 𝔉𝑝 of these maps and prove Theorem D,
which states that 𝔉 is homeomorphic to the 4–manifold CP2#CP

2
.
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Our strategy will be to describe a new 𝜌–equivariant fibration

𝑞 : Ω → H2 and 𝑞 : 𝑀 → Σ,

which is not smooth, but has a more geometric definition and for which the fiber 𝐹 = 𝐹𝑞 is easier
to understand. This new fiber F is not a manifold, but it is homotopically equivalent to the domain of
discontinuity Ω; hence, F is homotopically equivalent to the smooth fiber𝔉. We will see that F is simply
connected, and hence 𝔉 is a simply connected 4–manifold. A smooth simply connected 4–manifold is
determined up to homeomorphism by its homotopy type; hence, we can determine 𝔉 by computing the
homotopy invariants of F.

In order to define the fibration q, we will study the action of SL(2,C) on the Lagrangian Grassmannian
Lag(C4) induced by the principal representation 𝜄0. In Section 4, we will discuss the SL(2,C)–orbits
in Lag(C4), and this discussion will allow us to define q at the end of the section. In Section 5, we will
study the fiber F, and in Section 6, we will use our results on the topology of F to understand 𝔉.

4. Lagrangians as regular ideal tetrahedra

In this section, we will study the action of SL(2,C) on Lag(C4) and its orbits. This will allow us to
define the projection 𝑞 : Ω → H2 explicitly.

4.1. Lagrangian subspaces in C2𝑛

LetK beR orC, and let𝑉𝑛,K = K(2𝑛−1) [𝑋,𝑌 ] be the space of homogeneous polynomials of degree 2𝑛−1
in the variables X and Y. We fix an explicit basis of 𝑉𝑛,K given by the polynomials 𝑃𝑘 = 𝑋2𝑛−1−𝑘𝑌 𝑘 for
𝑘 = 0, . . . , 2𝑛 − 1. In particular, dim(𝑉𝑛,K) = 2𝑛. We remark that 𝑉𝑛,K = Sym2𝑛−1 (𝑉1,K), or, in words,
that 𝑉𝑛,K is the (2𝑛 − 1)-st symmetric power of 𝑉1,K.

We endow 𝑉1,K with the symplectic form 𝜔1,K determined by 𝜔1,K (𝑋,𝑌 ) = 1. This induces a
symplectic form 𝜔𝑛,K = Sym2𝑛−1𝜔1,K on 𝑉𝑛,K. Explicitly, this symplectic form is determined by the
following formulae: {

𝜔𝑛,K (𝑃𝑘 , 𝑃𝑙) = 0 if 𝑘 + 𝑙 ≠ 2𝑛 − 1
𝜔𝑛,K (𝑃𝑘 , 𝑃2𝑛−1−𝑘 ) = (−1)𝑘 𝑘!(2𝑛−1−𝑘)!

(2𝑛−1)! .

Here, we are mainly interested in the case 𝑛 = 2, where these formulae can be written more explicitly:{
𝜔2,K (𝑋3, 𝑌3) = 1 ,
𝜔2,K (𝑋2𝑌, 𝑋𝑌2) = − 1

3 ,
(2)

all other pairings being zero.
The group Sp(𝑉1,K, 𝜔1,K) � Sp(2,K) � SL(2,K) acts, via symmetric power, on 𝑉𝑛,K, and this

action preserves the symplectic form 𝜔𝑛,K. This defines a representation

𝜄0 : SL(2,K) → Sp(𝑉𝑛,K, 𝜔𝑛,K) � Sp(2𝑛,K)

that is irreducible: the principal representation in Sp(2𝑛,K). This representation induces an action of
SL(2,K) on the projective space P(K(2𝑛−1) [𝑋,𝑌 ]) � KP2𝑛−1. This action can be described explicitly
by considering how SL(2,K) moves the 2𝑛 − 1 roots of a polynomial.

A vector subspace 𝐿 ⊂ 𝑉𝑛,K is called isotropic if 𝐿 ⊂ 𝐿⊥𝜔𝑛,K , where 𝐿⊥𝜔𝑛,K is the orthogonal
complement with respect to 𝜔𝑛,K. An isotropic subspace 𝐿 ⊂ 𝑉𝑛,K is maximal if it has dimension n, or
equivalently if 𝐿 = 𝐿⊥𝜔𝑛,K . In this case, L is called a Lagrangian subspace. Using the fact that 𝜔𝑛,K is
skew-symmetric, we can see that all the subspaces of 𝑉𝑛,K of dimension one are isotropic, and hence,
the space of 1–dimensional isotropic subspaces can be identified with the projective space P(𝑉𝑛,K). We
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denote the space of n–dimensional Lagrangian subspaces of 𝑉𝑛,K by Lag(𝑉𝑛,K), and we will call it the
Lagrangian Grassmannian. We can think of it as a subspace of the Grassmannian of n–dimensional
subspaces in 𝑉𝑛,K. The representation 𝜄0 induces an action of SL(2,K) on Lag(𝑉𝑛,K).

One last thing we want to recall about this Lagrangian Grassmanian is its topology. There are different
ways to describe the topology, but the way we will mostly use in this paper is via the subspace topology
inherited from the Grassmanian space, whose topology can be described using the Plücker map or
Plücker coordinates. In our case, the Plücker map is an embedding of the Grassmanian of n–planes in
𝑉𝑛,K into the projectivization of the n-th exterior power of 𝑉𝑛,K:

Gr(𝑛,𝑉𝑛,K) → P
(
Λ𝑛 (𝑉𝑛,K)

)
,

which realizes Gr(𝑛,𝑉𝑛,K) as an algebraic variety, since the image consists of the intersection of a number
of quadrics defined by the Plücker relations. To write these relations, we need to be more precise. Given
𝑊 ∈ Gr(𝑛,𝑉𝑛,K), choose a basis𝑊1,𝑊2, . . . ,𝑊𝑛 of W consisting of column vectors. Let𝑊 be the (2𝑛)×𝑛
matrix whose columns are 𝑊1,𝑊2, . . . ,𝑊𝑛. For any ordered sequence 1 ≤ 𝑖1 < 𝑖2 < · · · < 𝑖𝑛 ≤ 2𝑛 of
n integers, let 𝑊𝑖1 ,...,𝑖𝑛 be the determinant of the 𝑛 × 𝑛 matrix given by the rows 𝑖1, . . . , 𝑖𝑛 of 𝑊 . The
numbers𝑊𝑖1 ,...,𝑖𝑛 are projective coordinates for W, and they satisfy the following relations:

𝑛+1∑
𝑙=1
𝑊𝑖1 ,...,𝑖𝑛−1 , 𝑗𝑙𝑊 𝑗1 ,..., 𝑗𝑙 ,... 𝑗𝑛+1

= 0 ,

for 1 ≤ 𝑖1 < 𝑖2 < · · · < 𝑖𝑛−1 ≤ 2𝑛 and 1 ≤ 𝑗1 < 𝑗2 < · · · < 𝑗𝑛+1 ≤ 2𝑛 and where 𝑗𝑙 denotes the fact that
the 𝑗𝑙 term is omitted. For example, in the case 𝑛 = 2, which will be the main focus of the article, we
will have coordinates𝑊1,2,𝑊1,3,𝑊1,4,𝑊2,3,𝑊2,4 and𝑊3,4, with the relation

𝑊1,2𝑊3,4 −𝑊1,3𝑊2,4 +𝑊1,4𝑊2,3 = 0.

The condition that the space W is Lagrangian gives one additional polynomial equation, so that Lag(C4)
is a projective variety of complex dimension 3.

4.2. SL(2,C)–orbits of Lag(C4)

From now on, we focus on dimension 4. So, let 𝑉K = K(3) [𝑋,𝑌 ] � K4 be the symplectic space of
homogeneous polynomials of degree 3 in X and Y, equipped with the symplectic form 𝜔K = 𝜔2,K
defined above. We define the Veronese embeddings

𝜉1
C

: CP1 → CP3 and 𝜉2
C

: CP1 → Lag(C4)

by

𝜉1
C
([𝑎 : 𝑏]) := 〈(𝑏𝑋 − 𝑎𝑌 )3〉 ∈ CP3

𝜉2
C
([𝑎 : 𝑏]) := 〈(𝑏𝑋 − 𝑎𝑌 )3, (𝑑𝑋 − 𝑐𝑌 ) (𝑏𝑋 − 𝑎𝑌 )2〉 ∈ Lag(C4),

where [𝑐 : 𝑑] is any point chosen in CP1 \ {[𝑎 : 𝑏]}. The Lagrangian 𝜉2
C
([𝑎 : 𝑏]) does not depend on

the choice of [𝑐 : 𝑑]. Let

𝜉1 = 𝜉1
R
= 𝜉1
C
|RP1 and 𝜉2 = 𝜉2

R
= 𝜉2
C
|RP1 .

Similar to Section 2.5, for a line ℓ ∈ CP3, we define

𝐾ℓ = {𝑊 ∈ Lag(C4) | ℓ ⊂ 𝑊} ⊂ Lag(C4).
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We now introduce the set

𝐾C =
⋃
𝑡 ∈CP1

𝐾𝜉 1
C
(𝑡) ⊂ Lag(C4).

More explicitly, we can write

𝐾C = {𝑊 ∈ Lag(C4) | ∃ [𝑎 : 𝑏] ∈ CP1 s.t. (𝑏𝑋 − 𝑎𝑌 )3 ∈ 𝑊};

that is, 𝐾C is the set of Lagrangian subspaces that contain a polynomial with a triple complex root.

Lemma 4.1. 𝐾C is the set of Lagrangians𝑊 ∈ Lag(C4) with a common root; that is,

𝐾C = {𝑊 ∈ Lag(C4) | ∃ [𝑎 : 𝑏] ∈ CP1, ∀𝑝 ∈ 𝑊, 𝑝(𝑋,𝑌 ) = (𝑏𝑋 − 𝑎𝑌 )𝑞(𝑋,𝑌 )}.

Proof. Let 𝑊 ∈ 𝐾C. We know that it contains an element with a triple root. By acting with SL(2,C),
we can assume that the triple root is zero – in other words, that 𝑋3 ∈ 𝑊 . Let 𝑝 ∈ 𝑊 . We can write
𝑝 = 𝑎𝑋3 + 𝑏𝑋2𝑌 + 𝑐𝑋𝑌2 + 𝑑𝑌3. Since W is isotropic, we know that 𝜔2,C(𝑋3, 𝑝) = 0, and hence, by (2),
we see that 𝑑 = 0. Hence, zero is a common root of every element of W.

Conversely, assume that all elements of W have a common root. By acting with SL(2,C), we can
assume that the common root is zero, and hence, all elements of W are of the form 𝑝 = 𝑎𝑋3+𝑏𝑋2𝑌+𝑐𝑋𝑌2.
By (2),

𝜔2,C (𝑎1𝑋
3 + 𝑏1𝑋

2𝑌 + 𝑐1𝑋𝑌
2, 𝑎2𝑋

3 + 𝑏2𝑋
2𝑌 + 𝑐2𝑋𝑌

2) = 1
3
(𝑐1𝑏2 − 𝑏1𝑐2).

Hence, all polynomials in W have the same ratio 𝑏
𝑐 (which can be infinite if 𝑐 = 0). Given a basis 𝑝1, 𝑝2

of W, we can multiply one of them by a scalar to make sure they have the same coefficients 𝑏, 𝑐. Then
𝑝1 − 𝑝2 is a multiple of 𝑋3, and hence, W has an element with a triple root. �

We can now prove the following:

Proposition 4.2. 𝐾C is in bijection with CP1 × CP1.

Proof. We construct an explicit bijection

𝑔 : CP1 × CP1 �−→ 𝐾C

defined by

𝑔(([𝑎 : 𝑏], [𝑐 : 𝑑])) =
{
𝜉2
C
([𝑎 : 𝑏]) if [𝑎 : 𝑏] = [𝑐 : 𝑑]

〈(𝑏𝑋 − 𝑎𝑌 )3, (𝑑𝑋 − 𝑐𝑌 )2 (𝑏𝑋 − 𝑎𝑌 )〉 if [𝑎 : 𝑏] ≠ [𝑐 : 𝑑]

Easy calculations show that the map g is well-defined and bijective. �

Remark 4.3 (The space 𝐾R). The space

𝐾R =
⋃
𝑡 ∈RP1

𝐾𝜉 1
R
(𝑡) ⊂ Lag(C4)

is precisely the space 𝐾𝜌,𝐼 in Section 2.5; hence, Ω = Lag(C4) \ 𝐾R. Note that

𝐾R = {𝑊 ∈ Lag(C4) | ∃ [𝑎 : 𝑏] ∈ RP1 s.t. (𝑏𝑋 − 𝑎𝑌 )3 ∈ 𝑊}
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corresponds to the set of Lagrangian subspaces with a triple real root [𝑎 : 𝑏] ∈ RP1. We thus see that

𝐾R := ∪𝑡 ∈RP1𝐾𝜉 1
R
(𝑡) � RP

1 × CP1 � RP1 × Lag(C2) ,

or, more precisely, 𝐾R = 𝑔(RP1 × Lag(C2)).

Remark 4.4 (Generalisation to Lag(C2𝑛)). The second factor CP1 in the maps above should be in-
terpreted as Lag(C2). In fact, in more generality, we can prove that, for any dimension, 𝐾C �
CP

1 × Lag(C2(𝑛−1) ) and 𝐾R � RP1 × Lag(C2(𝑛−1) ).

Lemma 4.5. Every Lagrangian W contains a polynomial

𝑝(𝑋,𝑌 ) = (𝑏𝑋 − 𝑎𝑌 )2 (𝑑𝑋 − 𝑐𝑌 )

with a double root [𝑎 : 𝑏] ∈ CP1 and a single root [𝑐 : 𝑑] ≠ [𝑎 : 𝑏] ∈ CP1.

Proof. If W has a polynomial with a triple root, then𝑊 ∈ 𝐾C, and we saw above that these Lagrangians
also contain a polynomial with a double root and a single root. If W does not contain a polynomial with
a triple root but has a polynomial with a double root, the third root must be distinct, and hence, we are
done.

Assume now that W has a polynomial with three distinct roots. Acting with SL(2,C), we can assume
that the three roots are [−1 : 1], [0 : 1], [1 : 0], and hence that 𝑋𝑌 (𝑋 + 𝑌 ) = 𝑋2𝑌 + 𝑋𝑌2 ∈ 𝑊 . Let
𝑝 ∈ 𝑊 , 𝑝 = 𝑎𝑋3 + 𝑏𝑋2𝑌 + 𝑐𝑋𝑌2 + 𝑑𝑌3. By (2), we have

𝜔2,C (𝑋𝑌 (𝑋 + 𝑌 ), 𝑝) = 1
3
(𝑏 − 𝑐) ,

which implies that 𝑏 = 𝑐. Hence, 𝑊 =
〈
𝑋𝑌 (𝑋 + 𝑌 ), 𝑎𝑋3 + 𝑑𝑌3〉, and W is determined by [𝑎 : 𝑑]. The

other elements of W are scalar multiples of the ones of the form

𝑞 = 𝑎𝑋3 + 𝛽𝑋2𝑌 + 𝛽𝑋𝑌2 + 𝑑𝑌3.

We want to find elements with a double root. We can find them using the discriminant. The discriminant
Δ of a degree–3 polynomial 𝛼𝑥3 + 𝛽𝑥2𝑦 + 𝛾𝑥𝑦2 + 𝛿𝑦3 is defined by

Δ (𝛼𝑥3 + 𝛽𝑥2𝑦 + 𝛾𝑥𝑦2 + 𝛿𝑦3) := 𝛽2𝛾2 − 4𝛼𝛾3 − 4𝛿𝛽3 − 27𝛼2𝛿2 + 18𝛼𝛽𝛾𝛿 ,

and polynomials with a double root correspond to the zeros of the discriminant. In our case, we have

Δ (𝑞) = 𝛽4 − 4(𝑎 + 𝑑)𝛽3 + 18𝑎𝑑𝛽2 − 27𝑎2𝑑2.

A non-constant polynomial has always at least one solution over the complex numbers; hence, for every
value of a and d, we can find a 𝛽 such that q has a double root. �

The next statement summarizes the results of this subsection, describing the three orbits of the
SL(2,C)–action.

Theorem 4.6. There are three SL(2,C)–orbits in Lag(C4):

◦ 𝜉2
C
(CP1) = SL(2,C) · 〈𝑋3, 𝑋2𝑌〉 is the only closed orbit, and it is in bijection with the diagonal

Δ ⊂ 𝐾C � CP1 × CP1.
◦ 𝐾C \ 𝜉2

C
(CP1) = SL(2,C) · 〈𝑋3, 𝑋𝑌2〉 is not open nor closed, and it is in bijection with CP1 ×CP1 \Δ .

◦ Lag(C4) \ 𝐾C = SL(2,C) · 〈𝑋2𝑌, 𝑋3 + 𝑌3〉 is the only open orbit.
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Proof. We have already discussed above the bijection 𝑔 : CP1 × CP1 �−→ 𝐾C. From the discussion
above, you can see that

◦ 𝜉2
C
(CP1) = SL(2,C) · 〈𝑋3, 𝑋2𝑌〉 corresponds to Lagrangians all of whose polynomials share a

common double root;
◦ 𝐾C \ 𝜉2

C
(CP1) = SL(2,C) · 〈𝑋3, 𝑋𝑌2〉 corresponds to Lagrangians all of whose polynomials share a

common single root.

Since 𝜉2
C

is an embedding, 𝜉2
C
(CP1) � CP1 is closed.

To complete the proof, we need to show that Lag(C4) \ 𝐾C is one SL(2,C) orbit. Given 𝑊 ∉ 𝐾C,
by Lemma 4.5, W contains a polynomial with a double root and a single root. Acting with a matrix
in SL(2,C), we can assume that the roots are [0 : 1] and [1 : 0] (i.e., that 𝑋2𝑌 ∈ 𝑊). Let 𝑝 ∈ 𝑊 ,
𝑝 = 𝑎𝑋3 + 𝑏𝑋2𝑌 + 𝑐𝑋𝑌2 + 𝑑𝑌3. By (2), we have

𝜔2,C (𝑋2𝑌, 𝑝) = −1
3
𝑐 ,

which implies that 𝑐 = 0. Hence,𝑊 =
〈
𝑋2𝑌, 𝑎𝑋3 + 𝑑𝑌3〉. Now we act again with a matrix 𝐴 ∈ SL(2,C).

We choose 𝛼 = 6
√

𝑑
𝑎 , one of the 6 complex roots, and we consider the matrix

𝐴 =

(
𝛼 0
0 𝛼−1

)
When acting on CP1, A fixes [0 : 1] and [1 : 0] and hence sends 𝑋2𝑌 to one of its multiples. Moreover,
A sends 𝑎𝑋3 + 𝑑𝑌3 to a multiple of 𝑋3 + 𝑌3. Hence, 𝐴 ·𝑊 =

〈
𝑋2𝑌, 𝑋3 + 𝑌3〉, and this proves that

Lag(C4) \ 𝐾C = SL(2,C) · 〈𝑋2𝑌, 𝑋3 + 𝑌3〉.

�

4.3. The space of regular ideal tetrahedra

Recall that an ideal hyperbolic tetrahedron inH3 is called regular when all the dihedral angles are equal
to each other (and equal to 𝜋

3 ). These tetrahedra can also be characterized by their volume or their cross-
ratio, since a tetrahedron is regular if and only if it has maximal volume, if and only if the cross-ratio of
its vertices is 1−

√
3𝑖

2 . Recall that given 4 points 𝑧1, 𝑧2, 𝑧3, 𝑧4 in CP1, here seen as the boundary at infinity
of H3, we define their cross-ratio as

[𝑧1, 𝑧2, 𝑧3, 𝑧4] =
(𝑧3 − 𝑧1) (𝑧4 − 𝑧2)
(𝑧3 − 𝑧2) (𝑧4 − 𝑧1)

.

Equivalently, [𝑧1, 𝑧2, 𝑧3, 𝑧4] = 𝐴𝑧4, where 𝐴 ∈ PSL(2,C) is defined by 𝐴𝑧1 = ∞, 𝐴𝑧2 = 0, and 𝐴𝑧3 = 1.
When computing the cross-ratio of the vertices of a tetrahedron, we use the orientation of H3, and we
choose the order of the vertices in a way that is compatible with the orientation. More precisely, if 𝑧1 is
a vertex, the other three vertices lie on the boundary of a copy of the hyperbolic plane. When watched
from 𝑧1, we require that the vertices 𝑧2, 𝑧3, 𝑧4 rotate in the clockwise direction. Note that if you change
the order of the points, in a way that is still compatible with the orientation of H3 as explained, then
the cross-ratio z can become 1 − 1

𝑧 or 1
1−𝑧 . However, if 𝑧0 = 1−

√
3𝑖

2 , then 𝑧0 = 1 − 1
𝑧0

= 1
1−𝑧0

, so the
characterization of regular tetrahedra in terms of cross-ratio does not depend on the chosen order of the
vertices when calculating the cross-ratio, as it should be. We will discuss more properties of regular
ideal hyperbolic tetrahedra in Section 5.1.
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Figure 1. The distance d between the two geodesics.

We will denote by 𝔗H3 the space of regular ideal hyperbolic tetrahedra in H3. In order to define a
topology on 𝔗H3 , we embed it in the symmetric product

Sym4
(
CP

1
)
=
(
CP

1
)4
/𝑆4.

The group SL(2,C) acts transitively on 𝔗H3 via hyperbolic isometries. Moreover, the action of SL(2,C)
on CP1 gives a way to extend this action to the whole symmetric product.

The homogeneous space 𝔗H3 is open but not closed in the symmetric product. We will now describe
its closure; this gives an SL(2,C)–invariant compactification of 𝔗H3 .

Proposition 4.7. The topological frontier of𝔗H3 in Sym4 (
CP

1) consists of all the points in the symmetric
product where one element has multiplicity at least 3. Hence, the frontier is homeomorphic toCP1×CP1,
where the first coordinate contains the element with high multiplicity.

Proof. Given a regular ideal tetrahedron T, denote by 𝑏 ∈ H3 its barycenter. The 4 lines from b to the
4 vertices meet at b, each pair of lines with the same angle, that we will denote here by 𝛼. Note that
𝜋
2 < 𝛼 < 𝜋. Denote by 𝛽 = 1

2 (𝜋 − 𝛼), where 0 < 𝛽 < 𝜋
4 .

We construct the distance d as in Figure 1: Given a plane P passing through b, we construct the cone
with angle 𝛽 from P, and we consider the plane 𝑃′ tangent to the cone at infinity. The distance d is
defined as the distance between the two planes P and 𝑃′. The quantities 𝛼, 𝛽 and d can be made explicit,
but we do not need their explicit values here.

We claim that given a regular ideal tetrahedron with barycenter contained in the open half-space
below P, then at most one of its vertices can be in the closed half-space above 𝑃′, and the other three
vertices must lie in the open half-space below 𝑃′. This is because of the way we have chosen the distance
d between P and 𝑃′. Assume that a regular ideal tetrahedron has barycenter at O, in the open half-space
below P. Assume by contradiction that at least two of its vertices are in the closed half-space above 𝑃′.
Then the line between the two vertices lies entirely in the closed half-space above 𝑃′, but it must be at
distance d from O, a contradiction.

Now consider a sequence of regular ideal tetrahedra that converges to a point of the symmetric
product that does not represent a regular ideal tetrahedron. The barycenters of the tetrahedra of the
sequence are unbounded inH3; otherwise, a subsequence would converge to a regular ideal tetrahedron.
Up to subsequences, we can assume that the barycenters of the tetrahedra converge to a point 𝑥 ∈ CP1.

We consider a small ball in CP1 containing x. This small ball bounds a plane 𝑃′. Let P denote a plane
whose boundary lies in the ball and whose distance from 𝑃′ is at least d. For all the tetrahedra in our
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subsequence whose barycenter lies in the half-space bounded by P, we know from the considerations
above that at least three of their vertices lie in the half-space bounded by 𝑃′.

This shows that for our subsequence, at least three of the vertices of the tetrahedra converge to the
same point x, while the fourth vertices are free to go anywhere. Again up to subsequences, we can
assume that the fourth vertices are also converging to some point in CP1.

This implies that the limit of our original sequence has an element with multiplicity at least 3. �

We will call the points of the frontier degenerate tetrahedra. We will denote the compactified space
by 𝔗

H3 . This space carries a natural SL(2,C)–action and can be described as

𝔗
H3 = 𝔗H3 ∪ CP1 × CP1.

We can now state the main result for this section, which identifies the SL(2,C)–action on Lag(C4)
with the one on 𝔗

H3 . This will be a key step in the proof of Theorem D.
In order to do this, we will use Theorem 4.6, but we still need to identify the unique open SL(2,C)–

orbit in Lag(C4) with the space 𝔗H3 , and verify the the map between the two spaces is continuous.

Theorem 4.8. The space Lag(C4) is SL(2,C)–equivariantly homeomorphic to the space

𝔗
H3 := 𝔗H3 ∪ CP1 × CP1.

Proof. We will construct an equivariant homeomorphism between the two spaces. Since both spaces
are compact Hausdorff, it will be enough to check that the equivariant map is a continuous bijection. As
a first step, we will show that Lag(C4) \ 𝐾C = SL(2,C) · 〈𝑋2𝑌, 𝑋3 + 𝑌3〉 is in bijection with the space
𝔗H3 of regular ideal hyperbolic tetrahedra in H3.

Consider the Lagrangian subspace 𝑊 = 〈𝑋2𝑌, 𝑋3 + 𝑌3〉. We will see that it contains exactly 4
‘special’ polynomials which have a double root. To find them, we use the discriminant as in the proof
of Lemma 4.5. The elements of W are of the form

𝑞 = 𝛼𝑋3 + 𝛽𝑋2𝑌 + 𝛼𝑌3 ;

hence, the discriminant is

Δ (𝑞) = −𝛼(4𝛽3 + 27𝛼3).

We have that Δ (𝑞) = 0 if and only if

1. [𝛼 : 𝛽] = [0 : 1];
2. [𝛼 : 𝛽] =

[
−

3√4
3 : 1

]
;

3. [𝛼 : 𝛽] =
[

1
3 3√2

− 𝑖 1
3√2

√
3

: 1
]
;

4. [𝛼 : 𝛽] =
[

1
3 3√2

+ 𝑖 1
3√2

√
3

: 1
]
.

The associated polynomials have double and single roots, respectively, given by

1. 0 and ∞;
2. 3√2 and − 1

3√4
;

3. −1−𝑖
√

3
3√4

and 1+𝑖
√

3
2 3√4

;

4. −1+𝑖
√

3
3√4

and 1−𝑖
√

3
2 3√4

.

The vertices corresponding to the 4 double roots define an ideal hyperbolic tetrahedron 𝑇 ={
0, 3√2, −1−𝑖

√
3

3√4
, −1+𝑖

√
3

3√4

}
, and the vertices corresponding to the 4 single roots define a ‘dual’ ideal hy-

perbolic tetrahedron 𝑇𝑑𝑢𝑎𝑙 =
{
∞,− 1

3√4
, 1+𝑖

√
3

2 3√4
, 1−𝑖

√
3

2 3√4

}
. The tetrahedron 𝑇𝑑𝑢𝑎𝑙 is the image of T by the
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central symmetry centered at the barycenter of T. A simple calculation shows that the cross-ratio of the
vertices of T and 𝑇𝑑𝑢𝑎𝑙 are equal to 1−

√
3𝑖

2 :[
0, 3√2,

−1 + 𝑖
√

3
3√4

,
−1 − 𝑖

√
3

3√4

]
=

[
∞,− 1

3√4
,

1 + 𝑖
√

3
2 3√4

,
1 − 𝑖

√
3

2 3√4

]
=

1 −
√

3𝑖
2

.

Hence, T and 𝑇𝑑𝑢𝑎𝑙 are regular ideal hyperbolic tetrahedra, as we wanted to prove. Notice that in the
computation of the cross-ratio for T, we changed the order of the vertices to make sure it is compatible
with the orientation of H3.

Now we want to see that the bijections described above are actually homeomorphisms. Remember
also that the topology of Lag(C4) can be described by considering Lag(C4) ⊂ Gr(2,C4) and using the
Plücker coordinates for the topology of Gr(2,C4).

To prove this result, we will extend the map g, defined above, to a map

𝑔 : 𝔗H3 ∪ CP1 × CP1 → Lag(C4) ,

and check that the map is a homeomorphism.
Given a tetrahedron 𝑇 = {𝑣1, . . . , 𝑣4} ∈ 𝔗H3 , we define the dual tetrahedron 𝑇𝑑𝑢𝑎𝑙 =

{𝑣𝑑𝑢𝑎𝑙1 , . . . , 𝑣𝑑𝑢𝑎𝑙4 } as the tetrahedron (also in 𝔗H3 ) with vertices 𝑣𝑑𝑢𝑎𝑙𝑖 such that 𝑣𝑖 , the barycenter b of
T and 𝑣𝑑𝑢𝑎𝑙𝑖 lie on the same geodesic for 𝑖 = 1, . . . , 4. Let 𝑣𝑖 and 𝑣 𝑗 be two distinct vertices of T. If we
let 𝑣𝑖 = [𝑎1 : 𝑏1] ∈ CP1, 𝑣𝑑𝑢𝑎𝑙𝑖 = [𝑐1 : 𝑑1] ∈ CP1, 𝑣 𝑗 = [𝑎2 : 𝑏2] ∈ CP1, and 𝑣𝑑𝑢𝑎𝑙𝑗 = [𝑐2 : 𝑑2] ∈ CP1,
then the Lagrangian subspace associated to T is

𝑔(𝑇) = 𝑊 := 〈(𝑏1𝑋 − 𝑎1𝑌 )2 (𝑑1𝑋 − 𝑐1𝑌 ), (𝑏2𝑋 − 𝑎2𝑌 )2(𝑑2𝑋 − 𝑐2𝑌 )〉 ∈ Lag(C4).

Its Plücker coordinates are

◦ 𝑊1,2 = −𝑏2
1𝑑1(𝑏2

2𝑐2 + 2𝑎2𝑏2𝑑2) + 𝑏2
2𝑑2(𝑏2

1𝑐1 + 2𝑎1𝑏1𝑑1);
◦ 𝑊1,3 = 𝑏2

1𝑑1(𝑎2
2𝑑2 + 2𝑎2𝑏2𝑐2) − 𝑏2

2𝑑2 (𝑎2
1𝑑1 + 2𝑎1𝑏1𝑐1);

◦ 𝑊1,4 = −𝑏2
1𝑑1𝑎

2
2𝑐2 + 𝑏2

2𝑑2𝑎
2
1𝑐1;

◦ 𝑊2,3 = −(𝑏2
1𝑐1 + 2𝑎1𝑏1𝑑1) (𝑎2

2𝑑2 + 2𝑎2𝑏2𝑐2) + (𝑏2
2𝑐2 + 2𝑎2𝑏2𝑑2) (𝑎2

1𝑑1 + 2𝑎1𝑏1𝑐1);
◦ 𝑊2,4 = 𝑎2

2𝑐2 (𝑏2
1𝑐1 + 2𝑎1𝑏1𝑑1) − 𝑎2

1𝑐1 (𝑏2
2𝑐2 + 2𝑎2𝑏2𝑑2);

◦ 𝑊3,4 = −𝑎2
2𝑐2 (𝑎2

1𝑑1 + 2𝑎1𝑏1𝑐1) + 𝑎2
1𝑐1 (𝑎2

2𝑑2 + 2𝑎2𝑏2𝑐2).

Similarly, given a point ([𝑎 : 𝑏], [𝑐 : 𝑑]) ∈ CP1 ×CP1 \Δ , where Δ = {([𝑎 : 𝑏], [𝑎 : 𝑏]) ∈ CP1 ×CP1}
is the diagonal, then the associated Lagrangian subspace is

𝑈 = 〈(𝑏𝑋 − 𝑎𝑌 )3, (𝑏𝑋 − 𝑎𝑌 ) (𝑑𝑋 − 𝑐𝑌 )2〉 ∈ Lag(C4) ,

which has Plücker coordinates

◦ 𝑈1,2 = 2𝑏3𝑑 (𝑏𝑐 − 𝑎𝑑);
◦ 𝑈1,3 = 𝑏2(3𝑎𝑑 + 𝑏𝑐) (𝑏𝑐 − 𝑎𝑑);
◦ 𝑈1,4 = −𝑏𝑎(𝑏𝑐 + 𝑎𝑑) (𝑏𝑐 − 𝑎𝑑);
◦ 𝑈2,3 = −3𝑏𝑎(𝑏𝑐 + 𝑎𝑑) (𝑏𝑐 − 𝑎𝑑);
◦ 𝑈2,4 = 𝑎2 (𝑎𝑑 + 3𝑏𝑐) (𝑏𝑐 − 𝑎𝑑);
◦ 𝑈3,4 = −2𝑎3𝑐(𝑏𝑐 − 𝑎𝑑).

Lastly, given a point ([𝑎 : 𝑏], [𝑎 : 𝑏]) ∈ Δ ⊂ CP1 × CP1, the associated Lagrangian subspace is

𝑍 = 〈(𝑏𝑋 − 𝑎𝑌 )3, (𝑏𝑋 − 𝑎𝑌 )2 (𝑑𝑋 − 𝑐𝑌 )〉 ∈ Lag(C4) ,

for [𝑐 : 𝑑] ≠ [𝑎 : 𝑏] ∈ CP1, and Z has Plücker coordinates

https://doi.org/10.1017/fms.2025.4 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2025.4


28 D. Alessandrini et al.

◦ 𝑍1,2 = −2𝑏4 (𝑏𝑐 − 𝑎𝑑);
◦ 𝑍1,3 = 2𝑎𝑏3 (𝑏𝑐 − 𝑎𝑑);
◦ 𝑍1,4 = −𝑎2𝑏2(𝑏𝑐 − 𝑎𝑑);
◦ 𝑍2,3 = −3𝑎2𝑏2(𝑏𝑐 − 𝑎𝑑);
◦ 𝑍2,4 = 2𝑎3𝑏(𝑏𝑐 − 𝑎𝑑);
◦ 𝑍3,4 = −𝑎4 (𝑏𝑐 − 𝑎𝑑).

We saw in Proposition 4.7 that when a sequence of tetrahedra in 𝔗H3 degenerates, their barycenters
converge to a point in CP1. In that case, at least three vertices will converge to the same point in CP1,
so tetrahedra can only degenerate to points in CP1 × CP1, that is CP1 × CP1 = 𝜕𝔗H3 .

We can now see that 𝑔 |CP1×CP1 and 𝑔 |𝔗
H3 are continuous. For the first case, we only have to consider

the expression of the Plücker coordinates and look at the case ([𝑎𝑛 : 𝑏𝑛], [𝑐𝑛 : 𝑑𝑛]) ∈ CP1 × CP1 \ Δ
such that ([𝑎𝑛 : 𝑏𝑛], [𝑐𝑛 : 𝑑𝑛]) → ([𝑎 : 𝑏], [𝑎 : 𝑏]) ∈ Δ . In particular, we can do the calculations
in the case that [𝑎 : 𝑏] = [0 : 1] ∈ CP1. If we denote 𝑈𝑛

𝑖, 𝑗 the Plücker coordinates associated to
𝐹 (([𝑎𝑛 : 𝑏𝑛], [𝑐𝑛 : 𝑑𝑛])), we can see that the only nonzero coordinate in the limit is𝑈𝑛

1,2, as we wanted.
For the second case 𝑔 |𝔗

H3 , again, we only have to consider the expression of the Plücker coordinates in
term of the vertices of the tetrahedra. Hence, we are left with the discussion of converging sequences
{𝑇𝑛} of tetrahedra in 𝔗H3 such that 𝑇𝑛 → 𝑇∞ ∈ CP1 × CP1. We have two possibilities:

◦ 𝑇∞ = ([𝑎 : 𝑏], [𝑐 : 𝑑]) ∈ CP1 × CP1 \ Δ .
◦ 𝑇∞ = ([𝑎 : 𝑏], [𝑎 : 𝑏]) ∈ Δ .

In the first case, three vertices of the tetrahedron {𝑇𝑛} and all the dual vertices of the tetrahedron
{𝑇𝑑𝑢𝑎𝑙

𝑛 } converge to [𝑎 : 𝑏] ∈ CP1, while in the second case, all the four vertices of the tetrahedron
{𝑇𝑛} and at least three dual vertices of the tetrahedron {𝑇𝑑𝑢𝑎𝑙

𝑛 } converge to [𝑎 : 𝑏] ∈ CP1. In particular,
in the first case we, choose vertices 𝑣𝑛𝑖 = [𝑎𝑛1 : 𝑏𝑛1 ] ∈ CP

1 and 𝑣𝑛𝑗 = [𝑎𝑛2 : 𝑏𝑛2 ] ∈ CP
1 of 𝑇𝑛 with dual

vertices (𝑣𝑛𝑖 )𝑑𝑢𝑎𝑙 = [𝑐𝑛1 : 𝑑𝑛1 ] ∈ CP
1 and (𝑣𝑛𝑗 )𝑑𝑢𝑎𝑙 = [𝑐𝑛2 : 𝑑𝑛2 ] ∈ CP

1, such that

◦ [𝑎𝑛1 : 𝑏𝑛1 ] → [𝑎 : 𝑏];
◦ [𝑐𝑛1 : 𝑑𝑛1 ] → [𝑎 : 𝑏];
◦ [𝑎𝑛2 : 𝑏𝑛2 ] → [𝑐 : 𝑑];
◦ [𝑐𝑛2 : 𝑑𝑛2 ] → [𝑎 : 𝑏].

We can also assume [𝑎 : 𝑏] = [0 : 1] and [𝑐 : 𝑑] = [1 : 0]. If we denote 𝑊𝑛
𝑖, 𝑗 the Plücker coordinates

associated to 𝑔(𝑇𝑛), we can see that the only nonzero coordinate in the limit is𝑊𝑛
1,3, as we wanted.

In the second case, we choose vertices 𝑣𝑛𝑖 = [𝑎𝑛1 : 𝑏𝑛1 ] ∈ CP
1 and 𝑣𝑛𝑗 = [𝑎𝑛2 : 𝑏𝑛2 ] ∈ CP

1 of 𝑇𝑛 with
dual vertices (𝑣𝑛𝑖 )𝑑𝑢𝑎𝑙 = [𝑐𝑛1 : 𝑑𝑛1 ] ∈ CP

1 and (𝑣𝑛𝑗 )𝑑𝑢𝑎𝑙 = [𝑐𝑛2 : 𝑑𝑛2 ] ∈ CP
1, such that

◦ [𝑎𝑛1 : 𝑏𝑛1 ] → [𝑎 : 𝑏];
◦ [𝑎𝑛2 : 𝑏𝑛2 ] → [𝑎 : 𝑏].

Again, we can assume [𝑎 : 𝑏] = [0 : 1]. Let’s denote𝑊𝑛
𝑖, 𝑗 the Plücker coordinates associated to 𝐹 (𝑇𝑛).

We have two cases:

◦ At least one of the sequences [𝑐𝑛1 : 𝑑𝑛1 ] or [𝑐𝑛2 : 𝑑𝑛2 ] do not converge to [𝑎 : 𝑏]. Then we can see that
the only nonzero coordinate in the limit is𝑊𝑛

1,2, as we wanted.
◦ If both [𝑐𝑛1 : 𝑑𝑛1 ], [𝑐

𝑛
2 : 𝑑𝑛2 ] converge to [𝑎 : 𝑏], then we need to be more careful and analyze the

rate of convergence, but after diving all coordinates by 𝑐𝑛1 or 𝑐𝑛2 , we can see that the only nonzero
coordinate in the limit is𝑊𝑛

1,2, as we wanted.
�

In the following, we will denote by

𝑔−1 : Lag(C4) −→ 𝔗
H3

the SL(2,C)–equivariant map defined in the previous theorem.
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4.4. The domain Ω ⊂ Lag(C4)

We will use the barycenters of the tetrahedra to describe interesting subsets of Lag(C4). The barycenter
of a regular ideal tetrahedron is a standard notion in hyperbolic geometry. For a degenerate tetrahedron,
determined by a pair (𝑥, 𝑦) ∈ CP1 × CP1, we define the barycenter as its first coordinate, here x. Recall
that, when seen as an element of the symmetric product, the first coordinate is the point of CP1 that
appears with higher multiplicity.

We now introduce the map

𝜋𝛽 : 𝔗
H3 → H3 := H3 ∪ CP1

that sends a (possibly degenerate) tetrahedron to its barycenter. This map is continuous: this follows
from the same arguments we used in the proof of Proposition 4.7. In the rest of the paper, we will use
a special notation for the inverse images of sets of H3 under this map: if 𝑆 ⊂ H3 is any subset, we will
denote by 𝔗𝑆 the set

𝔗𝑆 := 𝜋−1
𝛽 (𝑆).

So, for example, we can denote the compactification of 𝔗H3 as

𝔗
H3 = 𝔗H3 ∪ 𝔗

CP
1 ,

where 𝔗
CP

1 � CP1 ×CP1 is the set of degenerate tetrahedra. By considering the map 𝑄 := 𝜋𝛽 ◦ 𝑔−1 we
obtain the following:

Corollary 4.9. There is a continuous SL(2,C)–equivariant projection

𝑄 : Lag(C4) → H3.

This corollary will help us to understand the action of SL(2,C) on Lag(C4) because we understand
very well the action on H3. We will now show an example of how this works. We restrict our attention
to the action of SL(2,R) < SL(2,C). This smaller subgroup preserves a copy of H2 ⊂ H3 and of its
boundary RP1 ⊂ CP1. We define the map

𝜋P : H3 → H2

as the orthogonal projection into the hyperbolic plane P bounded by RP1 ⊂ CP1. This map is only
SL(2,R)–equivariant. By composition, we obtain a projection

𝜋P ◦𝑄 : Lag(C4) → H2.

By Remark 4.3, the inverse image of RP1 = 𝜕H2 is the set 𝐾R, and the inverse image of H2 is the set

Ω = Lag(C4) \ 𝐾R.

Restricting the map 𝜋P ◦𝑄 to Ω, we obtain

𝑞 = 𝜋P ◦𝑄 |Ω : Ω → H2 ,

an SL(2,R)–equivariant map from Ω to H2, which is a fiber bundle by Lemma 3.7. Notice that the map
q is proper, because it is the restriction of the map 𝜋P ◦𝑄 which is defined on a compact space.
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We will identify H2 with the hyperbolic plane P ⊂ H3. We denote by O ∈ H2 ⊂ H3 the point
O = (0, 1) ∈ C × R>0, and by F the fiber of q over this point:

𝐹 = 𝑞−1 (O) ⊂ Ω.

Since 𝑞 : Ω → H2 is a fiber bundle over a contractible base, we conclude the following result:

Corollary 4.10. The space Ω is homeomorphic to the product 𝐹 × H2; hence, Ω deformation retracts
to F.

In the following sections, we will describe the topology of F. Since F is homotopy equivalent to
Ω, and Ω is homotopically equivalent to our smooth fiber 𝔉, the information we will find about F will
allow us to determine 𝔉.

5. Description of the fiber from the tetrahedra

We consider the geodesic ℓ := 𝜋−1
P (O), where 𝜋P : H3 → H2 is the orthogonal projection, and O ∈ H2

is the point introduced at the end of the previous section. The geodesic ℓ joins the points at infinity i
and −𝑖. We denote ℓ := ℓ ∩ H3, so we have ℓ = ℓ ∪ {±𝑖}. We denote by ℓ+ the ray of ℓ from O to i, and
by ℓ− the ray from O to −𝑖. In both cases, O is included, and ±𝑖 is not. Similarly, we denote by ℓ+ and
ℓ− the compactified rays that include ±𝑖.

We will identify ℓ with the segment [−∞,∞] via the homeomorphism

𝜂 : ℓ → [−∞,∞]

defined by the following properties:

◦ 𝜂(O) = 0,
◦ 𝜂(±𝑖) = ±∞,
◦ for every 𝑥 ∈ ℓ+, 𝜂(𝑥) = 𝑑H3 (O, 𝑥), and
◦ for any 𝑥 ∈ ℓ−, 𝜂(𝑥) = −𝑑H3 (O, 𝑥).

We define the space 𝔗ℓ consisting of (possibly degenerate) tetrahedra with (possibly degenerate)
barycenter on the geodesic ℓ. This space is homeomorphic to the fiber F: recall that in Theorem 4.8, we
constructed an explicit homeomorphism from the space of (unlabelled) regular ideal tetrahedra to the
Lagrangian Grassmannian

𝑔 : 𝔗
H3 = 𝔗H3 ∪ CP1 × CP1 → Lag(C4).

Then, the fiber 𝐹 = 𝑞−1 (O) ⊂ Ω ⊂ Lag(C4) for the projection 𝑞 = 𝜋P ◦ 𝑄 |Ω : Ω → H2 is exactly the
image 𝑔(𝔗ℓ).

Our main aim in this section will be to describe the space 𝔗ℓ . It will be useful to distinguish between
three subsets: the open subset 𝔗ℓ consisting of tetrahedra with barycenter in ℓ, and the closed subsets
𝔗𝑖 and 𝔗−𝑖 consisting of degenerate tetrahedra with barycenter in i or −𝑖, respectively.

We have that

𝔗𝑖 = {𝑖} × CP1, 𝔗−𝑖 = {−𝑖} × CP1.

The space 𝔗ℓ will be described in Section 5.1. The shape of each of the three pieces, 𝔗ℓ ,𝔗𝑖 ,𝔗−𝑖 is
easy to understand. The most interesting thing is to describe how they are glued together, which is done
in Section 5.2.

We consider the upper half space model H3 = C × R>0 of hyperbolic space. In this model, the
compactified hyperbolic space isH3 = C×R≥0 ∪{∞}, and its boundary is 𝜕H3 = C×{0}∪ {∞} = CP1.
In the following, with a slight abuse of notation, we will simply use complex numbers (or ∞) to
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denote points of 𝜕H3 = CP1. We identify H2 with the plane P = R × R>0 ⊂ H3 whose boundary is
𝜕H2 = RP1 ⊂ CP1. Note that PSL(2,R) acts preserving P .

5.1. Tetrahedra with a fixed barycenter

For any 𝑐 ∈ H3, let 𝔗𝑐 be the set of regular ideal unlabelled tetrahedra with barycenter c. All the spaces
𝔗𝑐 are homeomorphic to each other. The space 𝔗ℓ is homeomorphic to 𝔗𝑐 ×R for any choice of c. We
will now describe 𝔗𝑐 .

Note that for all 𝑐 ∈ ℓ, the space 𝔗𝑐 is homeomorphic to

𝔗𝑐 � (𝑇1 (S2))/𝐴4 � SO(3)/𝐴4 � 𝑇1,𝑜𝑟𝑏 (S2/𝐴4).

This is a Seifert fibered space — an orbifold–S1–bundle over the 2–orbifold S2 (2, 3, 3) = S2/𝐴4 — and
it corresponds to the space described by Martelli [Mar22] in the second line of Table 10.6 for 𝑞 = −2.
The structure of Seifert fibered manifold of 𝔗𝑐 can be described geometrically.

Consider the action of SO(2) on H3 via rotations that fix ℓ. Since we are assuming that 𝑐 ∈ ℓ, this
induces an action of SO(2) on 𝔗𝑐 . The orbits of this action are the fibers of the Seifert fibration. The
three circles associated with the three singular fibers correspond to tetrahedra (with barycenter at the
point c) with special symmetries:

(i) the circles associated with the order–3 cone points correspond to tetrahedra in 𝔗𝑐 with one vertex
in −𝑖 or i, respectively,

(ii) the circle associated with the order–2 cone point corresponds to tetrahedra in 𝔗𝑐 with two sides
orthogonal to ℓ.

We want to decompose 𝔗𝑐 in two sets:

𝔗𝑐 = 𝔗↑
𝑐 ∪ 𝔗↓

𝑐 .

As above, we denote by ℓ+𝑐 the ray of ℓ from c to i, and by ℓ−𝑐 the ray from c to −𝑖. In both cases, c is
included, and ±𝑖 are not. Similarly, we denote by ℓ+𝑐 and ℓ−𝑐 the compactified rays that include ±𝑖. The
boundary of the tetrahedra in the family in (𝑖𝑖) (with order–2 symmetry) will intersect ℓ in two points:
one in ℓ−𝑐 (which we will denote 𝐴𝑐) and the other in ℓ+𝑐 . Let 𝐵𝑐 be the point in ℓ−𝑐 between −𝑖 and 𝐴𝑐
and at (hyperbolic) distance 1 from 𝐴𝑐 . Let 𝐶𝑐 be circle in CP1 that bounds the plane in H3 orthogonal
to ℓ and intersecting it at 𝐵𝑐 and let 𝐷𝑐 (resp. 𝐷𝑐) be the open (resp. closed) disk in CP1 with boundary
𝐶𝑐 and containing −𝑖.

With this notation, we can define 𝔗↑
𝑐 ,𝔗

↓
𝑐 as follows:

◦ 𝔗↑
𝑐 is the set of tetrahedra in 𝔗𝑐 such that all vertices are in CP1 \ 𝐷𝑐;

◦ 𝔗↓
𝑐 is the set of tetrahedra in 𝔗𝑐 such that one of their vertices is in 𝐷𝑐 .

The set 𝔗↑
𝑐 is closed, and the set 𝔗↓

𝑐 is open. They share a common boundary 𝜕𝔗↑
𝑐 = 𝜕𝔗↓

𝑐 , the set
of tetrahedra in 𝔗𝑐 such that one of their vertices is in 𝐶𝑐 . This decomposition is motivated by the
following property:

Proposition 5.1. For every 𝑐 ∈ ℓ and for every 𝑇 ∈ 𝔗↓
𝑐 , the tetrahedron T has exactly one vertex in 𝐷𝑐 .

Proof. The proof is elementary, but it requires several computations. We will break it into three claims
and a main argument following the claims.

Claim 1: The (hyperbolic) distance between the barycenter and the faces of a regular tetrahedron
𝑇 ∈ 𝔗H3 is ln

√
2. To see that, we consider the tetrahedron T with vertices {∞,−1, 1+

√
3𝑖

2 , 1−
√

3𝑖
2 }. We

can check that T is regular by calculating the cross-ratio [∞,−1, 1+
√

3𝑖
2 , 1−

√
3𝑖

2 ]. The barycenter of this
tetrahedron is (0, 0,

√
2), which corresponds to the point of intersection between the geodesic passing
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through 0 and ∞ and the geodesic passing through −1 and orthogonal to the plane {𝑥 = 1
2 } inH3 (which

is the plane containing ∞, 1+
√

3𝑖
2 and 1−

√
3𝑖

2 ). It is easy now to see that the (hyperbolic) distance between
the barycenter and the face of T passing trough {−1, 1+

√
3𝑖

2 , 1−
√

3𝑖
2 } is ln

√
2.

Claim 2: Given a tetrahedron with with order–2 symmetry, the (hyperbolic) distance between its
barycenter c and the point 𝐴𝑐 is ln

(
1
2 (
√

6 +
√

2)
)
. To prove this, we consider the tetrahedron 𝑇 =

{1,−1, (2−
√

3)𝑖,−(2−
√

3)𝑖}. The barycenter of this tetrahedron is (0, 0, 1
2 (
√

6−
√

2)), and the distance
between the barycenter and the geodesic between 1 and −1 is ln

(
1
2 (
√

6 +
√

2)
)
.

Claim 3: Consider two points 𝑂, 𝑃 ∈ H3, and let d be their distance, the length of the segment 𝑂𝑃.
Let C be the plane passing through P and perpendicular to 𝑂𝑃. Let I be a point of CP1 at the boundary
of C. The angle 𝜃 between the segment 𝑂𝑃 and the ray 𝑂𝐼 depends only on d, and it is given by the
function 𝐹 (𝑑) defined by

𝜃 = 𝐹 (𝑑) = 2 arctan(𝑒−𝑑).

This is actually a 2-dimensional question; all the computations can be made in the Poincaré disc model
of the hyperbolic plane. We choose O as the center of the disc, and P, to be determined later, will lie on
the positive real axis. Using the angle 𝜃 as a parameter, we write the point 𝐼 = cos 𝜃+𝑖 sin 𝜃. We compute
the geodesic passing through I and 𝐼, and this determines the position of the point P. An elementary
computation gives the formula.

Now we go back to the statement to prove. Let 𝑐 ∈ ℓ, and let 𝑇 ∈ 𝜕𝔗↓
𝑐 be a tetrahedron with one

vertex 𝑣𝑇 on the circle 𝐶𝑐 . Then the other three vertices of T (different from 𝑣𝑇 ) lie on a circle 𝐶𝑇 ,
spanning a disc 𝐷𝑇 in CP1. The plane bounded by 𝐶𝑇 is perpendicular to the geodesic between 𝑣𝑇 and
c and intersecting it at the point at distance ln

√
2 (by Claim 1) from c and farthest from 𝑣𝑇 . Then, in

order to prove the result above, we just have to check that the circle 𝐶𝑇 does not intersect 𝐷𝑐 . This can
be checked with a computation in the plane S containing ℓ and 𝑣𝑇 . The plane S intersects 𝐶𝑐 in two
points, 𝑣𝑇 and 𝑃1. The distance between c and 𝐵𝑐 is 𝑑1 = 1 + ln

(
1
2 (
√

6 +
√

2)
)
, by Claim 2; hence, by

Claim 3, the angle between 𝑣𝑇 and 𝑃1, seen from c, is 2𝐹 (𝑑1) � 0.752 . . . . The intersection between
the plane S and 𝐶𝑇 is two points; we denote the 𝑃2 the one closest to 𝑃1. The angle between 𝑣𝑇 and 𝑃2,
seen from c, is 𝜋 − 𝐹 (ln

√
2) � 1.91 . . . , by Claim 1 and 3. Since this is larger than 2𝐹 (𝑑1), the circle

𝐶𝑇 does not intersect 𝐷𝑐 . �

We can describe more precisely the topology of 𝔗↑
𝑐 and 𝔗↓

𝑐 .

Proposition 5.2. 𝔗↑
𝑐 is homeomorphic to the complement of an open tubular neighborhood of a (2, 3)–

torus knot (or, equivalently, a trefoil knot);

Proof. Since we know that 𝔗𝑐 � SO(3)/𝐴4, its Seifert structure is well known; see, for example, the
second line of Table 10.6 in Martelli [Mar22] with 𝑞 = −2. In order to prove the first claim, we need
to understand the Seifert structure of the trefoil knot complement. This is described in Moser [Mos71].
We can easily see that it is the same as the one of 𝔗↑

𝑐 . �

Proposition 5.3. 𝔗↓
𝑐 is homeomorphic to an open solid torus D × S1, where D is an open disc in C.

More precisely, there are explicit coordinates

𝔗↓
𝑐 � 𝑇 → (𝑣𝑇 , 𝜃𝑇 ) ∈ 𝐷𝑐 × R/( 2𝜋

3 Z) ,

where 𝐷𝑐 is the disc defined before Proposition 5.1.

Proof. We will describe explicit coordinates for 𝔗↓
𝑐 as we will need them in the following section.

We will parametrize 𝔗↓
𝑐 with 𝐷𝑐 × R/( 2𝜋

3 Z), where R/( 2𝜋
3 Z) is a circle with a parameter that ranges
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between 0 and 2𝜋
3 , and we recall that 𝐷𝑐 is an open disc in CP1 containing the point −𝑖. Removing the

point −𝑖, we obtain an anulus A = 𝐷𝑐 \ {−𝑖}, which we will parametrize with polar coordinates; that is,
we will write it as

A = 𝐷𝑐 \ {−𝑖} = S1 × (0, 1).

Geometrically, we will consider the family F of hyperbolic half-planes bounded by the line ℓ. These
half-planes are orthogonal to the plane bounded by RP1. We denote by F0 the half-plane in F that
contains the point 0 ∈ RP1. Every 𝑧 ∈ A lies in exactly one half-plane in F , denoted by F𝑧 . Define
𝛼(𝑧) ∈ S1 as the angle between F0 and F𝑧 , in the clockwise direction, and 𝜌(𝑧) ∈ (0, 1) as the angle
between the line ℓ and the line 𝑐𝑧 as seen from the point c. The angle 𝜌(𝑧) needs to be rescaled suitably
so that it ranges between 0 and 1 when z moves in 𝐷𝑐 . This describes the coordinates

A � 𝑧 → (𝛼(𝑧), 𝜌(𝑧)) ∈ S1 × (0, 1).

We first consider the family 𝔗↓,3
𝑐 of the tetrahedra in 𝔗↓

𝑐 with bottom vertex in −𝑖. This is one of
the families of tetrahedra with the order–3 symmetry. They form the core of the solid torus and will be
parametrized by {−𝑖} × R/( 2𝜋

3 Z) in the following way: if v is another vertex of a tetrahedron 𝑇 ∈ 𝔗↓,3
𝑐 ,

we associate to T the angle 𝜃𝑇 between the half-plane F0 and F𝑣 , in the clockwise direction, reduced
modulo 2𝜋

3 Z.
The complement of this family (i.e., the space 𝔗↓

𝑐 \ 𝔗↓,3
𝑐 ) will be parametrized by A × R/( 2𝜋

3 Z) as

follows. If 𝑇 ∈ 𝔗↓
𝑐 \ 𝔗↓,3

𝑐 , let 𝑣𝑇 be the unique vertex of T in 𝐷𝑐 \ {−𝑖} = A. The point 𝑣𝑇 will be the
coordinate of T in A. We now define the coordinate 𝜃𝑇 ∈ R/( 2𝜋

3 Z). Once 𝑣𝑇 is fixed (and c is fixed),
the other three vertices lie on a circle 𝐶𝑇 . Let 𝑤𝑇 be the point where 𝐶𝑇 meets the half-plane F𝑣𝑇 .
Define the angle 𝛽(𝑇) as the angle between the half-plane bounded by 𝑣𝑇 , 𝑐 and containing 𝑤𝑇 and
the half-plane bounded by 𝑣𝑇 , 𝑐 and containing another vertex of T, in the clockwise direction, modulo
2𝜋
3 Z. The angle 𝜃𝑇 is defined as 𝜃𝑇 = 𝛽(𝑇) + 𝛼(𝑣𝑇 ). This gives a parametrization

𝔗↓
𝑐 \ 𝔗↓,3

𝑐 � 𝑇 → (𝑣𝑇 , 𝜃𝑇 ) ∈ A × R/( 2𝜋
3 Z).

When the parametrizations of the two parts 𝔗↓,3
𝑐 and 𝔗↓

𝑐 \ 𝔗↓,3
𝑐 are put together, they give a homeo-

morphism

𝔗↓
𝑐 � 𝑇 → (𝑣𝑇 , 𝜃𝑇 ) ∈ 𝐷𝑐 × R/( 2𝜋

3 Z).

The fact that the joint map is continuous follows from the geometric definition: let’s consider a sequence
𝑇𝑛 ∈ 𝔗↓

𝑐 \ 𝔗↓,3
𝑐 such that 𝑇𝑛 → 𝑇 ∈ 𝔗↓,3

𝑐 . Up to a rotation by an isometry that stabilizes ℓ, we can
assume that T corresponds to the parameters (−𝑖, 0) (i.e., that one of its vertices lies on the half-plane
F0). Since 𝑇𝑛 → 𝑇 , we know that 𝑣𝑇𝑛 → −𝑖. We only have to prove that 𝛽(𝑇𝑛) + 𝛼(𝑣𝑇𝑛 ) → 0. To see
this, notice that the half-plane bounded by 𝑣𝑇𝑛 , 𝑐 and containing 𝑤𝑇𝑛 is getting closer and closer to F𝑣𝑇𝑛 .
One of the vertices of 𝑇𝑛 is getting closer and closer to the half-plane F0; hence, the half-plane bounded
by 𝑣𝑇𝑛 , 𝑐 and containing this other vertex of 𝑇𝑛 is getting closer and closer to F0. Hence, the angle 𝛽(𝑇𝑛)
is getting closer and closer to −𝛼(𝑉𝑇𝑛 ) (modulo 2𝜋

3 Z) and this implies that 𝜃𝑇𝑛 is approaching 0. �

5.2. Description of the construction

In this section, we are going to study the topology of the space 𝔗ℓ and prove that it is homeomorphic
to a certain quotient 𝔗O × [−∞, +∞]/∼, where O = ℓ ∩ P ∈ ℓ.
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In order to define the construction, we need to use the following maps:

◦ 𝜄 : H3 → H3 is the reflection in the plane P with boundary RP1 ⊂ CP1.
◦ 𝐿+𝜆 : H3 → H3 is the hyperbolic isometry of H3 with axis ℓ and translation length 𝜆 ∈ R>0 and

attracting fixed point i;
◦ 𝐿−𝜆 : H3 → H3 is the hyperbolic isometry of H3 with axis ℓ and translation length 𝜆 ∈ R>0 and

attracting fixed point −𝑖.

In the following, we will use the decomposition 𝔗𝑐 = 𝔗↑
𝑐 ∪ 𝔗↓

𝑐 , described before Proposition 5.1.
We will also use the notations 𝐴𝑐 , 𝐵𝑐 , 𝐶𝑐 , 𝐷𝑐 introduced there.

The isometry 𝐿+𝜆 can be used to move a tetrahedron in 𝔗.

Proposition 5.4. The transformations 𝐿±𝜆 satisfy the following properties:

1. 𝐿±𝜆 (𝔗𝑐) = 𝔗𝐿±
𝜆 (𝑐) ;

2. 𝐿±𝜆 (𝐵𝑐) = 𝐵𝐿±
𝜆 (𝑐) .

Together with the 𝐿+𝜆, we will also need a companion map that we will denote by 𝑀𝜆. This will be,
for every 𝑐 ∈ ℓ, the map

𝑀𝜆 : 𝔗↓
𝑐 → 𝔗↓

𝐿+
𝜆 (𝑐)

that moves the barycenter of the tetrahedra along ℓ according to 𝐿+𝜆, but does not move the bottom vertex
in 𝐷𝑐 . In order to define 𝑀𝜆, we use the coordinates on 𝔗↓

𝑐 described in the proof of Proposition 5.3.
The map 𝑀𝜆 is defined as follows: For every tetrahedron𝑇 ∈ 𝔗↓

𝑐 , let 𝑀𝜆 (𝑇) be the tetrahedron in 𝔗↓
𝐿+
𝜆 (𝑐)

with barycenter in 𝐿+𝜆 (𝑐), same ‘bottom’ vertex 𝑣𝑇 and same angle 𝜃𝑇 . Notice that in the special case
when 𝑇 ∈ 𝔗↓,3

𝑐 , then 𝑀𝜆 (𝑇) = 𝐿+𝜆 (𝑇), but for tetrahedra outside 𝔗↓,3
𝑐 , 𝑀𝜆 and 𝐿+𝜆 can be very different.

By Proposition 5.3, the map 𝑀𝜆 is continuous on 𝔗↓
𝑐 .

We will need the definition of a function ℎ : CP1 → [−∞, +∞], called the height of z. If 𝑧 ∈ {±𝑖},
we define ℎ𝑖 := +∞ and ℎ−𝑖 := −∞. For every point 𝑧 ∈ CP1 \ {±𝑖}, consider the unique hyperbolic
plane perpendicular to ℓ and containing z in its boundary, and denote by d the intersection of this plane
with ℓ. Denote by ℎ𝑧 := 𝜂(𝑑) ∈ R.

For every tetrahedron in F, we denote by 𝑏𝑇 its barycenter. For every 𝑐 ∈ ℓ and for every tetrahedron
in 𝔗↓

𝑐 , we denote by 𝑣𝑇 the unique vertex of T in 𝐷𝑐 and by ℎ𝑇 the height ℎ𝑣𝑇 .
We can now state the main result of the section.

Theorem 5.5. There is a continuous surjective map

Φ : 𝔗O × [−∞, +∞] → 𝔗ℓ

such that

1. For all 𝑇 ∈ 𝔗O, and 𝑠 ∈ [−∞, +∞], Φ(𝑇,−𝑠) = 𝜄(Φ(𝜄(𝑇), 𝑠));
2. For all 𝑇 ∈ 𝔗O, Φ(𝑇, 0) = 𝑇;
3. For all 𝑇 ∈ 𝔗O, and 𝑠 ∈ [0, +∞), Φ(𝑇, 𝑠) ∈ {𝑇 ∈ 𝔗 | 𝑏𝑇 ∈ ℓ+};
4. The restriction

Φ|𝔗O×(−∞,+∞) : 𝔗O × (−∞, +∞) → 𝔗ℓ

is a homeomorphism;
5. Φ(𝔗↑

O × {+∞}) = {(+𝑖, +𝑖)} ∈ 𝔗𝑖;
6. The restriction Φ+∞ := Φ|𝔗↓

O×{+∞} : 𝔗↓
O × {+∞} → 𝔗𝑖 \ {(+𝑖, +𝑖)} is surjective;
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7. Consider the function f defined by

𝑓 : (−∞, 𝜂(𝐵O)) → (−∞, +∞)

𝑓 (𝑣) = 𝑣 + 1
𝜂(𝐵O) − 𝑣

=
𝑣2 − 𝜂(𝐵O)𝑣 − 1
𝑣 − 𝜂(𝐵O)

.

Then f is a strictly increasing homeomorphism. For every 𝑧 ∈ CP1 with ℎ𝑧 < 𝜂(𝐵O), the f-uplift of
z is the point 𝑧 𝑓 := 𝐿+𝜆 (𝑧), where 𝜆 = 𝑓 (ℎ𝑧) − ℎ𝑧 . When 𝑧 = −𝑖, 𝑧 𝑓 := −𝑖. In this way, ℎ𝑧 𝑓 = 𝑓 (ℎ𝑧).

8. When 𝑧 ∈ CP1 \ {𝑖}, the fiber of Φ at the point (𝑖, 𝑧) ∈ 𝔗𝑖 is the circle

Φ−1(𝑖, 𝑧) = { (𝑇, +∞) | 𝑇 ∈ 𝔗↓
O, (𝑣𝑇 ) 𝑓 = 𝑧 }.

consisting of all the tetrahedra with a fixed vertex 𝑣𝑇 ∈ 𝐷𝑐 .

Proof. For the proof we first construct

Φ+ = Φ|𝔗O×[0,∞) : (𝔗O × [0,∞)) → {𝑇 ∈ 𝔗 | 𝑏𝑇 ∈ ℓ+}

with the property that for all 𝑇 ∈ 𝔗O, Φ+(𝑇, 0) = 𝑇 . Then, we will define

Φ− = Φ|𝔗O×(−∞,0] : (𝔗O × (−∞, 0]) → {𝑇 ∈ 𝔗 | 𝑏𝑇 ∈ ℓ−}

by the formula

Φ−(𝑇,−𝑠) = 𝜄(Φ+(𝜄(𝑇), 𝑠)).

The map Φ will be obtained by glueing Φ+ and Φ−.
We will now discuss the construction of Φ+. First of all, we notice that property (7) is an easy

computation. Moreover, f satisfies the properties

(a) 𝑓 (𝑣) > 𝑣.
(b) �̂� (𝑣) := 𝑓 (𝑣) − 𝑣 = 1

𝜂 (𝐵O)−𝑣 is strictly increasing and tends to +∞ when 𝑣 → 𝜂(𝐵O).

We define Φ+ as follows:

◦ If (𝑇,∞) ∈ 𝔗↑
O × {+∞}, then Φ+((𝑇,∞)) := (+𝑖, +𝑖).

◦ If (𝑇,∞) ∈ 𝔗↓
O × {+∞}, then Φ+((𝑇,∞)) := 𝐿+

𝑓 (ℎ𝑇 )−ℎ𝑇 (𝑣𝑇 ).
◦ If (𝑇, 𝑠) ∈ 𝔗↑

O × [0, +∞), then Φ+((𝑇, 𝑠)) := 𝐿+𝑠 (𝑇).
◦ If (𝑇, 𝑠) ∈ 𝔗↓

O × [0, +∞), then

Φ+((𝑇, 𝑠)) :=
{
𝐿+𝑠 (𝑇) if 𝑠 ≤ 𝑓 (ℎ𝑇 ) − ℎ𝑇
𝑀𝑠− 𝑓 (ℎ𝑇 )+ℎ𝑇 ◦ 𝐿+

𝑓 (ℎ𝑇 )−ℎ𝑇 (𝑇) if 𝑠 ≥ 𝑓 (ℎ𝑇 ) − ℎ𝑇 ,

where the map 𝑀𝜆 is the one defined before the theorem. In order to better understand the map Φ+,
consider, for every 𝑠 ∈ [0,∞], the map represented in Figure 2, defined by

𝜌𝑠 : (−∞, 𝜂(𝐵O) → (−∞, 𝜂(𝐵O) + 𝑠)

𝜌𝑠 (𝑣) = min{𝑣 + 𝑠, 𝑓 (𝑣)} =
{
𝑣 + 𝑠 if 𝑣 + 𝑠 ≤ 𝑓 (𝑣)
𝑓 (𝑣) if 𝑣 + 𝑠 ≥ 𝑓 (𝑣).

.

Note that for any 𝑇 ∈ 𝔗↓
O and 𝑠 ∈ [0, +∞), Φ+((𝑇, 𝑠)) is a tetrahedron 𝑇 ′ with height ℎ𝑇 ′ = 𝜌𝑠 (ℎ𝑇 ).
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Figure 2. The functions 𝑦 = 𝑣 + 𝑠, 𝑦 = 𝑓 (𝑣) and (in red) 𝑦 = 𝔗𝑠 (𝑣) = min{𝑣 + 𝑠, 𝑓 (𝑣)}.

We can now check that for any 𝑡 ∈ 𝔗O, we have that Φ+(𝑇, 0) = 𝐿+0 (𝑇) = 𝑇 = Φ−(𝑇, 0), so we can
combine the maps Φ+ and Φ− into the map Φ we wanted. This calculation also shows that Φ satisfies
properties (1) and (2). From the definition, we can also see that Φ+ satisfies property (5).

Claim 5.6. The map Φ satisfies property (4); that is, the restriction

Φ|𝔗O×(−∞,+∞) : 𝔗O × (−∞, +∞) → 𝔗ℓ

is a homeomorphism.

Proof. For the surjectivity, let 𝑇 ∈ 𝔗𝑐𝑠 , where 𝑐𝑠 ∈ ℓ+. Let 𝑠 = 𝜂(𝑐𝑠) ∈ [0, +∞).

◦ If 𝑇 ∈ 𝔗↑
𝑐𝑠 , let 𝑇 = 𝐿−𝑠 (𝑇) ∈ 𝔗↑

O. Then Φ+(𝑇, 𝑠) = 𝑇 .
◦ If 𝑇 ∈ 𝔗↓

𝑐𝑠 \ 𝔗
↓,3
𝑐𝑠 , let ℎ = 𝜌−1

𝑠 (ℎ𝑇 ). We need to use the parametrization of 𝔗↓
𝑐𝑠 described in the

definition of the map 𝑀𝜆. Let 𝑇 be the (unique) tetrahedra in 𝔗O such that ℎ𝑇 = ℎ and such that
𝜃𝑇 = 𝜃𝑇 . Then again we can see that Φ+(𝑇, 𝑠) = 𝑇 .

◦ If 𝑇 ∈ 𝔗↓,3
𝑐𝑠 , let 𝑇 = 𝐿−𝑠 (𝑇) ∈ 𝔗↑

O. Then Φ+(𝑇, 𝑠) = 𝑇 .

For the injectivity, let 𝑇,𝑇 ′ ∈ 𝔗O and 𝑠, 𝑠′ ∈ [0, +∞) such that Φ+(𝑇, 𝑠) = Φ+(𝑇 ′, 𝑠′) = 𝑇 . Since the
image is the same, the two image tetrahedra have the same barycenter, so 𝑠 = 𝑠′. Also, since the map Φ+

does not change the ‘type’ of the tetrahedra (that is, 𝔗↑
𝑐 or 𝔗↓

𝑐𝑠 ), we have two cases: either 𝑇,𝑇 ′ ∈ 𝔗↑
O

or 𝑇, 𝑇 ′ ∈ 𝔗↓
O.

◦ In the first case, the fact that 𝐿+𝑠 is an isometry implies that 𝑇 = 𝑇 ′.
◦ In the second case, we have that ℎ𝑇 = ℎ𝑇 ′ = 𝜌−1

𝑠 (ℎ𝑇 ). Now we have two possibilities: either
𝑠 ≤ 𝑓 (ℎ𝑇 ) − ℎ𝑇 or 𝑠 ≥ 𝑓 (ℎ𝑇 ) − ℎ𝑇 .
1. If 𝑠 ≤ 𝑓 (ℎ𝑇 ) − ℎ𝑇 , then we use again the fact that 𝐿+𝑠 is injective to see that 𝑇 = 𝑇 ′.
2. If 𝑠 ≥ 𝑓 (ℎ𝑇 ) − ℎ𝑇 , then we use again the fact that the map 𝑀𝑠− 𝑓 (ℎ𝑇 )+ℎ𝑇 𝐿

+
𝑓 (ℎ𝑇 )−ℎ𝑇 is injective to

conclude that 𝑇 = 𝑇 ′.

Since all the maps we use are continuous, we only need to check the continuity at points in 𝔗↑
O ∩𝔗↓

O
– that is, at tetrahedra T such that ℎ𝑇 = 𝜂(𝐵O). Since 𝑓 (𝜂(𝐵O)) = +∞, then we are always in the case
𝑠 ≤ 𝑓 (ℎ𝑇 ) − ℎ𝑇 , so Φ+(𝑇, 𝑠) = 𝐿+𝑠 (𝑇). �

https://doi.org/10.1017/fms.2025.4 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2025.4


Forum of Mathematics, Sigma 37

Claim 5.7. The mapΦ satisfies property (6) – that is, the restrictionΦ+∞ := Φ|𝔗↓
O×{+∞} : 𝔗↓

O×{+∞} →
𝔗𝑖 \ {(+𝑖, +𝑖)} is surjective.

This also shows, together with Claim 5.6, that Φ is surjective.

Proof. Given a point (𝑖, 𝑧) ∈ {+𝑖} × (CP1 \ {+𝑖}), since the function f is a homeomorphism, we can
find a point 𝑣 ∈ CP1 such that 𝑓 (ℎ𝑣 ) = ℎ𝑧 and such that 𝑣 𝑓 = 𝑧. Let 𝑇 ∈ 𝔗O be such that 𝑣𝑇 = 𝑣. Then
T is necessarily in 𝔗↓

O. By definition of the map Φ+, Φ+(𝑇) = (𝑖, 𝑧). �

Now, we only have to prove the following:

Claim 5.8. The map Φ+ is continuous.

Proof. The continuity on 𝔗O × [0, +∞) was established in Claim 5.6. The continuity on 𝔗O × {+∞} is
clear from the definition. So, in order to check the continuity of Φ+, it suffices to check the continuity
for sequences (𝑇𝑛, 𝑠𝑛) ∈ 𝔗O × [0, +∞) such that 𝑇𝑛 → 𝑇 and 𝑠𝑛 → +∞. We have three cases:

(1) If T is in the interior part of 𝔗↑
O, then we can assume that all the 𝑇𝑛 are also in 𝔗↑

O. From the
definition of the map,

Φ+(𝑇𝑛, 𝑠𝑛) = 𝐿+𝑠𝑛 (𝑇𝑛) → (+𝑖, +𝑖) = Φ+(𝑇, +∞),

because all the 𝑇𝑛 are in 𝔗↑
O.

(2) If 𝑇 ∈ 𝔗↓
O, then we can assume that all the 𝑇𝑛 are also in 𝔗↓

O. Since 𝑇𝑛 → 𝑇 , when n is big enough,
we can assume that ℎ𝑇𝑛 is close enough to ℎ𝑇 . Hence, when n is big enough, we can assume that
𝑠𝑛 ≥ 𝑓 (ℎ𝑇𝑛 ) − ℎ𝑇𝑛 . From the definition, we have

Φ+(𝑇𝑛, 𝑠𝑛) = 𝑀𝑠𝑛− 𝑓 (ℎ𝑇𝑛 )+ℎ𝑇𝑛 ◦ 𝐿+𝑓 (ℎ𝑇𝑛 )−ℎ𝑇𝑛 (𝑇𝑛).

This is a tetrahedron 𝑇 ′
𝑛 with vertex 𝑣𝑇 ′

𝑛
equal to 𝐿+

𝑓 (ℎ𝑇𝑛 )−ℎ𝑇𝑛
(𝑣𝑇𝑛 ). Hence, the sequence

Φ+(𝑇𝑛, 𝑠𝑛) converges to Φ+(𝑇, +∞) = 𝐿+
𝑓 (ℎ𝑇 )−ℎ𝑇 (𝑣𝑇 ).

(3) Finally, we assume that 𝑇 ∈ 𝜕𝔗↑
O. If a subsequence of 𝑇𝑛 lies in 𝔗↑

O, we can conclude that
subsequence converges to (𝑖, 𝑖) as in part (1). Now let’s assume that all the 𝑇𝑛s are in 𝔗↓

O, and write
𝑇 ′
𝑛 = Φ+(𝑇𝑛, 𝑠𝑛). Then, ℎ𝑇𝑛 → +∞ and also 𝑓 (ℎ𝑇𝑛 ) − ℎ𝑇𝑛 → +∞; hence, for big enough n, we can

assume that 𝑠𝑛 is as big as we want, and 𝑓 (ℎ𝑇𝑛 ) − ℎ𝑇𝑛 is as big as we want. From this, we see that
ℎ𝑇 ′

𝑛
becomes as big as we want; hence, 𝑇 ′

𝑛 → (+𝑖, +𝑖).

�

This concludes the proof of the theorem. �

On 𝔗O × [−∞, +∞], we consider the following equivalence relation: for 𝑇, 𝑇 ′ ∈ 𝔗O and 𝑡, 𝑡 ′ ∈
[−∞, +∞],

(𝑇, 𝑡) ∼ (𝑇 ′, 𝑡 ′) ⇔

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑇,𝑇 ′ ∈ 𝔗↑
O, 𝑡 = 𝑡

′ = +∞, or
𝑇,𝑇 ′ ∈ 𝜄(𝔗↑

O), 𝑡 = 𝑡
′ = −∞, or

𝑇,𝑇 ′ ∈ 𝔗↓
O, 𝑣𝑇 = 𝑣𝑇 ′ , 𝑡 = 𝑡 ′ = +∞, or

𝑇,𝑇 ′ ∈ 𝜄(𝔗↓
O), 𝑣 𝜄 (𝑇 ) = 𝑣 𝜄 (𝑇 ′) , 𝑡 = 𝑡 ′ = −∞, or

𝑇 = 𝑇 ′, 𝑡 = 𝑡 ′.

Corollary 5.9. The map Φ from Theorem 5.5 descends to a homeomorphism

Φ̄ : 𝔗O × [−∞, +∞]/∼ −→ 𝔗ℓ .
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Proof. The description of the fibers of the mapΦ given in Theorem 5.5 guarantees that the map descends
to the quotient. It is continuous and onto because Φ is continuous and onto. It is 1–1, again from the
description of the fibers. It is a homeomorphism because it is a bijective continuous map from a compact
space to a Hausdorff space. This concludes the proof. �

6. Topology of the fiber

In this section, we continue the study of the fiber 𝐹 = 𝑞−1 (O) of the projection 𝑞 : Ω → H
2, where

O = (0, 1) ∈ C × R>0. In the end, we will use the study of the topology of F to describe the
homeomorphism type of the smooth fiber 𝔉. We start by analyzing the structure of 𝔗ℓ in a bit more
detail.

6.1. Singularities of the fiber F

The space𝐹 � 𝔗ℓ is not a manifold. We will show in this subsection that it has four singular points, and all
the other points have neighborhoods homeomorphic toR4. The four singular points are (+𝑖, +𝑖), (+𝑖,−𝑖) ∈
𝔗𝑖 and (−𝑖,−𝑖), (−𝑖, +𝑖) ∈ 𝔗−𝑖 . Two of them, (+𝑖,−𝑖) and (−𝑖, +𝑖), are ‘mild singularities’ – they are
orbifold points with isotropy group Z3. The other two singular points, (+𝑖, +𝑖) and (−𝑖,−𝑖), are more
complicated singularities, and a small neighborhood of these points looks like the cone over a closed 3–
manifold that is a Dehn filling of the trefoil knot. All such Dehn fillings are described in Moser [Mos71].
As a consequence, we will prove Corollary 6.3, stating that the fibration q is not a smooth map.

We already know, by part (4) of Theorem 5.5, that 𝔗ℓ is a manifold. We will now describe a
neighborhood of the points of 𝔗𝑖 and 𝔗−𝑖 . We only need to discuss 𝔗𝑖 because we have the orientation
reversing homeomorphism 𝜄 that exchanges 𝔗−𝑖 with 𝔗𝑖 .

We first describe the ‘mild’ singular points and the manifold points.

Proposition 6.1. Every point 𝔗𝑖 , except from the two points (+𝑖, +𝑖) and (+𝑖,−𝑖), has a neighborhood
in 𝔗ℓ that is homeomorphic to R4. The point (+𝑖,−𝑖) has a neighborhood in 𝔗ℓ that is homeomorphic
to R4 modded out by a linear action of Z3.

Proof. A labelled tetrahedron is a tuple (𝑇, 𝑣1, 𝑣2, 𝑣3, 𝑣4), where T is a regular ideal tetrahedron and
{𝑣1, 𝑣2, 𝑣3, 𝑣4} is the set of vertices of T. We say that the labelling is even if when watching from the
vertex 𝑣1, the vertices 𝑣2, 𝑣3, 𝑣4 appear in counter-clockwise cyclic order. The labelling is odd otherwise.
An even labelled tetrahedron is determined by its baricenter 𝑏𝑇 and the first two vertices 𝑣1, 𝑣2. The
vertices 𝑣3 and 𝑣4 are determined by these data.

We denote by 𝔗𝑒𝑣𝑒𝑛
O the set of all even labelled tetrahedra with barycenter in O. The group 𝐴4 acts

on 𝔗𝑒𝑣𝑒𝑛
O in the following way: if 𝜎 ∈ 𝐴4, define

𝜎 · (𝑇, 𝑣1, 𝑣2, 𝑣3, 𝑣4) = (𝑇, 𝑣𝜎 (1) , 𝑣𝜎 (2) , 𝑣𝜎 (3) , 𝑣𝜎 (4) ).

We have a natural forgetful map

𝑟 : 𝔗𝑒𝑣𝑒𝑛
O � (𝑇, 𝑣1, 𝑣2, 𝑣3, 𝑣4) −→ 𝑇 ∈ 𝔗O

that is 12 : 1. This map identifies 𝔗O with a quotient:

𝔗O = 𝔗𝑒𝑣𝑒𝑛
O /𝐴4.

The space 𝔗𝑒𝑣𝑒𝑛
O is homeomorphic to 𝑆𝑂 (3) � RP3 � 𝑇1 (S2). To explicitly see the homeomorphism

between 𝔗𝑒𝑣𝑒𝑛
O and 𝑇1 (S2), notice that we can see 𝑣1 as a point of S2, identify the circle where the other

three vertices lie with the tangent circle at 𝑣1, and then see 𝑣2 as a unit tangent vector to the point 𝑣1.
An interesting consequence is that 𝔗O � 𝑆𝑂 (3)/𝐴4.
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We define the open subset 𝔗𝑒𝑣𝑒𝑛,↓
O as

𝔗𝑒𝑣𝑒𝑛,↓
O = { (𝑇, 𝑣1, 𝑣2, 𝑣3, 𝑣4) ∈ 𝔗𝑒𝑣𝑒𝑛

O | 𝑣1 ∈ 𝐷O }.

The subset 𝔗𝑒𝑣𝑒𝑛,↓
O is not preserved by the action of 𝐴4. Only the subgroup of 𝐴4 that fixes 1 acts there.

This subgroup is isomorphic to Z3.
The restriction of r to 𝔗𝑒𝑣𝑒𝑛,↓

O gives a 3 : 1 map

𝑟 | : 𝔗𝑒𝑣𝑒𝑛,↓
O −→ 𝔗↓

O

that identifies 𝔗↓
O with a quotient

𝔗↓
O = 𝔗𝑒𝑣𝑒𝑛,↓

O /Z3.

We now apply a construction called mapping cylinder to 𝔗𝑒𝑣𝑒𝑛
O . The mapping cylinder of

𝑝 : 𝑇1 (S2) → S2 is the space

𝑀𝑝 = 𝑇 ≤1 (S2) =
(
(𝑇1 (S2) × [0, 1]) � S2

)
/∼ ,

where ∼ is defined by (𝑦, 0) ∼ 𝑝(𝑦). Note that 𝑀𝑝 corresponds to the unit disk bundle of S2, and its
boundary is the unit tangent bundle 𝜕𝑀𝑝 � 𝑇1 (S2) � RP3 � SO(3). In particular, 𝑀𝑝 is a manifold
with boundary.

We now take its double; that is, we glue two copies of 𝑀𝑝 along their boundary via the identity map:

𝑀 := 𝑀𝑝 �𝑖𝑑𝜕 𝑀𝑝 .

The space M is clearly a manifold, and it is not hard to see that it is indeed homeomorphic to the
manifold S2 × S2, even if we will not need this fact here.

Now, it is also clear from the definition that we have a map

Ψ : 𝔗𝑒𝑣𝑒𝑛
O × [−∞,∞] −→ 𝑀.

This map identifies M with the quotient

𝑀 � 𝔗𝑒𝑣𝑒𝑛
O × [−∞,∞]/∼ ,

where the equivalence relation ∼ identifies all the labelled tetrahedra in 𝔗𝑒𝑣𝑒𝑛
O × {∞} that have the same

vertex 𝑣1 and, similarly, identifies all the labelled tetrahedra in 𝔗𝑒𝑣𝑒𝑛
O × {−∞} that have the same vertex

𝑣1.
Now, let’s consider the following open subset of 𝔗𝑒𝑣𝑒𝑛

O × [−∞,∞]:

𝑈 = 𝔗𝑒𝑣𝑒𝑛,↓
O × [−∞,∞] ⊂ 𝔗𝑒𝑣𝑒𝑛

O × [−∞,∞] .

The image Ψ(𝑈) is an open subset of M; hence, it is a manifold.
Now let’s consider again the 3 : 1 map 𝑟 | : 𝔗𝑒𝑣𝑒𝑛,↓

O → 𝔗↓
O. This induces the map

Φ ◦ (𝑟 | × Id) : 𝔗𝑒𝑣𝑒𝑛,↓
O × [−∞,∞] → 𝐹 ,

where Φ is the map from Theorem 5.5. The image of this map is an open subset V of F that contains
𝔗𝑖 \ {(+𝑖, +𝑖)}. Moreover, V is homeomorphic with the quotient Ψ(𝑈) by the action of the group Z3.
This shows that all the points of 𝔗𝑖 \ {(+𝑖, +𝑖), (+𝑖,−𝑖)} are manifold points in F, and that the point
(+𝑖,−𝑖) is an orbifold point with group Z3. �
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We now describe a neighborhood of the singular point (+𝑖, +𝑖).

Proposition 6.2. The point (+𝑖, +𝑖) has a neighborhood in 𝔗 that is homeomorphic to the cone 𝐶 (𝑀)
over a closed 3–manifold M, where M is a Dehn filling of the complement of the trefoil knot.

Note that all the possible Dehn fillings of the trefoil knot are described in [Mos71].

Proof. Using the notation of Section 5.1, Let 𝛽′O = 𝛽O − 1, and consider the disc 𝐷𝛽′
O

, an open disc in
CP

1 contained in 𝐷𝛽O . We define the closed subset 𝔗∗
O of 𝔗O as the set of tetrahedra in 𝔗O such that

all vertices are in CP1 \ 𝐷𝛽′
𝑐
. This is a closed neighborhood of 𝔗↑

O, and it is homeomorphic to 𝔗↑
O.

Now consider the set

𝑈 := Φ(𝔗∗
O × [0, +∞]) ⊂ 𝔗 ,

where Φ is the map from Theorem 5.5. The set U is a closed neighborhood of (+𝑖, +𝑖) in F, and it is
easy to see that U is a cone with center in (+𝑖, +𝑖) over the boundary 𝜕𝑈. We only need to prove that
𝜕𝑈 is homeomorphic to a Dehn filling of the trefoil knot complement.

The boundary 𝜕𝑈 is the union of two pieces, Φ(𝔗∗
O × {0}) and Φ(𝜕𝔗∗

O × [0, +∞]). The first
piece, Φ(𝔗∗

O × {0}), is homeomorphic to 𝔗∗
O (i.e. homeomorphic to 𝔗↑

O), and by Proposition 5.2,
this is homeomorphic to the trefoil knot complement. The second piece is homeomorphic to a solid
torus: indeed, 𝜕𝔗∗

O is a torus, Φ(𝜕𝔗O × [0, +∞)) is homeomorphic to a torus times [0, +∞), and
Φ(𝜕𝔗O × {+∞}) is a circle that completes the solid torus.

From this, we can see that 𝜕𝑈 is a Dehn filling of the trefoil knot complement. �

Corollary 6.3. The fiber bundle 𝑞 : Ω → H2 is not smooth.

Proof. The map q is 𝑆𝐿(2,R)–equivariant. If it were smooth, it would have some regular values, and
by 𝑆𝐿(2,R)–equivariance, all the values would be regular. Hence, it would be a submersion, and this
would imply that the fiber would be a smooth manifold, which is impossible because it has four singular
points. �

6.2. Cohomology of the fiber F

In this section, we will study the cohomology of 𝔗ℓ � 𝐹, and this will determine the cohomology for
𝔉. In particular, we will reprove a result of Dumas–Sanders [DS20]. The proof will include calculations
that we will need in later proofs:

Proposition 6.4 (Theorem C in [DS20]). F is a Poincaré duality space; it is simply connected, and its
homology is given by

◦ 𝐻0 (𝐹;Z) � Z;
◦ 𝐻1 (𝐹;Z) = 𝐻3 (𝐹;Z) = 0;
◦ 𝐻2 (𝐹;Z) � Z ⊕ Z;
◦ 𝐻4 (𝐹;Z) � Z;
◦ 𝐻𝑖 (𝐹;Z) = 0 for all 𝑖 > 4.

Moreover, for each 𝑖 = 0, . . . , 4, there is a natural isomorphism 𝐻𝑖 (𝐹;Z) � 𝐻4−𝑖 (𝐹;Z).

To prove Proposition 6.4, we work again with 𝔗ℓ . We will write 𝔗ℓ as a union of two open sets

𝐴 := {𝑥 ∈ 𝔗ℓ | 𝜂(𝑏𝑥) ∈ (−1, +∞]}, 𝐵 := {𝑥 ∈ 𝔗ℓ | 𝜂(𝑏𝑥) ∈ [−∞, +1)}.

Let

𝑌 := 𝐴 ∩ 𝐵 � 𝔗O × (−1, 1).
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The first thing we have to prove is the following:

Proposition 6.5. The open set A deformation retracts to

{𝑥 ∈ 𝐴 | 𝜂(𝑏𝑥) = +∞} = 𝔗𝑖 � CP1.

Similarly, B deformation retracts to

{𝑥 ∈ 𝐵 | 𝜂(𝑏𝑥) = −∞} = 𝔗𝑖 � CP1.

Proof. Denote by 𝜅 = (𝜅1, 𝜅2) the inverse of the map

Φ|𝔗O×(−∞,+∞) : 𝔗O × (−∞, +∞) → 𝔗ℓ ,

which is a homeomorphism by Theorem 5.5. So for 𝑥 ∈ 𝐴 \ 𝔗𝑖 , 𝜅1 (𝑥) ∈ 𝔗O, 𝜅2 (𝑥) ∈ (−1, +∞), and
Φ(𝜅1 (𝑥), 𝜅2 (𝑥)) = 𝑥. Here, 𝜅2 (𝑥) = 𝜂(𝑏𝑥). We write the retraction as

𝐻 : 𝐴 × [0, +∞] → 𝐴

𝐻 (𝑥, 𝑡) :=

{
𝑥 if 𝑥 ∈ 𝔗𝑖

Φ(𝜅1 (𝑥), 𝜅2(𝑥) + 𝑡) if 𝑥 ∈ 𝐴 \ 𝔗𝑖 .

It is easy to check that H is a retraction by deformation; that is, H is continuous, 𝐻 (·, 0) is the identity
on A, 𝐻 (𝑥, +∞) ∈ 𝔗𝑖 and for all 𝑥 ∈ 𝔗𝑖 , 𝐻 (𝑥, 𝑡) = 𝑥. �

We will also use the following version of Poincaré Duality to calculate the homology of the
intersection Y. Note that we use the convention that homology and cohomology groups of negative
dimension are zero, so the duality statement includes the fact that all the nontrivial homology and
cohomology of M lies in the dimension range from 0 to n.

Theorem 6.6 (Poincaré Duality, see Hatcher [Hat02, page 231]). Let M be a closed orientable n–
manifold. Then

1. 𝐻𝑘 (𝑀;Z) and 𝐻𝑛−𝑘 (𝑀;Z) are isomorphic.
2. Modulo their torsion subgroups, 𝐻𝑘 (𝑀;Z) and 𝐻𝑛−𝑘 (𝑀;Z) are isomorphic.
3. The torsion subgroups of 𝐻𝑘 (𝑀;Z) and 𝐻𝑛−𝑘−1 (𝑀;Z) are isomorphic for 𝑘 = 0, . . . , 4.

Proof of Proposition 6.4. The fact that F is a Poincaré duality space follows from the fact that F is
homotopically equivalent to the smooth manifold 𝔉, since both are homotopically equivalent to Ω, as
proven in Corollary 4.10 and Theorem 3.1. Since F and 𝔗ℓ are homeomorphic, this also tells us that 𝔗ℓ
is a Poincaré duality space.

For the second part of the result, we will study the homology and cohomology of 𝔗ℓ , which will
suffice to conclude. Through all the proof, we will use the decomposition above for 𝔗ℓ = 𝐴 ∪ 𝐵 and
𝑌 = 𝐴∩ 𝐵. Using Proposition 6.5 and the definitions, we can see the following homotopy equivalences:

◦ 𝐴, 𝐵 � S2, and
◦ 𝑌 � SO(3)/𝐴4.

The simple connectivity of 𝔗ℓ follows from Seifert–Van Kampen theorem and the decomposition
𝔗ℓ = 𝐴 ∪ 𝐵 described above. Proposition 6.5 shows that the groups 𝜋1 (𝐴) and 𝜋1 (𝐵) are trivial, and
hence that 𝜋1 (𝔗ℓ) is trivial as well. Since 𝔗ℓ is connected, this proves that 𝔗ℓ is simply connected.

In order to compute the cohomology of 𝔗ℓ , we will use the Mayer–Vietoris sequence. We know the
cohomology of A and B:

◦ 𝐻0 (𝐴;Z) � 𝐻0(𝐵;Z) � Z;
◦ 𝐻2 (𝐴;Z) � 𝐻2(𝐵;Z) � Z;
◦ 𝐻𝑖 (𝐴;Z) = 𝐻𝑖 (𝐵;Z) = 0 for 𝑖 = 1 and for all 𝑖 > 2.
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In order to compute the cohomology of Y, we remember that it deformation retracts to SO(3)/𝐴4, which
is a Seifert-fibered manifold described in the second line of Table 10.6 in Martelli [Mar22] with 𝑞 = −2.
Hence, the cohomology for Y is

◦ 𝐻0 (𝑌 ;Z) � Z;
◦ 𝐻1 (𝑌 ;Z) = 0;
◦ 𝐻2 (𝑌 ;Z) � Z3;
◦ 𝐻3 (𝑌 ;Z) � Z;
◦ 𝐻𝑖 (𝑌 ;Z) = 0 for all 𝑖 > 3.

Since Y is connected, we have 𝐻0(𝑌 ;Z) � 𝐻3 (𝑌 ;Z) � Z, and since it is a manifold, and hence a
Poincaré duality space, we have that 𝐻3 (𝑌 ;Z) � 𝐻0 (𝑌 ;Z) � Z. From Martelli [Mar22], we can see
that 𝐻1(𝑌 ;Z) � 𝐻2 (𝑌 ;Z) � Z3. Finally, again using Poincaré duality (see Theorem 6.6 with 𝑛 = 3),
we can see that 𝐻2(𝑌 ;Z) � 𝐻1(𝑌 ;Z) is free (because its torsion subgroup is isomorphic to the one
of 𝐻0 (𝑌 ;Z)), and that 𝐻2(𝑌 ;Z) = 𝐻1(𝑌 ;Z) = 0 (because 𝐻1 (𝑌 ;Z) � Z3 and, modulo their torsion
subgroups, 𝐻1(𝑀;Z) and 𝐻2 (𝑀;Z) are isomorphic).

Now we are ready to compute the cohomology of 𝔗ℓ . We have

◦ 𝐻0 (𝔗ℓ ;Z) � Z;
◦ 𝐻1 (𝔗ℓ ;Z) = 𝐻3(𝔗ℓ ;Z) = 0;
◦ 𝐻2 (𝔗ℓ ;Z) � Z ⊕ Z;
◦ 𝐻4 (𝔗ℓ ;Z) � Z;
◦ 𝐻𝑖 (𝔗ℓ ;Z) = 0 for all 𝑖 > 4.

Since 𝔗ℓ is connected, we have 𝐻0(𝔗ℓ ;Z) � 𝐻4 (𝔗ℓ ;Z) � Z. Using Theorem 6.6, we can see that
𝐻4 (𝔗ℓ ;Z) � 𝐻0 (𝔗ℓ ;Z) � Z, that 𝐻1 (𝔗ℓ ;Z) = 𝐻3(𝔗ℓ ;Z) = 𝐻1(𝔗ℓ ;Z) = 𝐻3(𝔗ℓ ;Z) = 0, and that
𝐻2 (𝔗ℓ ;Z) � 𝐻2 (𝔗ℓ ;Z) is free abelian. We now use the following exact sequence coming from the
Mayer–Vietoris sequence to see that 𝐻2(𝔗ℓ ;Z) � Z ⊕ Z.

0 = 𝐻1(𝑌 ;Z) → 𝐻2(𝔗ℓ ;Z) → 𝐻2(𝐴;Z) ⊕ 𝐻2 (𝐵;Z) → 𝐻2(𝑌 ;Z) → 𝐻3 (𝔗ℓ ;Z) = 0.

As we said, using the fact that F is homeomorphic to 𝔗ℓ via the map 𝑔−1, the result follows. �

6.3. The homeomorphism type of 𝔉

In this section, we will prove the following result:

Proposition 6.7. 𝔉 is homeomorphic to CP2#CP
2
, and F and 𝔗ℓ are homotopically equivalent to

CP
2#CP

2
.

For the proof, we need deep classification theorems of simply connected smooth 4–manifolds due to
Whitehead, Milnor, Milnor–Hausemoller, Freedman, Serre and Donaldson, which use their intersection
form. The intersection form for a closed oriented 4–manifold N is the map

𝑄𝑁 : 𝐻2(𝑁;Z) × 𝐻2(𝑁;Z) → 𝐻4(𝑁;Z) → Z

defined by 𝑄𝑁 (𝛼, 𝛽) := (𝛼 ⌣ 𝛽) [𝑁], where 𝛼, 𝛽 ∈ 𝐻2 (𝑁,Z) and ⌣ denotes the cohomological cup
product of 𝛼 and 𝛽 and [𝑁] ∈ 𝐻4(𝑁;Z) is the fundamental class. See Scorpan [Sco05, Chap. 3] for a
more detailed discussion.

This definition of the intersection form only uses the cup product, and this is well defined for all
topological spaces, including our singular space 𝔗ℓ . In our proof, we want to compute the intersection
form of the smooth 4–manifold𝔉, and we will do this by computing the cup product of the homotopically
equivalent space 𝔗ℓ .
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Recall the following definitions:

◦ The intersection form 𝑄𝑁 is called unimodular if the matrix representing 𝑄𝑁 is invertible over Z.
◦ The rank of 𝑄𝑁 is defined as rank(𝑄𝑁 ) := dimZ𝐻2 (𝑁;Z).
◦ The signature of 𝑄𝑁 as

sign(𝑄𝑁 ) := dimZ𝐻2
+(𝑁;Z) − dimZ𝐻2

−(𝑁;Z),

where 𝐻2
+(𝑁;Z) (resp. 𝐻2

−(𝑁;Z)) is defined as the maximal positive-definite (resp. negative-definite)
subspace for 𝑄𝑁 .

◦ The definiteness of 𝑄𝑁 can be positive definite, negative definite or indefinite. We say that 𝑄𝑁 is
positive-definite if for all nonzero 𝛼, we have 𝑄𝑁 (𝛼, 𝛼) > 0, and negative-definite if for all nonzero
𝛼, we have𝑄𝑁 (𝛼, 𝛼) < 0. If there exists classes 𝛼, and 𝛽 such that𝑄𝑁 (𝛼, 𝛼) > 0 and𝑄𝑁 (𝛽, 𝛽) < 0,
then 𝑄𝑁 is called indefinite.

◦ The parity of 𝑄𝑁 can be even or odd. We say that 𝑄𝑁 is even if for all classes 𝛼, we have 𝑄𝑁 (𝛼, 𝛼)
is even. Otherwise, we say that 𝑄𝑁 is odd.

As proven in Scorpan [Sco05, Sec. 3.2], the intersection form 𝑄𝑁 of a 4–manifold is always
unimodular. In addition, the intersection form satisfies the following properties: given two 4–manifolds
𝑁1 and 𝑁2, we have

◦ 𝑄𝑁 = −𝑄𝑁 , where 𝑁 is N with opposite orientation.
◦ 𝑄𝑁1#𝑁2 = 𝑄𝑁1 ⊕ 𝑄𝑁2 , where 𝑁1#𝑁2 is the connected sum of 𝑁1 and 𝑁2.

Example 6.8. In Scorpan [Sco05, Sec. 3.2], one can see the details of the calculations of the intersection
forms for CP2#CP

2
and S2 × S2 which are simply-connected 4–manifolds with their intersection forms

of rank 2 and indefinite signature. The parity is odd for CP2#CP
2
, and even for S2 × S2. In fact, their

intersection forms are given by

◦ 𝑄
CP2#CP

2 =

[
1 0
0 −1

]
,

◦ 𝑄S2×S2 =

[
0 1
1 0

]
.

We will use the following classification theorems of smooth 4–manifolds, due to Serre, Freedman
and Donaldson:

Theorem 6.9 (Serre, Freedman, Donaldson). Two smooth simply-connected 4–manifolds are homeo-
morphic if and only if their intersection forms have the same rank, signature, and parity.

Theorem 6.10 (Freedman’s Classification Theorem [Fre82]). For any integral symmetric unimodular
form Q, there is a closed simply-connected topological 4–manifold that has Q as its intersection form.

◦ If Q is even, there is exactly one such manifold.
◦ If Q is odd, there are exactly two such manifolds, at least one of which does not admit any smooth

structures.

Proof of Theorem 6.7. First, since F, 𝔗ℓ and 𝔉 are homotopically equivalent, their intersection forms
are isomorphic. Since our description of𝔗ℓ is more concrete, we will discuss𝑄𝔗ℓ

and use that discussion
to find the homeomorphism type of 𝔉.

First, we know that the rank of 𝑄𝔗ℓ
is 2 because 𝐻2 (𝔗ℓ ;Z) � Z ⊕ Z.

Second, since there is a self-homeomorphism r of 𝔗ℓ reversing the orientation, and since the sign
satisfies the following property: sign(𝑄𝑁 ) = −sign(𝑄𝑁 ), where 𝑁 is N with opposite orientation, we
can see that the signature of the intersection form is sign(𝑄𝔗ℓ

) = 0, and hence, 𝑄𝔗ℓ
is indefinite.
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Let us show that 𝑄𝔗ℓ
=

[
1 0
0 −1

]
in an appropriate basis.

From the Mayer–Vietoris sequence in cohomology, we have

𝐻1 (𝑌 ;Z) → 𝐻2(𝔗ℓ ;Z) → 𝐻2(𝐴;Z) ⊕ 𝐻2(𝐵;Z) → 𝐻2 (𝑌 ;Z) → 𝐻3 (𝔗ℓ ;Z)
0 → Z ⊕ Z → Z ⊕ Z → Z3 → 0

Let r be the orientation reversing involution of𝔗ℓ . We have that 𝑟 (𝐴) = 𝐵. The two maps𝐻2(𝐴;Z) →
𝐻2 (𝑌 ;Z) and 𝐻2 (𝐵;Z) → 𝐻2 (𝑌 ;Z) are either both zero or both nonzero. By the Mayer-Vietoris
sequence, the map 𝐻2(𝐴;Z) ⊕𝐻2 (𝐵;Z) → 𝐻2(𝑌 ;Z) is onto; hence, the two maps are both nonzero. We
choose the generators of 𝐻2 (𝐴;Z) and 𝐻2 (𝐵;Z) such that both generators map to 1 in 𝐻2 (𝑌 ;Z) = 𝑍3.
The map 𝜁 : 𝐻2 (𝐴;Z) ⊕ 𝐻2(𝐵;Z) → 𝐻2(𝑌 ;Z) can then be written as

𝐻2(𝐴;Z) ⊕ 𝐻2(𝐵;Z) � (𝑛, 𝑚) −→ 𝜁 (𝑛, 𝑚) = 𝑛 + 𝑚 (mod 3) ∈ 𝐻2(𝑌 ;Z).

Hence, the Mayer–Vietoris sequence and the injective map 𝜇 : 𝐻2 (𝔗ℓ) → 𝐻2 (𝐴;Z) ⊕ 𝐻2(𝐵;Z)
identifies 𝐻2 (𝔗ℓ ;Z) with the subgroup

𝐻2(𝔗ℓ ;Z) � Image(𝜇) = Ker(𝜁) = { (𝑛, 𝑚) ∈ Z ⊕ Z | 𝑛 + 𝑚 ≡ 0 (mod 3) }.

A basis of 𝐻2(𝔗ℓ ;Z) is given by the elements 𝑣 = (2, 1) and 𝑤 = (1, 2). We now express 𝑄𝔗ℓ
as a

matrix in this basis:

𝑄𝔗ℓ
=

(
𝑥 𝑧
𝑧 𝑦.

)
In order to compute 𝑄𝔗ℓ

, we consider the elements (3, 0) = 2𝑣 − 𝑤 and (0, 3) = 2𝑤 − 𝑣. These two
elements are 𝑄𝔗ℓ

–orthogonal because A and B retract to disjoint 2–cycles in 𝐻2(𝔗ℓ ;Z), and we have
that (3, 0) maps to 0 in 𝐻2(𝐵;Z) and (0, 3) maps to 0 in 𝐻2 (𝐴;Z). We have

𝑄𝔗ℓ
(2𝑣 − 𝑤, 2𝑤 − 𝑣) = −2𝑥 − 2𝑦 + 5𝑧 = 0

𝑄𝔗ℓ
(2𝑣 − 𝑤, 2𝑣 − 𝑤) = 4𝑥 + 𝑦 − 4𝑧 = 𝑞

𝑄𝔗ℓ
(2𝑤 − 𝑣, 2𝑤 − 𝑣) = 𝑥 + 4𝑦 − 4𝑧 = −𝑞,

where 𝑞 ∈ Z is the norm of (3, 0). The norm of (0, 3) is then −𝑞 because 𝑟 (3, 0) = (0,±3), and r
reverses the orientation.

The determinant of the 3 × 3 matrix of the coefficients is 27 ≠ 0; hence, the system of equations has
at most one solution. An explicit solution is given by 𝑥 = 𝑞

3 , 𝑦 = − 𝑞
3 , 𝑧 = 0. Since Q is unimodular, this

implies 𝑞 = ±3 and we conclude that

𝑄𝔗ℓ
=

(
1 0
0 −1

)
.

Since 𝔗ℓ and 𝔉 are homotopy equivalent, we have proven that 𝔉 has the same intersection matrix as
CP

2#CP
2
. Since 𝔉 is smooth, Freedman’s Classification Theorem tells us that 𝔉 is homeomorphic to

CP
2#CP

2
(hence that 𝔗ℓ and F are homotopy equivalent to CP2#CP

2
). �
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