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Microbial growth within porous gravity currents
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The effect of microbial activity on buoyancy-driven flow within a porous layer is analysed.
The input fluid provides an energy source for the growth of biofilms on the porous rock.
At each location within the porous layer, the porosity and permeability begin to decrease
once the input fluid has invaded. This leads to an evolving rock heterogeneity that depends
on the passing time of the input fluid. Hence, the evolution of the flow is partly controlled
by its own history. We present an axisymmetric gravity current model, accounting for this
effect. In general, a reduction in permeability leads to the flow having a lesser extent in the
radial direction and greater thickness (extent in the cross-flow direction), whilst a reduction
in porosity has negligible effect on the thickness but leads to a much greater radial extent.
The flow is fastest near the free surface where the permeability is greatest. In the case
where the porosity and permeability reduce as power-law functions of fluid residence time,
the evolution of the flow and the rock properties are self-similar. Consumption of the input
fluid by the microbes is also incorporated in the model and it generally leads to flows
with lesser radial extent but little change in the thickness. The three impacts of microbial
growth (volume loss owing to consumption and the reduction in permeability and porosity)
each influence the flow in substantially different ways and the interplay is analysed.
A motivation of the study, the underground storage of hydrogen, is briefly discussed.

Key words: gravity currents, porous media

1. Introduction

The intermittency of wind and solar energy is a great challenge facing the current
transition away from fossil fuels (Wallace et al. 2021). Even with an enormous wind and
solar network, without energy storage, 20 % of the total energy demand could go unmet
(Delarue & Morris 2015). One promising solution is the large-scale storage of hydrogen in
underground porous layers, which have a surplus capacity relative to current requirements
(Carden & Paterson 1979; Luboń & Tarkowski 2020; Ennis-King et al. 2021).
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At times of high renewable output and relatively low demand, electricity is used to
generate hydrogen, which is injected directly in subsurface porous layers that are bounded
above by an impermeable seal rock. Subsequently, the hydrogen is withdrawn to meet
demand. Efficient underground storage of hydrogen is challenging due to a combination
of interdependent processes that are not fully understood. For example, the very low
density and viscosity of hydrogen relative to the ambient water can trigger flow instabilities
(Heinemann et al. 2021), subsurface microbes may consume hydrogen and clog the pore
space (Thaysen et al. 2021), and, over long time scales, there may be a nonlinear interaction
between injection-driven flows followed by withdrawal-driven flows (Dudfield & Woods
2012; Krevor et al. 2023).

In the present study, we analyse the effect of microbial growth on the buoyancy-driven
flow of hydrogen that is injected into a porous layer. The microbes grow within biofilms
on the porous rock, supplied by the invading hydrogen, and this reduces the porosity and
permeability of the layer. The zone where hydrogen has been resident longest has the
lowest porosity. The resulting transient heterogeneity within the porous rock leads to rich
flow structures, as has been observed for pressure-driven flows with precipitation reactions
(Nagatsu et al. 2014; Sabet, Hassanzadeh & Abedi 2020).

One of the central concerns in subsurface hydrogen storage is understanding fluid
migration, which has a significant impact on operational performance (Wang et al. 2022).
This paper focuses on how the combination of buoyancy forces, microbial consumption
of hydrogen and microbe-induced alteration of the rock properties influences hydrogen
flow. Whilst there is still some uncertainty in the rates of these processes, we are interested
in providing general insights into the flow physics, the interplay of the different physical
and biological ingredients in the model, and the dependencies on kinetic and subsurface
parameters.

Given the two key ingredients to the model (buoyancy-driven flow and microbial
activity; see figure 1), we break this section into two parts. First, a brief review of
buoyancy-driven flow in a porous layer is given in § 1.1 and then in § 1.2, we discuss
microbial growth and its effect on porosity, permeability and hydrogen consumption.

1.1. Porous gravity currents
The shape of the fluid envelope resulting from the input of a relatively buoyant fluid into a
porous medium bounded above by an impermeable layer is initially hemispherical because
injection dominates (Huppert & Pegler 2022). However, at later times, the pressure
gradient associated with injection becomes small relative to gradients of the hydrostatic
pressure (Nordbotten & Celia 2006; Huppert & Pegler 2022; Zheng 2023). Subsequently,
the flow is predominantly radial, driven by radial gradients of the hydrostatic pressure, and
the layer of input fluid becomes relatively thin (thickness/radial extent � 1; see figure 1a)
(Bear 1988; Huppert & Woods 1995).

This analysis has been validated experimentally (Lyle et al. 2005; Huppert &
Pegler 2022) and through numerical simulations (Hagemann et al. 2015). Such a flow
configuration is known as a ‘porous gravity current’ and the transition time to this
behaviour is given by (2.2).

Porous gravity currents have been widely studied owing to their relatively simple
mathematical treatment and the accuracy with which they capture observations from
the laboratory and the subsurface (Lyle et al. 2005; Bickle et al. 2007; Pegler,
Huppert & Neufeld 2014). The gravity current model has been adapted to study a
wide range of physical phenomena that arise in subsurface flows, often motivated by
engineering challenges associated with CO2 sequestration. Examples include the influence
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Figure 1. (a) Schematic of the buoyancy-driven flow of hydrogen with input flux Qin into a porous layer
bounded above by a horizontal impermeable seal. The porosity reduces in proportion to the hydrogen
residence time owing to biofilm growth on the porous rock. (b) Radial cross-section of the axisymmetric flow.
(c) Schematic of the pore-scale features.

of confinement on the flow, whereby the displacement of the ambient fluid plays a
key role in the motion (Pegler et al. 2014; Zheng et al. 2015), the effect of the fully
three-dimensional flow near the source of a gravity current (Benham, Neufeld & Woods
2022) and the macro-scale effect of CO2 trapping within the pore throats during imbibition
(Hesse, Orr & Tchelepi 2008; MacMinn & Juanes 2009; Hinton & Woods 2021). For
hydrogen storage projects, capillary forces are generally small relative to forces associated
with buoyancy and injection (Wang et al. 2022).

Of particular relevance to the present paper are the studies of gravity-driven flows in
which the invading fluid reacts with the rock triggering a change in permeability. For
example, Raw & Woods (2003) analysed the flow of a liquid that undergoes either a
precipitation or dissolution reaction with the porous rock. The reaction is assumed to
be effectively instantaneous so that the porous rock consists of two regions: reacted and
unreacted, each with uniform (but different) permeability. The study was then extended
to a confined geometry by Verdon & Woods (2007) who additionally found excellent
agreement between the theory and laboratory experiments.

The metabolic activity of subsurface microbes is generally much slower than the rock
reactions considered by Raw & Woods (2003) (see Eddaoui et al. 2021). Therefore, the
reactions cannot be considered instantaneous relative to the flow. Instead, the porosity and
permeability gradually decrease within the gravity current over time as the biofilms grow.
This leads to an evolving heterogeneity within the porous rock; see figure 1. The influence
of variations in permeability on porous gravity currents was investigated by Hinton &
Woods (2018) who found that even modest cross-flow heterogeneity can totally dominate
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the flow. They explored the competition between permeability variations and buoyancy
forces in rerouting the flow. The solutions were shown to be stable at late times for a
range of heterogeneous structures even in the case where the input fluid is of relatively low
viscosity (Hinton & Jyoti 2022).

1.2. Microbial activity in subsurface porous layers
Many different species of microbes can be found in subsurface porous layers, but in deep
aquifers, they exist at low concentrations with very slow metabolism owing to the extreme
environment (Hoehler & Jørgensen 2013). The injection of hydrogen provides energy in
the form of an electron donor, which may stimulate much faster microbial growth than has
occurred previously (Ennis-King et al. 2021; Thaysen et al. 2021).

The microbes often exist within biofilms adhered to the porous rock. As these biofilms
grow, they can reduce the permeability and porosity of the rock by as much as 90 %,
a process known as ‘bioclogging’ (Thullner, Zeyer & Kinzelbach 2002; Ham, Kim &
Park 2007; Eddaoui et al. 2021; Heinemann et al. 2021). Many different subsurface
microorganisms can clog porous media including methanogens, sulphate reducers and
homoacetogens, although the kinetic parameters of the different species in the subsurface
are still uncertain (Heinemann et al. 2021; Thaysen et al. 2021).

To analyse the effect of bioclogging on the flow of hydrogen, we develop an
idealised model that includes the key features of buoyancy-driven flow and an evolving
bio-heterogeneity to provide new insights to this configuration. Some assumptions are
necessary to simplify the model: (i) the biofilms are assumed to be static and to grow
at a rate that is independent of the flow speed (although incorporating stress-dependent
growth would be a straightforward extension of the model Stoodley et al. 2002; Krause
et al. 2019); (ii) we assume that the microbes are dormant in the ambient fluid and only
grow when the pore space is invaded by hydrogen, with the biomass increasing with the
hydrogen residence time (see figure 1).

In the first part of the paper, the loss of hydrogen associated with microbial growth
is neglected and we focus on the changes in the rock structure. In § 5, consumption is
reintroduced and rather than focus on an individual reaction, we consider the aggregate
effect of biotic hydrogen consuming processes through a parameter α that quantifies
the volume of input fluid lost per unit volume of biomass produced. Some of the
possible reactions produce water and others consume water (e.g. table 1 of Thaysen et al.
2021), which may be residually trapped and immobile within the hydrogen owing to
incomplete displacement (Panfilov 2010). Nonetheless, the presence of other fluids within
the hydrogen is assumed to have a negligible influence on the flow.

In porous flows with biofilm growth, it is often assumed that the porosity,Φ(X, Y, Z, T)
(and the permeability, K(X, Y, Z, T)), may be written as a function of the biomass,
N(X, Y, Z, T), i.e. Φ = Φ(N), and two common forms for this relation are (Ham et al.
2007; Eddaoui et al. 2021)

Φ = Φ0

1 + (N/Nref )2
, Φ = Φ0 − N/Nref , (1.1a,b)

where the constant Nref is a reference biomass. Prior to the supply of the nutrient, the
biomass N is small and Φ = Φ0.

The growth rate of biomass, ∂N/∂T , within the nutrient-saturated region of
a porous medium can be described using a variety of simple models such as
modified logistic growth and exponential growth (Thullner et al. 2002; Panfilov 2010;
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Microbial growth within porous gravity currents

Schulz & Knabner 2017), e.g.

∂N
∂T

= β(Nc − N),
∂N
∂T

= β(Nc − N)
∣∣∣∣1 − N

Nc

∣∣∣∣
1/γ

, (1.2a,b)

where β is a rate constant, Nc is a constant carrying capacity, and γ > 0 is an exponent
that quantifies the sensitivity of the growth rate to the difference between the biomass and
its carrying capacity.

A key distinction between different growth models is whether or not the biomass
continues to increase until the porous medium becomes entirely clogged. This distinction
suggests that the gravity-driven flow of hydrogen may fall into two regimes: (a) the
decrease in the porosity and permeability becomes self-limiting after extended hydrogen
residence times with Φ → Φ∞ > 0 and K → K∞ > 0, or (b) the biomass increasingly
clogs the porous rock with Φ,K becoming very small at long times (see also Bottero et al.
2013).

The relations (1.1a,b) and (1.2a,b) can be used to eliminate N and obtain a partial
differential equation to describe the evolution of the porosity. For example, (1.1b) and
(1.2a) are combined to give (see also Schulz & Knabner 2017)

∂Φ

∂T
= β(Φ∞ −Φ), (1.3)

where Φ∞ = Φ0 − Nc/Nref is the porosity after long hydrogen residence times.
In the special case where Φ∞ = Φ0 − Nc/Nref = 0, (1.1b) and (1.2b) furnish the

following power-law relation (also used by Krupp, Griffiths & Please 2019):

∂Φ

∂T
= −β̂Φ1+1/γ , (1.4)

where β̂ = β(Nref /Nc)
1/γ and we have Φ becoming progressively smaller at long

hydrogen residence times. Equations (1.2a,b)–(1.4) have partial time derivatives because
N and Φ also depend on the spatial coordinates (see § 3).

In this paper, we restrict our attention to porosity variations given by (1.3) and (1.4),
which still enables the full array of flow dynamics to be described (noting that qualitatively
similar results would be obtained with more complex porosity evolution).

The permeability is related to the porosity,Φ, via a simplified Kozeny–Carman relation,

K = Φ3d2
0

180
, (1.5)

where d0 is the grain size (assumed to be constant). Using the full Kozeny–Carman relation
(or another relation for the permeability) would lead to minor quantitative changes in the
results, but the qualitative flow features would be unchanged. The cubic relation between
the reduction in the porosity and the permeability is in accordance with experimental
data; for example, Cunningham et al. (1991) found that biofilm accumulation reduced the
porosity to approximately 30 % of its initial value, and the permeability to approximately
5 % of its initial value. Similar results were found by Clement, Hooker & Skeen (1996).

The paper is structured as follows. The mathematical model is presented in § 2. In
§ 3, we analyse the dynamics in the case where the microbial growth becomes saturated
and self-limiting with Φ∞ > 0 and K∞ > 0. The evolution of the flow when the porous
medium becomes slowly bioclogged is studied in § 4. Consumption of hydrogen is
incorporated into the model in § 5. An application to underground hydrogen storage
is presented in § 6. Concluding remarks are given in § 7, where the flow regimes are
summarised.

1000 A24-5

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

10
29

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.1029


E.M. Hinton

2. Model

We analyse the flow that arises when a buoyant fluid is injected into a porous layer
that is bounded above by an impermeable seal; see figure 1. The flow is assumed to
be axisymmetric, i.e. it is independent of the azimuthal angle. The radial coordinate is
denoted by R, the vertical coordinate by Z, which is measured in the downwards direction
in figure 1, and time by T . We assume that there is a sharp interface at Z = H(R, T)
between the input and ambient fluids, which we refer to as the ‘free surface’ (Lyle et al.
2005; Pegler et al. 2014); see figure 1(b).

The flow is assumed to have a small aspect ratio (it is much thinner in the vertical
direction than its extent in the radial direction) and so the radial velocity is much larger
than the vertical velocity (Bear 1988; Huppert & Woods 1995). The validity of this
assumption for the present model is discussed a posteriori in §§ 3 and 4.

At later times, the pressure becomes approximately hydrostatic (Huppert & Woods
1995). The radial pressure gradient within the gravity current is then (Lyle et al. 2005)

∂P
∂R

= ρg
∂H
∂R
, (2.1)

where ρ = ρa − ρi > 0 is the density-difference between the ambient and input fluids.
For a uniform porous medium, Huppert & Pegler (2022) showed that the transition time

to the gravity current regime, in which the flow is predominantly radial and the pressure
hydrostatic, is given by

Ttransition ∼ Φ

(
μ3Qin

2π(ρgK)3

)1/2

, (2.2)

where μ is the viscosity of the input fluid, Qin is the input flux, and Φ and K are the
porosity and permeability, respectively. Our model requires that T � Ttransition.

For a porous layer with non-uniform permeability, the Darcy velocity in the radial
direction is obtained from (2.1) (Lyle et al. 2005; Hinton & Woods 2018),

UR = −ρgK(R, Z, T)
μ

∂H
∂R
, (2.3)

where K(R, Z, T) is the horizontal permeability, which can vary in space and time. The
permeability is related to the porosity, Φ, via (1.5). Throughout this section, upper case
letters represent unscaled quantities except for the constant parameters, μ, ρ and g.

Initially, the porous medium has uniform porosity, Φ(R, Z, 0) = Φ0 and uniform
permeability K(R, Z, 0) = K0, related via (1.5), and the medium is filled with ambient
fluid so H(R, 0) = 0. We assume that the introduction of the input fluid provides the
required nutrients to stimulate biofilm growth. The porosity decreases in time according
to the law

∂Φ

∂T
=
{−BF(Φ) if Z � H(R, T),

0 otherwise, (2.4)

where B is the initial rate of porosity reduction and the dimensionless function F(·) is
an input to the model and the choice of B means that F(Φ0) = 1. There is no microbial
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Microbial growth within porous gravity currents

growth in the ambient fluid. As an example, (1.3) furnishes

B = β(Φ0 −Φ∞), F(Φ) = Φ −Φ∞
Φ0 −Φ∞

, (2.5a,b)

whilst (1.4) gives

B = β̂Φ
1+1/γ
0 , F(Φ) =

(
Φ

Φ0

)1+1/γ

. (2.6a,b)

The radial flux of fluid (the depth-integrated velocity) is

QR =
∫ H

0
UR dZ = −ρg

μ

∂H
∂R

∫ H

0
K(R, Z, T) dZ. (2.7)

To obtain a governing equation for the evolution of the free surface, we consider continuity
over a thin vertical slice of the flow (cf. Lyle et al. 2005; Hinton & Woods 2018),

∂

∂T

(∫ H

0
Φ(R, Z, T) dZ

)
= ρg
μR

∂

∂R

[
R
∂H
∂R

∫ H

0
K(R, Z, T) dZ

]
. (2.8)

Fluid is injected at the origin with volume flux, Qin, evenly distributed over a finite distance
in the Z direction. Once the flow becomes predominantly radial (at times given by (2.2)),
this distance over which the flux Qin is distributed becomes unimportant (Huppert &
Pegler 2022). Integrating the radial velocity (2.3) over the depth, Z ∈ (0,H), at the origin
furnishes the following boundary condition:

2π lim
R→0

[
−ρg
μ

R
∂H
∂R

∫ H

0
K(R, Z, T) dZ

]
= Qin. (2.9)

Since injection begins at T = 0, global volume conservation of the input fluid is given by

2π

∫ Rf

0

∫ H

0
Φ(R, Z, T) dZ R dR = QinT, (2.10)

where Rf (T) is the frontal contact point with H(Rf (T), T) = 0.
In the case where F(Φ) = 0 (corresponding to axisymmetric flow in a uniform layer

with no microbial growth), the governing equations reduce to those of Lyle et al.
(2005) and Huppert & Pegler (2022). These researchers verified the model with analogue
laboratory experiments.

2.1. Non-dimensionalisation
To non-dimensionalise the system, we introduce characteristic scales for the dimensional
variables. The time scale for microbial growth is given by

T = Φ0

B
, (2.11)

and the velocity scale associated with the buoyant slumping of the fluid is

U = ρgK0

μ
. (2.12)
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If the flow has radial length scale L and thickness scale H, then a balance in (2.8) and
(2.10) gives (Lyle et al. 2005; Dudfield & Woods 2012)

Φ0H
T ∼ UH2

L2 , Φ0HL2 ∼ Qin

2π
T . (2.13a,b)

We obtain the following length and thickness scales:

H =
(

Qin

2πU

)1/2

, L =
(

QinU
2πB2

)1/4

. (2.14a,b)

As the input fluid invades the porous layer, the porosity and permeability are reduced, and
so these quantities are scaled relative to their uniform initial values,

φ = Φ

Φ0
, k = K

K0
= φ3, (2.15a,b)

where we have used (1.5). The governing equations and boundary conditions can now be
non-dimensionalised using the following relations:

t = T
T , (z, h) = (Z,H)

H , r = R
L , (2.16a–c)

where the lower-case letters represent dimensionless quantities. The rate of change of the
porosity (2.4) is re-expressed as

∂φ

∂t
=
{−f (φ) if z � h(r, t),

0 otherwise, (2.17)

where f (φ) = F(Φ) and f (1) = 1. In the region uninvaded by the input fluid (z > h(r, t)),
φ = 1 and k = 1. The governing equation (2.8) becomes

∂

∂t

(∫ h

0
φ(r, z, t) dz

)
= 1

r
∂

∂r

(
r
∂h
∂r

∫ h

0
k(r, z, t) dz

)
. (2.18)

The initial conditions are φ(r, z, 0) ≡ 1, k(r, z, 0) ≡ 1 and h(r, 0) = 0. The dimensionless
form of the boundary condition at r = 0, (2.9), is

lim
r→0

[
−r
∂h
∂r

∫ h

0
k(r, z, t) dz

]
= 1, (2.19)

and global volume conservation (2.10) becomes∫ rf

0

∫ h

0
φ(r, z, t) dz r dr = t, (2.20)

where rf (t) = Rf (T)/L. The system consisting of (2.17)–(2.20) is parameter-free with the
exception of the functional form of the porosity variation, f (φ).

The evolution of the interface shape, h(r, t), is obtained by solving (2.18) with initial
condition h(r, 0) = 0, boundary condition (2.19), and the quantities φ(r, z, t) and k(r, z, t)
are obtained as follows. Initially, φ(r, z, 0) = 1 everywhere and it then evolves according
to (2.17), and the permeability is given by k = φ3 (2.15b). The numerical method for
approximating the solution, h(r, t), is given in Appendix A (see also § 2.3).
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Figure 2. Forms of the porosity variation; see (2.17). (a) Function f (φ) from (2.21a) for three values of the
late time porosity, φ∞. (b) Function f (φ) from (2.21b) for three values of the decay rate γ . (c,d) Corresponding
dependence of the porosity on the residence time of the input fluid, tR; see (2.22), (2.23).

2.2. Functional form of the porosity variation, f (φ)
As discussed in § 1.2, we restrict our attention to two simple functions, f (φ), for how the
rate of porosity reduction within the gravity current depends on the porosity (see (2.5a,b),
(2.6a,b), (2.17)),

f (φ) = φ − φ∞
1 − φ∞

, f (φ) = φ1+1/γ , (2.21a,b)

where 0 � φ∞ < 1 and γ > 0. These two functions are plotted in figures 2(a) and 2(b),
respectively, for different values of φ∞ and γ . For φ∞ = 0 and γ = ∞, both expressions
in (2.21a,b) become identical.

In both cases, (2.17) may be integrated to obtain the porosity as a function of the
residence time of the input fluid, tR = tR(r, z, t),

φ(tR) = φ∞ + (1 − φ∞) exp
( −tR

1 − φ∞

)
, (2.22)

φ(tR) =
(

1 + tR
γ

)−γ
, (2.23)

with tR(r, z, t) = t − tP(r, z), where tP(r, z) is the time at which the free surface passed the
location (r, z), and tR = 0 on the free surface. Provided that φ∞ > 0, (2.22) corresponds
to self-limiting microbial growth with φ → φ∞ as tR → ∞; see figure 2(c). Equation
(2.23) corresponds to progressively increasing bioclogging at long residence times; see
figure 2(d).

2.3. Numerical results
The governing equations (2.17)–(2.20) are integrated numerically using finite differences.
To handle the evolving permeability and porosity, the numerical method keeps track
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Figure 3. Shape of the free surface z = h(r, t) at t = 0.1, 1, 10 for an exponentially decaying porosity within
the input fluid (2.22) with late-time porosity given by (a) φ∞ = 0.5, (b) φ∞ = 0.25 and (c) φ∞ = 0.

of the past evolution of the free surface, h(r, τ ) for τ ∈ [0, t]. The history of the free
surface determines the residence time of the input fluid, tR(r, z, t), which in turn furnishes
the porosity, φ(r, z, t) = φ(tR), and permeability, k(r, z, t) = k(tR), within the flow. Full
details of the numerical method are given in Appendix A. Throughout this paper, the
solutions are shown with the z axis in the upwards direction noting that a simple reflection
in z = 0 relates the figures to the geological motivation shown in figure 1.

Results for the evolution of the free surface, h(r, t), are shown in figure 3 at t = 0.1, 1, 10
with the porosity decreasing according to (2.22). The three panels in figure 3 correspond
to different limiting values of the porosity at long residence times (φ∞ = 0.5, 0.25, 0).
At early times (e.g. t = 0.1), the porosity variation has a relatively small influence on the
flow and the shape of the free surface is similar across the three panels. At later times, the
greater reduction in porosity and permeability near the origin for φ∞ = 0.25 and φ∞ = 0
(panels b,c) causes the flow to invade a much greater area of rock and the gravity current
has an increased aspect ratio; these features are discussed in more detail in §§ 3 and 4.

Figure 4 shows the residence time of the input fluid, tR, the porosity, φ, and the
permeability, k, within the gravity current for the case shown in figure 3(a). The
free-surface history determines the porosity and permeability, which in turn influence the
flow structure and hence the future free-surface evolution. Figure 4 demonstrates that the
gradual increase in residence time away from the free surface has a small influence on
the porosity at early times but a large influence at late times, with the porosity eventually
becoming approximately φ∞ almost everywhere within the porous gravity current.

3. Effect of limited microbial growth on the gravity current (φ → φ∞ > 0)

In this section, the case in which the microbial growth becomes self-limiting with φ →
φ∞ > 0 as t → ∞ is analysed; see figure 4. The case in which φ becomes progressively
smaller at late times is qualitatively different and discussed in § 4.

3.1. Early time
At early times, t � 1, the porosity and permeability have changed little from their initial
values (e.g. see figures 4a,4d,4g). Hence, we write

φ(r, z, t) = 1 + O(t), k(r, z, t) = 1 + O(t). (3.1a,b)

The leading-order terms in the governing equation (2.18) and global volume conservation
(2.20) are

∂h
∂t

= 1
r
∂

∂r

(
rh
∂h
∂r

)
(3.2)
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Figure 4. Properties of the porous rock at t = 0.1, 1, 10 for an exponentially decaying porosity within the
input fluid (2.22) with late-time porosity φ∞ = 0.5; see also figure 3(a). Dashed lines show the free surface.
(a–c) Residence time of the input fluid at t = 0.1, 1, 10. (d–f ) Corresponding porosity, φ, which tends to φ∞ =
0.5 at long residence times. (g–i) Corresponding permeability, k = φ3, which tends to k∞ = 0.125 at long
residence times.

and ∫ rf (t)

0
hr dr = t, (3.3)

respectively. The porous layer is effectively uniform and the evolution of the free surface
is self-similar with solution (Lyle et al. 2005)

h(r, t) = G (η) , η = r
t1/2

, (3.4a,b)

where G(η) satisfies

− 1
2
η

dG
dη

= 1
η

d
dη

(
ηG

dG
dη

)
,

∫ ηf

0
ηG dη = 1, G(ηf ) = 0, (3.5a–c)

with ηf = rf (t)/t1/2. The shape function, G(η), is obtained via numerical integration (Lyle
et al. 2005). This self-similar solution is shown with blue dots in figure 5 in the r/t1/2
coordinates. Figure 5 also shows the numerical results for the free surface at five times
(black lines) in the case where the porosity decays exponentially with φ → φ∞ = 0.5.
There is excellent agreement between the similarity solution and the full numerical results
at t = 0.01 and t = 0.1.
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Figure 5. Position of the free surface in rescaled coordinates, r/t1/2, at t = 0.01, 0.1, 1, 10, 100 for exponential
porosity decay (2.22) with φ∞ = 0.5. The blue dots show the early-time self-similar solution, (3.4a,b), and the
red dots show the late-time self-similar solution, (3.15).
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1
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Figure 6. Contours of the porosity, φ = 0.96, 0.97, 0.98, 0.99, at t = 0.05 for exponential porosity decay and
φ∞ = 0.5 (continuous lines). The red dashed lines show the predictions of (3.7a).

Contours of the residence time of the input fluid, tR(r, z, t), are given by the shape of
the free surface at early times. Hence, the solution G(η) furnishes the following implicit
equation for tR:

z = G
(

r

(t − tR)1/2

)
, (3.6)

which is valid for (t − tR) � 1, i.e. the time of the free surface passing (r, z) is small.
Similar expressions can be obtained for contours of the porosity and permeability by
rewriting (2.22) as φ = 1 − tR for tR � 1 and using (2.15b),

z = G
(

r

(t − 1 + φ)1/2

)
, z = G

(
r(

t − 1 + k1/3
)1/2

)
. (3.7a,b)

The porosity contours (3.7a) are shown as red dashed lines in figure 6 for t = 0.05 and
they show good agreement with the numerical results (continuous lines); parameter values
are as in figure 5.

Next, we discuss the validity of the hydrostatic pressure assumption, which is associated
with the radial extent of the flow being much smaller than the characteristic thickness. We
denote by λ the ratio of the characteristic thickness of the flow to its radial length scale.
For the early-time behaviour, r ∼ t1/2 and h ∼ 1, and so

λ ∼ H
Lt1/2

, (3.8)
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where H and L are given by (2.14a,b). We require λ� 1 and for the early-time
approximations, we also require t � 1. Together, this gives the following condition for
the present early-time analysis to apply:

B
(

Qin

2π

)1/2

U−3/2 � t � 1. (3.9)

At these times, (2.2) is also satisfied.
Finally, we note that the shape function G(η) has a logarithmic singularity at the

origin, which violates the assumption of hydrostatic pressure, but it can be removed
by incorporating the fully three-dimensional pressure-driven flow in this region. This is
outside the scope of the present study and the interested reader is referred to Benham et al.
(2022).

3.2. Long-time behaviour for φ → φ∞ > 0
At late times, t � 1, the microbial growth has become limited (∂φ/∂t ≈ 0) within most of
the pore space occupied by the gravity current. The porosity and permeability within the
current are approximately uniform with

φ = φ∞, k = k∞, (3.10a,b)

as can be seen in figures 4( f ) and 4(i). The leading-order terms in the governing equation
(2.18) and global volume conservation (2.20) are

φ∞
∂h
∂t

= k∞
1
r
∂

∂r

(
rh
∂h
∂r

)
, (3.11)

∫ rf

0
φ∞hr dr = t, (3.12)

where φ∞ > 0. Under the rescaling

h = k−1/2
∞ h̃, r = k1/4

∞ φ
−1/2
∞ r̃, (3.13a,b)

we recover the early-time equation (3.2) in the tilde variables. Hence, the solution is given
by h̃ = G(r̃/t1/2), where G(η) is as in § 3.1.

Equation (3.13a,b) demonstrates that the reduction in permeability by a factor of k∞ < 1
leads to a thicker current with lesser radial extent, whilst the reduction in porosity
leads to an unchanged thickness and a greater radial extent. It should be noted that the
change in thickness and radial extent given by (3.13a,b) is independent of the choice of
relation between the porosity and permeability. Using the particular relation k∞ = φ3∞,
the influence of the porosity and permeability change can be amalgamated so that the
rescaling (3.13a,b) becomes

h = φ
−3/2
∞ h̃, r = φ

1/4
∞ r̃. (3.14a,b)

This demonstrates that the aggregate effect of the microbial growth is that the flow
becomes substantially thicker and slightly shorter. We can write the self-similar solution
as

h = φ
−3/2
∞ G

(
r

φ
1/4
∞ t1/2

)
, (3.15)

which is shown as a red dotted line in figure 5 for φ∞ = 0.5. There is excellent agreement
with the numerical result at t = 100. Approximate contours for the residence time,
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tR(r, z, t), can be obtained in an analogous fashion to (3.6), and contours for the porosity
and permeability then follow using (2.22) and (2.15b).

The condition for the validity of the assumption of hydrostatic pressure (3.9) is
re-expressed for the present late-time behaviour as

t � B
(

Qin

2π

)1/2

U−3/2φ
−7/2
∞ . (3.16)

At these times, (2.2) is also satisfied.

4. Gradual clogging of the porous medium

We analyse the case in which the porous layer becomes gradually clogged by the biomass
at long residence times, i.e. φ � 1 and k � 1 for tR � 1. We show that the late-time
behaviour depends qualitatively on the rate at which φ decreases with two distinct regimes:
relatively slow bioclogging and relatively fast bioclogging. Throughout this section, we
assume that the porosity and permeability are relatively small but non-zero.

To expound the distinction between ‘slow’ and ‘fast’ bioclogging, we focus on algebraic
decay in time of the porosity and permeability (this case is also convenient as it is
associated with self-similar evolution of the flow). The evolution of the porosity as a
function of the residence time (2.23) is φ(tR) = (1 + tR/γ )−γ , which is shown graphically
in figure 2(d) for various values of γ . The permeability is given by k(tR) = φ(tR)3.
Exponential decay of the porosity (and permeability), φ = exp(−tR), is recovered in the
limit γ → ∞.

Numerical results for γ = 0.2 and t = 1, 10, 100 are shown in figure 7 illustrating the
variation in the residence time of the input fluid and the rock properties. The minimum
value of the porosity at t = 100 is 0.288 and the minimum value of the permeability is
0.024, both of which are attained at the origin.

The dimensionless flow speed in the radial direction within the input fluid,
u = −k∂h/∂r, is shown in figure 8 at t = 10 (corresponding to the permeability in
figure 7h). In a uniform porous layer, the flow speed would be independent of z. Here,
there is flow rerouting owing to the change in the permeability. However, not all the flow
goes through the high-permeability zone near the free surface. Buoyancy also plays a role
in driving the flow, especially near the source, where there is significant flux through the
lower permeability regions (cf. Hinton & Woods 2018).

We seek a solution to the governing equation (2.18) at late times, t � 1, that accounts for
the decrease in porosity and permeability away from the free surface. First, we introduce
a new variable, τR = tR/t, the relative residence time of the input fluid. The integral
of the permeability, k = (1 + tR/γ )−3γ , over the flow thickness is re-expressed as an
integral over the past evolution of the free surface, h(r, t − tR) = h(r, t(1 − τR)) with
τR ∈ [0, τmax], where τmax < 1 is the relative residence time at z = 0, which depends on r
and t. The depth-integrated permeability in the governing equation (2.18) becomes∫ h

0
k dz = −

∫ τmax

0

(
1 + tτR

γ

)−3γ dz
dτR

dτR (4.1)

=
∫ τmax

0

(
1 + tτR

γ

)−3γ

t
∂h
∂t

∣∣∣∣∣
(r,t(1−τR))

dτR. (4.2)

The depth-integrated porosity is given by an equivalent expression with the exponent −3γ
replaced by −γ .
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Figure 7. Properties of the porous rock at t = 1, 10, 100 for an algebraically decaying porosity within the input
fluid (2.23) with exponent γ = 0.2. Dashed lines show the free surface. (a–c) Residence time of the input fluid,
tR(r, z, t), at t = 1, 10, 100. (d–f ) Corresponding porosity, φ. (g–i) Corresponding permeability, k = φ3. The
minimum value of k in (i) is 0.024.
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Figure 8. Dimensionless flow speed in the radial direction within the input fluid, u = −k∂h/∂r at t = 10 for

γ = 0.2 (corresponding to figures 7b,7e,7h).

At late times, the depth-integrated permeability (4.2) can be approximated by
considering the contributions from two different regions: (a) the global contribution; and
(b) the contribution from a neighbourhood of the free surface where τR � 1. We assume
that τmax is O(1), which is verified later. The contribution to the integral (4.2) from each
region is given by the magnitude of the integrand multiplied by the width of the region
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Figure 9. Shape of the free surface for complete bioclogging (φ → 0 as t → ∞) at (a) t = 10 and (b)
t = 100. The six curves correspond to the following exponents for the algebraic decay of the porosity:
γ = 0.1, 0.2, 0.5, 1, 2 and the case of exponential decay (γ → ∞); see (2.23). There is a qualitative change in
behaviour across γ = 1/3; see discussion in the text.

(see § 3.4 of Hinch 1991),

Global: if τR = O (1) ,
(

1 + tτR

γ

)−3γ

= O
(

t−3γ
)
,

∫ h

0
k dz = O

(
t1−3γ ∂h

∂t

)
.

(4.3)

Local: if τR = O
(

t−1
)
,

(
1 + tτR

γ

)−3γ

= O (1) ,
∫ h

0
k dz = O

(
∂h
∂t

)
. (4.4)

For 0 < γ < 1/3, the global contribution (τR = O(1)) is dominant, whilst for γ > 1/3,
the local contribution near the free surface (τR = O(t−1)) is dominant. A similar result
applies to the depth-integrated porosity with the global contribution dominating when
0 < γ < 1 and the local contribution dominating when γ > 1.

This distinction divides the flow behaviour into two regimes, with ‘slow’ bioclogging
in the case where 0 < γ < 1/3, for which both the depth-integrated porosity and
permeability consist of contributions from the entire flow thickness. The self-similar
behaviour for this regime is described in the present section. Figure 8 (γ = 0.2)
demonstrates that the depth integrated flux q = ∫ h

0 u dz will include contributions from
across the flow thickness.

The case of ‘fast’ bioclogging is split into two subregimes: (i) for 1/3 < γ < 1, the
depth-integrated permeability is dominated by the region near the free surface but the
depth-integrated porosity is not; (ii) for γ > 1, both quantities are dominated by the
free-surface region. For these regimes, the porosity and permeability can become small
very quickly and so the injection pressure may need to be very high to continue supplying
fluid. Their analysis is included for completeness in Appendices B and C.

The shape of the free surface in the case of algebraic decay of the porosity is shown
at t = 10 in figure 9(a) and at t = 100 in figure 9(b) for γ = 0.1, 0.2, 0.5, 1, 2,∞
(exponential decay). As expected, there is a qualitative difference in the evolution of the
free surface for 0 < γ < 1/3 (the red and blue curves).

In the present section, we derive the self-similar solution for the flow in the case of
relatively slow bioclogging, 0 < γ < 1/3. The depth-integrated permeability is given by
(4.2) with the approximation (4.3) furnishing the scaling for the dominant contribution,∫ h

0 k dz ∼ t−3γ h. The depth-integrated porosity scales with t−γ h. The time exponents
for the self-similar scaling of the radial coordinate r ∼ ta and the flow thickness h ∼ tb
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Figure 10. Relationship between the past evolution of the free surface in real space τR ∈ [0, τmax] and the
past evolution in similarity space s ∈ [ξ, 1]; see (4.7).

are obtained by balancing the terms in the governing equation (2.18) and global volume
conservation (2.20). This furnishes the self-similar form,

h(r, t) = t3γ /2γ−2γC2
0ψ(ξ), ξ = r

C0t(2−γ )/4 , (4.5a,b)

where the constant C0 is defined so that ξ = 1 at the contact point, r = rf (t) (i.e.
ψ(1) = 0). The shape function ψ(ξ) and the constant C0 are to be determined.

To obtain an integro-differential equation governing ψ(ξ), the depth-integrated
permeability (and porosity) must be expressed in terms of the self-similar coordinates,
(4.5a,b),∫ h

0
k dz =

∫ ξ

1
k

dz
ds

ds = −
∫ 1

ξ

(
tτR

γ

)−3γ d
ds

[
(t(1 − τR))

3γ /2γ−2γC2
0ψ (s)

]
ds, (4.6)

where

s = r

C0 (t − tR)(2−γ )/4 = ξ

(1 − τR)
(2−γ )/4 (4.7)

encapsulates the ‘history’ of the free surface in the self-similar coordinates, and so τR and
s are interdependent. Note that s = ξ at z = h and s = 1 at z = 0 because ψ(1) = 0.

At a point (ξ, ψ(ξ)) in similarity space, the prior evolution of the free surface, h(r, tτR)
with τR ∈ [0, τmax], is encoded in ψ(s) with s ∈ [ξ, 1]; see figure 10.

Equation (4.7) can also be used to obtain the relative residence time, τR, at z = 0: τmax =
1 − ξ4/(2−γ ), which is O(1) as assumed earlier. The integrand in (4.6) is re-written in terms
of s and ξ only,∫ h

0
k dz = −γ γ t−3γ /2C2

0

∫ 1

ξ

[
1 −

(
ξ

s

)4/(2−γ )]−3γ
d
ds

[(
ξ

s

)6γ /(2−γ )
ψ(s)

]
ds.

(4.8)
The depth-integrated porosity is obtained via an almost identical calculation,∫ h

0
φ dz = −γ−γ tγ /2C2

0

∫ 1

ξ

[
1 −

(
ξ

s

)4/(2−γ )]−γ
d
ds

[(
ξ

s

)6γ /(2−γ )
ψ(s)

]
ds. (4.9)

Using these formulae and (4.5a,b), the governing equation (2.18) is recast as an
integro-differential equation for the shape function ψ(ξ),

γ

2
J1 −

(
1
2

− γ

4

)
ξ

dJ1

dξ
= 1
ξ

d
dξ

(
ξJ3

dψ
dξ

)
, (4.10)
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Figure 11. Self-similar evolution of the free surface in the case of ‘slow’ bioclogging. The numerical results
are shown at t = 1, 10, 100 (black, green and blue lines) and compared with the similarity solution (4.5a,b) for
(a) γ = 0.1, (b) γ = 0.2 and (c) γ = 0.3 (red dashed lines).

where the functions Jn(ξ) are associated with the integrals of the porosity (n = 1) and
permeability (n = 3) over the thickness,

Jn(ξ) = −
∫ 1

ξ

(
1 −

(
ξ

s

)4/(2−γ ))−nγ
d
ds

[(
ξ

s

)6γ /(2−γ )
ψ(s)

]
ds. (4.11)

Although the integrand in Jn(ξ) is singular as s → ξ , this is integrable provided that γ <
1/n, which is satisfied for J1 and J3 in the ‘slow’ regime. Global mass conservation (2.20)
becomes

C0 =
(
γ−γ

∫ 1

0
J1(ξ)ξ dξ

)−1/4

. (4.12)

If we set γ = 0, then Jn(ξ) = ψ(ξ) and the similarity solution of Lyle et al. (2005)
is recovered for flow in a uniform porous layer. For 0 < γ < 1/3, (4.10) is solved
by numerically integrating backwards from the contact point ξ = 1; for details, see
Appendix A.2. The similarity solution is compared with the numerical integration of the
full governing system in figure 11 for γ = 0.1, 0.2, 0.3, and there is good agreement at
late times.

The similarity solution (4.5a,b) also determines the spatial evolution of the residence
time of the input fluid, tR(r, z, t). The porosity and permeability can then be inferred using
φ = (tR/γ )−γ and k = (tR/γ )−3γ , which are valid at late times. For example, contours of
the porosity are given by

z =
(

t − γφ−1/γ
)3γ /2

γ−2γC2
0ψ

(
r

C0
(
t − γφ−1/γ

)(2−γ )/4

)
. (4.13)

The characteristic thickness of the gravity current increases in proportion to t3γ /2 whereas
its radial extent grows as t(2−γ )/4 meaning that the aspect ratio h/r is proportional to
t(7γ−2)/4. The present late-time analysis is thus valid provided that γ < 2/7. For 2/7 <
γ < 1/3, the thickness of the gravity current grows faster than the radial extent and so the
assumption that the pressure is hydrostatic is not valid.
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Microbial growth within porous gravity currents

5. Incorporating consumption of the input fluid

To account for the loss of input fluid owing to microbial activity, we assume that each unit
volume of biomass gained required α � 0 units (volume) of the input fluid to be consumed.
The parameter α represents the aggregate effect of a range of reactions (see § 1.2).

The total increase in the volume of biomass since the start of injection is equal to the
total reduction in the porosity, given by

2π

∫ Rf

0

∫ H

0
(Φ0 −Φ) dZ R dR, (5.1)

where Φ0 is the uniform initial porosity (see § 2). Thus, upon incorporating the
consumption of the input fluid, dimensionless global volume conservation (2.20) becomes∫ rf

0

∫ h

0
φ + α(1 − φ) dz r dr = t, (5.2)

where the first term in the integrand is associated with the input volume that is still
mobile fluid and the second term accounts for the input volume that has become biomass.
Similarly, the dimensionless governing equation (2.18) becomes

∂

∂t

(∫ h

0
φ + α(1 − φ) dz

)
= 1

r
∂

∂r

(
r
∂h
∂r

∫ h

0
k dz

)
. (5.3)

The boundary conditions, initial conditions, and the laws for the evolution of the porosity
and permeability are unchanged from § 2. The case α = 0 corresponds to no consumption
(studied earlier) whilst α = 1 is associated with a balance whereby the volume loss of
input fluid is matched by the increase in volume of the biomass.

5.1. Limited microbial growth (φ → φ∞ > 0)
We first consider the effect of consumption on the regime in which the microbial growth
becomes self-limiting (φ → φ∞ > 0). The decay rate of the porosity is given by (2.21a)
and the permeability is k = φ3. The shape of the free surface at t = 1 and t = 100 is
shown in figures 12(a) and 12(b), respectively, with φ∞ = 0.5 and five different values of
the stoichiometric parameter α.

At early times, t � 1, there has been little microbial activity and so the results of § 3.1
for a uniform porous medium apply. At late times, φ → φ∞, k → k∞ and the governing
equation (5.3) and global mass conservation (5.2) become

[φ∞ + α(1 − φ∞)]
∂h
∂t

= k∞
1
r
∂

∂r

(
r
∂h
∂r

h
)
, (5.4)

[φ∞ + α(1 − φ∞)]
∫ rf

0
hr dr = t. (5.5)

The evolution is accurately described by a rescaling of the similarity solution for flow in a
uniform medium, h̃(r̃, t) (see § 3.2),

h = k−1/2
∞ h̃, r = k1/4

∞ [φ∞ + α(1 − φ∞)]−1/2 r̃, (5.6a,b)

where k∞ = φ3∞. Figure 12(b) shows a comparison between the numerical results for
the free surface (continuous lines) and the rescaled similarity solution (dotted lines) at
t = 100 for five different values of α. In general, consumption of the input fluid reduces
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Figure 12. Effect of consumption of the input fluid with decreasing porosity and permeability, φ∞ = 0.5.
(a) Shape of the free surface at t = 1 for various values of the stoichiometric parameter α = 0, 0.5, 1, 2, 4
(calculated numerically; see Appendix A.1). (b) Corresponding shape of the free surface at t = 100. The dotted
lines show the similarity solution (5.6a,b).

the radial extent of the current but not the vertical extent. The rescaling (5.6a,b) is
similar to that in § 3.2 for the case of no consumption but with φ∞ replaced by the
effective late-time porosity φeff ,∞ = [φ∞ + α(1 − φ∞)] > φ∞ owing to adjusted volume
conservation associated with the consumption.

The sensitivity of the the effective late-time porosity, φeff ,∞, to the late-time porosity,
φ∞, depends on the value of α. For 0 � α < 1, the effect of the porosity reduction
associated with the growth in biomass dominates the loss of input fluid and so lower values
of φ∞ are associated with lower values of φeff ,∞. For α > 1, the reduction in the volume
of input fluid owing to consumption is dominant and so φeff ,∞ is larger at lower values of
φ∞ (the volume of mobile fluid reduces faster than the pore throats constrict).

5.2. Gradual clogging of the porous medium
We revisit the analysis of § 4 but account for loss of volume of the input fluid by
consumption. The porosity is given by φ = (1 + tR/γ )−γ and the permeability by k = φ3.
For α > 0, at late times, the governing equation (5.3) and global mass conservation (5.2)
reduce to

α
∂h
∂t

= 1
r
∂

∂r

(
r
∂h
∂r

∫ h

0
k dz

)
, (5.7)

∫ rf

0
αhr dr = t. (5.8)

At long residence times, the dominant contribution to the volume conservation term on
the left-hand side of (5.3) is the biomass rather than the mobile fluid because the latter has
mostly been consumed and converted into biomass.

The evolution is self-similar (cf. § 4) and for relatively slow clogging, 0 < γ < 1/3, the
solution is given by

h(r, t) = t3γ /2αγ−3γC2
0ψ(ξ), ξ = r

C0t(2−3γ )/4 . (5.9a,b)

It should be noted that the time exponent of the radial extent is smaller than in the case of
α = 0; see (4.5a,b).
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Figure 13. (a) Radial extent and (b) mean thickness of stored hydrogen after one month of injection.
Results shown as a function of the porosity reduction factor φ∞ associated with microbial growth, and the
stoichiometric parameter α quantifying the consumption of the input fluid. The parameter values for the
subsurface layer are given in table 1.

The governing equation is recast as an integro-differential equation for ψ(ξ),

3γ
2
ψ −

(
1
2

− 3γ
4

)
ξ

dψ
dξ

= 1
ξ

d
dξ

(
ξJ3

dψ
dξ

)
, (5.10)

which is integrated numerically; for details, see Appendix A.2. Global mass conservation
(5.8) becomes

C0 =
(
γ−3γ α2

∫ 1

0
ψ(ξ)ξ dξ

)−1/4

, (5.11)

and so the flow thickness, h, is independent of α; see (5.9a,b). The radial extent is singular
as α → 0 and in this limit, the results of § 4 apply instead. As in § 5.1, the radial extent
of the gravity current is generally reduced by consumption but the thickness is somewhat
insensitive to consumption.

The aspect ratio of the gravity current becomes small at late times provided that γ <
2/9. For γ > 2/9 and α > 0, the assumption of hydrostatic pressure does not apply.

6. Application

In this section, the modelling is applied to an example subsurface porous layer that could
be used for underground hydrogen storage. In general, a reduction in permeability (with
porosity fixed) is associated with a thicker gravity current with shorter radial extent. In
contrast, a reduction in porosity (with permeability fixed) has negligible effect on the
thickness but leads to a greater radial extent. Microbial growth causes a reduction in
both permeability and porosity, and the total effect consists of a competition between the
influence of each. For the simplified Kozeny–Carman relation used in the present work, the
permeability reduction is proportional to the porosity reduction cubed (K ∼ Φ3) and so the
two effects become coupled. Consumption of the input fluid by the microbes reduces the
volume of mobile fluid, but this arises primarily through a lesser radial extent rather than
a change in the thickness. These results are demonstrated through the example discussed
below; see also figure 13.
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Initial porosity, Φ0 0.2
Initial permeability, K0 5 × 10−12 m2

Porosity reduction rate, B 1 × 10−5 s−1

Density difference between fluids, ρ 600 kg m−3

Viscosity of input hydrogen, μ 5 × 10−5 Pa s
Input volume flux of hydrogen, Qin 4 × 10−4 m3 s−1

Table 1. Data for an example hydrogen storage project. Values taken from Eddaoui et al. (2021) and
Heinemann et al. (2021).

To explore the influence of hydrogen-induced microbial activity, we consider a
subsurface layer with porosity that reduces with hydrogen residence time according to
(2.22). Results for the radial extent and the mean thickness of the hydrogen flow after
one month of injection are shown in figure 13. The properties of the flow are shown
as a function of the long-time porosity reduction factor, φ∞, and the stoichiometric
consumption parameter α; recall that k∞ = φ3∞. The other subsurface parameters are given
in table 1.

These results have some similarities to the numerical simulations of Eddaoui et al.
(2021) who studied the buoyant rise of hydrogen in the presence of microbial growth. They
considered an unconfined porous medium without an overlying impermeable layer so the
hydrogen rises vertically rather spreading horizontally as a gravity current. Nonetheless,
they found that the permeability decreased most near the injection well and that this leads
to the hydrogen plume having a greater cross-flow extent, which is analogous to the present
result where the gravity current becomes thicker owing to the permeability reduction (see
also the experiments of Ham et al. 2007).

7. Conclusion

This contribution has analysed the effect of microbial growth on the gravity-driven flow
of an injected fluid in a porous layer. The input fluid stimulates biofilms to grow on the
rock grains, which reduces the porosity and permeability within the flow. The dynamics
depend qualitatively on the precise behaviour of the microbes and whether or not the pore
space becomes increasingly constricted or the biomass growth saturates. We have found
late-time similarity solutions for the evolution of the flow and verified these with numerical
simulations. The consumption of the input fluid by the microbes was incorporated into the
model and it was shown that this can significantly reduce the radial extent but has little
impact on the vertical extent.

A summary of the late-time regimes presented in this study is given in table 2. We make
the following observations.

(i) The mean permeability and porosity always decrease within the gravity current. The
reduction in permeability leads to a thicker current with shorter radial extent. The
reduction in porosity has little effect on the thickness but leads to a greater radial
extent.

(ii) The three impacts of microbial growth considered in this work (porosity reduction,
permeability reduction and consumption of hydrogen) each impact the flow of
hydrogen in substantially different ways. The interplay of these phenomena can be
quite nonlinear and complex (see e.g. figure 13 and the points below).

1000 A24-22

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

10
29

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.1029
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Porosity evolution Self-limiting: φ → φ∞ > 0 Slow indefinite clogging: φ = (1 + tR/γ )−γ

Consumption α = 0 α > 0 α = 0 α > 0

(and 0 < γ <
2
7

) (and 0 < γ <
2
9

)

Reference § 3.2 § 5.1 § 4 § 5.2

Radial extent (r ∼) φ
1/4
∞ t1/2

φ
3/4
∞ t1/2

[α + φ∞(1 − α)]1/2 t(2−γ )/4 α−1/2t(2−3γ )/4

Vertical extent (h ∼) φ
−3/2
∞ t0 φ

−3/2
∞ t0 t3γ /2 t3γ /2

Mean porosity φ∞ φ∞ t−γ t−γ

Aspect ratio (h/r ∼) φ
−7/4
∞ t−1/2 [α + φ∞(1 − α)]1/2

φ
9/4
∞ t1/2

t(7γ−2)/4 α1/2t(9γ−2)/4

Rock invaded (r2h ∼) φ−1∞ t
t

α + φ∞(1 − α)
t1+γ α−1t

Mobile fluid (φr2h ∼) t
φ∞t

α + φ∞(1 − α)
t α−1t1−γ

Proportion of hydrogen 0
α(1 − φ∞)

α(1 − φ∞)+ φ∞
0 1 − 1

αtγ
consumed

Table 2. Summary of four key regimes for the long-time behaviour (t � 1) of a porous gravity current with
microbial growth. The mean porosity is (1/h)

∫ h
0 φ dz.

(iii) Microbial growth always leads to a thicker gravity current (owing to the permeability
reduction), even when the input fluid is being consumed.

(iv) Greater loss of the input fluid to consumption by the microbes leads to a gravity
current with shorter radial extent.

(v) The current’s radial extent is generally reduced at higher rates of microbial growth
even if there is little loss of the fluid due to consumption (because the permeability
reduction dominates the porosity reduction).

(vi) The proportion of the hydrogen that is consumed does not depend directly on the
flow structure. The loss due to consumption is controlled primarily by the loss
parameter α and the kinetic activity of the microbes, which may become self-limited
at late times.

(vii) Microbial growth reduces the permeability most near the source and this can strongly
influence and reroute the flow, although buoyancy continues to also play a key role;
see figure 8.

(viii) The amount of porous rock invaded by the hydrogen may be very sensitive to the
rate of microbial growth.

In summary, we have quantified how the flow (and the fluid volume and rock structure)
can depend sensitively on the kinetic parameters of the subsurface microbes. The effects
of microbial growth are multifaceted and the combination of these can completely
dominate the buoyancy-driven flow. This has significant implications for storage projects
and importantly the efficiency of hydrogen recovery during the withdrawal phase.
Such projects face significant uncertainties in determining the consumption and kinetic
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parameters at any given subsurface site, and the present model suggests that this is key to
determining fluid migration.

Stress-dependent microbial activity could be incorporated in the model with the rate
of porosity reduction becoming sensitive to the stress, which is proportional to the flow
velocity divided by the porosity (Stoodley et al. 2002; Krause et al. 2019). This would
slow the microbial growth near the injection source but have limited effect further from
the source where the flow velocity decays as r−1/2.

Declaration of interests. The author reports no conflict of interest.

Author ORCIDs.
Edward M. Hinton https://orcid.org/0000-0002-2204-1204.

Appendix A. Numerical methods

In this appendix, the numerical method for integrating the governing equation (2.18)
is described in § A.1 and the numerical method for integrating the integro-differential
equation (4.10) for the ‘slow’ bioclogging similarity solution is described in § A.2.

A.1. Integration of the governing partial differential equation
Note that the porosity and permeability are controlled by the residence time of the input
fluid, tR(r, z, t), which in turn depends on the prior evolution of the free surface. In
the numerical method, we do not keep track of the porosity and permeability explicitly.
Instead, data for the history of the free surface is used to infer the porosity and
permeability.

We rewrite the governing equation (2.18) as

∂h
∂t

= 1
r
∂

∂r

(
r
∫ h

0
k dz

∂h
∂r

)
−
∫ h

0

∂φ

∂t
dz, (A1)

where we have used the boundary condition that φ = 1 at the free surface. We rewrite
the depth-integrated permeability as an integral over the residence time, tR (which is a
function of the spatial coordinates),

∫ h

0
k dz =

∫ 0

t−r−1
f (r)

k(φ(tR))
dz
dtR

dtR, (A2)

where r−1
f (r) is the time given by the inverse of the relation at the contact point r = rf (t).

We integrate by parts to obtain

∫ h

0
k dz =

∫ 0

t−r−1
f (r)

d
dtR

[k(φ(tR))z] − k′(φ(tR))
dφ
dtR

z dtR (A3)

= h(r, t)−
∫ t

0
k′(φ(tR))f (φ(tR))h(r, t − tR) dtR, (A4)

where a prime denotes differentiation with respect to the argument, we have used (2.17)
and the integral limit has been extended from tR = t − r−1

f (r) to tR = t for convenience
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noting that h = 0 in this extension of the integral. A similar calculation furnishes∫ h

0

∂φ

∂t
dz = −h(r, t)+

∫ t

0
f (φ(tR))f ′(φ(tR))h(r, t − tR) dtR. (A5)

The governing equation can now be written only in terms of the past evolution of h(r, t)
and the functional form of φ(·) and f (·). This system is straightforward to integrate
using second-order spatial finite differences and MATLAB’s built-in ordinary differential
equation (ODE) solvers for the time integration.

The depth-integrated porosity can be obtained via a similar calculation,∫ h

0
φ dz = h −

∫ t

0
f (φ(tR))h(r, t − tR) dtR. (A6)

We note that contours of the permeability and porosity can be obtained from the numerical
solution z = h(r, t − tR) with tR ∈ [0, t], since k and φ are functions only of the residence
time tR. For example, with exponentially decreasing porosity φ = exp(−tR), the contours
of the porosity at time t are given by z = h(r, t + logφ).

When there is consumption of the input fluid (§ 5), we rewrite the governing equation as

∂h
∂t

= 1
r
∂

∂r

(
r
∂h
∂r

∫ h

0
k dz

)
− (1 − α)

∫ h

0

∂φ

∂t
, (A7)

and all the same methods apply for solving this equation numerically.

A.2. Integration of the integro-differential equation
The integrals, Jn(ξ) in (4.10), are from ξ to 1, which motivates backwards numerical
integration shooting from ξ = 1. This requires boundary conditions at ξ = 1 where
ψ(1) = 0. The behaviour as ξ → 1 is

ψ = (1 − ξ)1+2γ ψ0, ψ0 = 1
4
(2 − γ )(1 − 3γ )
(1 − γ )(1 + 2γ )

, (A8a,b)

J1(ξ) = ψ0
1 + 2γ
1 − γ

(
2 − γ

4

)γ
(1 − ξ)1+γ , J3(ξ) = ψ0

1 + 2γ
1 − 3γ

(
2 − γ

4

)γ
(1 − ξ)1−γ .

(A9a,b)

Note that ψ ′′(ξ) is singular as ξ → 1 for γ > 0.
The integro-differential equation (4.10) is rewritten as

d2ψ

dξ2 =
γ

2
ξJ1 −

(
1
2

− γ

4

)
ξ2 dJ1

dξ
− J3

dψ
dξ

− ξ
dJ3

dξ
dψ
dξ

ξJ3
. (A10)

The backwards integration is achieved by updating ψ using dψ/dξ , updating dψ/dξ using
(A10), and calculating J1(ξ) and J3(ξ) at each step. The integration is initiated from ξ =
1–10−7 by applying (A8a,b) and (A9a,b).

Appendix B. Fast clogging (γ > 1)

For γ > 1/3, the permeability decays rapidly away from the free surface and the dominant
contribution to the depth-integrated permeability arises from a small neighbourhood of
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Figure 14. Vertical cross-sections of the gravity current at r = 1, t = 10 for the case of exponentially
decaying porosity φ = exp(−tR) (γ → ∞). (a) Residence time of the input fluid, tR. (b) Porosity, φ.

the free surface in which τR = O(t−1); see (4.4). For γ > 1, the same is true of the
depth-integrated porosity; see figure 14. In the present section, we analyse the case in
which γ > 1 and both depth-integrated quantities are dominated by the region near the
free surface. The case of 1/3 < γ < 1 is discussed in Appendix C.

The depth-integrated permeability (4.2) is rewritten as∫ h

0
k dz =

∫ τmaxt

0

(
1 + tR

γ

)−3γ
∂h
∂t

∣∣∣∣
(r,t−tR)

dtR. (B1)

We assume that h � t for t � 1, which we confirm a posteriori. Then, integrating by parts
in (B1) furnishes the following asymptotic series (see chapter 3 of Hinch 1991):∫ h

0
k dz = γ

3γ − 1
∂h
∂t

∣∣∣∣
(r,t)

− γ 2

(3γ − 1)(3γ − 2)
∂2h
∂t2

∣∣∣∣
(r,t)

+ . . . (B2)

and the second and later terms are O(t−1) smaller than the first. For γ > 1, an
identical argument applied to φ = (1 + tR/γ )−γ furnishes an asymptotic series for the
depth-integrated porosity. The leading-order terms are∫ h

0
φ dz = γ

γ − 1
∂h
∂t
,

∫ h

0
k dz = γ

3γ − 1
∂h
∂t
. (B3a,b)

The rate of change of the free surface, ∂h/∂t, approximately quantifies the size of the
region below the free surface in which the rock has not yet become fully clogged by the
microbial growth.

The depth-integrated quantities (B3a,b) are substituted into the governing equation
(2.18) to obtain

∂2h
∂t2

=
(
γ − 1
3γ − 1

)
1
r
∂

∂r

(
r
∂h
∂t
∂h
∂r

)
. (B4)

Global mass conservation (2.20) becomes
γ

γ − 1

∫ rf

0
r
∂h
∂t

dr = t, (B5)

and at the contact point r = rf (t), we have the conditions

lim
r→rf

(∫ h

0
φ dz

∂rf

∂t

)
= lim

r→rf

(
−
∫ h

0
k dz

∂h
∂r

)
, h(rf (t), t) = 0. (B6a,b)
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Using (B3a,b), this becomes

∂rf

∂t
= −

(
γ − 1

3γ − 1

)
∂h
∂r

∣∣∣∣
r=rf

, h(rf (t), t) = 0. (B7)

The system comprising (B4), (B5), (B7) is self-similar with a solution of the form

h =
(

3γ − 1
γ

)1/2

t1/2D2
0Υ (η), η =

[
(3γ 2 − γ )1/4

(γ − 1)1/2

]
r

D0t3/4
, (B8a,b)

where D0 is chosen so that the contact point is at η = 1, i.e. Υ (1) = 0. The exponents of
time are independent of γ , in contrast to the case of slow clogging. The shape function,
Υ (η), satisfies the following ODE:

−Υ + 9
4
η

d
dη

(
ηΥ ′) = 1

η

d
dη

[
η
(
2Υ − 3ηΥ ′)Υ ′] , (B9)

which is independent of γ owing to the choice of scalings in (B8a,b). The boundary
conditions at the contact point (B7) become

dΥ
dη

∣∣∣∣
η=1

= 3
4
, Υ (1) = 0. (B10a,b)

Equation (B9) is integrated numerically by shooting from η = 1 using these conditions.
Mass conservation (B5) then furnishes

D0 = 21/2

(∫ 1

0
2ηΥ − 3η2Υ ′ dη

)−1/4

= 1.348. (B11)

The similarity solution is shown as a red dashed line in figure 15(a) for γ = 2 and in
figure 15(b) for the case of exponential decay (γ → ∞). Comparison with the numerical
results at t = 1, 10, 100 (black lines in figure 15) demonstrates excellent agreement at late
times. The frontal contact point is at

rf (t) = 1.348
[
(γ − 1)1/2

(3γ 2 − γ )1/4

]
t3/4. (B12)

The form of the similarity solution (B8a,b) confirms that h � t for t � 1, which validates
the asymptotic analysis. In addition, the relative residence time at z = 0 is given by

τmax = 1 − η4/3, (B13)

which is O(1) as assumed earlier.

Appendix C. Intermediate clogging 1/3 < γ < 1

For 1
3 < γ < 1, the dominant contribution to the depth-integrated porosity is a global

contribution, whilst the dominant contribution to the depth-integrated permeability comes

1000 A24-27

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

10
29

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.1029


E.M. Hinton

0

2

h/
t1

/2

r/t3/4

4

6

2

4

6

0.5 1.0 1.5 2.0 0

r/t3/4

0.5 1.0 1.5 2.0

(b)(a)

Figure 15. Shape of the free surface in rescaled coordinates for relatively fast bioclogging. Numerical results,
shown at t = 1, 10, 100 (black lines), are compared with the similarity solution (red dashed lines) from (B8a,b)
for (a) porosity decays algebraically with γ = 2 and (b) porosity decays exponentially (γ → ∞).

from a local region near the free surface; see (4.3), (4.4). This motivates the following
similarity solution:

h = E2
0t1/2w(ζ ), ζ = r

E0t(1+2γ )/4 , (C1a,b)

where w(1) = 1. The depth-integrated porosity is given by∫ h

0
φ dz = t(1−2γ )/2E2

0γ
γ J1(ζ ), (C2)

where J1 is given by (4.11) with the function ψ replaced by the function w. The depth
integrated permeability is given by (B3b). The governing equation (2.18) becomes(

1
2

− γ

)
J1(ζ )−

(
1 + 2γ

4

)
ζ

dJ1

dζ
= γ 1−γ

3γ − 1
1
ζ

d
dζ

[
ζ

dw
dζ

(
1
2

w − 1 + 2γ
4

ζ
dw
dζ

)]
.

(C3)

Global mass conservation is given by

E0 =
(
γ γ
∫ 1

0
J1(ζ )ζ dζ

)−1/4

. (C4)

The system is integrated numerically by shooting backwards from ζ = 1; for details, see
§ 4 and Appendix A.2.

In the special case where γ = 1/3, the dominant contribution to the depth-integrated
permeability contains a log t term,∫ h

0
φ dz ∼ t−1/3h,

∫ h

0
k dz ∼ log t

t
h. (C5a,b)

The governing equation and mass conservation furnish the following scalings for h and r:

r ∼ t5/12 (log t)1/4 , h ∼ t1/2

(log t)1/2
. (C6a,b)

A similar result can be obtained for the special case of γ = 1 with a log t contribution
arising from the depth-integrated porosity.
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