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Abstract

Helicobacter pylori (H. pylori) is present in the stomach of half of the world’s population. The
force of infection describes the rate at which susceptibles acquire infection. In this article, we
estimated the age-specific force of infection of H. pylori in Mexico. Data came from a national
H. pylori seroepidemiology survey collected in Mexico in 1987-88. We modelled the number
of individuals with H. pylori at a given age as a binomial random variable. We assumed that
the cumulative risk of infection by a given age follows a modified exponential catalytic model,
allowing some fraction of the population to remain uninfected. The cumulative risk of infec-
tion was modelled for each state in Mexico and were shrunk towards the overall national
cumulative risk curve using Bayesian hierarchical models. The proportion of the population
that can be infected (ie. susceptible population) is 85.9% (95% credible interval (CR)
84.3%-87.5%). The constant rate of infection per year of age among the susceptible popula-
tion is 0.092 (95% CR 0.084-0.100). The estimated force of infection was highest at birth 0.079
(95% CR 0.071-0.087) decreasing to zero as age increases. This Bayesian hierarchical model
allows stable estimation of state-specific force of infection by pooling information between the
states, resulting in more realistic estimates.

Introduction

Helicobacter pylori is one of the most prevalent global pathogens, the strongest known bio-
logical risk factor for gastric cancer (about a sixfold increase of risk) and is responsible for
80% of gastric ulcers [1]. H. pylori is a Gram-negative, microaerophilic bacterium commonly
found in the epithelial lining of the human stomach [2].

The mode of transmission of H. pylori remains unclear. Transmission appears to occur
through close personal contact, such as oral-oral or faecal-oral, particularly within the family
and typically in early childhood [1, 3-10]. Once infected with H. pylori, individuals will
experience life-long infection in the absence of antibiotic treatment [11, 12]. The global bur-
den of disease is substantial, with H. pylori present in the stomach of half of the world’s popu-
lation; however, H. pylori most heavily burdens low- and middle-income countries (LMICs)
where the proportion of people infected is approximately 70% [13, 14]. For example, a preva-
lence study in Mexico showed that 66% of the Mexican population was infected with H. pylori,
and that this prevalence increases with age, reaching up to 80% in adults 25 years old and older
[15]. This study also found significant variation in the prevalence by age, socio-economic
status and geography (e.g. state-level prevalence ranged from 48% to 85%).

The force of infection is the instantaneous rate at which susceptible individuals acquire
infection. It is an important epidemiological quantity and a key parameter for mathematical
models of disease transmission, which are used to estimate disease burden and the effective-
ness and cost-effectiveness of infectious disease treatment and prevention [16, 17]. Like many
infectious diseases, it is infeasible to directly measure the force of infection of H. pylori
[18-20]. However, under certain assumptions, it can be estimated using population-level
seroprevalence data [16, 21, 22]. Despite the existence of seroprevalence data of H. pylori, it
has not been used previously to estimate the force of infection.

In this paper, we estimate the age-specific force of infection of H. pylori from national seropreva-
lence data in Mexico (a middle-income country with a high prevalence of infection). We used data
from a nationally representative seroepidemiology survey conducted in Mexico in 1987-1988, prior
to widespread antibiotic treatment of H. pylori, with rich geographical variation. Given the large
heterogeneity in the number of samples obtained in each state, we used a non-linear Bayesian
hierarchical catalytic model that allows us to estimate the force of infection in each state in

https://doi.org/10.1017/50950268818000857 Published online by Cambridge University Press


https://www.cambridge.org/hyg
https://doi.org/10.1017/S0950268818001371
https://doi.org/10.1017/S0950268818000857
mailto:alari006@umn.edu
http://crossmark.crossref.org/dialog/?doi=10.1017/S0950268818000857&domain=pdf
https://doi.org/10.1017/S0950268818000857

962

Mexico while simultaneously estimating the national average force of
infection. We demonstrate that this method dramatically stabilises
estimation by shrinking the state-specific force of infection towards
the national estimate, particularly on states with low data.

Methods
Force of infection as a catalytic model

The force of infection is the key quantity governing disease transmis-
sion within a given population and is defined as the instantaneous
per capita rate at which susceptible individuals acquire infection
(i.e. the hazard of infection). It reflects both the degree of contact
between susceptible and infected individuals and the transmissibil-
ity of the pathogen per contact. In cases where contact is age depend-
ent, the force of infection is itself a function of age analogous to the
hazard being a function of time in a survival model [21].

Formally, let P(a) denote the probability that an individual
susceptible at birth is still susceptible (i.e. uninfected) at age a;
this is identical to the cumulative survival function in a survival
analysis. Let A(a) denote the force of infection at age a, which
represents the rate of infection of the susceptible population
P(a). In terms of a survival model, the force of infection A(a)
represents the instantaneous infection hazard. Therefore, for life-
long infections (or infections conferring lifelong immunity) that
do not significantly affect mortality, A(a) can be defined as:

1 dP(a)

/\(a) = - % da

(eY)

under the assumption that the population is in dynamic equilib-
rium (meaning that P(a) is constant over calendar time and not
changing by birth cohort).

Equation (1) specifies a so-called catalytic epidemic model, first
defined by Muench [22]. The term catalytic model derives from its
origins in chemistry, where these models were used to study
chemical reaction kinetics. Catalytic epidemic models have been
widely used to estimate the force of infection of different infec-
tious disease such as measles, rubella, mumps, hepatitis A and yel-
low fever using seroprevalence epidemiological data from settings
where these diseases do not significantly affect mortality [16].

Catalytic models can easily be written in terms of the cumula-
tive probability of infection by age a, F(a) =1 — P(a), which more
directly corresponds to how seroprevalence data are collected [21,
22]. In terms of F(a), the force of infection, A(a), becomes:

1 dFG)
" 1—F(a) da

Aa) 2

Note that rearranging Equation (2) we can solve for F(a) as a
function of A(a), which is equivalent to a survival model where
the probability of infection by age a is the cumulative distribution
function of the time to infection:

a

F(a)=1—exp —l[)\(s)ds . 3)

0

Seroprevalence data of H. pylori in Mexico

In 1987-1988, the National Seroepidemiological Survey was con-
ducted in Mexico as a nationally representative seroprevalence
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study of H. pylori infection [15, 23]. The survey was designed
to represent the country by including all 32 states of Mexico, all
ages, all socio-economic levels and both sexes [23]. In total, 32
200 households were surveyed and more than 70 000 serum sam-
ples were collected. Of these samples, 11605 individuals were
used for H. pylori testing, and out of these, 7 720 (66%) were sero-
positive for H. pylori. H. pylori infection was determined by
ELISA detection of IgG antibodies to specific H. pylori antigens.
H. pylori prevalence in Mexico varies by state and can be as low
as 48% in the state of Colima and as high as 83% in the state
of Baja California Sur (Fig. 1).

Functional form of H. pylori infection in Mexico

The National Seroepidemiological Survey was collected prior to
widespread antibiotic treatment of H. pylori in 1991, so we can
assume that the population is in dynamic equilibrium. The age-
specific prevalence measured nationally is shown in Figure 2
and it is clear that the trend is monotonically non-decreasing.
Based on the shape of these data, we assume that the state-
specific cumulative probability of H. pylori infection, F;(a), for
each state i follows a modified exponential functional form:

Fia) = aj(1 — e "%, 4

where 0 <o;<1 and ;> 0 are the state-specific asymptote and
rate parameters of the catalytic model. The asymptote parameter
a is often interpreted as the proportion of the population that can
be infected (i.e. the susceptible population), if it is assumed that it
is the exhaustion of susceptible individuals that leads to the
eventual plateau in the proportion infected at older ages [16].
With this interpretation, the rate parameter y is then the constant
rate at which these susceptible individuals become infected.
We allow a and y to vary by state to reflect the heterogeneity in
H. pylori prevalence trends resulting from differences in socio-
economic and environmental factors. Note that for all states, we
assume that no children are infected at birth (F(0)=0)
since there is no biological evidence for vertical transmission of
H. pylori from mother to child during pregnancy, labour or
delivery [24].

Based on this functional form for the cumulative probability of
infection, we used Equation (3) to solve for the state-specific force
of infection, 4;(a), in terms of ; and y;:

aye "

Al =72 a;(1 — e 4y’

)

Note that if the entire population is eventually infected in a given
state (i.e. o;=1), A;(a) =y; and Equation (4) reduces to a trad-
itional exponential model in survival analysis.

Estimation of the force of H. pylori infection

We used statistical methods to estimate the parameters ¢ and y
that best fit the cumulative probability of infection in each state
and then calculated the corresponding force of infection. Due to
the high degree of variation in sample composition for each
state in the National Seroepidemiological Survey, traditional non-
linear least-squares estimation yielded imprecise, unstable or
unrealistic estimates of & and y. This could translate into estimates
of force of infection that are implausibly high or low with wide
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Fig. 1. Map of Mexico with observed prevalence of Helicobacter pylori by state in 1987-88.

confidence intervals (CIs) when only a small number of people
are sampled (and, for instance, none are infected). For example,
some states had individuals sampled at all ages while others had
limited data for certain ages. In Figure 3, we show the observed
prevalence in four different states with varying amounts of data
and the predicted prevalence for these states using the estimates
from non-linear least-squares estimation (in blue solid lines).
Nuevo Leon and Mexico City have more data and less variability
in terms of disease status compared with the states of Baja
California Sur and Nayarit. The state of Baja California Sur is a
state where all adults sampled older than 20 years old (n=24)
are positive for H. pylori. The resulting parameter estimates are
implausibly high based on our current knowledge of H. pylori.

Prevalence

© 250
O 500
O 750

LA S S— L S S S B S S
15 20 25 30 35 40 45 50 55 60 65 7O

Age

Fig. 2. Empirical prevalence of Helicobacter pylori in Mexico by age nationally and in
three different states with different amount of data.

https://doi.org/10.1017/50950268818000857 Published online by Cambridge University Press

To solve these issues, we instead implemented a hierarchical
Bayesian non-linear model that ‘borrows’ information from all
states when estimating state-specific effects. Such models have
been described in detail elsewhere [25-27] and are known to
reduce mean squared error of model estimates in some settings.
We are unaware of these models having been applied to catalytic
models to estimate force of infection. We first used hierarchical
Bayesian non-linear models to estimate the posterior distribution
of the @ and y parameters of model (4) for each of the 32 states.
We then estimated the aggregated and state-specific force of
infection of H. pylori in Mexico.

Hierarchical non-linear Bayesian model

We assume that for each state i =1, ..., 32 the number of infected
individuals y;(a) at age a follows a binomial distribution where
n;(a) is the sample size and p;(a) is the cumulative probability
of infection (i.e. F;(a)) in state i:

yi(a) ~ Binomial(n;(a), pi(a))
pi(a) = Fi(a) = a;(1 — 7%

2] (3]
~ MVN 2] 6
[ log(7) B, ©
10° 0
2 IW([ 0 104,2)

Note that each of the 32 states has its own set of parameters ¢;
and y;, but these state-specific parameters ‘borrow’ information
from each other by assuming that they collectively follow a multi-
variate normal (MVN) distribution centred at 8, and 3,. To com-
pute the average national-level proportion of susceptibles and
infection rate, @° and 7, we applied a logit and log transform-
ation to the f; and f, parameters, respectively.
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Fig. 3. Empirical prevalence of Helicobacter pylori in Mexico by age in four different states with different amount of data, together with model-predicted prevalence
using non-linear least-squares (NLS) and hierarchical Bayesian estimation methods. The upper two reflect states with data for all ages and the lower two reflect
states with limited amount of data for some ages. The red solid line denotes the model-predicted posterior mean and the red dashed lines denote the 95% credible
bounds. The black dotted horizontal line shows the average national H. pylori prevalence.

For the covariance matrix, we used an inverse Wishart (IW)
distribution of two degrees of freedom. The IW is a widely used
prior distribution for covariance matrices; the large diagonal
entries and the zero off-diagonal entries in the matrix represent
a weakly informative prior on the variances and no prior correl-
ation between o and y parameters [25]. Weakly informative
normal prior distributions (1 =0 and o= 10?) were specified for
B and 3, parameters.

Parameters of model (6) were estimated through Gibbs sam-
pling, using Just Another Gibbs Sampler (JAGS) [28]. We ran
two Markov chain Monte Carlo (MCMC) chains. For each
chain, 50 000 iterations were used to generate a posterior distribu-
tion after a 10 000 iterations burn-in period. The mean estimates
and 95% credible intervals (CR) were derived from posterior dis-
tributions. For each chain, we used starting values computed from
the solution of model (4) using non-linear least-squares. We

Table 1. Posterior mean estimates, standard deviation (SD) and lower and
upper bounds of the 95% credible interval of the national-level proportion of
susceptibles (a°) and rate of infection (y°), which correspond to the
asymptote and rate parameters of the catalytic epidemic model of
Helicobacter pylori in Mexico

checked each parameter’s chains to assess convergence. To con-
firm whether the model provides a reasonable fit of the data,
we plotted the observed prevalence by age with 95% CIs, together
with the model-predicted prevalence.

The force of H. pylori infection was estimated within the
MCMC model by evaluating Equation (5) at each parameter set
drawn from the posterior distribution, respectively. We then cal-
culated their posterior predicted mean and 95% CR. All statistical
modelling was conducted in JAGS [28] and R version 3.2.4
(http://www.r-project.org).

Results

Table 1 presents the posterior summaries of the national-level
and y° parameters of the hierarchical non-linear Bayesian model.
The posterior mean of the asymptote parameter (°) is 0.859
(95% CR 0.843-0.875). The posterior mean of the rate parameter
(¥°) is 0.092 (95% CR 0.084-0.100).

Figure 4 shows the state-specific estimates of the asymptote (@)
and infection rate (y) parameters. Parameter estimates exhibit
substantial heterogeneity between states. More than a third of
the states have posterior means of the asymptote parameter out-
side the 95% CR of the national average (95% CR 0.843-0.875).

B t Estimat S.D. LB UB . . . . . . .

arameser SHmate Six states (Baja California Sur, Coahuila, Sinaloa, San Luis
o0 0.859 0.008 0.843 0.875 Potosi, Sonora and Mexico City) have posterior means above
) the upper bound of the national average, while seven other states
Y 0.092 0.004 0.084 0.100
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Fig. 4. State-specific posterior mean and 95% credible interval for the asymptote and rate parameters. Solid and dashed vertical lines represent the national-level

posterior mean and 95% credible interval, respectively.

Veracruz) have estimates below the lower bound of the national
average. More than half of the states have posterior means of
the rate parameter outside the 95% CR of the estimated national
average (95% CR 0.084-0.100). Ten states (Chihuahua, Chiapas,
Baja California Sur, Guerrero, Aguascalientes, Queretaro,
Sonora, Guanajuato, Sinaloa and Tamaulipas) have posterior
means above the upper bound of the national average and eight
other states (Morelos, Yucatan, Zacatecas, Oaxaca, Nayarit,

100% -

90%

Hidalgo, Colima and Veracruz) have lower estimates than the
lower bound of the national average.

Figure 5 shows the observed national prevalence of H. pylori by
age in Mexico, together with the model-predicted prevalence. All
but three model-predicted prevalence lie between the 95% confi-
dence bounds of the empirical data. For 1- and 2-year olds, the
model-predicted prevalence lies below the bounds, favouring
lower prevalence than those observed for these ages. Figure 3

[}
o
=
2
o
40% 4 o N
0 250
I O 500
30% 1 ¥ O 750
£
et 1[# Model predicted
— Mean
- 85% Credible Interval
10% A Fig. 5. Model fit to the national prevalence of
Helicobacter pylori by age in Mexico in 1987-88. Grey cir-
cles denote empirical prevalence with size proportional
0% to sample size, and 95% confidence interval per 1-year
i — - B o o T D R o r T ~—— age group. The red solid line denotes the model-
0 5 10 15 20 25 30 35 40 45 S50 55 60 65 70 predicted posterior mean and the red dashed lines
Age denote the 95% credible bounds.

https://doi.org/10.1017/50950268818000857 Published online by Cambridge University Press


https://doi.org/10.1017/S0950268818000857

966

shows the observed and model-predicted prevalence of H. pylori
by age in four different states with varying amounts of data
using both the hierarchical Bayesian and the non-linear
least-squares estimation methods. The width of the model-
predicted credible bounds is a function of the amount of data
used to estimate the state-specific prevalence. States for which
more data are available have tighter credible bounds than states
with limited data. The predicted prevalence from the non-linear
least-squares model are sensitive to small sample sizes overesti-
mating the prevalence on ages for which data are skewed towards
infection (state of Baja California Sur) and underestimating the
prevalence on ages for which data are skewed towards no infec-
tion (state of Nayarit). The hierarchical Bayesian model shrinks
the estimated prevalence for states with limited data towards the
overall mean. The observed and model-predicted prevalence
using both the hierarchical Bayesian and the non-linear
least-squares estimation methods for all the geographical states
in Mexico is shown in Figure 6.

Force of infection

Figure 7 shows the model-predicted national force of infection of
H. pylori by age in Mexico. The force of infection starts at 0.08
right after birth and decreases to zero as age increases. Like o
and y, the state-specific force of infection varies considerably
across states (Fig. 8). At birth, estimates of the force of infection
were as high as 0.10 (Chiapas and Chihuahua) and as low as
0.04 (Colima and Veracruz).

F. Alarid-Escudero et al.

Discussion

In this study, we used a catalytic model to estimate the force of
infection of H. pylori in Mexico at the national level, but also at
the state level. Catalytic models have been previously used to esti-
mate the force of infection of other diseases but have not been
previously applied to H. pylori. We found that age-specific preva-
lence of H. pylori varies greatly by state. The hierarchical Bayesian
approach used to estimate the catalytic model of H. pylori allowed
us to account for state-specific heterogeneity in the force of infec-
tion. Specifically, by borrowing information between states, we
obtained better inference for undersampled states and quantified
the variation across states. In addition, we found great variation in
the proportion of the population that can be infected (i.e. the
asymptote parameter @) and the constant rate of infection
among the susceptible population (i.e. the rate parameter ).
These contrasting differences translate into high variation in the
force of infection, which can have implications in the prevention
and treatment strategies and highlights the need of state-specific
interventions.

The model-predicted force of infection is comparable with the
results seen in previous research. For example, the estimated force
of infection at 8 years old is 7% (95% CR 6.4%-7.5%) and at
11 years old is 6.4% (95% CR 6.0%-6.9%), which are similar
estimates to the annual incidence rates of 6.56% (95% CI 4.6%—
8.53%) in 5-8 years old and 6.01% (95% CI 3.52%- 8.5%) in
9-13 years old obtained by observing H. pylori incidence over
time in Mexican school children who initially tested negative
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100% : T il“l

B0%
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Fig. 6. Model fit to the state-specific prevalence of Helicobacter pylori by age in Mexico in 1987-88. Grey circles denote empirical prevalence with size proportional
to sample size and 95% confidence interval. The red solid line denotes the model-predicted posterior mean and the red dashed lines denote the 95% credible
bounds. The black dotted horizontal line shows the average national H. pylori prevalence.
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Fig. 7. Model-predicted national force of infection of
Helicobacter pylori by age in Mexico in 1987-88. The
solid line denotes the model-predicted posterior mean
and the dashed lines denote the 95% credible bounds.
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for the infection [29]. Another study estimated an annual infec-
tion rate of 19.84% (95% CI 16.43-23.25%) from birth to
2 years old in a cohort of children in El Paso, Texas, and
Ciudad Juarez (Chihuahua), which is consistent with our assump-
tion that the force of infection is highest at birth and decreases
with age [30].

Our study has several limitations. We imposed a constrained
exponential functional form on the cumulative probability of infec-
tion, which may have overly restricted our parameter estimates and
the predicted force of infection. For example, the model-predicted
H. pylori prevalence consistently falls below observed prevalence
for children under 2 years old, nationally and for many states,
which may indicate that the force of infection at these ages is
being underestimated. A more flexible catalytic model, such as a
piecewise or a spline model, could have provided a better fit to
the data [31]. However, by using these more flexible models, we
lose the ability to link the model parameters directly to the disease
process. We also assumed that the Mexican population is in
endemic equilibrium with respect to H. pylori infection, which
means that the force of infection does not change over time.
While antibiotic treatment for H. pylori was not widespread prior
to 1991 [32, 33], this assumption could still be violated if other fac-
tors related to H. pylori transmission, such as improved sanitation,
have changed prior to 1987 (the year when the National
Seroepidemiological Survey started collection). However, if new
seroepidemiological data were collected in Mexico, we could
apply our model to assess if the force of infection of H. pylori has
changed over time because of antibiotic treatment, cohort effects
or changes in other socio-demographic variables. In addition, we
assumed that disease-related mortality is negligible compared
with all-cause mortality. This would seem reasonable in the case
of H. pylori, but because it is a carcinogenic agent, there is a
small fraction of the infected population that will develop gastric
cancer and face an elevated mortality risk. However, out of the
total number of deaths in Mexico between 1987 and 1988 (819
900 deaths), 8143 deaths were attributed to gastric cancer, which
only accounted for <1% of all deaths in Mexico in that period
[34]. Since the proportion of the population that can be infected
and the constant rate at which they become infected vary by
state, such variation could reflect some degree of spatial autocorrel-
ation. However, in an exploratory evaluation of spatial autocorrel-
ation using the global Moran’s I test [35, 36], we estimated a
Moran’s I statistic of 0.06 (P = 0.18), suggesting little spatial auto-
correlation. Furthermore, state-specific risk factors (such as level
of sanitation, education, etc.) might be stronger predictors of
these state-level variations than the spatial configuration of the
states. However, we plan to address these limitations in future
work. Despite these limitations, we believe that our estimates of
the force of infection are reasonable interpretations of the national
seroepidemiological data.

Although we found and quantified the high variation across
states, we did not explain potential sources for this variation.
Some of the state-level explanatory variables might include level
of socio-economic development, sanitation, education and per-
centage of population living in rural areas. These factors could
be used to model both the asymptote (¢) and the rate of infection
(y) parameters. Mexico has high socio-demographic variation in
its states, so the estimated influence of state-level characteristics
on the force of infection might be relevant to other Latin
American countries. This, however, is a topic of further research.

While our analysis relied on data specifically from Mexico, there
are many other LMICs that face a similar burden of H. pylori and
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gastric cancer [37, 38]. Many of these countries are in Latin
America and likely have similar transmission dynamics [1].

Serological data for other types of infections have been used to
estimate the parameters of dynamic transmission models [39, 40]
that are then used to estimate the effectiveness and cost-effectiveness
of different treatment or vaccination strategies [41, 42]. The meth-
odology and results of our study could be used to estimate the trans-
mission parameters for dynamic transmission models of H. pylori to
evaluate different screen-and-treat strategies or estimate the benefits
of potential vaccines, which are currently under development [43].
Identifying populations at greatest risk of H. pylori infection will
further the development of appropriately targeted prevention,
screening and treatment strategies.
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