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Leptin is significantly broadening our understanding of the mechanisms underlying neuro-
endocrine function. Initially, based on a rather static view of the hormone, most investigations
focused on the effects of leptin on food intake control and body-weight homeostasis, with
attention primarily focused on the implications of leptin as a lipostatic factor and central satiety
agent. However, the almost ubiquitous distribution of leptin receptors in peripheral tissues
provided a fertile area for investigation and a more dynamic view of leptin started to unfold. This
adipocyte-derived circulating peptidic hormone, with a tertiary structure resembling that of
members of the long-chain helical cytokine family, has generated an enormous interest in the
interaction as well as integration between brain targets and peripheral signals. Considerable
evidence for systemic effects of leptin on specific tissues and metabolic pathways indicates that
leptin operates both directly and indirectly to orchestrate complex pathophysiological processes.
Disentangling the biochemical and molecular mechanisms in which leptin is involved represents
one of the major challenges ahead.

OB protein: Obesity: Lipolysis: Reproduction: Angiogenesis: Hypertension

OB-R, leptin receptor; SNAP, S-nitroso-N-acetyl-penicillamine; STAT, signal transducers and activators of transcription Overview
Animal models long available and commonly used in
obesity research have included the genetically-obese, ob/ob,
mouse and the diabetic, db/db, mouse. Both animal models
develop obesity early in life, due to hyperphagia and
reduced energy expenditure (Coleman, 1978). These mice
are also hyperglycaemic, hyperinsulinaemic, hypothermic,
stunted and infertile, an array of abnormalities not readily
understandable in terms of a single gene defect. The two
types of mutant are phenotypically identical when the
mutant genes are expressed on the same genetic back-
ground. Observations from parabiosis experiments indicated
many decades ago that ob/ob mice lack a factor in their
blood that suppresses eating, whereas db/db mice lack the
ability to decrease food intake in response to this factor
(Hausberger, 1959; Hervey, 1959; Coleman & Hummel,
1969; Coleman, 1973, 1978). The cloning and character-
ization of the ob gene showed that it encodes a 16 kDa
protein, which was called OB protein or leptin, a name
derived from the Greek root leptos, meaning thin (Zhang

et al. 1994). The identification that leptin is essential for
body-weight homeostasis (Zhang et al. 1994; Campfield
et al. 1995; Halaas et al. 1995; Pelleymounter et al. 1995)
has permanently altered the field of metabolic physiology,
with a substantial and rapidly changing body of knowledge
being created since then.

Leptin structure
Interestingly, leptin presents striking structural similarities
to members of the long-chain helical cytokine family
(Madej et al. 1995; Zhang et al. 1997). The protein is an
elongated molecule with approximate dimensions of 2·0 ×
2·5 × 4·5 nm. It consists of four anti-parallel α-helices,
connected by two long crossover links and one short loop
arranged in a left-handed helical bundle, which forms a two-
layer packing. The skew angle between the two layers is
about 20°. The 167 amino acid sequence of leptin
contains two cysteine residues, cysteine 96 and cysteine
146, that form a disulfide bond between the C-terminus of
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the protein and the beginning of one of the loops. This bond
appears to be important for structure folding and receptor
binding, as mutations of either of the cysteine residues
renders the protein biologically inactive. The other most
conserved regions observed between OB proteins of
different species are located within the four α-helices
(Zhang et al. 1997). Furthermore, the synthesis and adminis-
tration of fragment peptides based on the OB protein have
shown that leptin activity is localized, at least in part, in the
carboxy terminal region of the protein, in domains between
residues 106 and 167 (Grasso et al. 1997; Frühbeck et al.
1998b).

Leptin is mainly produced by fat cells and is secreted into
the bloodstream (Frühbeck et al. 1998c; Himms-Hagen,
1999; Ahima & Flier, 2000). However, other tissues such as
placenta (Holness et al. 1999), mammary epithelium (Casa-
biell et al. 1997; Aoki et al. 1999), stomach (Bado et al.
1998), muscle (Wang J et al. 1998) and brain (Wiesner et al.
1999) are also able to produce leptin.

Lipostatic factor
The original concept was that leptin�s function was limited
only to weight-gain control by reducing food intake as its
concentration in blood rises with increasing adiposity. In
fact, plasma leptin concentrations are correlated with total
fat mass, percentage body fat and BMI, acting as a sensing
hormone or �lipostat� in a negative feedback control from
adipose tissue to the hypothalamus, the brain centre
responsible for satiety (Tritos & Mantzoros, 1997;
Frühbeck et al. 1998c). Leptin informs the brain about the
abundance of body fat, thereby allowing feeding
behaviour, metabolism, and endocrine physiology to be
coupled to the nutritional state of the organism. An
increase in adiposity leads to an increase in circulating
leptin concentrations, reducing the animal�s appetite and
increasing energy expenditure. Conversely, reduced fat
stores lead to a decrease in leptin, which in turn leads to an
increase in food intake together with a decrease in energy
use, i.e. low leptin levels drive the organism to a state of
energy sparing, of positive energy balance. In the absence
of leptin, as is the case in ob/ob mice, animals fail to
restrain their food intake, their energy expenditure is
reduced and they become massively obese. Leptin-defi-
cient ob/ob mice exogenously treated with leptin exhibit a
marked body-weight loss with a distinct loss of discernible
body fat (Campfield et al. 1995; Halaas et al. 1995; Pelley-
mounter et al. 1995). This effect is not only attributable to
a decreased food intake, but also to an increased BMR,
with selective promotion of fat metabolism (Pelleymounter
et al. 1995; Chen et al. 1996; Levin et al. 1996; Hwa et al.
1997; Shimabukuro et al. 1997).

Since leptin was discovered in research directed at
finding the cause of obesity, initially all efforts focused in
this area. However, it now appears that leptin�s major role is
not to prevent obesity. Present views are that the signal
generated by low leptin concentrations serves to initiate an
array of adaptive changes aimed at conserving energy
reserves and preventing reproduction during periods of food
scarcity (Flier, 1998; Himms-Hagen, 1999). In this sense,

reduced availability of leptin is thought to prevent excessive
weight loss in order to combat extreme thinness.

Leptin receptors
Tartaglia et al. (1995) were the first researchers to isolate
the leptin receptor (OB-R) from mouse choroid plexus by
an expression cloning strategy. Since the sequence and
expression of the initially cloned receptor are normal in
db/db mice, it was suggested that the db mutation affected a
different receptor or an alternatively-spliced isoform. Subse-
quent studies showed that the latter explanation proved to be
correct. The OB-R belongs to the class I cytokine receptor
family, which include receptors for interleukin 6, leukaemia
inhibitory factor, granulocyte-colony stimulating factor
and glycoprotein 130 (Tartaglia, 1997). The receptor is
produced in several alternatively-spliced forms, designated
OB-Ra, OB-Rb, OB-Rc, OB-Rd and OB-Re (Lee et al.
1996). The receptors have an extracellular domain of 840
amino acids, a domain of thirty-four amino acids and a
variable intracellular domain, characteristic for each of the
five receptor isoforms. Class I cytokine receptors are known
to act through Janus kinases and signal transducers and
activators of transcription (STAT). Only the full-length
isoform, the OB-Rb, contains intracellular motifs required
for activation of the Janus kinases�STAT signal trans-
duction pathway (Chua et al. 1996; Ghilardi et al. 1996;
Vaisse et al. 1996; Bjørbæck et al. 1997), and is considered
to be the functional receptor. Janus kinase proteins are
associated with membrane-proximal sequences of the
receptor intracellular domain, which is phosphorylated on
ligand binding. The phosphorylated intracellular domain
then provides a binding site for a STAT protein, which
is activated, translocates to the nucleus and stimulates
transcription. The lack of the full-length OB-R has been
shown to be responsible for the db/db mouse obesity
phenotype and the fatty mutation (Baumann et al. 1996;
Chua et al. 1996; Ghilardi et al. 1996; Vaisse et al. 1996;
Bjørbæck et al. 1997; White et al. 1997). The OB-Re
isoform, which lacks the transmembrane and intracellular
domains, may encode a soluble receptor (Lee et al. 1996).

Consistent with leptin�s role in controlling appetite and
energy metabolism, OB-R have been found in the hypotha-
lamus and adjacent brain regions (Tartaglia, 1997;
Trayhurn et al. 1999). Initially, direct leptin actions were
thought to be exclusively restricted to the central nervous
system. However, the almost universal distribution of func-
tional OB-R (Cioffi et al. 1996; Lee et al. 1996; Hoggard et
al. 1997, 2000; Zamorano et al. 1997; Frühbeck et al.
1999), which reflects the multiplicity of biological effects
in extraneural tissues, is a good example of the extreme
functional pleiotropy of leptin (Fig. 1). OB-R are present in
organs involved in energy storage, metabolism and
digestion, such as skeletal muscle, adipose tissue, pancreas,
stomach, small intestine, colon and liver. Functional OB-R
are expressed in reproductive organs such as ovaries, uterus
and testes. Interestingly, OB-R can be also found in tissues
related to immunity, such as spleen, thymus, lymph nodes,
haematopoietic cells and T-cells. Other localizations
include the endothelium, kidneys, adrenals and heart,
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tissues involved in angiogenesis and blood pressure
regulation.

Relevance of leptin to human obesity
To date, only a few cases of congenital leptin deficiency or
OB-R mutation associated with severe early-onset obesity
have been reported (Montague et al. 1997a; Clement et al.
1998; Strobel et al. 1998). Human ob mutations were first
reported in two children from a highly-consanguineous
Pakistani family (Montague et al. 1997a). In these cousins,
deletion of a single guanine nucleotide in codon 133 led to a
frameshift mutation and synthesis of a truncated OB protein
that undergoes proteosomal degradation (Rau et al. 1999).
Treatment with recombinant methionyl leptin resulted in
sustained weight reduction and improvement of the meta-
bolic alterations (Farooqi et al. 1999). Strobel et al. (1998)
identified three members of a Turkish family with a
homozygous missense mutation in the leptin gene (cytosine
→ thymine in codon 105, leading to an arginine to tryp-
tophan replacement in the mature protein) resulting in very
low plasma leptin concentrations, as the abnormal leptin
protein is incapable of being secreted normally (Strobel
et al. 1998). Human ob gene mutations cause severe early-
onset obesity, with very low leptin concentrations despite
the high fat mass, a marked hyperphagia due to impaired
satiety, hyperinsulinaemia and hypothalamic hypogonadism
(Montague et al. 1997a; Strobel et al. 1998; Ozata et al.
1999). Decreased sympathetic tone and immune system

dysfunction are less extensively documented (Ozata et al.
1999). Unlike ob/ob mice hyperglycaemia, hypercorticism,
hypothermia and impairment of linear growth have not been
reported in leptin-deficient human subjects (Montague et al.
1997a; Strobel et al. 1998). The reasons for these species
differences are unknown, but may suggest substantial differ-
ences in the physiological actions of leptin between rodents
and man.

Mutations of OB-R are also extremely rare in human
subjects. Clement et al. (1998) describe a large consan-
guineous Kabilian family in which three morbidly-obese
sisters are homozygous for a splice-site mutation in the OB-
R. A substitution in the splice donor site of exon 16 results
in a truncated OB-R lacking both the transmembrane and
intracellular domains. The mutant OB-R circulates at high
concentrations and is capable of binding leptin, but has no
signalling function. As with the human ob gene mutations,
patients who are homozygous for the human db mutation
suffer from hyperphagia and develop morbid obesity within
the first months of life. In addition, pubertal development
and functioning of the growth hormone and thyroid axes
appear normal in these patients, while the hypothalamic�
adrenal axis has not yet been characterised in detail.

The mentioned leptin and OB-R mutations, however,
occur very rarely in human subjects, and most obese indi-
viduals are neither leptin deficient nor do they lack
functional OB-R. Several polymorphisms in the OB-R gene
have been identified (Considine et al. 1996a; Chung et al.
1997; Echwald et al. 1997; Francke et al. 1997; Gotoda

Fig. 1. Localization of functional leptin receptors showing the involvement of leptin in peripheral effects.
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et al. 1997; Matsuoka et al. 1997; Silver et al. 1997;
Thompson et al. 1997; Rolland et al. 1998; Chagnon et al.
1999), which could possibly cause changes in binding or
signalling activity of the receptors. However, until now,
none of the studies on these OB-R polymorphisms have
shown a major effect on body weight or fat mass (Considine
et al. 1996a; Echwald et al. 1997; Francke et al. 1997;
Gotoda et al. 1997; Matsuoka et al. 1997; Silver et al. 1997;
Rolland et al. 1998; Chagnon et al. 1999).

In most obese patients high leptin concentrations have
been found (Hamilton et al. 1995; Lönnqvist et al. 1995;
Maffei et al. 1995; Considine et al. 1996b). Serum leptin
concentrations are strongly correlated with estimates of
obesity, such as BMI or percentage body fat. In women
almost twofold higher leptin concentrations have been
found, even when data are adjusted for body fat, revealing a
clear gender difference. The hyperleptinaemia observed in
obese individuals has been interpreted as a reduced sensi-
tivity to leptin�s physiological effects, leading to a
compensatory increase in circulating concentrations (Caro
et al. 1996b). Such a resistance can theoretically occur at
several levels in the leptin signalling pathway (Fig. 2).
Leptin insensitivity may be the result of a production defect,
leading to the synthesis of an inactive or less potent form of
leptin. Another possibility would be an intravascular defect.
Leptin circulates as a monomer in plasma and, other than
the single intramolecular disulfide bond, is not post-tran-
scriptionally modified (Cohen et al. 1996). In both rodents
and human subjects leptin circulates in a free form and also

bound to other proteins (Houseknecht et al. 1996; Diamond
et al. 1997; Birkenmeier et al. 1998). In human subjects the
majority of leptin circulates competitively bound to at least
three serum macromolecules with molecular masses of
approximately 85, 176, and 240 kDa, which may modulate
ligand bioactivity and bioavailability to target tissues
(Houseknecht et al. 1996). In lean individuals with rela-
tively low adipose tissue depots the majority of leptin is in
the bound form, while the proportion of free leptin is
increased in serum of obese subjects (Houseknecht et al.
1996; Sinha et al. 1996b). Free leptin may have more rapid
turnover because of proteolytic cleavage or increased
clearance. This hypothesis is supported by the observation
that the half-life of recombinant leptin injected into ob/ob
mice is much shorter than that in normal mice (Houseknecht
et al. 1996). During fasting there is a decrease in free leptin
concentrations, which is more pronounced in lean subjects
as compared with obese individuals, whereas no change is
observed in bound leptin in either group (Sinha et al.
1996b). It is possible that the free:total leptin may not be
constant, but rather that a dynamic equilibrium exists
between the circulating binding proteins and free leptin, and
that this balance may be affected by the metabolic state.
Precedent for an important role for binding proteins in the
transport or uptake of ligands has been demonstrated for
other members of the cytokine family. Additionally, for
some cytokines and haematopoietic growth factors, associ-
ation with binding proteins potentiates ligand activity
because of biochemical modifications (Heaney & Golde,

Fig. 2. Potential sites of leptin defects in relation to hyperleptinaemia. BBB, blood�brain barrier.
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1993). These phenomena provide possible explanations for
apparent leptin resistance in the context of increased free
leptin. Furthermore, the role of binding proteins in regu-
lating the amount of biologically-active leptin may vary by
gender and contribute to differences in the physiology of
leptin action.

Diurnal and ultradian oscillations are essential physio-
logical characteristics of hormone secretion. Leptin is
characterised by nyctohemeral rhythms, with serum leptin
levels being highest between midnight and early morning
hours and lowest about noon to mid-afternoon (Sinha et al.
1996a). The nocturnal increase in serum leptin closely
resembles the circadian rhythmicity of thyrotropin, pro-
lactin, free fatty acids and melatonin, and precedes those of
cortisol and growth hormone (Van Cauter, 1990). Super-
imposed on the circadian rhythm, total circulating leptin
concentrations exhibit a pattern indicative of pulsatile
release, with a pulse duration of approximately 30 min,
which is inversely related to rapid fluctuations in plasma
cortisol and adrenocorticotropic hormone (Sinha et al.
1996c; Licinio et al. 1997). As compared with lean subjects,
obese individuals show a sevenfold increase in pulse height,
with preservation of both diurnal variation and concen-
tration-independent pulse variables, such as pulse number
per 24 h, pulse duration, interpeak interval and pulse height
expressed as the percentage of increase over preceding
baseline (Licinio et al. 1997). Since pulsatility is crucial for
the attainment of biological effects in several endocrine
systems, it is reasonable to speculate that for the maximal
biological effectiveness of leptin, pulsatility may be an
important requirement (Frühbeck et al. 2000). It is inter-
esting to point out that a high dosage is needed for non-
pulsatile administration of leptin to induce weight loss. At
present, the physiological significance of pulsatile leptin
secretion is unknown, as is the mechanism involved in
generating leptin pulses, especially as adipocyte-specific ob
gene expression and regional differences in adipose tissue

have been reported (Masuzaki et al. 1996; Montague et al.
1997b).

A further explanation for the leptin insensitivity observed
in the majority of obese individuals is the existence of a
transport problem at the blood�brain barrier (Fig. 2).
Despite having a fourfold increase in serum leptin concen-
trations, obese subjects show only a modest increase in
cerebrospinal fluid leptin concentrations (Caro et al. 1996a).
A reduced efficiency of brain leptin delivery among obese
individuals with hyperleptinaemia may result in the
apparent leptin resistance. Leptin insensitivity may also
result from a diminished response to leptin at the target cell
level due to mutant receptors or deficiencies in the intra-
cellular signalling cascade. Experimental evidence suggests
that suppressor-of-cytokine signalling 3 is a leptin-inducible
inhibitor of leptin signalling and a potential mediator of
leptin resistance (Bjørbæck et al. 1998, 1999). Another
cause of leptin insensitivity would arise from impairments
in the transducer and effector systems. In this sense, it is
tempting to speculate that different tissues may exhibit
different concentration thresholds for leptin resistance.

Regulation of leptin production
Adipose tissue is the primary site for energy storage and
release in response to the changing energy needs of the
organism. Since leptin is secreted by fat cells in proportion
to body fat stores, it has the potential to play a key regulatory
role in fuel homeostasis. The regulation of ob gene
expression in adipose tissue has been reviewed extensively
(Trayhurn et al. 1999; Harris, 2000). As for many other
physiological processes, leptin production in adipose tissue
is under nutritional, hormonal and neural regulation (Table
1). Fasting induces a fall in the level of ob mRNA, which is
rapidly reversed on refeeding, and circulating leptin concen-
trations change in a parallel manner to tissue mRNA
(MacDougald et al. 1995; Saladin et al. 1995; Trayhurn

Table 1. Regulation of leptin expression

Localization Increase Decrease
White adipose tissue

Placenta

Mammary gland

Gastric fundic mucosa

Skeletal muscle

Positive energy balance
Overfeeding
Insulin
Glucocorticoids
Oestrogens
Prolactin
Tumour necrosis factor α
Infection, sepsis

Insulin
Glucocorticoids
Hypoxia
Pre-eclampsia

Refeeding
Distension (vagal afferents)

Hexosamine pathway
Glucose and lipid infusion

Negative energy balance
Fasting
Sympathetic nervous activity
Thyroid hormones (?)
Androgens
Growth hormone
Interleukin 6
β-adrenergic agonists, thiazolidinediones

Low gestational weight
Nicotine�smoking

Inhibition of pulsatile LH secretion
Prolactin (?)
Fasting
Cholecystokinin
Gastrin

LH, luteinising hormone.
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et al. 1995b; Weigle et al. 1997). High-fat diets as well as
high-carbohydrate diets are known to increase lipogenesis
and, consequently, stimulate leptin synthesis (Ahren et al.
1997; Jenkins et al. 1997). As illustrated in Fig. 3, insulin
stimulates ob gene expression, as do glucocorticoids, with
the effects of the latter being maintained during chronic
treatment (MacDougald et al. 1995; Saladin et al. 1995;
Frühbeck & Salvador, 2000a). Although plasma leptin,
thyroid-stimulating hormone, and adiposity correlate in
euthyroid patients, there are conflicting reports on the effect
of hypo- and hyperthyroidism on ob gene expression (Ahima
& Flier, 2000). Some studies have described an increase in
plasma leptin in hypothyroid patients and a decrease in
hyperthyroidism, but other studies have shown no signif-
icant alteration in leptin concentrations in these conditions or
in response to thyroxine-replacement treatment (Mantzoros
et al. 1997c; Diekman et al. 1998; Ozata et al. 1998; Pinkney
et al. 1998). The striking sexual dimorphism is evident in
both ob mRNA expression and the correlation between
leptin concentrations and fat mass. Some researchers
attribute the observed gender differences to the stimulating
role of oestrogens and/or the suppressive effect of circu-
lating androgens (Rosenbaum et al. 1996; Kennedy et al.
1997), but other investigators have not been able to ascribe
the sexual dimorphism to sex hormones (Saad et al. 1997).
Recently, prolactin has also been demonstrated to induce ob
mRNA in white adipose tissue as well as to stimulate leptin
synthesis and secretion (Gualillo et al. 1999). An inverse

relationship between leptin and growth hormone concentra-
tions has been reported. Circulating leptin has been observed
to fall promptly in response to growth hormone-replacement
therapy, even in the absence of changes in BMI (Fisker et al.
1997; Florkowski et al. 1996).

Cold exposure induces a sympathetically-mediated
suppression of the ob gene, leading to a rapid decrease in
both ob mRNA and serum leptin concentrations (Trayhurn
et al. 1995a; Trayhurn, 1996). Furthermore, a positive and
independent association between tumour necrosis factor α
levels and circulating leptin concentrations has been
reported (Mantzoros et al. 1997b). Tumour necrosis factor α
induces the release of both interleukin 6 and leptin from
adipose tissue (Grunfeld et al. 1996). Knockout mice for the
tumour necrosis factor α gene show a hypoleptinaemia
compared with wild-type mice (Kirchgessner et al. 1997).
While tumour necrosis factor α has a stimulatory effect,
interleukin 6 exerts an inhibitory action on leptin
production. Like many other adipocyte genes, the ob gene
promoter is positively regulated through a functional
binding site for CCAAT/enhancer-binding protein α (He et
al. 1995; Miller et al. 1996). In contrast, thiazolidinedione, a
ligand for peroxisome proliferator-activated receptor γ tran-
scription factors, suppresses leptin expression (De Vos et al.
1996). This process may partly involve a functional antag-
onism between CCAAT/enhancer-binding protein α and
peroxisome proliferator-activated receptor γ on the leptin
promoter.

Fig. 3. Regulation of leptin production in white adipocytes. (�), Stimulation of leptin synthesis; (�), hormone release inhibi-
tion. GC, glucocorticoids; CHO, carbohydrate; T3, T4, thyroid hormones; IL-6, interleukin 6; TNF-α, tumour necrosis factor α;
GH, growth hormone; CNS, central nervous system; FFA, free fatty acids; SNS, sympathetic nervous system. (Modified from
Frühbeck et al. 1998c.)
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�Geocentric v. heliocentric� view of leptin
Before Copernicus and Galileo the geocentric model placed
the earth at the centre of the universe and all celestial bodies,
including the sun, were thought to revolve around it. The
heliocentric model proposed by these two astronomers, on
the contrary, identified the sun as the centre of the universe,
asserting that the earth and all other planets travel around the
sun. This proposal changed forever the understanding of the
cosmos and, in a way, a close parallelism can be drawn to
the present knowledge of leptin. At the beginning, in what
we can call the �geocentric view� of leptin, the brain was
considered the centre of all leptin effects. However, this first
concept has evolved to a �heliocentric view� in which leptin
is being placed at the centre and the different organs target
for this hormone. Obviously, in this model the peripheral
effects of leptin are considered equally relevant to the
actions exerted at the hypothalamic level.

Pleiotropic effects of leptin
The �heliocentric view� of leptin is supported by the almost
universal distribution of OB-R, which reflects the multi-
plicity of biological effects in extraneural tissues. The
initial, rather simplistic, notion that leptin participates only
in food intake and body weight has evolved considerably.
Leptin was discovered on the basis of a very specific
biological action consisting in its involvement in body-
weight and appetite regulation. Many cytokines, originally
isolated on the basis of a particular biological action, have
subsequently been shown to be capable of stimulating a
variety of biological responses in a wide spectrum of cell
types. Thus, leptin shares with other cytokines an extreme
functional pleiotropy and has been shown to be involved in
quite diverse physiological functions, such as reproduction
(Holness et al. 1999), haematopoiesis (Cioffi et al. 1996),
angiogenesis (Sierra-Honigmann et al. 1998), immune
responsiveness (Lord et al. 1998), blood pressure control
(Frühbeck, 1999) and bone formation (Ducy et al. 2000).

Reproductive physiology
Leptin quickly proved to play an important role in repro-
ductive physiology (Hoggard et al. 1998; Holness et al.
1999; Chehab, 2000). Sterility was a well-recognized
feature in ob/ob mice. Exogenous administration of leptin to
these mice increased the weight of ovaries and uterus, which
is consistent with a trophic action of leptin on gonadal
function. Long-term injections of leptin have been shown to
correct the sterility of both female (Chehab et al. 1996) and
male (Mounzih et al. 1997) adult ob/ob mice, which does
not appear to be a consequence of weight change per se,
since weight loss in control ob/ob animals due to food
restriction did not ameliorate their infertility (Chehab et al.
1996; Mounzih et al. 1997). In addition, leptin has been
shown to accelerate the onset of puberty in normal mice.
Normal prepubertal female mice injected with leptin experi-
enced an earlier maturation of the reproductive tract
accompanied by a precocious onset of classic pubertal signs
like vaginal opening, oestrus and cycling (Chehab et al.
1997). In accordance with these findings, leptin is increased

in both boys and girls before the appearance of other repro-
ductive hormones related to puberty (Mantzoros et al.
1997a; Garcia-Mayor et al. 1997). Thus, leptin signals the
adequacy of energy stores and seems to be needed for the
initiation of puberty and establishment of secondary sexual
characteristics by interacting with different target organs in
the hypothalamic�pituitary�gonadal axis (Fig. 4; Frühbeck,
1997; Frühbeck et al. 1998c).

In human subjects serum leptin concentrations have been
shown to be higher in the luteal phase than in the follicular
phase (Hardie et al. 1997; Shimizu et al. 1997). The rela-
tionship between BMI and circulating leptin has been
observed to vary during the course of spontaneous cycles,
the best correlation occurring during the luteal phase when
progesterone and leptin concentrations are highest (Hardie
et al. 1997). The leptin peak follows the surge of oestradiol
and luteinising hormone. Moreover, leptin concentrations
were found to be higher in premenopausal women than in
post-menopausal women (Rosenbaum et al. 1996; Shimizu
et al. 1997), indicating that oestrogens are implicated in the
regulation of leptin production. However, other researchers
were unable to detect differences in leptin concentrations in
relation to menopause (Saad et al. 1997).

Since pregnancy entails many physiological changes, in
part as a consequence of endocrine adaptation, leptin�s role
in pregnancy has been addressed. In pregnant women
plasma leptin concentrations have been shown to be
augmented, especially during the second and third trimesters
(Hardie et al. 1997), but they do not correlate with maternal

Fig. 4. Diagram of the probable involvement of leptin in the
hypothalamic�pituitary�gonadal axis. (�) Enhancement of endo-
crine secretion; (� � �), hormone-release suppression. GnRH,
gonadotropin-releasing hormone; FSH, follicle-stimulating hormone;
LH, luteinising hormone.
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weight or BMI at the beginning of pregnancy and at term
(Butte et al. 1997; Masuzaki et al. 1997; Schubring et al.
1997). Within 24h of delivery plasma leptin concentrations
return to normal. Potential explanations for the elevated
leptin concentrations in pregnancy include an increased
production by maternal fat depots, as it is known that during
pregnancy there is increased secretion of a number of
hormones which have a stimulatory effect on leptin
expression in adipocytes, such as oestradiol, insulin and
cortisol. Another possibility could be increased circulating
concentrations of binding proteins. The soluble form of the
OB-R is increased in maternal serum, binding circulating
leptin (Gavrilova et al. 1997). This factor may protect leptin
from degradation or excretion. Moreover, placental leptin
may contribute to the increased maternal concentrations
(Masuzaki et al. 1997).

Body weight and body composition change dramatically
in fetuses and newborn infants. In view of the rise in fetal
leptin observed in fetal cord blood (Matsuda et al. 1997;
Schubring et al. 1997), a possible involvement for leptin in
fetal development has been suggested. Hoggard et al. (1997,
1998) have observed high levels of gene expression for
leptin and OB-Rb in the placenta as well as in fetal tissues,
pointing to the fact that leptin may play a role in the growth
and development of the fetus. High levels of leptin gene
expression have been observed in cartilage and bone, in
particular in the vertebrae, ribs and hindlimb digits. This
finding may imply a role for leptin in fetal bone
development, which may be linked also with haemato-
poiesis, while the presence of leptin in hair follicles may be
related to leptin�s role in thermoregulation (Hoggard et al.
1997, 1998). In brain the OB protein was found in lepto-
meninges and the choroid plexus. However, the absence of
leptin does not prevent fetal growth, as two children with
leptin deficiency are known to have grown at a normal rate
(Montague et al. 1997a). Leptin may be involved in the
control of maternal nutrient availability as well as in fetal
energy homeostasis, as serum leptin has been shown to
correlate with fetal body-weight gain (Harigaya et al. 1997).
It is conceivable, therefore, that leptin predetermines a
body-weight set point imprint, which is carried forward
postnatally and into adulthood.

Immunity
Interestingly, OB-R have been detected in tissues related to
immunity, such as spleen, thymus, lymph nodes, haemat-
opoietic cells and T-cells (Fig. 1). The functional OB-R has
been shown to be capable of signalling for cell survival,
proliferation and differentiation into macrophages (Cioffi et
al. 1996; Gainsford et al. 1996). In addition, leptin appears
to be able to enhance the production of cytokines in macro-
phages and to increase the attachment and subsequent
receptor-mediated process of phagocytosis (Gainsford et al.
1996). This activity may be mediated by an up regulation of
macrophage receptors or by an increased phagocytic
activity. More than 20 years ago researchers showed that
ob/ob and db/db mice have an impaired cell-mediated
immunity. Lord et al. (1998) explored the potential immu-
nomodulatory effects of leptin and showed a marked dose-
dependent alloproliferative increase in T-cells. Furthermore,

leptin was reported to oppose the inhibitory effects of star-
vation on T-cell priming, revealing an adaptive response of
this hormone to enhance the immune competence of the
organism against the immunosuppression associated with
starvation. Thymic atrophy is a prominent feature of malnu-
trition. Starvation of normal mice for 48h has been reported
to reduce the total thymocyte count to 13% of that observed
in freely-fed controls, predominantly due to a decrease in
the cortical thymocyte subpopulation (Howard et al. 1999).
Prevention of the fasting-induced fall in leptin concentra-
tions by exogenous administration of the recombinant
hormone has been shown to protect mice from these
starvation-induced thymic changes. In ob/ob mice a marked
reduction in the size and cellularity of the thymus has been
observed together with a high level of thymocyte apoptosis,
resulting in a cortical:precursor thymocytes that was
fourfold lower than that observed in wild-type mice.
Peripheral administration of recombinant leptin to ob/ob
mice has been shown to reduce thymocyte apoptosis
and substantially increase both thymic cellularity and
cortical:precursor thymocytes. These findings indicate that
reduced circulating leptin concentrations are pivotal in
the pathogenesis of starvation-induced lymphoid atrophy
(Howard et al. 1999).

Angiogenesis and wound healing
Leptin has to be included in the list of angiogenic factors, as
it has been shown to cause cultured endothelial cells to
aggregate, form tubes and display a reticular array remi-
niscent of tissue vasculature (Bouloumie et al. 1998; Sierra-
Honigmann et al. 1998). These effects, tested in both in
vitro and in vivo models of angiogenesis, indicate that leptin,
via activation of the endothelial OB-R, generates a growth
signal involving a tyrosine kinase-dependent intracellular
pathway that contributes to the promotion of angiogenic
processes.

Topically-administered as well as systematically-
administered leptin has been reported to improve re-
epithelialization of wounds in ob/ob mice (Frank et al.
2000). Leptin completely reversed the atrophied
morphology of the migrating epithelial tongue observed
at the wound margins of leptin-deficient animals into a
well-organised hyperproliferative epithelium. Moreover,
topically-supplemented leptin accelerated normal wound-
healing conditions in wild-type mice. Proliferating keratino-
cytes located at the wound margins specifically expressed
the functional OB-R subtype during skin repair. Addi-
tionally, leptin has been shown to mediate in vitro a
mitogenic stimulus to human keratinocytes (Frank et al.
2000).

Inflammation and vascularization play an important role
in tissue healing after injury. In this sense, the activation of
the immune system by leptin together with the angiogenic
and wound-healing effects of the hormone may prove to be
of extraordinary physiological relevance. Leptin may partic-
ipate in the development of an inflammatory reaction
in infarcted tissue and accelerate tissue repair. The
involvement of leptin in the signalling cascade following
myocardial infarction is feasible both from a molecular and
functional point of view (Frühbeck & Salvador, 2000b).

https://doi.org/10.1079/PNS200196 Published online by Cambridge University Press

https://doi.org/10.1079/PNS200196


Nutrition Society Medal Lecture 309

Interestingly, a worse clinical outcome after acute
myocardial infarction is observed in obesity, where a state
of leptin resistance has been proposed. The study of the
potential participation of leptin may provide valuable infor-
mation concerning cooperativity among different signalling
systems and further the understanding of how the induction
of cytokines operates in a cascade fashion.

Bone development

The expression of high levels of leptin and OB-R in fetal
bone and cartilage implies a role for leptin in skeletal devel-
opment. Recently, leptin has been identified as a potent
inhibitor of bone formation, acting through the central
nervous system (Ducy et al. 2000). Despite suffering from
hypogonadism and hypercortisolism, known inducers of
increased osteoclast number and bone resorption activity,
leptin-deficient and OB-R-deficient mice exhibit a high
bone mass phenotype. Interestingly, this phenotype is not
secondary to obesity, but is directly related to the lack of
leptin signalling. Intracerebroventricular infusion of leptin
to ob/ob and wild-type mice has been shown to be followed
by a significant bone mass reduction (P < 0·05).

Lipolysis
Since functional OB-R are present in white adipose tissue,
the potential role of leptin in regulating lipolysis has also
been studied. Adenoviral transfer of the leptin gene into rats
has been shown to dramatically reduce tissue triacylglycerol
stores compared with pair-fed controls; evidence of a role

for leptin in lipid metabolism beyond its appetite-reducing
properties (Chen et al. 1996; Shimabukuro et al. 1997). The
lipopenic action of hyperleptinaemia on adipocytes has been
reported not to be mediated by neurotransmitted signals
from the central nervous system (Wang et al. 1999).
Moreover, the same group has demonstrated a novel form of
lipolysis by which the leptin-induced glycerol release is not
accompanied by a rise in plasma free fatty acids (Wang M-Y
et al. 1998). Previous studies had shown an autocrine�
paracrine lipolytic effect of leptin on white adipose tissue
both in vitro and in vivo (Frühbeck et al. 1997, 1998a).
In addition, leptin has been shown to repress acetyl-
CoA carboxylase gene expression, fatty acid synthesis
and lipid synthesis; biochemical reactions that contribute to
lipid accumulation without the participation of centrally-
mediated pathways (Bai et al. 1996; Wang M-Y et al. 1998).
Thus, leptin is involved in the direct regulation of adipose
tissue metabolism by both inhibiting lipogenesis and stimu-
lating lipolysis. The mechanisms of leptin-induced lipolysis,
however, still remain to be completely elucidated.

Until recently, the adipocyte has been considered to be
only a passive tissue for the storage of excess energy in the
form of fat (Flier, 1995). However, there is now compelling
evidence that adipocytes act as endocrine, secretory cells
(Flier, 1995; Lau et al. 1996; Serrero & Lepak, 1996). It has
been shown that several hormones, growth factors,
cytokines and their respective soluble receptors are actually
expressed in white adipose tissue, with a wide range of
signals emanating from adipocytes (Fig. 5). NO synthase
has been also reported to be expressed in rat white adipose
tissue, indicating that adipocytes are a potential source of

Fig. 5. Dynamic view of white adipose tissue in which a wide range of signals
emanating from and impinging on the adipocyte are represented. IL-6, interleukin
6; IGF-I, insulin-like growth factor-I; ApoE, apolipoprotein E; ASP, acylation-
stimulating protein; TNF-α, tumour necrosis factor α; PAI-1, plasminogen-activator
inhibitor-1; PG, prostaglandins.
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NO production (Ribière et al. 1996). Recently, evidence for
an involvement of NO in both rat and human lipolysis has
been published (Gaudiot et al. 1998; Andersson et al. 1999).
Interestingly, leptin immunolabelling of white adipocytes
exhibits an absolutely superimposable staining pattern to
that of inducible NO synthase, as can be observed in histo-
logical sections (Figs. 6 and 7).

Taking into consideration the morphological and physio-
logical resemblance between NO and leptin, the potential
role of NO in the leptin-induced effects on lipolysis was
investigated (Frühbeck & Gómez-Ambrosi, 2000a,b).
Leptin administration significantly increased (P < 0·001)
serum NO concentrations in a dose-dependent manner.
Simultaneously, a statistically significant (P = 0·0001) dose-
dependent increase in the basal lipolytic rate was observed
1 h after exogenous leptin administration. Simple linear
regression analysis showed that the lipolytic rate measured
in white adipose tissue was significantly correlated with
serum NO concentrations (r 0·52; P = 0·0025), with 27% of
the variability taking place in lipolysis being attributable to
the changes in NO concentrations. Under NO synthesis inhi-
bition by Nω-nitro-L-arginine methyl ester pretreatment, the
leptin-induced stimulation of lipolysis was significantly

reduced compared with the leptin-treated control animals
(P < 0·05). Conversely, the effect of leptin on adipocytes
obtained from rats under acute ganglionic blockade,
achieved by chlorisondamine injection, did not show differ-
ences with the lipolytic activity observed in control rats
treated with leptin (Fig. 8).

Fig. 6. Paraffin sections of rat visceral white adipose tissue immunostained for inducible NO synthase. The brownish stain appears in the thin
cytoplasmic rim of the adipocytes while connective tissue, which does not contain inducible NO synthase is blue. Note that the stain is more
intense in some adipocytes at a multilocular stage of differentiation. A, × 440 (scale bar 40µm); B, ×1100 (scale bar 10µm).

Fig. 7. Semithin section of leptin immunolabelling of rodent adi-
pocytes. Note that the staining pattern is very similar to that of induc-
ible NO synthase (×1100; scale bar 10 µm).

Fig. 8. Effect on basal lipolysis of fat cells obtained from Wistar rats
under pharmacological pretreatment consisting of intravenous
administration of vehicle (saline; 9g NaCl/l), nitric oxide synthase in-
hibition (Nω-nitro-L-arginine methyl ester; 30mg/kg body weight) or
acute ganglionic blockade (chlorisondamine; 30mg/kg body weight)
followed by injection of either saline (\ ) or leptin (2 ; 100 µg/kg
body weight). The lipolytic activity was measured as the amount of
glycerol released after 90min by isolated adipocytes. Results are
expressed as the percentage of basal lipolysis of fat cells from saline-
treated control animals and are means with their standard errors
represented by vertical bars for eight rats per group (lipolytic
experiments were performed in duplicate). Statistical comparisons
were made by ANOVA and Scheffe�s post hoc pair-wise
comparisons. Mean values were significantly different from those for
saline-treated controls within the same pharmacological pre-
treatment group: **P < 0·01, ***P < 0·001. Mean values were
significantly different from those for leptin-treated control animals:
�P < 0·05.
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Lipolysis can be stimulated by a rise in cAMP resulting
from either adenylate cyclase activation or phosphodi-
esterase inhibition. In order to gain insight into the likely
mechanisms implicated, lipolysis was stimulated in vitro in
fat cells isolated from age- and weight-matched non-treated
rats using a number of agents acting at different levels of
the lipolytic pathway (Fig. 9): (1) at the β-adrenoceptor
(isoproterenol); (2) at adenylate cyclase (forskolin); (3) at
phosphodiesterase E (isobutylmethylxanthine); (4) at
protein kinase A (dibutyryl-cAMP). To further validate the
underlying assumption that NO is involved in the modu-
lation of the leptin-induced lipolysis the effect of S-nitroso-
N-acetyl-penicillamine (SNAP), a known NO donor, was
assayed in vitro with leptin, isoproterenol and combinations
of the different lipolytic agents in fat cells isolated from age-
and weight-matched non-treated control rats. The stimu-
latory effect of leptin, SNAP and catecholamines was
further studied in adipocytes of obese Zucker diabetic fatty
(fa/fa) rats to examine the effect of defective OB-R on the
stimulation of lipolysis.

Administration of leptin did not alter the lipolytic rate of
white adipocytes obtained from fa/fa rats. However,
addition of SNAP or isoproterenol to the incubation medium
of fat cells from obese Zucker animals produced a marked
lipolytic response, thus showing that the adipocyte prepara-
tions from these rats are not defective to other known
lipolytic agents. The simultaneous presence of leptin and
SNAP in the incubation medium of adipocytes isolated from
Wistar rats exerted an additive effect on in vitro lipolysis
compared with the effect elicited by the products acting
individually. Only SNAP exerted a statistically significant
inhibitory effect on isoproterenol-stimulated lipolysis
(P < 0·001). Neither SNAP nor leptin modified forskolin-,
dibutyryl-cAMP- and isobutylmethylxanthine-stimulated
lipolysis in lean rats. The lack of effect of leptin on

isoproterenol-induced lipolysis in the in vitro assays adds
further weight to the ex vivo experiments performed with the
ganglion-blocking agent. Altogether these findings suggest
that leptin does not interfere with catecholamine-mediated
lipolysis. A direct effect of leptin on adenylate cyclase
appears unlikely since the OB protein failed to reduce
forskolin-induced lipolysis. Furthermore, the lack of effect
on dibutyryl-cAMP-mediated lipolysis suggests that leptin
does not interfere at the protein kinase A level either.
Although a marked decrease in the release of glycerol was
observed in isobutylmethylxanthine-treated adipocytes after
exposure to leptin it did not reach statistical significance.
However, the possibility that leptin may interfere at the
phosphodiesterase level should not be completely ruled
out. It can be concluded from our studies that NO may
function as an important autocrine physiological regulator
signal controlling lipolysis by facilitating leptin-induced
lipolysis and simultaneously being capable of inhibiting
catecholamine-induced lipolysis.

Blood pressure regulation
The presence of functional OB-R in brain regions as well as
in peripheral organs that are important in cardiovascular
control, such as heart, kidneys and adrenals (Fig. 1), led
to the suggestion that leptin might affect blood pressure
regulation (Tartaglia et al. 1995; Tartaglia, 1997). Intra-
cerebroventricular (Dunbar et al. 1997; Casto et al. 1998) as
well as intravenous (Shek et al. 1998) administration of
leptin have been shown to increase both mean arterial
pressure and heart rate. Furthermore, leptin administration
has been reported to increase sympathetic nerve activity to
kidneys, adrenals and brown adipose tissue (Dunbar et al.
1997; Haynes et al. 1997). However, this generalized
sympathoexcitation was not always followed by an increase

Fig. 9. Schematic representation of the site of action of diverse pharmacological agents at different
levels of the lipolytic pathway. FSK, forskolin; AC, adenylate cyclase; β AR, β-adrenoceptor;
ISO, isoproterenol; SNAP, S-nitroso-N-acetyl-penicillamine; PDE, phosphodiesterase E; Bt2-cAMP,
dibutyryl-cAMP; PKA, protein kinase A; IBMX, isobutylmethylxanthine; HSL, hormone-sensitive lipase;
P, phosphate.
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in arterial pressure (Haynes et al. 1997; Jackson & Li, 1997;
Casto et al. 1998).

The finding of functionally-competent OB-R in
endothelial cells provided evidence that the endothelium is
also a target for leptin action (Sierra-Honigmann et al.
1998). The vascular endothelium is known to play a critical
role in blood pressure homeostasis, in part by its ability to
produce potent vasoactive factors, principal among these
factors being the vasodilator NO. Some of my own research
therefore, has taken the approach of studying the potential
role of NO in the leptin-induced effects on blood pressure
regulation (Frühbeck, 1999). Intravenous administration of
leptin to Wistar rats was followed by a statistically signif-
icant dose-dependent increase in serum NO concentrations
(P < 0·001). Under NO synthesis inhibition, performed by
Nω-nitro-L-arginine methyl ester administration, leptin
produced an increase in both systolic and diastolic blood
pressure, resulting in a sharp rise in mean arterial pressure
(Fig. 10). However, in the absence of sympathoactivation,
achieved by pretreatment with the ganglion-blocking agent
chlorisondamine, leptin administration significantly reduced
both blood pressure and heart rate (P < 0·01).

The effect of Nω-nitro-L-arginine methyl ester injection
in the setting of acute ganglionic blockade and leptin
treatment was also studied to validate the underlying
assumption that the hypotensive effect of leptin adminis-
tration observed during ganglionic blockade is caused by
the release of NO. Under these circumstances the inhibition
of NO synthase by Nω-nitro-L-arginine methyl ester
blocked the leptin-mediated decrease in blood pressure
during pharmacologically-induced acute ganglionic
blockade by chlorisondamine. Thus, leptin appears to have
a balanced effect on blood pressure, with a pressor response
attributable to sympathetic activation and a depressor
response attributable to NO release. This study was the first
to show that leptin is involved in the control of vascular
tone by simultaneously producing a neurogenic pressor
action and an opposing NO-mediated depressor effect
(Frühbeck, 1999).

Obesity is associated with increased incidence of hyper-
tension and cardiovascular mortality (Ascherio et al. 1992;
Hall, 1994; Hsueh & Buchanan, 1994). However, the mech-
anisms that link obesity with high blood pressure have not
been fully elucidated. The adipocyte-derived hormone,

Fig. 10. Representative records of arterial blood pressure (upper panel) and heart rate (lower panel) obtained in anaesthetised Wis-
tar rats under baseline conditions (A). Effect of intravenous leptin administration (100 µg/kg body weight) in the setting of nitric oxide
synthase inhibition (Nω-nitro-L-arginine methyl ester pretreatment; 30mg/kg body weight; B) or acute ganglionic blockade (chlori-
sondamine, 30mg/kg body weight; C).
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leptin, has been suggested to be implicated in obesity-
related hypertension, as it provides a link with well-
established risk factors such as sympathetic activation,
insulin resistance, increased Na+ reabsorption, stimulation
of the renin�angiotensin�aldosterone system and endothelial
dysfunction (Fig. 11; Bornstein & Torpy, 1998; Schorr et al.
1998; Suter et al. 1998; Villarreal et al. 1998; Hall et al.
1999; Mark et al. 1999; Ozata et al. 1999; Ruige et al. 1999;
Zimmet et al. 1999). Since leptin�s effects on NO synthesis
appear to be protective against the development of high
blood pressure, it may be argued that if the vasculature is
resistant to the actions of leptin, it may be involved in the
development and maintenance of arterial hypertension.
Thus, a defect in the leptin system may contribute to hyper-
tension as well as obesity. The increased incidence of
hypertension observed in obesity may be explained by a
hampered NO modulation of a compensatory hypertensive
response. This possibility is supported by findings made in
both animal models and human subjects. It has been
reported that obesity-related hypertension is associated with
attenuated arterial dilation (Wu et al. 1996). Furthermore,
NO synthase activity has been shown to be decreased in
obese Zucker rats compared with littermate controls
(Morley & Mattammal, 1996) and the JCR:LA corpulent rat
shows a defective NO-mediated vascular relaxation (Russell
et al. 1997). In human subjects an impaired endothelium-
derived NO synthesis in obesity has been shown (Cardillo et
al. 1998). In addition, an impaired NO-mediated vasodi-
lation has been reported in healthy elderly subjects; this
being high blood pressure more commonly associated with
old age (Lyons et al. 1997). In this context, further studies
on the relationship between adipose tissue, blood pressure
homeostasis and leptin appear warranted.

Concluding remarks
The leptin system is like a dynamic puzzle; as more pieces
of the puzzle are found, more questions arise and more
pieces are needed. At this early juncture in the course of
leptin research, much has been discovered. The tip of the
iceberg has become visible now. However, there is still
much more below the sea surface, and much remains to be
learned about leptin�s physiology and clinical relevance.

Given leptin�s versatile and ever-expanding list of activities,
additional and unexpected consequences of leptin are sure to
emerge. The intense efforts underway on many different
frontiers of leptin research will undoubtedly add more infor-
mation to the already large body of knowledge.
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