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ABSTRACT. In theoretical treatments of tidalbending of floatingglaciers, the glacier is
usually modelledas an elasticbeamwithuniformthickness, resting on an elastic foundation.
With a few exceptions, values of the elastic (Young’s) modulus E of ice derived from tidal
deflection records of floating glaciers are in the range 0.9^3 GPa. It has therefore been sug-
gested that the elastic-beam model with a single value of E º 1GPa adequately describes
tidal bending of glaciers. In contrast, laboratory experiments with ice give E ˆ 9.3 GPa, i.e.
3^10 times higher than the glacier-derived values. This suggests that ice creep may have a
significant influence on tidal bending of glaciers. Moreover, detailed tidal-deflection and tilt
data from Nioghalvfjerdsfjorden glacier, northeast Greenland, cannot be explained by
elastic-beam theory. We present a theory of tidal bending of glaciers based on linear visco-
elastic-beam theory. A four-element, linear viscoelastic model for glacier ice with a reason-
able choice of model parameters can explainthe observed tidal flexure data. Implications of
the viscoelastic response of glaciers to tidal forcing are discussed briefly.

INTRODUCTION

Tidal interaction with floating glaciers has been studied for
many years and for many reasons. Holdsworth (1969,1977)
analyzed the stresses set up by tidal motion in the transition
region where the glacier changes from grounded to floating
conditions, with a view to studying under what conditions
the fracture strength of glacier ice wouldbe reached and ice-
berg calving occur.

The grounding zone, where the line of contact between
glacier and bed moves forth and back with the tide, is
believed to be of importance for the stability of the entire
glacier system. In order to detect possible long-term ground-
ing-zone migration, indicative of glacier instability, it is
important to locate this zone and monitor its changing posi-
tion due to tidal motion (Rignot,1998a, b).

The synthetic aperture radar (SAR) technique for simul-
taneous measurement of ice-sheet surface topography and
velocity is extremely sensitive to vertical displacements in
the period between acquisitions of SAR images. For floating
glaciers, the effect of tidal deflections must therefore be esti-
mated and removed from the SAR interferograms before the
velocity of the glacier motion can be derived (Rignot,1996).

Most models of tidal flexure of floating glaciers (e.g.
Holdsworth,1969, 1977; Lingle and others, 1981; Stephenson,
1984;Vaughan1994,1995) take their origin in the analysis of
beams of elastic material on elastic foundations (Hetënyi,
1946). Vaughan (1995), based on then published and unpub-
lished tidal displacement data, concludes that the elastic-
beam model with a single value of the elastic modulus E ˆ
0.88 § 0.35 GPa adequately described all the data except a
dataset from Jakobshavn Isbr×, Greenland, measured by
Lingle and others (1981). The elastic model could only be
fitted to the Jakobshavn data by choosing a much lower E
value or by assuming that surface and basal crevassing

reduced the `̀ bending-effective’’ thickness from the real
thickness of 750^800m to only 150 m (Vaughan, 1995). On
the contrary, Rignot (1996) found E ˆ 3 §0.2 GPa or three
times larger than the value derived byVaughan (1995), by fit-
ting the tidal flexure pattern of Petermann Gletscher, North
Greenland, determined by interferometric SAR (InSAR)
measurement, to the Hetënyi model.

The E values derived from fitting elastic models to
observed tidal flexure patterns of glaciers are 3^10 times less
than the E value derived from laboratory measurements of
the velocity of sound waves in ice. For isotropic, polycrystal-
line ice such experiments, which measure the true elastic
(Young’s) modulus not influenced by creep, give E ˆ
9.3 GPa (Petrenko and Whitworth, 1999, p.40). The need to
use a smaller effective elastic modulus (Sinha,1978; Mellor,
1980) that indirectly accounts for the viscoelastic properties
of ice shows that ice creep may have a significant influence
on tidal flexure of glaciers.

Application of the elastic-beam model was challenged by
Reeh and others (2000), who could not fit such a model to
detailed tidal-deflection and tilt measurements on Nioghalv-
fjerdsfjorden glacier, northeast Greenland. Reeh and others
(2000) tentatively suggested that viscoelastic-beam theory
should be applied (Iversen,1972). This idea is taken up in the
present paper. Moreover, we disengage ourselves from other
constraints implied by the usual theory of tidal bending of
glaciers. Hetënyi’s standard analytical solution, for example,
presupposes uniform beam (glacier) thickness and infinite
length of the beam.The geometry of real glaciers often devi-
ates substantially from these idealizations. Longitudinal
thickness profiles of Petermann Gletscher (Rignot, 1998b)
and Nioghalvfjerdsfjorden glacier (Mayer and others, 2000)
reveal, for example, a reduction in ice thickness from ¹600m
at the grounding line to ¹250 m at a distance of 20 km from
the grounding line. This thickness change corresponds to a
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variation of the bending rigidity of the glacier by a factor of
¹14. The change in thickness along the relatively short float-
ing sections of West Greenland-type outlet glaciers such as
Jakobshavn Isbr× is less pronounced. In general, however,
the ratio of horizontal extent to thickness of these glaciers is
small compared to the characteristic relative decay length of
the elastic flexure pattern. Thus, a free-floating stage is not
achieved at the terminus as assumed by the prevalent theory.

The aim of the present paper is to develop a theory of
tidal bending of glaciers by using linear viscoelastic-beam
theory and to apply the theory to a re-analysis of tidal bend-
ing data from Nioghalvfjerdsfjorden glacier. Implications of
a viscoelastic rather than an elastic response of glaciers to
tidal forcing are discussed briefly.

NIOGHALVFJERDSFJORDEN GLACIER

An extensive floating glacier tongue fills the entire interior of
Nioghalvfjerdsfjorden (Fig.1).The length of the glacier tongue
is 80 km and the width is 21km halfway downstream, widen-
ing to about 30 km at the main ice front. The outermost
¹60 km of the glacier is afloat, with an upstream grounding
zone crossing the glacier from the western branch of the ice-
dammed lake BlÔsÖ in the north to Lambert Land in the
south. Grounding zones also occur along the side margins
of the glacier and at four islands or ice rises at the main front
of the glacier. A field programme was carried out on the
glacier in the1996^98 summer seasons.The study comprised
observations of tidal movement (Reeh and others, 2000),
bathymetry (Mayer and others, 2000), surface velocity and
strain rate (Thomsen and others, 1997), and detailed map-
ping of surface elevation and ice thickness by means of an

airborne ice-radar and laser-altimeter survey (Christensen
and others, 2000).

Observations of tidal motion

The tidal-movement observations of the Nioghalvfjerds-
fjorden glacier tongue used in this study comprise simulta-
neous global positioning system (GPS) deflection measure-
ments and tiltmeter measurements over several tidal cycles
in the period 15^17 August 1997. The measurements were
made in a cross-profile ¹30 km from the grounding zone.
A tide gauge installed in the sea immediately in front of the
glacier front at `̀ Syge Moster’’ recorded the tide in the open
sea. The locations of the measurement sites are shown in
Figure1. The deflection measurement involved six points in
the cross-section. The observations were performed as dif-
ferential GPS measurements in respect to a local reference
on firm rock, using a recording interval of 30 s. The data
were processed hour by hour using the ASHTECH GPPS
software for static processing, providing hourly measure-
ments of the tidal deflection.

The horizontal motion over the total recording period
was also derived from the GPS measurements, resulting in
the cross-sectional velocity profile shown in Figure 2.

Five tiltmeters were placed at the northern margin of the
glacier between GPS points NF9775 and NF9776 (see Fig.1).
The instruments were distributed over a distance of 2.5 km
from the glacier margin to a prominent ice ridge (MidgÔrd-
sormen) formed several kilometres upstream in a zone of
intense pressure and shear. At the location of the obser-
vations, the ridge is afloat.

The tidal observation records havebeen analyzedby cross-
spectral analysis (Reeh and others, 2000) using the approach
described by Bendat and Piersol (1986, ch. 5, 6 and 9). The
analysis shows that both amplitude and phase of the tidal
deflection at all points, with the exception of points close to
the lateral margins, are, within the uncertainty, equal to the
amplitude and phase of the local tide measured in the sea at
`̀ Syge Moster’’. The results of the spectral analysis of the tidal
observations are displayed inTable1. For further details of the
tidal observations and the spectral analysis, see Reeh and
others (2000).

The internal temperature of the glacier was measured in
a borehole located ¹20 km upstream of the cross-profile.
The temperature decreased steadily from ^8³C at the sur-
face to ^20³C at 375 m depth (the bottom of the borehole).
The ice thickness at the drill site was ¹450 m.

Fig. 1. Map of Nioghalvfjerdsfjorden glacier. For location, see
insert map in upper left corner.The location of tidal GPS meas-
urement stations (legends starting with NF), the Base camp
with the fixed GPS reference point, and the pressure-gauge
observation site (`̀Syge Moster’’) are shown. Inclinometer
observations were performed at five stations between points
NF9775 and NF9776.The position of the laser altimeter and
ice-radar profile is shown as line marked C^C across the
glacier. Approximate location of the upstream grounding zone
is shown by the grey shading running south from the western
branch of BlÔsÖ to Lambert Land.

Fig. 2. Horizontal velocity profile measured along the NF
profile line on Nioghalvfjerdsfjorden glacier (see Fig. 1).
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RHEOLOGICAL MODEL

Creep tests undertaken at stress and temperature conditions
comparable to those occurring in connection with tidal
bending of glaciers show that total strain " is composed of
an instantaneous elastic component, and two time-depend-
ent components: the delayed elastic strain and the viscous
strain (e.g. Glen, 1955). The simplest rheological model
showing this behaviour is a four-element fluid (Flu« gge,
1967, p.22). Assuming glacier ice to be incompressible, the
response of this material when subject to a constant devia-
toric stress s’= s ¡ p, where s is stress, p is the mean of
the normal stresses, and is the unit tensor, is

" ˆ "e ‡ "d ‡ "v

ˆ 3¼0

2EM
‡ 3¼0

2EV
1 ¡ exp ¡ EV

3·V
t

³ ´µ ¶
‡ ¼0

2·M
t :

…1†

In Equation (1), EM isYoung’s modulus, EV and ·V are elastic
modulus and viscosity, respectively, associated with primary
(transient) creep, and ·M is viscosity related to steady creep. t
is time after loading with the constant stress deviator s0.

The three contributions to the strain are all significant
during the first few hours of a creep test (Glen, 1955; Brill
and Camp, 1961), i.e. in an interval comparable to the tidal
period during which stresses and deformations in the glacier
undergo significant rates of change. It is therefore reasonable
to expect that primary and steady creep both influence tidal
deflection of glaciers and therefore that a theory of tidal flex-
ure must involve a constitutive equation that accounts for the
inelastic components. Creep tests show that the viscosity
parameters of Equation (1) are strongly dependent on stress
and temperature. This is particularly well documented for
the viscosity for steady creep that can be expressed as ·M ˆ
1=…2A½n¡1

e †, where A depends on temperature T, ½e is effect-
ive shear stress and n ¹ 3 (Paterson,1994, p.97 and 259^260).
In general, large temperature variations with depth occur in
floating glaciers. The surface temperature may be ^20³C or
lower, and the bottom temperature approaches the freezing

point of water. In the tidal flexure zone, the effective stress is
composed of a steady contribution ½e;s associated with the
general glacier flow, and a time-dependent component ½e;t

related to tidal flexure. Particularly in shear zones along side
margins of floating glaciers, ½e;s may reach a value of a few
hundred kPa, and consequently constitutes a significant, if
not the dominant, contribution to ½e. In the case of a tidal
flexure zone with ice motion across the grounding line, ½e;s is
likely to be less dominant.Table 2 displays values of ·M calcu-
lated for a range of T and ½e values likely to occur in tidal
flexure zones of glaciers. Obviously, such large variations of
·M will influence the tidal flexure of the glaciers. A glacier
beam theory accounting for stress- and temperature^depth-
dependent viscosity was developedby Reeh (unpublished). A
more elaborate viscoelastic model that approximates various
non-linear features was presented by Morland (1996; see also
Mellor, 1980). Here, we shall adopt a simple approach, using
the linear viscoelastic four-element model with constant
material properties to represent the deformation of ice.

The numerical values of the material parameters in
Equation (1) will be discussed in a later section.

BEAM THEORY

Neglecting forces of inertia (which are negligibly small for
oscillations with the frequency of the tide), the balance of
forces acting on a beam element provides two equations

@Q

@x
ˆ n …2†

@M

@x
ˆ Q ; …3†

where x is distance along the beam, Q is the transverse force
in a cross-section of the beam, n is the transverse load on the
beam (positive upwards), and M is the bending moment. For
a floating glacier, n ˆ »wg…a sin !t ¡ u†, where »w is density
of sea water, g is acceleration due to gravity, a is tidal ampli-
tude, ! is tidal frequency, t is time, and u is the deflection of
the beam axis (positive upwards) from the free-floating state
as defined by the instantaneous tide. Pressure variations due
to the tide-driven flow beneath the glacier are small as com-
pared to the buoyancy term n and are neglected.

A third equation states that the angle of rotation ¬ of a
beam element equals the first derivative of the deflection of
the beam axis:

@u

@x
ˆ ¬ : …4†

A fourth equation is established by relating the curvature of

Table 1. Phase (positive as lag) and amplitude of tidal records
measured 15^17 August 1997 in a cross-section of Nioghalv-
fjerdsfjorden glacier derived by cross-spectral analysis (Reeh
and others, 2000)

Location Record length Phase Amplitude Distance from
north margin

h min m

NF9771D 36 47 §3 0.40§ 0.03 20000
NF9772 D 48 1 §4 1.02 §0.05 17804
NF9773 D 47 0 §2 1.00 § 0.02 12778
NF9774 D 45 1 §4 0.97§0.04 6072
NF9775 D 31 15 §8 0.83§0.09 1685
NF9776 D 40 ^16 §13 0.14 § 0.14 303
AWI 1 T 40 ^57 §14 1.13 §0.09* 2546
AWI 2 T 46 ^36§16 1.20 §0.08* 2011
AWI 3 T 40 11 §4 3.33 §0.02* 1145
AWI 4 T 40 22 §2 3.19 § 0.01* 324
AWI 5 T 40 32 §8 1.15 §0.04* 60

Notes: T , tilt record; D, deflection (GPS) record. Phases are relative to the
phase of the tidal deflection at NF9773 in the free-floating part of the cross-
section. Amplitudes of the deflection records are relative to the amplitude of
the tidal deflection at NF9773 in the free-floatingpart of the cross-section.

* Numbers to be multiplied by 0.0001.

Table 2.Viscosity ·M ˆ1/…2A…T †½2
e † (1012Pa s) for steady

creep of ice for various values of temperature T and effective
stress ½e

T ½e

50 kPa 100 kPa 200kPa 300 kPa

³C

0 29 7.4 1.8 0.82
^5 125 31 7.8 3.5

^10 410 100 26 11.3
^15 690 170 43 19
^20 1200 290 73 33

Note: Values of the flow-law constant A…T † are from Paterson (1994, p.97).
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the beamaxis, which for infinitesimal deflections is expressed
as @¬=@x ˆ @2u=@x2 to the bending moment M.The form of
this equation depends on the constitutive equation of the
beam material. For a linear viscoelastic material, the equa-
tion becomes

IO
@¬

@x

³ ´
ˆ P …M† ; …5†

where

O ˆ
Xm

0

ok
@k

@tk
and P ˆ

Xn

0

pk
@k

@tk

are differential operators (Flu« gge, 1967 p.47^48). I is the
moment of inertia of the beam cross-section (see Appendix).

Equations (2^5) constitute a set of four linear differential
equations for the four unknowns u, ¬, Q and M. In the case
of a beam of an ideal elastic material, deflections, forces and
stresses are, at all sections of the beam, in phase with the
tidal oscillation. Hence the corresponding time-dependent
cyclic components of u, ¬, Q and M can be eliminated,
and a set of four ordinary linear differential equations for
the x-dependent parts of u, ¬, Q and M can be obtained.
In the case of a beam of a linear viscoelastic material, the
phase of the oscillations of u, ¬, Q and M will vary along
the beam.To account for this, we write

u ˆ uS…x† sin !t ‡ uC…x† cos !t ;

¬ ˆ ¬S…x† sin !t ‡ ¬C…x† cos !t ;

Q ˆ QS…x† sin !t ‡ QC…x† cos !t ; and

M ˆ MS…x† sin !t ‡ MC…x† cos !t :

Substitution of these expressions into Equations (2^5)
results in a set of eight ordinary linear differential equations
for the eight unknown functions uS, uC, ¬S, ¬C, QS, QC, MS,
MC (see Appendix), that canbe solved with standard numeri-
cal techniques if an appropriate set of boundary conditions
are specified.

The form of the differential operators O and P depends
on the specific rheological model used to describe the rela-
tionship between stress and deformation of glacier ice.
Moreover, the coefficients ok and pk depend on the con-
straints on stresses and deformations in the horizontal direc-
tion transverse to the beam axis. We shall assume plane
strain, i.e. zero deformation in the transverse direction.

For the ideal elastic material we have O ˆ1 and P ˆ
…1¡¸2†=E, where E is Young’s modulus and ¸ is Poisson’s
ratio.

For the incompressible four-element fluid the differential
operators take the form

O ˆ 3·V

EV

@2

@t2
‡ @

@t
…6†

and

P ˆ 2:25·V

EVEM

@2

@t2
‡ 0:75

1

EV
‡ 1

EM
‡ ·V

·MEV

³ ´
@

@t
‡ 0:25

·M
:

…7†

Boundary conditions

For a floating glacier, the boundary conditions at the terminus
and at the transition from grounded to floating conditions
were discussed by Reeh (unpublished). In the case of a glacier
with a vertical front cliff, the transverse force at the front QF is
zero. The bending moment of the normal stress deviations

from hydrostatic stress is, to first order in the deflection uF,
equal to

MF ˆ»wgh3
F

£
…di…1 ¡ di†…di ¡ 2 ‡ 3eF†=
6 ¡ di…di ¡ 2 ‡ 2eF†uF=2

¤

(Reeh unpublished, p.29), where hF is glacier thickness,
di ˆ »i=»w and eF is the relative distance from the surface
to the beam axis (see Appendix). In the case of uniform
depth distributions of the material properties, eF ˆ 0.5.

The bending analysis in the transition zone from
grounded to floating conditions is complicated by the fact
that it involves bending from two different mechanisms
(Reeh, unpublished, p.157^159; Holdsworth,1977): ice motion
across the grounding line may give rise to a static `̀ standing’’
waveform depending on bedrock geometry, which, however,
is modified by a dynamic waveform changing with the tide.
In the flexure zone along a side margin (i.e. the case of the
tidal movement study of Nioghalvfjerdsfjordenglacier), there
is no ice motion across the grounding line. In this case, we can
neglect the complications and assume the glacier to be fixed
at the grounding line (zero deflection and tilt).

NUMERICAL SOLUTION

Instead of the standard analytical approach presented by
Hetënyi (1946) presupposing uniform ice thickness, a numeri-
cal integration procedure is used, which allows account to be
taken of non-uniform ice-thickness variations and the finite
width of the glacier. The ice-thickness variation is approxi-
mated by cubic splines fitted to the thickness profile by a
least-squares proceedure.

The integration of the set of eight lineardifferential equa-
tions given in the Appendix is based on the standard Runge^
Kutta integration method (Press and others, 1989, p.447).
The `̀shooting method’’ (Press and others, 1989, p.582) is
used to solve the two-point boundary-value problem arising
from considering the finite width of the glacier. The proced-
ure was checked against the analytical solution for the case
of an elastic beam of uniform thickness and infinite length.
Deviations between the numerical and analytical solutions
were insignificant.

MODEL RESULTS AND COMPARISON WITH
OBSERVATIONS

It appears from Table 2 that ·M depends strongly on tem-
perature T and effective stress ½e. A representative value of
·M in the northern tidal deflection zone of profile C^C (see
Fig. 1) is derived as follows. From Figure 2, the shear strain
rate near the northern margin of the profile is found to be
¹0.15 a^1. Assuming this to be the dominant strain-rate
component and using an A value from Paterson (1994,
p.97) corresponding to ^15³C (the average internal ice tem-
perature measured in a borehole 20 km upstream of profile
C^C), the marginal shear stress is calculated as ½xy º
250 kPa. This shear stress is large as compared to the stress
deviators associated with tidal flexure, hence justifying put-
ting ½e ˆ ½xy ˆ 250 kPa. Table 2 then shows that ·M º
20 000^30000 GPa s.

The other material parameters are fixed as follows: EM ˆ
9.3 GPa (Petrenko and Whitworth,1999, p.40). In creep tests
with T ˆ ^15³C and effective stresses between 80 and 160
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kPa, Brill and Camp (1961) found the material parameters for
transient creep to be EV ¹ 10 GPa and ·V ¹ 600GPa s.

Using these values, the deflection and tilt amplitudes
predicted by the four-element viscoelastic tidal flexure
model are shown by thick lines in Figure 3a and b, respect-
ively. The deflection amplitudes are standardized to a value
1in the midpointof the cross-profile.The thin lines shown in
Figure 3a and b represent results of calculations with a
purely elastic model withYoung’s modulus ˆ 9.3 GPa. Both
sets of model results show a general agreement with the
observations (points shown by crosses), although the visco-
elastic model gives a slightly better fit to the observed ampli-
tudes. Neither of the modelled deflection curves can,
however, reproduce the relatively large amplitude of the
observed deflection record at the point located a few hun-

dred metres from the southern ice margin (the righthand
side of the figure). Apparently, the no-slip condition used
as boundarycondition does not apply at this glacier margin,
where the contact between glacier and land is an extremely
steep rock slope. Some vertical sliding seems to occur either
at the rock face itself or in a tidal crack near the rock wall.

Turning to the phases of the deflection and tilt records
shown in Figure 3c, the superiority of the viscoelastic model
becomes evident. The elastic model predicts the deflection
and tilt of all points to be in phase with the forcing, i.e. with
the tide in the sea, or equivalently, in phase with the deflec-
tion in the central part of the glacier. Obviously this is not
the case for our observations, which show systematic (and
quite different) variations of the phases of the deflection
and tilt records that are reasonably well reproduced by the
viscoelastic model.

Figure 4 illustrates the tidal deflection curves corres-
ponding to different instants during a half tidal cycle. The
deflection curves for the other half of the cycle are mirror
images of those shown in Figure 4. It appears that the shape
of the deflection curve changes during the tidal cycle.
During falling tide with a water level above the mean, and
during rising tide with water level below the mean, the
curvature of the deflection curve is larger than during the
remaining periods of the tidal cycle. Preliminary model
results from other tidal flexure zones with different glacier
thickness and different temperature and stress conditions
implying a different value of ·M show that the change in
shape of the deflection profile during the tidal cycle can be
much larger than shown in Figure 4.

Fig. 3. (a, b) Heavy lines are amplitudes of relative tidal
deflection and absolute tilt in a cross-section of Nioghalv-
fjerdsfjorden glacier as determined by a four-element linear vis-
coelastic-beam model with material properties as described in
the text.The thin lines represent the result of a calculation with
an elastic-beam model. Measured values are marked with
crosses. Standard errors of the measured deflection amplitudes
are also shown.The standard errors of the measured tilt ampli-
tudes are too small to be shown. (c) Phase of the deflection
(solid line) and tilt (dashed line) of the tidal motion in a
cross-section of Nioghalvfjerdsfjorden glacier as determined by
a four-element linear viscoelastic-beam model. The phases
obtained with the elastic model are all zero. Phases of observed
deflection and tilt records are marked as triangles and open
circles, respectively.The phases are adjusted so that the phase
of the deflection of point NF9773 is zero.

Fig. 4.Tidal deflection curves of the northernmost 8000 m of
cross-section C^C of Nioghalvfjerdsfjorden glacier at differ-
ent instants during a half tidal cycle. The deflection curves
are calculated with the viscoelastic four-element model with
material parameters as described in the text. The deflection
curves for the other half of the cycle are mirror images of those
shown in the figure. Solid lines are deflection curves corres-
ponding to rising tide. Dashed lines correspond to falling tide.
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DISCUSSION AND CONCLUSION

In contrast to conclusions of earlier studies of tidal flexure of
floating glaciers, deflection and tilt data observed simultan-
eously in a profile across the tidal flexure zone of Nioghalv-
fjerdsfjorden glacier cannot be adequately described by
elastic-beam theory. The inconsistency with elastic theory
is most clearly demonstrated by the observation that the
phase of the observed deflection and tilt records changes
with distance from the grounding line. This was previously
pointed out by Reeh and others (2000), who tentatively sug-
gested that the tidal flexure data from Nioghalvfjerdsfjor-
den glacier might be better described by a viscoelastic-
beam model. The present study confirms that a linear vis-
coelastic-beam model with a reasonable choice of material
parameters can explain the observed tidal flexure records.
A good fit is achieved by using a four-element rheological
model for glacier ice displaying instantaneous elastic re-
sponse, delayed elastic response, and viscous response. A
two-element model which only accounts for the instanta-
neous elastic and viscous responses also gives a satisfactory
fit, although not quite as good a fit as the four-element
model.The value ofYoung’s modulus used in the viscoelastic
models is in agreement with the value derived from labora-
tory measurements of the sound-wave velocity in polycrys-
talline ice. This is a more satisfactory choice than the 3^10
times lower value of Young’s modulus derived in earlier
studies by fitting elastic models to observed tidal deflection
patterns of glaciers.

In the present study, no attempt has been made to opti-
mize the fitting of the material properties (e.g. by mini-
mizing the sum of squares of the deviations of model-
calculated deflections and tilt from the corresponding
observed values). The use of a linear viscoelastic model with
constant viscosity to represent the non-linear temperature-
and stress-dependent viscosity of ice would make the value of
such an optimization questionable. The limited number of
phase observations further questions the usefulness of using
least-squares optimization of the material properties.

The changing shape of the deflection curve of the glacier
with the tide, illustrated in Figure 4, has important implica-
tions. Elastic models have in earlier studies been fitted to
observed tidal deflection curves of glaciers with the purpose
of deriving a value of the elastic damping factor ­ ˆ 3»wg
…1 ¡¸2†=…Eh3†1=4 (e.g. Vaughan, 1995). Except for tides close
to mean sea level, the tidal deflection curves shown in Figure
4 can, in fact, all be fitted accurately by an elastic model.
However, the ­ value derived from such a fit will depend on
the phase of the tide at the time of observation of the deflec-
tion curve.This probably explains part of the scatter of the E
values calculated in earlier studies from ­ values derived by
fitting observed tidal deflection curves by elastic flexure
models.

The changing shape of the deflection curve may also have
implications for the procedure used to separate the interfero-
metric phase due to the tidal signal from the interferometric
phase due to the long-term steady glacier motion by differ-
encing SAR interferograms (Rignot, 1996, 1998b). The pro-
cedure presupposes identical shapes of the tidal flexure
patterns at the times of acquisition of the different radar
images used to form the interferograms. The present study
shows that, in general, this is not the case in the tidal flexure
zone. A detailed analysis of the problem is in progress and
will be published elsewhere.
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APPENDIX

We introduce the abbreviations

C1 ˆ 3·V

EV
; C2 ˆ 2:25·V

EVEMI
;

C3 ˆ 3

4I

1

EV
‡ 1

EM
‡ ·V

·MEV

³ ´
; C4 ˆ 2:25

·MI
:

…A1†

The material parameters are explained in connection with
Equation (1) of the main paper. I is the moment of inertia of
the beam cross-section in respect to the beam axis. If the
material parameters are constant, the beam axis is located
at a relative depth e ˆ1/2 below the surface, and I ˆ1/12 h3.
If the material properties vary with depth, a transformation
of the cross-section must be performed when calculating e
and I (Reeh, unpublished, p.83). This complication is
neglected in the present study.

Looking for a harmonic solution to the coupled differen-
tial equations (2^5), we write:

u ˆ uS…x† sin !t ‡ uC…x† cos !t;

¬ ˆ ¬S…x† sin !t ‡ ¬C…x† cos !t;

Q ˆ QS…x† sin !t ‡ QC…x† cos !t ; and

M ˆ MS…x† sin !t ‡ MC…x† cos !t :

Substituting these expression into Equations (2^5), and equat-
ing to zero, in each of the equations, the coefficients to respect-
ively sin !t and cos !t, we obtain the following set of eight
coupled differential equations:

dQs

dx
ˆ »wg…a ¡ us†

dQc

dx
ˆ ¡»wguc …A2a; b†

dMs

dx
ˆ Qs

dMc

dx
ˆ Qc …A3a; b†

dus

dx
ˆ ¬s

duc

dx
ˆ ¬c …A4a; b†

¡·!2C1
d¬s

dx
¡ ·!

d¬c

dx
ˆ ¡…·!2C2 ‡ C4†Ms ¡ ·!C3Mc …A5a†

¡·!2C1
d¬c

dx
¡ ·!

d¬s

dx
ˆ ¡…·!2C2 ‡ C4†Mc ¡ ·!C3Ms : …A5b†
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