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In this work we consider the problem of optimizing a stellarator subject to hard
constraints on the design variables and physics properties of the equilibrium. We survey
current numerical methods for handling these constraints, and summarize a number of
methods from the wider optimization community that have not been used extensively
for stellarator optimization thus far. We demonstrate the utility of new methods of
constrained optimization by optimizing a quasi-axisymmetric stellarator for favourable
physics properties while preventing strong shaping of the plasma boundary, which can be
difficult to create with external current sources.
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1. Introduction

Stellarator optimization is naturally full of constraints that must be satisfied by an
optimized configuration. Many of these constraints are due to engineering requirements,
such as reasonable aspect ratio, minimum coil-plasma distance, or maximum curvature of
the coils or plasma boundary. Others come from physics requirements, such as having a
prescribed rotational transform at the boundary for an island divertor (Feng et al. 2006),
having a stable magnetic well (Landreman & Jorge 2020) or ensuring the net current is
zero. There are also constraints to enforce self-consistency between different models of the
plasma, such as requiring that the prescribed current in an ideal magnetohydrodynamic
(MHD) equilibrium solver matches with the actual bootstrap current from a kinetic
calculation (Landreman, Buller & Drevlak 2022), or that the coils correctly cancel the
normal field on the plasma boundary. Perhaps the most important constraint is that any
optimized configuration must actually be in MHD equilibrium.

A generic optimization problem can be written as

min
x

f (x)

s.t. gE(x) = 0
l ≤ gI(x) ≤ u

⎫⎪⎬
⎪⎭ , (1.1)

where x ∈ Rn is a vector of decision variables, f : Rn → R1 is the objective function, gE :
Rn → Rm1 are equality constraints, gI : Rn → Rm2 are inequality constraints and l,u ∈
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Rm2 are lower and upper bounds on the inequality constraints (which may be infinite for
one-sided constraints). By introducing slack variables s, we can transform the inequality
constraint into an equality constraint and simple bounds, i.e.

min
x,s

f (x)

s.t. gE(x) = 0
gI(x)− s = 0
l ≤ s ≤ u

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
, (1.2)

which if we absorb s into x and combine the constraints into a single function g, we can
write in standard form as

min
x

f (x)

s.t. g(x) = 0
l ≤ x ≤ u

⎫⎪⎬
⎪⎭ . (1.3)

In § 2 we summarize methods for handling constraints that are already in use in
stellarator optimization such as linear constraint projection and sum of squares. In
§ 3 we introduce several methods from the wider optimization literature and discuss
their properties and relevance for the stellarator optimization field. In § 4 we detail the
implementation of a new augmented Lagrangian optimization algorithm into the DESC
code and demonstrate its use with an example problem in § 5.

2. Existing methods
2.1. Linear equality constraints

Constraints where the decision variables x appear only linearly can be handled efficiently
by suitably redefining variables. A problem with linear constraints can be written as

min
x∈Rn

f (x)

s.t. Ax− b = 0

}
, (2.1)

where A ∈ Rm×n and b ∈ Rm, m ≤ n are the coefficients that define the linear constraint.
We can then decompose x = xp + Zy where xp ∈ Rn is any particular solution to the
underdetermined system Ax = b (typically taken to be the least-norm solution), Z ∈
Rn×(n−m) is a (typically orthogonal) representation for the null space of A, such that AZ = 0,
and y ∈ Rn−m is an arbitrary vector. This allows us to write the problem as

min
y∈Rn−m

f (xp + Zy), (2.2)

which is now an unconstrained problem, where any value for y is feasible, and the full
solution x∗ can be recovered as xp + Zy∗.

While simple to deal with, linear equality constraints are very limited in their
applicability. Most constraints that are of interest in stellarator optimization are nonlinear,
making linear equality constraints only useful for enforcing simple boundary conditions
on the plasma boundary and profiles.

2.2. Sum of squares
Perhaps the simplest way to (approximately) solve (1.3) is with a quadratic penalty method,
where the objective and constraints are combined into a single function, which is then
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Stellarator optimization with constraints 3

minimized without constraints:

min
x

f (x)+ w1‖g(x)‖2 + w2‖I(l,u)(x)‖2. (2.3)

Here w1 and w2 are weights and I(l,u)(x) is a ‘deadzone’ function:

I(l,u)(x) =
{

0 if l ≤ x ≤ u
max(x− u, l − x) otherwise

}
. (2.4)

This formulation is used by a number of codes for optimizing stellarator equilibria, such
as SIMSOPT, STELLOPT, ROSE and DESC. Similar techniques have also been used for
coil design in FOCUS (Kruger et al. 2021). While simple to implement, this formulation
has a number of drawbacks.

(i) The weights w must be determined by the user, often through extensive trial and
error. This can be automated by iteratively increasing the weights until the constraint
violation is reduced to an acceptable level, as in Bindel, Landreman & Padidar
(2023), though this leads to the next problem.

(ii) Formally, the constraints are only satisfied as w→∞ and reducing constraint
violation to an acceptable level can often require very large values of the weights,
leading to a badly scaled problem that can slow convergence.

(iii) The max term in the deadzone function introduces a discontinuity in the second
derivative of the objective, which can hinder progress of some optimization methods
that assume the objective and constraints to be at least C2. This can be partially
alleviated by using a quartic or exponential penalty instead of quadratic, as in
Kruger et al. (2021), though this makes the problem more nonlinear and can reduce
the efficiency of many optimizers that assume a locally linear or quadratic model
function.

2.3. Projection methods
The constraint of MHD equilibrium is most commonly dealt with by using a fixed
boundary equilibrium solver at each step in the optimization. Given the plasma boundary
and profiles at the latest optimization step, the equilibrium solver is run to determine the
full solution throughout the plasma volume, and this is then used to evaluate the objective
function. This is akin to a projection method, where after each step of the optimizer, the
solution is projected back onto the feasible region {x | g(x) = 0}. This also suffers from a
number of drawbacks.

(i) The equilibrium must be resolved at each step of the optimizer, possibly multiple
times if finite differences are used to evaluate derivatives. This can be made
somewhat more efficient if a warm start is used based on the previous accepted step
(Conlin et al. 2023; Dudt et al. 2023), though this is still often the most expensive
part of the optimization loop.

(ii) Projection type methods are limited in applicability to constraints for which a
projection operator can be defined. The MHD equilibrium solvers can serve this
function for equilibrium constraints, but a projection operator for a general nonlinear
constraint is not known.

(iii) Enforcing that the constraints are satisfied at each step of the optimization may be
too strict and cause the optimizer to stop at a poor local minimum.

This last point is illustrated in figure 1. Points where the constraint curve g(x) = 0 is
tangent to the contours of f are local minima of the constrained problem, where following
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4 R. Conlin, P. Kim, D.W. Dudt, D. Panici and E. Kolemen

FIGURE 1. Sketch of optimization landscape (contours of f in blue) with constraints (curve of
g(x) = 0 in black). Starting from x0 and enforcing the constraints exactly at each step will follow
the red path and end at x1. If we allow ourselves to temporarily violate the constraints, we can
follow the green path and arrive at the better solution x2.

the constraint curve will lead to higher objective function values, but moving in a direction
to decrease the objective function will violate the constraints. If we enforce that the
constraint is satisfied at each step, we will follow the path in red and stop at the local
minimum x1. However, if we are allowed to temporarily violate the constraints, we can
make rapid progress towards the better local minimum x2.

Some may worry that not enforcing MHD equilibrium at each step may lead the
optimizer in directions that are not dynamically accessible during an actual plasma
discharge, where the plasma is assumed to be in equilibrium; however, it is important
to note that the path taken through phase space during optimization in general has no
connection to the path taken during an actual discharge, and just because the optimizer
finds a path that violates equilibrium does not mean there is not a nearby path that
satisfies it. Dynamical accessibility is an important aspect of stellarator optimization, but
the expense of time-dependent simulations preclude their use inside an optimization loop,
so are generally limited to post-optimization validation and analysis.

3. Methods for constrained optimization

We consider a general constrained optimization problem of the form

min
x

f (x)

s.t. gE(x) = 0
gI(x) ≥ 0

⎫⎬
⎭ , (3.1)

where, as before, gE and gI denote the equality and inequality constraints, respectively.
Most analysis and algorithms start from the Lagrangian for this problem, which is

L(x, yE, yI) = f (x)− yT
EgE(x)− yT

I gI(x), (3.2)

where yE and yI are the Lagrange multipliers associated with the equality and inequality
constraints, respectively. The conditions for a given set (x∗, y∗E, y∗I ) to be a solution to (3.1)
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Stellarator optimization with constraints 5

are the so called Karush–Kuhn–Tucker (KKT) conditions (Nocedal & Wright 2006):

∇xL(x∗, y∗E, y∗I ) = ∇f − yT
E∇gE − yT

I ∇gI = 0, (3.3a)

gE(x
∗) = 0, (3.3b)

gI(x
∗) ≥ 0, (3.3c)

y∗I ≥ 0, (3.3d)

y∗E · gE(x
∗) = 0, (3.3e)

y∗I · gI(x
∗) = 0. (3.3f )

The first condition is reminiscent of the first-order optimality condition for an
unconstrained problem, ∇f (x∗) = 0, with the objective function f replaced by the
Lagrangian L; however, it is important to note that we do not seek a minimum of the
Lagrangian. It can be shown that solutions to (3.3) always lie at a saddle point where
the Lagrangian is minimized with respect to the primal variables x and maximized with
respect to the dual variables y.

It is useful to take a moment to consider the meaning and utility of the Lagrange
multipliers y. A first insight into the meaning of Lagrange multipliers can be found from
the last of the KKT conditions in (3.3f ), i.e.

y∗I · gI(x
∗) = 0, (3.4)

meaning that either the constraint is zero or its associated multiplier is zero for each
constraint. For a problem in the form of (3.1), an inequality constraint not equal to zero
is said to be ‘non-binding’ or ‘not active’, meaning that the constraint has no effect on
the solution, and the minimum would not change if the constraint were removed. This
is contrasted with a ‘binding’ or ‘active’ constraint that is preventing the solution from
improving the objective f . This suggests that the Lagrange multipliers contain information
about how much the constraints are affecting the solution. This can be made more explicit
by considering the following problem:

min
x

f (x)

s.t. g(x) = 0

}
. (3.5)

The Lagrangian for this problem is

L(x, y) = f (x)− yg(x). (3.6)

We can now consider what happens if we perturb the constraint g = 0 to g+ δg = 0.
From (3.3a) we see that at an optimum x∗ the change in the Lagrangian must be zero to

first order, which gives
δf = yδg. (3.7)

Here we see that the Lagrange multipliers tell us how much our objective can improve
by relaxing our constraints, or the so called ‘marginal cost’ of enforcing the constraint
g = 0. Additionally, the sign of the multipliers tells us which direction we should relax the
constraints to improve the objective.

We can use a similar approach to consider trade offs between conflicting constraints,
where if we have constraints g1 and g2 that cannot both be satisfied, the ratio of their
multipliers y1/y2 tells us how much we can expect to improve g1 by relaxing g2 and vice
versa.

https://doi.org/10.1017/S0022377824000655 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377824000655
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A number of methods have been developed for solving constrained optimization
problems, which we briefly summarize in the following subsections. More information
can be found in standard texts on numerical optimization (Conn, Gould & Philippe 2000;
Nocedal & Wright 2006)

3.1. Interior point methods
A popular class of methods for dealing with inequality constraints are the so-called
‘interior point’ methods, or sometimes referred to as ‘log barrier’ methods. These methods
solve problems of the form

min
x

f (x)

s.t. g(x) = 0
0 ≤ x

⎫⎬
⎭ , (3.8)

(any problem of the form of (1.3) can be transformed into this form by appropriate change
of variables). The bound on the variables is replaced by a logarithmic penalty term:

min
x

f (x)− μ
∑

i

log xi

s.t. g(x) = 0

⎫⎬
⎭ . (3.9)

This problem is then solved repeatedly with an equality constrained optimization method
such as sequential quadratic programming (SQP, see the following section) for a
decreasing sequence of barrier parametersμ. For finite values ofμ, the log term pushes the
solution into the interior of the feasible set (hence the name), and the solution is allowed
to approach the boundary as the barrier gets sharper as μ approaches zero.

The interior point method is the basis of a number of popular commercial and
open-source optimization codes (Wächter & Biegler 2006; Biegler & Zavala 2009), but we
have found that in practice they do not perform well on the types of problems commonly
encountered in stellarator optimization, for reasons that will be discussed further in § 4

3.2. Sequential quadratic programming methods
Another popular class of methods are based on sequentially minimizing an approximate
model of the objective and constraints. Typically, the objective is modelled as quadratic
and the constraints are modelled as linear, leading to a standard quadratic program. If the
current estimate of the solution is xk, we seek the next iterate xk+1 = xk + p by solving the
following subproblem:

min
p

pTHp+ gTp

s.t. AEp = −gE(xk)

l − gI(xk) ≤ AIp ≤ u− gI(xk)

⎫⎪⎪⎬
⎪⎪⎭
. (3.10)

Here g and H are the gradient and Hessian of f and AE, and AI are the Jacobian matrices
of the equality and inequality constraints gE and gI .

One common issue with SQP methods is the possible inconsistency of the linearized
constraints, such that the subproblem (3.10) has no solution. This problem can be made
worse by the inclusion of a trust region constraint, as is often used to ensure global
convergence. To overcome this, the full step p is typically broken into two sub-steps, one of
which attempts to achieve feasibility with respect to the linearized constraints as much as
possible, while the other attempts to reduce the objective function. A merit function is then

https://doi.org/10.1017/S0022377824000655 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377824000655


Stellarator optimization with constraints 7

used to balance between improving the objective and decreasing the constraint violation
(Conn et al. 2000).

Similar to interior point methods, SQP methods form the core of a number of
commercial and open-source optimization codes (Gill, Murray & Saunders 2005;
Johnson & Schueller 2021). However, we similarly see that the performance of existing
implementations is limited on the types of problems encountered in practice.

3.3. Active set methods
Active set methods makes use of the fact that if one knows ahead of time which inequality
constraints are active at the solution, then we can turn those into equality constraints and
ignore all other inequality constraints, leading to a purely equality constrained problem
that is often easier to solve. Active set methods make a guess for which constraints are
active at the solution and iteratively update this set based on the results of sequential
equality constrained optimizations, commonly using SQP methods.

These methods can be very efficient for small problem sizes, however, because the guess
of the active constraints is updated at each iteration, the required number of steps grows
with the number of constraints (often linearly, but can be exponential in the worst case),
making them far less efficient for problems of moderate to large size.

3.4. Augmented Lagrangian methods
For the quadratic penalty method considered in (2.3), one can show that the constraint
violation is inversely proportional to the penalty parameter

gi(xk) ≈ −y∗i /μk, (3.11)

where y∗i is the true Lagrange multiplier (from the solution to (3.3)) associated with
the constraint gi and μk is the penalty parameter. We see that if we want to satisfy
the constraints exactly, we must have μ→∞, which as discussed can be numerically
intractable. However, if we consider the ‘augmented’ Lagrangian

LA(x, y, μ) = f (x)− yTg(x)+ μ
2
‖g(x)‖2, (3.12)

where y are estimates of the true Lagrange multipliers, one can show that now (Nocedal
& Wright 2006)

gi(xk) ≈ −( y∗i − yk
i )/μk. (3.13)

So that if our estimate of the true Lagrange multipliers is accurate, we can significantly
reduce the constraint violation without requiring the penalty parameter to grow without
bound. This also gives us a rule to update our estimate of the multipliers:

yk+1
i = yk

i − μkgi(xk). (3.14)

Minimizing the augmented Lagrangian with fixed y and μ is an unconstrained or bound
constrained problem, for which standard gradient or Newton-based methods can be used.
From this solution we obtain an approximation to the true solution of the constrained
problem. We can then update the multipliers and penalty term and re-optimize, eventually
converging to the true solution. This is the basic method used in several widely used
codes (Conn, Gould & Toint 2013; Fowkes et al. 2023) and can also be used as a generic
technique to handle constraints for algorithms that otherwise would only be able to solve
unconstrained problems (Johnson & Schueller 2021).
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One can also construct an augmented Lagrangian for a least squares problem. Because
L(x, y, μ) is only ever minimized with respect to x, one can add any quantity independent
of x without affecting the result. In particular, if we add ‖y‖2/2μ, we get

LA(x, y, μ) = 1
2‖f (x)‖2 − yTg(x)+ μ/2‖g(x)‖2 + ‖y‖2/2μ. (3.15)

We can then complete the square to obtain

LA(x, y, μ) = 1
2‖f (x)‖2 + 1

2‖ − y/
√
μ+√μg(x)‖2. (3.16)

This allows us to use standard unconstrained or bound constrained least squares routines
to solve the augmented Lagrangian subproblem, which has a number of benefits.

(i) Super-linear convergence can be obtained using only first derivatives of f and g
(provided the residual is sufficiently small at the solution, which in practice is
very often the case) as opposed to standard Newton methods that require second
derivatives of the objective and constraints.

(ii) The quadratic subproblem that arises in least squares is always convex, for which the
exact solution can be found efficiently.

These benefits can also be obtained using other quasi-Newton methods such as BFGS,
which also require only first derivatives and have convex subproblems, but in practice
we have found that in the common case where the problem has a natural least squares
structure, using a least squares method significantly outperforms BFGS in both time and
number of iterations required to reach a solution.

4. Constrained optimization in DESC

As previously mentioned there are a wide variety of commercial and open-source codes
for constrained optimization, many of which have been interfaced to the DESC stellarator
optimization code (Dudt & Kolemen 2020; Conlin et al. 2023; Dudt et al. 2023, 2024;
Panici et al. 2023). In practice, we have found that most of the existing methods perform
somewhat poorly on the types of problems encountered in stellarator optimization. We
hypothesize this is for a number of reasons.

(i) Many commercial solvers assume a particular structure for the problem, such as
quadratic, conic and semi-definite programming solvers. Others rely on convexity,
partial separability or other conditions that generally do not hold in stellarator
optimization.

(ii) Many codes are designed and optimized for solving very-high-dimensional problems
(O(106) variables or more) but with a high degree of sparsity, and make extensive use
of sparse and iterative linear algebra methods. In stellarator optimization problems
we generally do not have significant sparsity due to the wide use of spectral methods,
making these methods inefficient.

(iii) The types of problems in stellarator optimization are often poorly scaled, due
to a wide range of scales in physical units, and due to spectral discretizations.
This can lead to failure of iterative linear algebra subproblems without a proper
preconditioner (which may not be easy to determine) and can also slow progress of
the overall optimization because the optimization landscape is strongly anisotropic
(meaning the objective is much more sensitive to changes in certain directions in
parameter space than others, such as a long narrow valley).

(iv) No existing implementations that we are aware of take advantage of graphics
processing unit (GPU) acceleration for the underlying linear algebra. This is partially
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by design, as GPUs are often of little benefit for the types of large sparse problems
existing codes are designed for. However, as previously mentioned, the problems in
stellarator optimization tend to be moderately sized and dense, for which GPU linear
algebra can provide a significant benefit.

Because of this, we have implemented a new optimizer based on the least squares
augmented Lagrangian formalism from § 3.4, and a sketch of the algorithm is found
in algorithm 1. Future work could include re-implementations of SQP or interior point
methods to better handle dense and poorly scaled linear systems as these methods can be
very powerful, though existing implementations do not seem to perform well.

Before applying the augmented Lagrangian method, we first transform any inequality
constraints into equality constraints plus bounds using slack variables as in (1.3). The
augmented Lagrangian is then used to handle the equality constraints, while the bound
constraints are handled by using a Coleman–Li type trust region method (Coleman &
Li 1996) where the trust region is adjusted at each iteration to account for the bounds,
ensuring that iterates remain strictly feasible with respect to the bound constraints.

Algorithm 1 Augmented Lagrangian algorithm (adapted from Conn et al. 2000; Nocedal
& Wright 2006)

Require: μ0 > 0, ω∗ > 0, η∗ > 0
μk ← μ0
ωk ← 1/μ0
ηk ← 1/μ0.1

0
k← 1
while ‖∇LA(xk, yk, μk)‖ > ω∗ or ‖g(xk, yk, μk)‖ > η∗ do

xk+1 ← arg minx LA(xk, yk, μk)  using bound constrained method, solved to
tolerance ωk

if ‖g(xk, yk, μk)‖ < ηk then  Constraints are making good progress, update
multipliers

yk+1 ← yk − μkg(xk+1)
μk+1 ← μk
ωk+1 ← ωk/μk+1
ηk+1 ← ηk/μk+1

else  Need to improve constraint satisfaction, increase penalty term
yk+1 ← yk
μk+1 ← 10μk
ωk+1 ← 1/μk+1
ηk+1 ← 1/μk+1

end if
k← k + 1

end while

The precise rules for updating the tolerances and penalty parameters can be varied, see
(Conn et al. 2000) for a more complex version, though we have found that in practice the
results and performance do not significantly depend on the choice of hyperparameters.
These rules are effectively automatically finding the correct weights to manage the
trade-off between improving the objective value and constraint feasibility that would
normally require extensive user trial and error.
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FIGURE 2. Plasma boundary of NCSX at several cross-sections, with the ‘bean’ section at
φ = 0.

5. Examples

Many optimized stellarators have very strongly shaped boundaries, and a ‘bean’ shaped
cross-section is quite common, appearing in designs such as NCSX (shown in figure 2),
W7-X, ARIES-CS and many recent designs such as the ‘precise’ quasi-symmetric
equilibria of Landreman and Paul (Landreman & Paul 2022). These strongly indented
shapes can be difficult to create with external coils or magnets, often requiring coils
that are very close on the inboard concave side (Landreman & Boozer 2016; Kappel,
Landreman & Malhotra 2024).

We can attempt to alleviate this problem with constrained optimization by properly
constraining the curvature of the surface. We consider a surface parameterized by the
poloidal angle θ and toroidal angle ζ , with parameterization r(θ, ζ ). The covariant basis
vectors are given by rα(θ, ζ ) = ∂αr(θ, ζ ) for α ∈ (θ, ζ ). From these we can construct the
‘first fundamental form’ as (Do Carmo 2016)

F =
(

E F
F G

)
, (5.1)

where the coefficients are dot products of the first derivative of the position vector:

E = rθ · rθ , (5.2)

F = rθ · rζ , (5.3)

G = rζ · rζ . (5.4)
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Similarly, we can define the ‘second fundamental form’ as

S =
(

L M
M N

)
, (5.5)

where the coefficients are given by the projection of the second derivatives of the position
vector onto the surface normal:

L = rθθ · n, (5.6)

M = rθζ · n, (5.7)

N = rζ ζ · n. (5.8)

We can then compute the principal curvatures κ1 and κ2 of the surface as the solutions
to the generalized eigenvalue problem

Su = κFu, (5.9)

where the eigenvectors u are called the principal directions. The principal curvatures are
the maximum and minimum of the inverse radii of curvature of all the curves that are
tangent to the surface at a given point, with the sign convention that positive curvature
means the surface curves towards the normal vector.

On the inboard side of a toroidal surface, we expect at least one of the principal
curvatures to be positive because the surface curves towards the normal in the toroidal
direction, while at least one should be negative on the outboard side. Indenting of the
poloidal cross-section characteristic of the bean shape would manifest as both principal
curvatures being positive on the inboard side and both negative on the outboard side.

To prevent strong indentation, we use the mean curvature, defined as H = 1/2(κ1 + κ2),
and enforce that the mean curvature is everywhere negative. On the outboard side, where
both curvatures are already negative this should have minimal effect, while on the inboard
it forces any indent to have a larger radius of curvature than the local major radius.

In addition to this constraint on the curvature of the plasma surface, we also include
constraints to enforce MHD equilibrium, fix the major radius R0, aspect ratio R0/a, total
enclosed volume V (which we fix equal to the volume of the initial guess, a circular torus)
and include inequality constraints on the rotational transform profile ι. We also fix the
profiles of pressure p and current j and the total enclosed flux Ψ to give an average field
strength of 1 T. In summary, our constraints are

R0 = 1 m
R0/a = 6

V = Vinit ∼ 0.55 m3

0.43 < ι(ρ) < 0.5
H(θ, ζ ) < 0 m−1

p(ρ) = 0 Pa
j(ρ) = 0 A

Ψ = 0.087 Tm2

J × B−∇p = 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (5.10)

As our objective, we use the ‘two-term’ metric fC for quasi-symmetry (Isaev,
Mikhailov & Shafranov 1994; Rodriguez, Paul & Bhattacharjee 2022; Dudt et al. 2023),

https://doi.org/10.1017/S0022377824000655 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377824000655


12 R. Conlin, P. Kim, D.W. Dudt, D. Panici and E. Kolemen

FIGURE 3. Plasma boundary of new optimized configuration with constraint on surface
curvature.

targeting quasi-axisymmetry at 10 surfaces evenly spaced throughout the volume. The
quasi-symmetry metric fC is given by

fC = (Mι− N)(B×∇ψ) · ∇B− (MG+ NI)B · ∇B. (5.11)

Here, B is the magnetic field with magnitude B, M and N give the type of quasi-symmetry
(for quasi-axisymmetric, M = 1, N = 0), and G and I are the poloidal and toroidal
covariant components of the field in Boozer coordinates.

The plasma boundary after optimization is shown in figure 3, and we can see that
we have successfully avoided any concave regions that may be difficult to produce
with external coils. In figure 6 we also see that the level of quasi-symmetry in this
new configuration compares quite well with similar optimized designs such as NCSX.
However, upon further analysis we find that this new configuration has a negative magnetic
well, indicating it is MHD unstable.

We can attempt to rectify this by adding a constraint on the magnetic well shown in
(5.12). Here V(ρ) is the volume enclosed by the flux surface labelled by ρ and 〈· · · 〉 is
a flux surface average. For vacuum equilibria, this is physically equivalent to the more
common metric V ′′(ψ) < 0 but generalizes to finite beta as well (Landreman & Jorge
2020). The constraint is enforced at 20 surfaces evenly spaced in ρ. The definition for
magnetic well used is

W(ρ) = V
〈B2〉∂ρV

∂ρ〈2μ0p+ B2〉 > 0. (5.12)

Adding this constraint and re-running the optimization, we find that the optimizer does
not converge, indicating that the constraints cannot all be satisfied at the same time. This
is perhaps expected, as empirical evidence suggests that bean-like cross-sections can be
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FIGURE 4. Lagrange multipliers for the curvature constraint plotted on the surface. The dark
areas indicate places where the constraint is binding, and the optimizer wants to indent the
boundary in those locations to improve the magnetic well.

favourable for MHD stability (Nührenberg & Zille 1986; Nührenberg 2010), though may
not be strictly required from a near axis formalism (Rodríguez 2023).

However, in this case we can use the estimated Lagrange multipliers to get an idea
of which constraints are the most limiting. Because the curvature constraint is enforced
pointwise in real space, the Lagrange multipliers also have a local characteristic, and we
can plot them over the surface to see where the optimizer would indent the surface, as
shown in figure 4. As expected, the curvature constraint is most prominent on the inboard
side, and the negative sign of the multipliers indicates that increasing the curvature in
those regions will be favourable for stability.

Using this information, we re-run the optimization with the magnetic well constraint,
but reduce the upper bound on mean curvature from 0 m−1 to 0.5 m−1. With this relaxed
constraint we are able to achieve a stable magnetic well, while maintaining most of the
benefits of the curvature constraint, as shown in figure 5. This is not without some cost, as
we see in figure 6 that the level of quasi-symmetry for the stable configuration is degraded
somewhat compared with the unstable one, though still at reasonable levels compared with
other optimized configurations such as NCSX.

6. Conclusion

In this work we have described the many ways that constraints naturally arise in
stellarator optimization problems and surveyed a number of methods to solve constrained
optimization problems, including methods that have not been widely applied in the field
thus far. We have further developed and implemented a new constrained optimization
algorithm in the DESC code and demonstrated its usefulness in designing a newly
optimized equilibrium that achieves good quasi-symmetry and a stable magnetic well
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FIGURE 5. Plasma boundary of new optimized configuration with relaxed curvature constraint
and stable magnetic well.

FIGURE 6. Quasi-symmetry error measured by the maximum amplitude of the symmetry
breaking Boozer harmonics for the newly optimized configuration with and without a magnetic
well constraint, compared with NCSX.
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without strong shaping of the plasma boundary. We are hopeful that these new techniques
will open new avenues of possibility for the design and optimization of future stellarators,
and significantly reduce the amount of guesswork and ‘black magic’ required when
designing objectives for optimization, as well as offering insights into trade offs between
different objectives and constraints.
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