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Given a, b ∈ R and Φ ∈ C1(S2), we study immersed oriented surfaces Σ in the
Euclidean 3-space R3 whose mean curvature H and Gauss curvature K satisfy
2aH + bK = Φ(N), where N : Σ → S2 is the Gauss map. This theory widely
generalizes some of paramount importance such as the ones constant mean and
Gauss curvature surfaces, linear Weingarten surfaces and self-translating solitons of
the mean curvature flow. Under mild assumptions on the prescribed function Φ, we
exhibit a classification result for rotational surfaces in the case that the underlying
fully nonlinear PDE that governs these surfaces is elliptic or hyperbolic.
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1. Introduction

In this paper we study the existence and classification of rotational surfaces Σ in
the Euclidean 3-space R

3 whose mean curvature H and Gauss curvature K satisfy
a linear relation that depends on their Gauss map N : Σ → S

2. Specifically, given
Φ ∈ C1(S2) and a, b ∈ R, we are interested in surfaces satisfying

2aH + bK = Φ(N). (1.1)

Any such Σ will be called a prescribed linear Weingarten curvature surface, or
Φ-surface for short. Depending on a, b and Φ, numerous different examples of Φ-
surfaces have already appeared in the literature. Next, we highlight some among
the most relevant:

• If a = 0, Φ = c ∈ R, we have surfaces of constant Gauss curvature. In general,
for an arbitrary Φ, we have surfaces of prescribed Gauss curvature.
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• If b = 0, Φ = c ∈ R, we have surfaces of constant mean curvature. In general, for
an arbitrary Φ, we have surfaces of prescribed mean curvature. An important
particular case is when Φ(X) = 〈X, e3〉, ∀X ∈ S

2, where e3 stands for (0, 0, 1),
for which we recover self-translating solitons of the mean curvature flow. See
e.g. [11, 20, 21, 24] and references therein.

• If Φ = c ∈ R and ab �= 0, we have linear Weingarten surfaces. See e.g. [9, 12,
18, 19, 22, 27–29] and references therein.

Hereinafter, we will always assume that a, b are not null in order to avoid these
already studied cases.

In general, the study of surfaces in R
3 described by a curvature function in terms

of their Gauss map goes back, at least, to the Minkowski and Christoffel problems
for ovaloids [10, 25]. In the first one, the Gauss curvature is prescribed, while in the
second one it is the sum of the curvature radii 1/k1 + 1/k2. When the prescribed
curvature function is the mean curvature, the existence and uniqueness of ovaloids
was approached, among others, by Alexandrov, Pogorelov, Hartman and Wintner
[1, 17, 26], and more recently by B. Guan, P. Guan, Gálvez and Mira [13, 14, 16].
The main theorem in [14] provides a tremendous general uniqueness result for
immersed spheres in 3 manifolds, that widely generalizes Hopf’s uniqueness theorem
for constant mean curvature spheres. In our framework, it states that if there exists
a sphere satisfying (1.1), and this equation is elliptic, it is unique among immersed
spheres also satisfying (1.1). However, less is known about complete, non-compact
Φ-surfaces for a general function Φ ∈ C1(S2), besides the paramount, aforemen-
tioned theories of constant mean and Gauss curvature, self-translating solitons of
the mean curvature flow and linear Weingarten surfaces. In this fashion, the first
author jointly with Gálvez and Mira started to develop the global theory of sur-
faces of prescribed mean curvature, taking as starting point the theory of positive
constant mean curvature surfaces and self-translating solitons of the mean curva-
ture flow [7, 8]. Also, the authors recently addressed the study of surfaces in R

3 of
prescribed Gauss curvature, starting by describing the rotational examples [6].

Our goal in this paper is twofold. First, we pursue a complete, self-contained
classification of rotational linear Weingarten surfaces, i.e. when Φ = c ∈ R in (1.1).
Different authors have approached this problem, distinguishing between the char-
acter of the underlying PDE that locally governs (1.1) as elliptic [27, 28] and
hyperbolic [22], but either some examples were missed or the classification result
had some mistake, respectively. In this paper, we cover these gaps and exhibit the
explicit behaviour of the profile curve of every rotational linear Weingarten surface.
For a classification of the parabolic case, we refer the reader to [5].

Second, we aim to lay the groundwork of a global theory of complete, non-
compact Φ-surfaces, taking as main motivation the theories of constant mean and
Gauss curvature surfaces, and also the one of linear Weingarten surfaces. In virtue
of (1.1), the following are two trivial properties of Φ-surfaces: (1) Φ-surfaces are
invariant by Euclidean translations; and (2) any symmetry of Φ in S

2 induces a lin-
ear isometry of R

3 that preserves the class of Φ-surfaces, i.e. that send Φ-surfaces
into Φ-surfaces. Another fundamental property of Φ-surfaces is that they can be
locally expressed as the graph of a function u(x, y) that is a solution of the fully
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nonlinear PDE

adiv

(
Du√

1 + |Du|2

)
+ b

det(D2u)
(1 + |Du|2)2 = Φ

(
(−Du, 1)√
1 + |Du|2

)
, (1.2)

where div, D and D2 are, respectively, the divergence, gradient and hessian oper-
ators on R

3. Some difficulties that arise when approaching the study of (1.2) are:
(1) for a general non-constant function Φ, this equation does not have a variational
structure; and (2) due to the arbitrariness of Φ we need to take into account the
loss of symmetries and isotropy of the resulting equation. We remark that for the
particular case Φ = c, a linear Weingarten surface Σ is a critical point of a func-
tional expressed as a linear combination of the area of Σ, the volume enclosed by
Σ, and the total mean curvature of Σ.

The line of inquiry in the present paper is the existence and classification of
rotational Φ-surfaces in the case that the prescribed function Φ is rotationally
symmetric, i.e. Φ(N) = φ(〈N, e3〉), where φ ∈ C1([−1, 1]). Under this symmetry
condition, (1.1) expresses as

2aH + bK = φ(〈N, e3〉). (1.3)

The quantity 〈N, e3〉 that measures the height of N in S
2 with respect to the e3-

direction is the so-called angle function of the Φ-surface. Under this hypothesis,
rotations in R

3 around a vertical line are ambient isometries that preserve (1.3),
hence the notion of rotational Φ-surface is well-defined.

A classification result for all Φ-surfaces with no further hypotheses on Φ ∈ C1(S2)
seems hopeless in such generality. When b = 0 in (1.1), rotational surfaces of pre-
scribed mean curvature H = H(N) were studied in [8]. Under the hypotheses on
H of being non-vanishing and even, the rotational H-surfaces are open pieces of
spheres, cylinders, unduloids and nodoids. This Delaunay pattern of H-surfaces has
been extended by the first author to more general ambient spaces: the so-called
E(κ, τ) spaces, see [2–4] and references therein. In the same fashion, taking a = 0
in (1.1), the study of rotational surfaces of prescribed Gauss curvature K = K(N)
was addressed by the authors in [6]. Again, the hypotheses K �= 0 and even revealed
as sufficient to generalize the classification of rotational surfaces of constant Gauss
curvature. Inspired by the well structure induced by these conditions, throughout
this paper we will assume that Φ is a rotationally symmetric, non-vanishing, even
function on S

2. In these conditions, reflections about horizontal planes preserve
(1.3) and hence send Φ-surfaces into Φ-surfaces.

Besides the hypotheses on Φ of being non-vanishing and even, it is also nec-
essary to distinguish between the intrinsic character of the PDE (1.2), namely
elliptic, hyperbolic or parabolic; this character will determine the global structure of
Φ-surfaces, similarly to what happens for linear Weingarten surfaces. As revealed
in § 2.2, for a general Φ-surface, the character of the PDE (1.2) is determined by
the sign of its discriminant a2 + bΦ. We furthermore emphasize that the parabolic
case, namely when a2 + bΦ = 0, leads to Φ being a constant function and has been
solved in [5]. Consequently, in this paper, we study in detail the classification of
elliptic and hyperbolic rotational Φ-surfaces.
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We next explain the organization of the paper, and highlight some of the main
results. In § 2, we analyse in detail the nonlinear autonomous system fulfilled by
the profile curve of a rotational Φ-surface. In § 2.1, we carry on a qualitative study
of its solutions that allows us to deduce the behaviour and the geometric properties
of such profile curves, and eventually to classify the rotational examples. In § 2.2 we
deduce the local character of the PDE (1.2) as elliptic, hyperbolic and parabolic,
in terms of a, b and Φ. In § 2.3, we briefly discuss the existence of radial solutions
of (1.2) intersecting orthogonally the axis of rotation. This equation for such initial
data is singular, hence standard theory cannot be invoked in order to ensure its
existence. We overcome these difficulties in virtue of the work of the first author
and López [5], and deduce its main consequence on the phase plane.

In § 3, we classify rotational Φ-surfaces of elliptic type. We distinguish two pos-
sible cases on the constants a, b in § 3.1 and 3.2, and prove theorems 3.1 and
3.3, respectively. We deduce the existence of 10 distinct examples of rotational
Φ-surfaces of elliptic type: some resemble to constant mean curvature surfaces,
while others to positive constant Gauss curvature surfaces.

Finally, in § 4, we classify all the rotational Φ-surfaces of hyperbolic type in
theorem 4.1. As a particular case, we correct a mistake in the classification result
in [22] of rotational linear Weingarten surfaces of hyperbolic type.

2. Differential equations of rotational Φ-surfaces

Let Φ ∈ C1(S2) be rotationally symmetric around the e3-direction, i.e. there exists
a function φ ∈ C1([−1, 1]) such that

Φ(X) = φ(〈X, e3〉), ∀X ∈ S
2. (2.1)

A surface satisfying (1.1) for such Φ, or equivalently (1.3) for φ, and a, b ∈ R is
called a Φ-surface. Our first step is to deduce the differential equations fulfilled by
the coordinates of the profile curve of a rotational Φ-surface.

Let Σ be a Φ-surface described as the rotation of an arc-length parametrized,
planar curve α(s) = (x(s), 0, z(s)), s ∈ I ⊂ R, around the vertical axis passing
through the origin. From the arc-length condition we deduce the existence of a
function θ(s) defined by x′(s) = cos θ(s), z′(s) = sin θ(s). Hereinafter and unless
explicitly said and needed, we omit the parameter s for saving notation. A
straightforward computation yields that the principal curvatures of Σ are

κ1 = θ′, κ2 =
sin θ

x
, (2.2)

and so the Gauss and mean curvature are

K =
θ′ sin θ

x
, 2H = θ′ +

sin θ

x
.

Moreover, the angle function, 〈N, e3〉, is x′ = cos θ. Bearing these discussions in
mind, (1.3) transforms into the differential equation

a

(
θ′ +

sin θ

x

)
+ b

θ′ sin θ

x
= φ(cos θ).
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Solving θ′ we arrive to

θ′ =
xφ(cos θ) − a sin θ

ax + b sin θ
,

wherever ax + b sin θ �= 0. Conversely, assume that x(s), z(s) and θ(s) are solutions
of ⎧⎪⎨⎪⎩

x′ = cos θ
z′ = sin θ

θ′ =
xφ(cos θ) − a sin θ

ax + b sin θ
,

(2.3)

ax + b sin θ �= 0, for some φ ∈ C1([−1, 1]). Then, the surface defined by rotating
α(s) = (x(s), 0, z(s)) around the z-axis is a Φ-surface for the function Φ(X) =
φ(〈X, e3〉), ∀X ∈ S

2.
It is standard that we can reduce system (2.3) to the first and third equa-

tions, since the second one is defined by the other two; see e.g. the study done
by Gomes [15] or more recently by López [23]. Consequently, we project the vector
field (x, z, θ) onto the (x, θ)-plane, obtaining the first order, nonlinear autonomous
system (

x
θ

)′
=

⎛⎝ cos θ
xφ(cos θ) − a sin θ

ax + b sin θ

⎞⎠ . (2.4)

2.1. The phase plane

The phase plane is defined as the set Θ := (0, ∞) × (0, 2π) − S, where

S :=
{

(x, θ) : x > 0, θ ∈ (0, 2π), x = S(θ) :=
−b sin θ

a

}
. (2.5)

The orbits γ(s) = (x(s), θ(s)) are the solutions of system (2.4). Next, we summarize
some of the main properties of the phase plane that follow from its definition:

1. We define Θ1 = Θ ∩ {θ < π} and Θ2 = Θ ∩ {θ ∈ (π, 2π)}. Since x > 0, S is
a compact arc in Θ1 (resp. in Θ2) joining the points (0, 0) and (0, π) (resp.
(0, π) and (0, 2π)) if and only if ab < 0 (resp. if ab > 0).

2. The points lying on S are singular for system (2.4). Therefore, an orbit cannot
have a finite endpoint at S, although it can converge to a point in S at finite
time. Any such limit point in S corresponds to a circle of singular points of
the corresponding Φ-surface.

3. By solving θ′ = 0 in (2.4), we deduce that the curve Γ := Θ ∩ {x = Γ(θ)},
where

x = Γ(θ) :=
a sin θ

φ(cos θ)
, θ ∈ (0, 2π), φ(cos θ) �= 0,

corresponds to points of the profile curve α with vanishing curvature. This
curve exists in Θ wherever a sin θφ(cos θ) > 0.
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4. If φ(0) �= 0, the point

e0 =
(

a

φ(0)
,
π

2

)
, if aφ(0) > 0,

( −a

φ(0)
,
3π

2

)
, if aφ(0) < 0,

called the equilibrium, is a constant orbit that trivially solves (2.4). The
Φ-surface generated by this orbit is the circular flat cylinder of vertical rulings
and radius |a/φ(0)|.

5. The lines θ = π/2, 3π/2 and the curves Γ, S divide Θ into connected
components where the coordinate functions of an orbit are monotonous.

Throughout this paper we will always assume that the prescribed function Φ ∈
C1(S2) is positive and even, that is Φ(X) = Φ(−X), for every X ∈ S

2. In particular,
φ given by (2.1) in terms of Φ satisfies φ(y) = φ(−y) for every y ∈ [−1, 1]. The even
condition has the following geometric property on the phase plane: if (x(s), θ(s))
is a solution of (2.4), then (x(−s), π − θ(−s)) is also a solution of (2.4) whenever
θ ∈ (0, π). When θ ∈ (π, 2π), it follows that (x(−s), 3π − θ(−s)) is a solution to
(2.4). Geometrically, the subsets Θ1 and Θ2 of Θ are symmetric with respect to the
lines θ = π/2, θ = 3π/2, respectively.

2.2. The local character of the PDE

Locally, a surface satisfying (1.1) can be expressed as the graph of a function
u(x, y) that is a solution of the PDE (1.2), which can be written as the solution of
a function F(ux, uy, uxx, uyy, uxy) = 0. Note that the variable u does not appear,
since (1.2) is invariant under Euclidean translations. A straightforward computation
shows that the discriminant of this PDE is

Fuxx
Fuyy

− 1
4
F2

uxy
= (1 + u2

x + u2
y)2(a2 + bΦ).

The character of this PDE inspires the following definition.

Definition 2.1. Let be a, b ∈ R and Φ ∈ C1(S2) related by (1.1), and Σ a
Φ-surface.

• If a2 + bΦ > 0, Σ is of elliptic type.

• If a2 + bΦ = 0, Σ is of parabolic type.

• If a2 + bΦ < 0, Σ is of hyperbolic type.

For instance, if Σ is a Φ-surface of elliptic type then the maximum principle for
fully nonlinear PDEs applies. Consequently, classic techniques originally developed
for surfaces of constant mean curvature and positive constant Gauss curvature can
be adapted to this case, see e.g. [27]. The parabolic case leads to Φ being a constant
function, and an explicit description of the rotational parabolic linear Weingarten
surfaces can be found in [5].
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2.3. Existence of radial solutions

In this section we discuss the existence of radial solutions, u = u(r), of (1.2) that
intersect orthogonally the axis of rotation. This is equivalent to establish a classical
solution of⎧⎨⎩ a

(
u′′

(1 + u′2)3/2
+

u′

r
√

1 + u′2

)
+ b

u′′u′

r(1 + u′2)2
= φ

(
1√

1 + u′2

)
, in (0, δ)

u′(0) = 0.
(2.6)

Any solution of this initial value problem generates an orbit of system (2.4) having
the point (0, 0) as endpoint. However, (2.6) is singular at r = 0, as well as (2.4) at
(0, 0), hence standard theory cannot be invoked in order to ensure the existence of
such an orbit. Nevertheless, by the work of the first author and López, for every
a, b, Φ such that the elliptic relation a2 + bΦ > 0 holds, there exists δ > 0 small
enough and u ∈ C2([0, δ]), u > 0, that solves (2.6). We give a hint of the method
used to prove it, see theorem 4.1 in [5] for further details.

Assume that u = u(r) is a radial solution of (1.2). After multiplying by r and
dividing by a, the equation in (2.6) transforms into(

ru′
√

1 + u′2

)′
+

b

2a

(
u′2

1 + u′2

)′
=

r

a
φ

(
1√

1 + u′2

)
.

If we define the functions f, g : R → R by

f(y) =
y√

1 + y2
, g(y) =

1
a
φ

(
1√

1 + y2

)
,

and after integration, we get

rf(u′) +
b

2a
f(u′)2 =

∫ r

0

tg(u′(t)) dt.

After solving f(u′) and eventually u′ by taking f−1 and integrating, we define the
operator

(Tu)(r) =
∫ r

0

f−1

(
2a

b

(
−s +

√
s2 +

b

a

∫ s

0

tg(u′(t)) dt

))
ds.

Note that u(r) is a solution of (2.6) if and only if it is a fixed point of T. It was
proved in theorem 4.1 in [5] that T is a contraction in the space C1([0, δ]) for δ > 0
small enough, hence the existence of a fixed point u ∈ C1([0, δ]) ∩ C2((0, δ]) that
solves (2.6) is ensured. The fact that u(r) has C2-regularity at r = 0 follows by
taking limits in (2.6) and applying the L’Hôpital rule.

By the even condition on Φ, we can reflect u with respect to a horizontal plane and
obtain a downwards oriented graph intersecting orthogonally the axis of rotation.
In particular, we derive the following consequence on the phase plane.

Lemma 2.2. Let a, b ∈ R and Φ ∈ C1(S2) such that a2 + bΦ > 0. Then, there exists
an orbit γ+ (resp. γ−) in Θ having the point (0, 0) (resp. (0, π)) as endpoint.

https://doi.org/10.1017/prm.2022.48 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2022.48


1354 A. Bueno and I. Ortiz

Rotational surfaces of elliptic type
Case a > 0, b > 0 Case a > 0, b < 0

Complete
Cylinder
Sphere

Unduloids
Nodoids

Non-complete
K > 0; two cusp points; strictly monotonous height
K > 0; annuli; strictly monotonous height

K > 0; annuli; non-monotonous height K > 0; two cusp points; non-
monotonous height

K changing sign; two cusp points;
strictly monotonous height

K changing sign; annuli; strictly
monotonous height

3. The elliptic case

In this section, we classify rotational Φ-surfaces of elliptic type in the sense of
definition 2.1, i.e. the constants a, b and the prescribed function Φ ∈ C1(S2) related
by (1.1) satisfy a2 + bΦ > 0. For the particular case Φ = c ∈ R, these surfaces
appeared as a particular case of the more general special surfaces, see the pioneer
groundwork [27–29]. Although rotational linear Weingarten surfaces of elliptic type
are special surfaces, hence were partially described in these works, some examples
were missing.

In this section we provide a classification result for rotational Φ-surfaces when Φ is
non-vanishing and even. In particular, we fully classify rotational linear Weingarten
surfaces of elliptic type, settling this problem. As a consequence of our investiga-
tions, we obtain a total of 10 distinct examples of such rotational Φ-surfaces of
elliptic type, described in the following table depending on a, b.

Let us briefly explain the information in this table. First, we show six common
examples for b > 0 and b < 0: four complete and two non-complete. Recall that
the complete ones have the same properties as the Delaunay surfaces of positive,
constant mean curvature, and also for the case b = 0 and an arbitrary positive and
even Φ [8]. Next, we describe the corresponding examples according to b > 0 or
b < 0. We exhibit if the Gauss curvature of the surface has constant sign or changes
it. Then, we describe the topology: it can be either simply connected with two
singular cusp points at the axis of rotation, or be an annulus whose boundary are
circles of singular points. Last, we distinguish on the height function being strictly
monotonous or attaining local extrema.

At first sight, one may guess that the cases a < 0, b > 0 and a < 0, b < 0 are
missing in this study. Nevertheless, we show that for fixed b, the cases a > 0
and a < 0 are the same. Indeed, since Φ is even in S

2 and changing the Gauss
map N by −N changes the sign of the mean curvature but the Gauss curvature
remains invariant, the constant a can be changed of sign in (1.1) after an adequate
change of the orientation. Hence, we restrict ourselves to the cases a > 0, b > 0 and
a > 0, b < 0. Remind that the only hypotheses on Φ are to be non-vanishing and
even. We show next that we can further assume the prescribed function Φ to be
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positive. Indeed, if it is negative we consider the equivalent equation

−2aH − bK = −Φ(N),

where −Φ is a positive function. If −a > 0, −b > 0 or −a > 0, −b < 0 we are in
the aforementioned cases of study. If this is not the case, we change the orientation
(hence the sign of a) and we are done. So, we assume once and for all a > 0, Φ > 0
and distinguish between b being positive or negative.

3.1. The case a > 0, b > 0

The classification result obtained in this section is the following:

Theorem 3.1. Let a > 0, b > 0 and Φ ∈ C1(S2) be positive and even.
A complete, rotational Φ-surface is one of the following:

1.1 a vertical, circular cylinder;

1.2 a strictly convex sphere;

1.3 a properly embedded surface of unduloid-type; and

1.4 a properly immersed surface of nodoid-type, with self intersections.

Besides open pieces of the above examples, a non-complete, rotational Φ-surface
is one of the following:

1.5 a surface of K > 0, with two cusp points at the z-axis and strictly monotonous
height;

1.6 a surface of K > 0, homeomorphic to an annulus and with strictly
monotonous height;

1.7 a surface of K > 0, homeomorphic to an annulus and with non-monotonous
height; and

1.8 a surface of K changing sign, with two cusp points at the z-axis and strictly
monotonous height.

Proof. Let φ ∈ C1([−1, 1]) the 1-dimensional function defined by (2.1) in terms of
Φ. In particular, φ is positive and even, and since a, b > 0, the structure of the
phase plane is as follows (see fig. 1):

1. The curve S lies entirely in Θ2 and is a compact arc joining the points (0, π)
and (0, 2π). Such a curve does not exist in Θ1

2. The curve Γ lies entirely in Θ1 and is a compact arc joining the points (0, 0)
and(0, π). Such a curve does not exist in Θ2.

We prove first the existence of the complete examples. Since Γ(π/2) = a/φ(0), the
equilibrium e0 = (a/φ(0), π/2) exists in Θ1 and generates a circular, flat cylinder of
constant mean curvature φ(0)/(2a), obtaining the first example in the classification.
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Figure 1. The phase plane for the case a > 0, b > 0 and the orbit of the rotational sphere
in blue.

To prove the existence of a strictly convex sphere, consider the orbit γ+(s) =
(x+(s), θ+(s)) having (0, 0) as endpoint, given by lemma 2.2, and the corresponding
rotational Φ-surface, Σ+. First, we prove that x+(s) → ∞, θ+(s) → θ0 ∈ (0, π/2]
cannot happen.

Arguing by contradiction, suppose that x+(s) → ∞ and θ+(s) → θ0 ∈ (0, π/2],
which implies that γ+ is strictly contained in the monotonicity region {x >
Γ(θ), θ < π/2}. In particular, the function θ+(s) can be seen as a function of
x+(s) and the chain rule yields

θ′+(s) =
dθ+

ds
=

dθ+

dx+

dx+

ds
= θ′+(x) cos θ+(x).

Therefore, θ+(x) → θ0 ∈ (0, π/2] as x → ∞, and so θ′+(x) → 0 as x → ∞. But since
θ′+(x) cos θ+(x) = θ′+(s), we have

θ′+(x) cos θ+(x) =
xφ(cos θ+(x)) − a sin θ+(x)

ax + b sin θ+(x)
,

and taking limits as x → ∞ we get 0 = φ(θ0)/a, a contradiction.
So, γ+ starts at (0, 0) and cannot stay forever in {x > Γ(θ), θ < π/2}. Next, we

see that γ+ cannot converge to e0. In fact, we prove that the orbits close enough
to e0 are ellipses enclosing e0 in their inner regions. The linearized system of (2.4)
around e0 is given by(

u
v

)′
=

(
0 −1

a2+bφ(0)

(b+ a2
φ(0) )

2
− aφ′(0)

a2+bφ(0)

)(
u
v

)
.

Noting that φ′(0) = 0 since φ is even, we check that the orbits of the linearized are
ellipses around the origin. By classical theory of non-linear autonomous systems,

https://doi.org/10.1017/prm.2022.48 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2022.48


Surfaces of prescribed linear Weingarten curvature in R
3∗ 1357

there are two possible configurations for the orbits of (2.4) around e0: either all such
orbits are closed curves having e0 in their inner regions; or they spiral around e0.
However, the latter possibility cannot happen since the orbits of (2.4) are symmetric
with respect to the line θ = π/2. In particular, all the orbits stay at a positive
distance to e0.

Since γ+ cannot stay forever in the monotonicity region {x > Γ(θ), θ < π/2},
nor converge to e0, the only possibility is that it intersects the line θ = π/2 at
some finite point (x+, π/2), x+ > a/φ(0). By symmetry of the phase plane, γ+

has (0, π) as endpoint, i.e. it agrees with the orbit γ− described in lemma 2.2, and
is a compact arc joining (0, 0) and (0, π). See fig. 1, the orbit in blue. In conclusion,
Σ+ is a rotational, strictly convex Φ-sphere.

Next, we prove the existence of a 1-parameter family of unduloid-type Φ-surfaces.
For that, fix some x0 ∈ (0, a/φ(0)) and let γx0(s) be the orbit in Θ1 passing through
(x0, π/2) at s = 0. For s > 0, γx0(s) lies in the monotonicity region {x < Γ(θ),
θ < π/2} and it intersects the curve Γ, where the θ-coordinate reaches a minimum.
Then, γx0 lies in {x > Γ(θ), θ < π/2}, and since it cannot intersect γ+ nor converge
to e0, has to reach the line θ = π/2 at some point (x̂0, π/2), with a/φ(0) < x̂0 < x+.
By symmetry, γx0 is a closed orbit having e0 in its inner region. See fig. 2, the
orbit in orange. This orbit generates a properly embedded (since θ ∈ (0, π) and
hence z′(s) = sin θ > 0) Φ-surface, Σx0 , that is periodic and has an unduloid-type
behaviour. The parameter x0 defining this family is the neck-size, i.e. the minimum
distance of Σx0 to the axis of rotation.

Finally, we prove the existence of a 1-parameter family of nodoid-type Φ-surfaces.
Fix some x1 > b/a, and consider the orbit γx1(s) passing through (x1, 3π/2) at s =
0. From the monotonicity properties of Θ2, γx1(s) lies in {x > S(θ), θ ∈ (3π/2, 2π)}
for s > 0 (see (2.5) where S was defined) and has increasing both x and θ-
coordinates until reaching the line θ = 2π at some (x1, 2π) with x1 > x1. Similarly,
and by symmetry, γx1(s) lies in {x > S(θ), θ ∈ (π, 3π/2)} for s < 0 and has (x1, π)
as endpoint.

At this point, when s further decreases, γx1 lies in the monotonicity region {x >
Γ(θ), θ ∈ (π/2, π)} of Θ1 until intersecting the line θ = π/2 at some (x̂1, π/2)
with x̂1 > x+. Again by symmetry, γx1 has the point (x1, 0) as endpoint. See fig.
2, the orbit in purple. Note that in particular, γx1 does not intersect S, hence the
corresponding surface Σx1 has no singularities. Moreover, it is properly immersed,
periodic and has self-intersections, sharing the same properties as the constant mean
curvature nodoids. The parameter x1 defining this family is again the neck-size of
each surface.

This completes the classification result in the complete case. Now we describe
the non-complete examples.

First, fix some θ0 ∈ (0, π/2]. At the point (0, θ0), system (2.4) has existence
and uniqueness; here the fact that b �= 0 is paramount. Consequently, there exists
an orbit γθ0 such that γθ0(0) = (0, θ0) and γθ0(s) lies in {x < Γ(θ), θ < π/2} for
s > 0 small enough. By uniqueness, γθ0 cannot intersect any γx0 corresponding
to the unduloids, nor γ+ corresponding to the sphere. So, γθ0 intersects the line
θ = π/2 at some finite point (xθ0 , π/2). By symmetry, γθ0 is a compact arc having
the point (0, π − θ0) as its other endpoint. See Fig. 3 left, the orbit in orange.
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Figure 2. Left: the phase plane for a > 0, b > 0 and a prescribed function Φ under the
hypotheses of theorem 3.1. The orbits correspond to the complete examples. Right: the
profile curve of the Φ-surface corresponding to each orbit.

This orbit generates a Φ-surface, Σθ0 , that intersects the axis of rotation at a
bottom point with angle function cos θ0 and at a top point with angle function
− cos(θ0). In particular, Σθ0 is singular at these cusp points where it fails to be
C1, hence is non-complete. Recall that γθ0 lies in both {x < Γ(θ)} and {x > Γ(θ)},
hence the Gauss curvature of Σθ0 changes of sign and vanishes at two parallels,
which correspond to the points of γθ0 intersecting Γ. In particular, none of these
surfaces has strictly monotonous angle function. See fig. 3 right, the profile curve
in orange. This proves the existence of surfaces of item 1 .8 of theorem 3.1.

Now, fix some θ1 ∈ (3π/2, 2π). Again, at the point (0, θ1) system (2.4) has exis-
tence and uniqueness. Therefore, there exists an orbit γθ1 such that γθ1(0) = (0, θ1)
and γθ1(s) lies in {x < S(θ), θ ∈ (3π/2, 2π)} for s > 0 small enough. We prove next
that γθ1 cannot converge to a point in S.

�

Claim 3.2. The orbit γθ1 cannot converge to a point in S.

Proof of the Claim : We begin by highlighting that a first integral of system
(2.4) for the particular choice φ = c ∈ R is

a(x(s) sin θ(s) − x(s0) sin(θ0)) +
b

2
(sin2 θ(s) − sin2 θ(s0)) =

c

2
(x(s)2 − x(s0)2).

(3.1)
In particular, if c = 0 and we fix the initial condition x(s0) = 0, θ(s0) = θ0 ∈

(3π/2, 2π) the first integral transforms into

ax(s) sin θ(s) +
b

2
(sin2 θ(s) − sin2 θ0) = 0. (3.2)
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Figure 3. Left: the orbits corresponding to the rotational Φ-surfaces of type 1 .5 , 1 .6 of
theorem 3.1. Right: the profile curve of the Φ-surface corresponding to each orbit.

Let σθ0(t) = (xθ0(t), θθ0(t))
1 be an orbit of system (2.4) for φ = 0 and the ini-

tial condition x(s0) = 0, θ(t0) = θ0 ∈ (3π/2, 2π). If σθ0(t) → S then θθ0 → θ∗ and
xθ0 → −b sin θ∗/a, for some θ∗ ∈ (3π/2, θ0). Substituting in (3.2) yields

− b

2
sin2 θ∗ − b

2
sin2 θ0 = 0,

which is a contradiction since b > 0. Therefore, a simple substitution in (3.2) shows
that σθ0(t) reaches the line θ = 3π/2 at (xθ0 , 3π/2) with xθ0 = b/(2a) cos2 θ0.

Let us consider now the orbit γθ1 = (xθ1(s), θθ1(s)), and suppose that there exist
two instants s1, t1 such that γθ1(s1) = σθ0(t1). Comparing system (2.4) for the
prescribed function φ > 0 and the particular case φ = 0, respectively, yields

θ′θ1
(s1) < θ′θ0

(t1).

Now we stand in position to prove claim 3.2. Arguing by contradiction, suppose
that γθ1 converges to S. Consider some θ0 ∈ (θ1, 2π) and let σθ0 be the orbit of
system (2.4) for φ = 0 and the initial condition σθ0(t0) = (0, θ0). We have already
proven that this orbit has (b/(2a) cos2 θ0, 3π/2) as finite endpoint. Also, σθ0(t) for
t > t0 small enough lies above γθ1 ; see fig. 4.

If γθ1 converges to S, then by continuity γθ1(s1) = σθ0(t1) with s1 > s0, t1 > t0.
But at these instants we have θ′θ1

(s1) > θ′θ0
(t1), arriving to a contradiction. Thus,

γθ1 intersects the line θ = 3π/2 at some finite point (xθ1 , 3π/2), with xθ1 < xθ0

< b/(2a). �

1We use the parameter t for the orbits of system (2.4) for the particular choice φ = 0
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Figure 4. The diagram of the contradiction in the proof of claim 3.2.

Consequently, γθ1 passes through some (xθ1 , 3π/2), xθ1 < b/(2a), and by sym-
metry γθ1 closes at the point (0, 3π/2 − θ1); see fig. 3 left, the orbit in purple. The
Φ-surface Σθ1 generated by γθ1 , is compact and intersects the axis of rotation at
two singular cusp points, where Σθ1 fails to be C1. Moreover, Σθ1 has strictly pos-
itive Gauss curvature. See fig. 3 right, the profile curve in purple. This proves the
existence of surfaces of item 1 .5 of theorem 3.1.

We prove the existence of the last non-complete examples. First, note that the
definition of x̂1 in the construction of the complete, nodoidal Φ-surfaces, maps the
interval (b/a, ∞) to (x∞

1 , ∞), for some x∞
1 � x+

2. We show that x∞
1 �= x+.

Arguing by contradiction, suppose that x∞
1 = x+ and consider the orbit γ pass-

ing through (x, π), with 0 < x < b/a. Then, for s < 0, γ(s) lies in {x > Γ(θ),
θ ∈ (π/2, π)} and stays there for s decreasing until converging to the line θ = π/2.
However, γ cannot reach any (x̂, π/2) since necessarily x̂ � x+ and we already
described the orbits passing through these points as the complete nodoids and the
sphere. In particular, by the way it was defined, the orbit γx∞

1
passing through

(x∞
1 , π/2) has to converge to the point (b/a, 3π/2) after intersecting the line θ = π

at some (x∞
1 , π). By symmetry, there exists an orbit in {x > S(θ), θ ∈ (3π/2, 2π)}

having (x∞
1 , 2π) as endpoint and converging to the point (b/a, 3π/2). By analogy,

we name this orbit again as γx∞
1

; see fig. 5 left, the orbit in purple.
The Φ-surface corresponding to the orbit γx∞

1
has a certain nodoidal shape but

with a parallel removed consisting of singular points, hence is non-complete, and
this behaviour is repeated after a vertical translation. See fig. 5 right, the profile
curve in purple.

Now fix some x̂2 ∈ (x+, x∞
1 ) and consider γx̂2(s) the orbit passing through

(x̂2, π/2) at s = 0. For s > 0, γx̂2 intersects the line θ = π at some (x2, π), x2 < x̂2,
and by symmetry it has (x2, 0) as endpoint for s < 0. When s > 0 further increases,
γx̂2 enters the region {x > S(θ), θ ∈ (π, 3π/2)} and since γx̂2 cannot intersect any
other orbit, it ends up converging to some (S(θ2), θ2) with θ2 ∈ (π, 3π/2). By sym-
metry, there is a symmetric orbit, which we will name again γx̂2 by analogy, that

2In fact, x∞
1 = lim x̂1 as the corresponding x1 → b/a.
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Figure 5. Left: the orbits corresponding to the rotational Φ-surfaces of type 1 .7 , 1 .8 of
theorem 3.1. Right: the profile curve of the Φ-surface corresponding to each

orbit.

has the point (S(θ2), 3π − θ2) as endpoint and converges to (x2, 2π) as s increases.
See fig. 5 left, the orbit in orange.

The corresponding Φ-surface has strictly positive Gauss curvature, is homeomor-
phic to an annulus and has non-monotonous height function. See fig. 5 right, the
profile curve in orange. This proves the existence of the surfaces of item 1 .7 in
theorem 3.1.

Finally, since the orbits of the phase plane foliate it, there exists an orbit
in the region {x < S(θ)} whose extremes converge to the points (S(θ2), θ2) and
(S(θ2), 3π − θ2), and that intersects the line θ = 3π/2 at some (x2, 3π/2). See fig.
5 left, the orbit in brown. The corresponding Φ-surface has all the properties stated
in item 1 .6 of theorem 3.1, concluding its proof. �

3.2. The case a > 0, b < 0

The classification result obtained in this section is the following:

Theorem 3.3. Let a > 0, b < 0 and Φ ∈ C1(S2) be positive and even.
A complete, rotational Φ-surface of elliptic type is one of the following:

1.1 a vertical, circular cylinder;

1.2 a strictly convex sphere;

1.3 a properly embedded, periodic surface of unduloid-type; and

1.4 a properly immersed, periodic surface of nodoid-type, with self-intersections.

Besides open pieces of the above examples, a non-complete, rotational Φ-surface of
elliptic type is one of the following:

1.5 a surface of K > 0, with two cusp points at the z-axis and strictly monotonous
height;
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Figure 6. The structure of the phase plane in the elliptic case for a > 0, b < 0, and the
orbits corresponding to the complete rotational Φ-surfaces.

1.6 a surface of K > 0, homeomorphic to an annulus and strictly monotonous
height;

1.7 a surface of K > 0, with two cusp points at the z-axis and non-monotonous
height; and

1.8 a surface of K changing sign, homeomorphic to an annulus and strictly
monotonous height.

Proof. We define φ in terms of Φ by (2.1) as usual. In this case, the structure of
the phase plane is as shown in fig. 6: both curves S and Γ lie entirely in Θ1 and are
compact arcs joining the points (0, 0) and (0, π).

The existence of the complete examples carries over verbatim as in the case
a > 0, b > 0 exhibited in theorem 3.1, and the orbits of these complete examples
are shown in fig. 6. The description of the surfaces of type 1 .5 and 1 .6 is also the
same as in the case a > 0, b > 0; see fig. 7, the orbits and profile curves in black
and brown. Details are skipped at this point.

For the existence of the examples of type 1 .7 , fix some θ0 ∈ (π, 3π/2] and let γθ0

be the orbit having (0, θ0) as endpoint at the instant s = 0. By symmetry of Θ2,
γθ0 has the point 3π − θ0 as endpoint, and ends up at some (x1, 2π). For s < 0, γθ0

intersects the line x = π at (x1, π) and then enters the region Θ1. Since γθ0 cannot
intersect the orbit corresponding to the sphere, nor any orbit of the nodoids, γθ0

intersects the line x = π/2. By symmetry, γθ0 intersects the line x = 0 at (x1, 0).
See fig 7, the orbit and profile curve in purple.

The Φ-surface generated by this orbit intersects the axis of rotation at two cusp
points, its height function is non-monotonous, and its Gauss curvature is everywhere
positive. This proves the existence of the rotational examples of type 1 .7 .
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Figure 7. Left: the orbits corresponding to the rotational Φ-surfaces of type 1 .5 − 1 .8 of
theorem 3.3. Right: the profile curve of the Φ-surface corresponding to each orbit.

Finally, we prove the existence of the examples of type 1 .8 . Name W0 to the
inner region bounded by the orbit γ0 of the rotational Φ-sphere and the curve S of
singular points. Fix some (x0, θ0) ∈ W0 − Γ and let γ be the orbit passing through
such point. Assume moreover that γ does not correspond to an unduloid. It is clear
that the only possibility for γ is to be a bi-graph over the line x = π/2, intersecting
it at a single point, having two endpoints located at the curve S and intersecting
the curve Γ twice. See fig 7, the orbit and profile curve in orange.

The Φ-surface generated by this orbit has the topology of an annulus, has strictly
increasing height function (since γ is strictly contained in Θ1) and its Gauss cur-
vature changes sign. This exhibits the existence of the rotational examples of type
1 .8 and proves theorem 3.3. �

Remark 3.4. Most of the surfaces obtained in theorems 3.1 and 3.3 already
appeared in [27, 28] for the particular case Φ = c ∈ R; for example, the complete
Delaunay-type ones. Regarding the non-complete:

• Surfaces of type 1 .5 , 1 .6 were described in section IV in [27] and theorem 4,
(1) and (3), in [28].

• Surfaces of type 1 .8 of theorem 3.1 were described in section IV in [27], but
only when the intersection with the rotation axis is tangential. For a transverse
intersection, these surfaces were missing.

• Surfaces of type 1 .8 of theorem 3.3 were described in theorem 3 in [28].
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• Surfaces of type 1 .7 of theorems 3.1 and 3.3 do not appear in neither [27] nor
[28]. In [28], (1), it seems to appear a portion of these surfaces, the one being
a concave graph onto the rotation axis, but none is said about if it intersects
the rotation axis (type 1 .7 of theorem 3.3) or if it stays at a positive distance
of it (type 1 .7 of theorem 3.1).

Therefore, theorems 3.1 and 3.3 provide a complete classification of the rotational
linear Weingarten surfaces of elliptic type, with an explicit behaviour of the profile
curve of each of their examples.

4. The hyperbolic case

In this section we classify rotational Φ-surfaces of hyperbolic type in the sense
of definition 2.1, i.e. the constants a, b and the prescribed function Φ ∈ C1(S2)
related by (1.1) satisfy a2 + bΦ < 0. Note that necessarily both b, Φ �= 0, hence we
may assume b = 1 and (1.1) is

2aH + K = Φ.

Therefore, the surface is of hyperbolic type if and only if Φ < −a2.
Our classification result covers the particular but important case when Φ = c ∈ R,

corresponding to hyperbolic linear Weingarten surfaces. Although the classification
of these rotational surfaces was exhibited by López in [22], there exists a mistake.
He described all the rotational linear Weingarten surfaces of hyperbolic type in
terms of a parameter x0 > 0, x0 �= 1/a, for which he claimed that when x0 > 1/a,
all the corresponding surfaces are complete. This is actually false, as we will explain
in the discussions of item 4 of the following result; see Rmk. 4.2 for further details.

Theorem 4.1. Let a ∈ R, Φ ∈ C1(S2), Φ be even, such that Φ < −a2, and φ the
1-dimensional function defined by (2.1) in terms of Φ. Then, rotational Φ-surfaces
are described by a parameter x0 > 0, x0 �= 1/a, such that:

1. If x0 < −a/φ(0), the surface is non-complete, of positive Gauss curvature and
intersects the rotation axis at two cusp points;

2. if x0 = −a/φ(0), the surface is the vertical right cylinder of radius x0;

3. if x0 ∈ (−a/φ(0), 1/a), the surface is non-complete and of negative Gauss
curvature; and

4. if x0 > 1/a, depending on the prescribed function, two possibilities may
occur:
4.1. If φ � −2a2, for every x0 > 1/a, the surface is complete and periodic,

with a nodoidal behaviour; or

4.2. if φ > −2a2, there exists x∞ > 1/a such that:
4.2.1. if x0 � x∞, then the surface is homeomorphic to a sphere with two

cusp points at the axis of rotation, and in particular is non-complete;
and
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4.2.2. if x0 > x∞, then the surface is complete and periodic, with a nodoidal
behaviour.

Proof. As usual, let φ be the 1-dimensional function defined by (2.1) in terms of Φ.
After a change of the orientation if necessary, we assume a > 0. Since a > 0 both
curves Γ and S only exist for θ ∈ [π, 2π], i.e. they lie in Θ2. Also, the condition
φ < −a2 yields Γ(θ) < S(θ) for every θ ∈ (π, 2π).

First, take some x0 ∈ (0, −a/φ(0)) and consider γx0(s) the orbit passing through
(x0, 3π/2) at s = 0. For s > 0, γx0 lies in {x < Γ(θ), θ ∈ (π, 3π/2)} and stays
there until converging to some (0, θ0) with θ0 ∈ (π, 3π/2). Since φ is even, γx0

is symmetric with respect to the line θ = 3π/2 and in particular has the point
(0, 3π − θ0) as endpoint. See fig. 8, the orbit in blue. Therefore, the corresponding
Φ-surface has two cusp points at the axis of rotation and hence is non-complete.
Moreover, since θ′ < 0 and sin θ < 0, from (2.2) we conclude that its Gauss
curvature is positive everywhere.

Now consider the equilibrium point e0 = (−a/φ(0), 3π/2). This equilibrium gen-
erates a vertical, right circular cylinder of radius −a/φ(0) and constant mean
curvature φ(0)/(2a)3.

Next, fix some x1 ∈ (−a/φ(0), 1/a) and consider the orbit γx1 passing through
(x1, 3π/2) at s = 0. For s > 0, γx1 lies in the region {x ∈ (Γ(θ), S(θ)), θ ∈
(3π/2, 2π)} and stays there until converging to some (S(θ1), θ1). By symmetry,
γx1 also converges to (S(3π − θ1), 3π − θ1) for s < 0. See fig. 8, the orbit in purple.
In conclusion, the corresponding Φ-surface is non-complete as it converges to two
circles of singular points. Moreover, this time θ′ > 0 and sin θ < 0, and so by (2.2)
we conclude that its Gauss curvature is negative everywhere.

Note that no orbit can pass through the point (1/a, 3π/2), since it correspond
to a singularity of (2.4), but it may converge to it in the same fashion as the orbits
γx1 converge to points in S.

In order to finally describe the orbits passing through some (x0, 3π/2), with
x0 > 1/a, we study deeply the particular case Φ = c ∈ R, c < −a2. Consider the
orbit

γc(s) = (xc(s), θc(s)), xc(0) = 0, θc(0) = π/2. (4.1)

In virtue of (3.1), a first integral is given by

ax(s) sin θ(s) +
1
2
(sin2 θ(s) − 1) =

c

2
x(s)2. (4.2)

We study three different possibilities for the value c.

Case c = −2a2.
Let γ−2a2 be the orbit given by (4.1) for c = −2a2. By monotonicity, γ−2a2 inter-

sects the line θ = π at some (x, π) and then either converges to S or intersects the
line θ = 3π/2. We discuss both cases.

• If γ−2a2 converges to θ = 3π/2, then θ−2a2(s) → 3π/2 and x−2a2(s) → 1/a by
just substituting in (4.2). In particular, γ−2a2 never intersects θ = 3π/2.

3Recall that this cylinder is parametrized with strictly decreasing height function, hence the unit
normal induced by this parametrization is the outwards one and the mean curvature is negative.
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Figure 8. Left: The phase plane for b = 1 and Φ < −a2, and the orbits appearing in the
statement of theorem 4.1. Right: the profile curve corresponding to such orbits.

• If γ−2a2 converges to S, then θ−2a2(s) → θ0 and x−2a2(s) → S(θ0), for some
θ0 ∈ (π, 3π/2]. Since S(θ0) = −1/a sin θ0, a straightforward substitution in
(4.2) yields θ0 = 3π/2 and so x−2a2(s) → 1/a, that is γ−2a2 converges to the
point (1/a, 3π/2).

Since by monotonicity γ−2a2 must either converge to S or θ = 3π/2, we conclude
that γ−2a2 actually converges to (1/a, 3π/2), without intersecting it. By symmetry
of Θ1, the orbit γ−2a2 ends up at the point (x, 0). Also, by symmetry of Θ2, there
exists an orbit, called again γ−2a2 in analogy, with one end converging to (1/a, 3π/2)
and the other end reaching the point (x, 2π). Seefig. 9, the orbit in orange. In
particular, the Φ-surface generated by this orbit is non-complete, since it converges
to a parallel of singular points and intersects the axis of rotation at cusp points.

Take some x0 > 1/a and consider γx0 the orbit passing through (x0, 3π/2). The
uniqueness of (2.4) yields that γx0 and γ−2a2 cannot intersect, hence γx0 intersects
the line θ = π/2 at some (x̂0, π/2) with x̂0 > 0. In particular, all the Φ-surfaces
generated by these orbits are complete, since none of them have singular points
nor intersect the axis of rotation at cusp points. Moreover, they have a nodoidal
behaviour.

Now take some θ0 ∈ (π/2, π) and consider γθ0 the orbit passing through (0, θ0).
Again by uniqueness γθ0 cannot intersect γ−2a2 , and so γθ0 must converge to a point
in S. In particular, none of the Φ-surfaces generated by these orbits is complete,
since all of them converge to singular points and intersect the axis of rotation at
cusp points.

Case c < −2a2.
Let γc be the orbit given by (4.1). Suppose that γc has some (x, 3π/2), x > 1/a,

as finite endpoint. Substituting in (4.1) we conclude that x = −2a/c. Now, the
condition c < −2a2 ensures us that −2a/c < 1/a, which contradicts the fact that
x > 1/a. Hence, γc must converge to S. See fig. 9, the orbit in purple.

Take some x0 > 1/a and let γx0(s) be the orbit passing through (x0, 3π/2) at
s = 0. Since it cannot intersect γc, for s > 0 it must reach the line θ = π/2 at some
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Figure 9. The phase plane for the case b = 1, Φ = c ∈ R, c < −a2, and the distinct
orbits depending on the sign of c + 2a2.

(x̂0, π/2) with x̂0 > 0. By the same discussion made for the case c = −2a2, the
Φ-surface corresponding to γx0 is complete and has a nodoidal behaviour.

Now take some θ0 ∈ (π/2, π) and consider γθ0 the orbit passing through
(0, θ0). This orbit must end up converging to S without intersecting γc, and the
corresponding Φ-surface is non-complete.

Case c > −2a2.
Finally, let γc be the orbit given by (4.1) and assume γc → S. Hence, θc → θ∗

and xc → −1/a sin θ∗. Substituting in (4.2) we obtain

−1
2

sin2 θ∗ − 1
2

=
c

2a2
sin2 θ∗.

Now, the condition c > −2a2 yields

−1
2

sin2 θ∗ − 1
2

> − sin2 θ∗,

and so 1 < sin2 θ∗, which is obviously a contradiction. Therefore, γc must reach the
line θ = 3π/2 at (xc, 3π/2), with xc = −2a/c > 1/a. See fig. 9, the orbit in blue.

Now take some x0 > 1/a and let γx0 be the orbit passing through (x0, 3π/2).

• If x0 � xc, γx0 reaches the line x = 0 at some (0, θx0). The corresponding Φ-
surface is non-complete, since it intersects the axis of rotation at cusp points.

• If x0 > xc, then γx0 reaches the line θ = π/2 at some x̂0 with x̂0 > 0. By the
same discussions made for the cases c � −2a2, the corresponding Φ-surface is
complete and has a nodoidal behaviour.
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Once we have described the orbits of the phase plane for the particular case
when Φ = c ∈ R, we go back to the case where Φ < −a2, is an arbitrary function
Φ ∈ C1(S2).

1. Suppose that Φ � −2a2. Let x0 > 1/a and γx0(s) = (xx0(s), θx0(s)) be the
orbit of (2.4) for Φ passing through (x0, 3π/2). We take c = −2a2 and γ−2a2(t)
the orbit of (2.4) for Φ = −2a2 passing through (0, π/2), which we already
proved that converges to the point (1/a, 3π/2). If γx0(s0) = γ−2a2(t0), the
same comparison argument used in the proof of claim 3.2 yields

θ′x0
(s0) � θ−2a2(t0).

First, assume that γx0 ends up intersecting the line x = 0 at some (0, θ0) with
t0 ∈ (π/2, π). Then, by continuity γx0 and γ−2a2 would intersect transversely
at a point where θ′x0

(s0) < θ−2a2(t0), which is impossible. Second, assume
that γx0 ends up intersecting the point (0, π/2). We take x1 ∈ (1/a, x0) and
γx1 the orbit passing through (x1, 3π/2). This orbit cannot end up at (0, π/2)
by uniqueness, hence must intersect x = 0 at some (0, θ1) with θ1 ∈ (0, π).
Again, γx1 would intersect transversely γ−2a2 , a contradiction.
Therefore, γx0 ends up intersecting the line θ = π/2 at some (x̂0, π/2), hence
γx0 generates a complete Φ-surface that has no singularities and a nodoidal
behaviour.

2. Suppose that Φ > −2a2. Fix some c such that Φ > c > −2a2 and let γc(t) =
(xc(t), θc(t)) be the orbit of (2.4) for Φ = c passing through (0, π/2), which
we already proved that intersects θ = 3π/2 at some (xc, 3π/2), xc > 1/a.
Let be x0 > 1/a and γx0(s) = (xx0(s), θx0(s)) the orbit passing through
(x0, 3π/2). This time, the comparison between the functions θ′x0

and θ′c at an
intersection point between γx0 and γc yields

θ′x0
(s0) > θ′c(t0).

Now take some x0 < xc. The orbit γx0 must end up converging to the line
x = 0 at some (0, θ0), θ0 ∈ (π/2, π). Otherwise, it would intersect γc trans-
versely, a contradiction. Note that it γx0 cannot converge to the point (0, π/2),
since we would take x1 ∈ (x0, xc) and then γx1 would intersect transversely
γc.
In this fashion, the orbit γΦ that passes through (0, π/2) lies at the right-
hand side of γc and so intersects θ = 3π/2 at some (x∞, 3π/2), with x∞ >
xc > 1/a. Finally, we distinguish cases for x0.
• If x0 � x∞, then γx0 must end up converging to the line x = 0 at some

(0, θ0), θ0 ∈ [π/2, π). This orbit generates a non-complete Φ-surface.

• If x0 > x∞, then γx0 intersects the line θ = π/2 at some (x̂0, π/2), x̂0 > 0.
This orbit generates a complete Φ-surface with a nodoidal behaviour.

This completes the classification of rotational Φ-surfaces of hyperbolic type. �
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Remark 4.2. In [22], López considered the equivalent relation aH + bK = 1, which
is hyperbolic if and only if a2 + 4b < 0. He described the same four types of
rotational surfaces in terms of a parameter z0 �= −2b/a varying as:

• 0 < z0 < a/2 for the compact surfaces of positive Gauss curvature;

• z0 = a/2 for the cylinder;

• a/2 < z0 < −2b/a for the non-complete surfaces of negative Gauss curvature;
and

• z0 > −2b/a for the complete surfaces of nodoidal-type.

It is easy to check that the value a/2 for the relation aH + bK = 1 corresponds to
−a/φ(0) in our case 2aH + K = φ, and −2b/a corresponds to 1/a. He claimed that
for every z0 > −2b/a, the corresponding rotational surface was complete, which we
already proved to be false.
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5 A. Bueno and R. López. Radial solutions for equations of Weingarten type, preprint arXiv:
2201.06474.

6 A. Bueno and I. Ortiz. Rotational surfaces of prescribed Gauss curvature in R3, to appear
in Tohoku Math. Journal.

7 A. Bueno, J. A. Gálvez and P. Mira. Rotational hypersurfaces of prescribed mean curvature.
J. Differ. Equ. 268 (2020), 2394–2413.

8 A. Bueno, J. A. Gálvez and P. Mira. The global geometry of surfaces with prescribed mean
curvature in R3. Trans. Amer. Math. Soc. 373 (2020), 4437–4467.

9 S. S. Chern. (1955) On special W -surfaces. Proc. Amer. Math. Soc. 6 (1955), 783–786.
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Messungen auf derselben. J. Reine Angew. Math. 64 (1865), 193–209.

11 J. Clutterbuck, O. Schnurer and F. Schulze. Stability of translating solutions to mean
curvature flow. Calc. Var. Partial Diff. Equ. 29 (2007), 281–293.

12 J. A. Gálvez, A. Mart́ınez and F. Milán. Linear Weingarten Surfaces in R3. Monatsh. Math.
138 (2003), 133–144.

13 J. A. Gálvez and P. Mira. A Hopf theorem for non-constant mean curvature and a conjecture
of A.D. Alexandrov. Math. Ann. 366 (2016), 909–928.

14 J. A. Gálvez and P. Mira. Uniqueness of immersed spheres in three-manifolds. J. Differ.
Geometry 116 (2020), 459–480.

https://doi.org/10.1017/prm.2022.48 Published online by Cambridge University Press

arXiv:2201.06474
arXiv:2201.06474
https://doi.org/10.1017/prm.2022.48


1370 A. Bueno and I. Ortiz

15 J. M. Gomes. Spherical surfaces with constant mean curvature in hyperbolic space. Bol.
Soc. Bras. Math. 18 (1987), 49–73.

16 B. Guan and P. Guan. Convex hypersurfaces of prescribed curvatures. Ann. Math. 156
(2002), 655–673.

17 P. Hartman and A. Wintner. On the third fundamental form of a surface. Amer. J. Math.
75 (1953), 298–334.

18 P. Hartman and W. Wintner. Umbilical points and W -surfaces. Amer. J. Math. 76 (1954),
502–508.

19 H. Hopf. Differential Geometry in the Large. Lecture Notes in Math, Vol. 1000, Berlin:
Springer-Verlag, 1982.

20 G. Huisken and C. Sinestrari. Convexity estimates for mean curvature flow and singularities
of mean convex surfaces. Acta Math. 183 (1993), 45–70.

21 T. Ilmanen. Elliptic regularization and partial regularity for motion by mean curvature,
Mem. Amer. Math. Soc. Vol. 108 (1994).
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