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Abstract

We prove that for a discrete determinantal process the BK inequality occurs for increas-
ing events generated by simple points. We also give some elementary but nonetheless
appealing relationships between a discrete determinantal process and the well-known
CS decomposition.
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1. Introduction

There is an extensive mathematical literature, in several theoretical and applied areas,
related to determinantal point processes; we cite, to mention a few recent applied works, [2, 7,
8, 16, 21, 22]. A good overview of the main conceptual basis and properties can be found in
[18] and in the bibliography therein.

From the theoretical point of view, determinantal point processes could be defined (in a
Bourbaki-like spirit) in the general locally compact Polish spaces setting, as point processes
associated with some locally square integrable, Hermitian, positive semidefinite, locally trace-
class operators, and thereafter specialized for particular cases, namely to discrete determinantal
processes. Regarding the latter, the approach of [18], which consists of constructing such pro-
cesses, first in the most elementary discrete context and then gradually extending them to the
general situation, provides, in our opinion, many advantages. It also turns out that some results
for the most general processes are proved only [9, 18], or more simply [19], indirectly from
the corresponding results of the basic processes.

The basic elementary determinantal point process can be described via the exterior product
concept, as follows. Fix 1< p<N and let Z= {z1, . . . , zp}, 1< p<N, be a set of orthonormal
vectors in C

N . We write zi = (zi
1, . . . , zi

N)t, i = 1, . . . , p, and zi = (z1
i , . . . , zp

i ), i = 1, . . . ,N.
The associated determinantal process φ(Z) is a point process, view as a ran-

dom subset of N = {1, . . . ,N} of cardinality |φ(Z)| = p, characterized [17, 18] by the
formula P{{i1, . . . , ip} = φ} = ∣∣(∧p

i=1 zi
)
{i1,...,ip}

∣∣2 = [
det

((
zk

ij

)
k,j=1,...,p

)]2 for all subsets

{i1, . . . , ip} ⊂N . Note also that this formula implies P{{i1, . . . , ik} ⊂ φ} = ∥∥∧k
j=1 zij

∥∥2 for
all 1 ≤ k ≤ p.
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190 A. GOLDMAN

Let E = E(Z) ⊂C
N be the vector space spanned by Z. For all sets of linearly indepen-

dent vectors vi ∈ E, i = 1, . . . , p, we have
∧p

i=1 vi = a
∧p

i=1 zi with a �= 0; thus, in particular,
if Z̃= {z̃1, . . . , z̃p} is another orthonormal basis of E = E(Z) then

∣∣(∧p
i=1 zi

)
{i1,...,ip}

∣∣=∣∣(∧p
i=1 z̃i

)
{i1,...,ip}

∣∣ for every {i1, . . . , ip} ⊂N , and consequently φ(Z) = φ(Z̃).

Note also that if Z⊥ = {zp+1, . . . , zN} is an orthonormal basis of the orthogonal comple-
ment E(Z)⊥ of E(Z) in C

N then obviously φ(Z⊥) = {1, . . . ,N} \ φ(Z). A remarkable example
of a non-trivial basic determinantal process is given by uniform spanning tree measure on a
finite connected graph G. Roughly speaking, if G is fixed and arbitrarily edge-oriented, and M
is the vertex–edge incidence matrix (the columns being indexed by vertices), then the deter-
minantal process associated with the vector space spanned by all the column vectors but one
provides a uniform probability on spanning trees. This result. due to [5], is called the Transfer
Current Theorem. For more details, with clever short proofs, see [18, Section 2.6, p. 8]. Some
extensions of this result are given in [4] with a series of open questions and conjectures, among
them Conjecture 4.6, related to the van den Berg–Kesten (BK) inequality,

Recall that an event A⊂ 2N , N = {1, . . . ,N}, is called increasing if, whenever A ∈A
and n ∈N , we also have A ∪ {n} ∈A. For a pair A,B⊂ 2N of increasing events, the dis-
joint intersection A ◦B is then defined [26] by A ◦B= {K ⊂N : there exist L ∈A,M ∈
B, L,M �= ∅ such that L ∩ M = ∅,K ⊃ L ∪ M}. A point process ψ on N is said to have the BK
property if

P{ψ ∈A ◦B} ≤ P{ψ ∈A} × P{ψ ∈B} (1)

for every pair of increasing events. In [26] it was proved that (1) is satisfied when ψ is related
to a product probability on 2N . In the basic determinantal process setting, Conjecture 4.6,
which states that the same is true for the spanning trees determinantal point processes, is still
unsolved. The question of whether general determinantal processes have the BK property was
raised in [17].

The purpose of this note is twofold. First, we introduce a new method to investigate discrete
determinantal processes using the CS decomposition (CSD) of a partitioned unitary matrix,
which is a useful non-trivial tool in numerical linear algebra; a precise statement of CSD is
given in Section 2. We show that the CSD gives a pertinent description of conditioning and
provides (at least in our opinion) a suggestive perspective for future investigations; see, for
example, the result given by Proposition 2, which seems to us to be new, and the results of
[10]. Furthermore, this should be an appropriate framework for computational needs.

Second, we study the BK inequality. We prove that the BK inequality (1) is satisfied for all
discrete determinantal processes when the increasing events A and B are generated by simple
points: Theorem 3 in Sections 4 and 5. We also conjecture the following.

Conjecture 1. For all n ≥ 2,

P{A �⊂ φ | Ai �⊂ φ for all i = 1, . . . , n} ≤ P{A �⊂ φ | Ai �⊂ φ for all i = 1, . . . , n − 1} (2)

for every choice of A, Ai, i = 1, . . . , n, of disjoint subsets of {1, . . . ,N} such that P{Ai �⊂
φ for all i = 1, . . . , n}> 0.

If Conjecture 1 holds then it can be shown that the BK inequality (1) is satisfied for increas-
ing events A and B generated by disjoint sets: Theorem 2 in Section 3. When the sets above
are reduced to being simple points then the inequality (2) is a well-known result. For general
sets, note that P{A �⊂ φ | A1 �⊂ φ} ≤ P{A �⊂ φ}, A ∩ A1 = ∅, is the classical correlation inequality

https://doi.org/10.1017/jpr.2022.41 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2022.41


CS decomposition and the BK inequality 191

[17], and that (2) was obtained in [10] for n = 2, 3 with precise values of the conditional
probabilities.

Remark 1. Note that for the process ψ related to a product probability on 2N , the count-
ing random variables |ψ ∩ Ai| (the sets Ai, i = 1, . . . , n, being disjoint) are independent
and thus the inequality (2) becomes trivial. However, the situation is less obvious if the
process ψ is conditioned to have exactly k points, 1< k<N. In the particular case when
the conditioned process ψk assigns equal probability to all subsets {i1, . . . , ik} ⊂N , i.e. if
P{ψk = {i1, . . . , ik}} = 1/

(N
k

)
, it was proved in [25] thatψk has the BK property. As regards the

inequality (2), we have, with the choice P{i �∈ψk, ij �∈ψk for all j = 1, . . . , n}> 0, P{i �∈ψk |
ij �∈ψk for all j = 1, . . . , n} = (N−n−1

k

)
/
(N−n

k

)
and, consequently, the inequality (2) is equiva-

lent, for simple points, to the well-known log-concave inequality
(N−n−1

N−k

)× (N−n+1
N−k

)≤ (N−n
N−k

)2
,

and thus is fulfilled. Likewise, for general sets, the correlation inequality P{A �⊂ψk | A1 �⊂
ψk} ≤ P{A �⊂ψk}, A ∩ A1 = ∅, |A| = n, |A1| = m, with (the non-trivial case) n + m ≤ k, fol-
lows from the BK property and is equivalent to the log-concave inequality

( N
N−k

)× (N−n−m
N−k

)≤(N−n
N−k

)× (N−m
N−k

)
. For n ≥ 2 it is easy to see that the validity of the inequality (2) depends on

whether or not functions of the form

u →
n1∑

i1=0

· · ·
nM∑

iM=0

(
N − u − (i1 + · · · + iM)

N − k − M

)

are log-concave, a question which does not seem to me to have been really investigated.
Finally, the occurrence of log-concave criteria for negative dependence properties is not quite
a surprise; see, for example, [24].

2. The CS decomposition and the basic determinantal point process

Following [23], the general CSD for a matrix Q from the unitary group U(N) specifies that,
for any 2 × 2 partitioning

c1 c2

Q =
[

Q11 Q12

Q21 Q22

]
r1

r2

with N = r1 + r2 = c1 + c2, there exist unitary matrices U1, U2, V1, V2 such that (here, all
unnamed blocks of the matrices are always zero, and the superscript H represents the conjugate
transpose)

c1 c2[
UH

1

VH
1

]
Q

[
U2

V2

]
=
⎡
⎣UH

1 Q11U2 UH
1 Q12V2

VH
1 Q21U2 VH

1 Q22V2

⎤
⎦=

⎡
⎣D11 D12

D21 D22

⎤
⎦r1

r2
, (3)

where the matrices

D11 =
⎡
⎣I

C
0c

⎤
⎦ , D12 =

⎡
⎣0H

s
S

I

⎤
⎦ , D21 =

⎡
⎣0s

S
I

⎤
⎦ , D22 =

⎡
⎣I

−C
0H

c

⎤
⎦

are diagonal with C ≡ diag(cos θ1, . . . , cos θs), S ≡ diag(sin θ1, . . . , sin θs), 1> cos θ1 >

. . . > cos θs > 0. In some cases the matrices of zeros 0s and 0c, as well as the unit matrices I,
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192 A. GOLDMAN

could be nonexistent. See [23, Theorem 1] and the discussion that follows it for the full
statement, and below for a detailed description given from Jordan’s geometrical point of view.

The CS decomposition is a deep result which has a long history going back to the work of
Camille Jordan in 1875 on angles between subspaces in R

n [15]. Nowadays it is a popular
tool in numerical linear algebra, useful for solving various questions such as, for exam-
ple, constrained least squares problems, computing principal angles between subspaces, the
generalized singular value decomposition, quantum computing, and more [3, 6, 11, 12, 23].

Now, let E ⊂C
N be a vector space of dimension 1< p<N, Z= {z1, . . . , zp} an orthonor-

mal basis of E, and Z⊥ = {zp+1, . . . , zN} an orthonormal basis of the orthogonal comple-
ment E(Z)⊥. Fix 1 ≤ n ≤ p and consider the CSD of the partitioned unitary matrix Q =
(z1, . . . , zp, zp+1, . . . , zN):

p N − p

Q =
[

Q11 Q12

Q21 Q22

]
n

N − n

It follows from (3) that the column vectors of these two matrices,⎡
⎣U1D11

V1D21

⎤
⎦ ,

[
U1D12

V1D22

]

are respectively orthonormal bases of E and E(Z)⊥.
Now we will detail the different cases given by these column vectors, which need to be

distinguished. The description given here is somewhat lengthy but, in our opinion, useful for
both theoretical and computational purposes. We denote by e(k), k = 1, . . . ,N, the null vector
of the space C

k. Note also the slight change with regard to angles appearing in CSD (3) which
allows values 0 and π/2 in order to recover all Jordan’s principal angles.

Case I: n< p and p + n<N. There exist

• a sequence u1, . . . , un of orthonormal vectors in C
n;

• three sequences of mutually orthonormal vectors in R
N−n, V= {V1, . . . , Vn}, W=

{W1, . . . ,Wp−n}, and W̃= {W̃1, . . . , W̃N−p−n};
• Jordan angles 0 ≤ θ1 ≤ · · · ≤ θn ≤ π/2

such that, noting that

zi =
[

ui cos θi

Vi sin θi

]
, i = 1, . . . , n;

zi =
[

e(n)

Wi

]
, i = n + 1, . . . , p;

zp+i =
[

ui sin θi

−Vi cos θi)

]
, i = 1, . . . , n;

zp+n+i =
[

e(n)

W̃i

]
, i = 1, . . . ,N − p − n,
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the sequence Z= {z1, . . . , zp} is an orthonormal basis of E and the sequence Z=
{zp+1, . . . , zN} is an orthonormal basis of the orthogonal complement E⊥.

Case II: n< p and p + n>N. There exist

• a sequence u1, . . . , un of orthogonal vectors in C
n;

• two sequences of mutually orthogonal vectors in C
N−n, V= {V1, . . . , VN−p} and W=

{W1, . . . ,Wp−n};
• Jordan angles 0 = θ1 = · · · = θn+p−N ≤ · · · ≤ θn ≤ π/2

such that, noting that

zi =
[

ui

e(N − n)

]
, i = 1, . . . , n + p − N,

zi =
[

ui cos θi

Vi−n−p+N sin θi)

]
, i = n + p − N + 1, . . . , n;

zn+i =
[

e(n)

Wi

]
, i = 1, . . . , p − n;

zp+i =
[

un+p−N+i sin θn+p−N+i

−Vi cos θn+p−N+i

]
, i = 1, . . . ,N − p,

the set Z= {z1, . . . , zp} is an orthonormal basis of E and the set Z= {zp+1, . . . , zN} is an
orthonormal basis of E⊥.

Case III: n< p and p + n = N. There exist

• a sequence u1, . . . , un of orthogonal vectors in C
n;

• two sequences of mutually orthogonal vectors in C
N−n, V= {V1, . . . , Vn} and W=

{W1, . . . ,Wp−n};
• Jordan angles 0 ≤ θ1 ≤ · · · ≤ θn ≤ π/2

such that, noting that

zi =
[

ui cos θi

Vi sin θi

]
, i = 1, . . . , n;

zn+i =
[

e(n)

Wi

]
, i = 1, . . . , p − n;

zp+i =
[

ui sin θi

−Vi cos θi

]
, i = 1, . . . , n,

the set Z= {z1, . . . , zp} is an orthonormal basis of E and the set Z= {zp+1, . . . , zN} is an
orthonormal basis of E⊥.
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Case IV: n = p. With the notations of cases I–III:

• For 2p<N,

zi =
[

ui cos θi

Vi sin θi

]
, i = 1, . . . , p;

zp+i =
[

ui sin θi

−Vi cos θi

]
, i = 1, . . . , p;

z2p+i =
[

e(n)

Wi

]
, i = 1, . . . ,N − 2p.

• For 2p>N,

zi =
[

ui

e(N − n)

]
, i = 1, . . . , 2p − N;

zi =
[

ui cos θi

Vi−2p+N sin θi

]
, i = 2p − N + 1, . . . , p;

zi =
[

ui+p−N sin θi+p−N

−Vi−p cos θi+p−N

]
, i = p + 1, . . . ,N.

• For 2p = N,

zi =
[

ui cos θi

Vi sin θi,

]
, zp+i =

[
ui sin θi

−Vi cos θi

]
, i = 1, . . . , p.

By reordering the rows of Q, the procedure described above works for every subset J =
{x1, . . . , xn} ⊂ {1, . . . ,N}, 1 ≤ n ≤ p, and gives related bases of the spaces E and E⊥. Note
that in the Euclidean context, i.e. for E ⊂R

N and the CSD applied to orthogonal matrices,
the angles appearing in the CS decomposition (related to J) are the principal Jordan angles
between the space E and the basic subspace R

N
J = {x = (xk) ∈R

N : xk = 0 if k /∈ J}.
An important statistical application of principal angles is the canonical correlation anal-

ysis (CCA) of [13]. In order to develop a unified algebraic formulation of concepts in
multivariate analysis (like, e.g., CCA), [1] thoroughly studied (see also [20]) the geometry
of subspaces in R

N in terms of orthogonal and oblique projectors, and introduced, among
others, the notation of so-called multiplicative cosine and sine: cos

{
E,RN

J

}=∏n
i=1 cos θi,

sin
{
E,RN

J

}=∏n
i=1 sin θi.

The basis of E given by the CSD is a pertinent tool for the study of the associated
determinantal process. For example, it immediately gives the following proposition.
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Proposition 1. For a set J = {x1, . . . , xn}, n ≤ p, we have:

(a) P{|J ∩ φ| = n} =∏n
i=1 cos2 θi, and, for k = 1, . . . , n − 1,

P{|J ∩ φ| = k} =
∑

1≤i1<···<ik≤n

k∏
j=1

cos2 θij

∏
j �∈{i1,...,ik}

sin2 θj. (4)

(b)

P{|J ∩ φc| = n} =
n∏

i=1

sin2 θi (5)

and, for k = 1, . . . , n − 1,

P{|J ∩ φc| = k} =
∑

1≤i1<···<ik≤n

k∏
j=1

sin2 θij

∏
j �∈{i1,...,ik}

cos2 θj.

(c) If n< p and P{J ⊂ φ}> 0, then the conditioned process {φ | J ⊂ φ} \ J is determinantal
such that {φ | J ⊂ φ} \ J = φ(W).

(d) If N − p> n and P{J ⊂ φc}> 0, then the conditioned process {φ | J ⊂ φc} is determi-
nantal such that {φ| J ⊂ φc} = φ(V∪W).

(e) If P{J ⊂ φ}> 0 then, for all K ⊂ {1, . . . ,N} \ J, P{K ⊂ φ(W)} ≤ P{K ⊂ φ}, and if
P{J ⊂ φc}> 0 then P{K ⊂ φ} ≤ P{K ⊂ φ(V∪W)}.

Remark 2. The fact that the conditioned processes {φ | J ⊂ φ} \ J and {φ | J ⊂ φc} are deter-
minantal, as well as the inequalities in Proposition 1(e), are well-known results proved in
[17].

Remark 3. Regarding Proposition 1(a) and (b), it was proved more generally in [14, Theorem
5] that, for general determinantal processes with trace-class (both discrete and continuous
case) kernels, the number of points in the process has the distribution of a sum of independent
Bernoulli random variables.

More elaborate information can be obtained from this point of view.

Proposition 2. Consider the discrete determinantal process φ = φ(Z) associated with a set
Z= {z1, . . . , zp}, 1< p<N, of orthonormal vectors in C

N. Fix points J = {x1, . . . , xn} ⊂
{1, . . . ,N}, 1 ≤ n ≤ p, such that P{{x2, . . . , xn} ⊂ φc}> 0. With the choice (to simplify the
notation) xi = i, i = 1, . . . , n, we have∣∣∣∣∣〈z1, zn〉 +

n−2∑
k=1

(−1)k
∑

2≤i1<···<ik≤n−1

〈
z1 ∧

(
k∧

j=1

zij

)
, zn ∧

(
k∧

j=1

zij

)〉∣∣∣∣∣
2

= P{{x2, . . . , xn} ⊂ φc} × P{{x2, . . . , xn−1} ⊂ φc}
× [

P{x1 ∈ φ|{x2, . . . , xn} ⊂ φc} − P{x1 ∈ φ|{x2, . . . , xn−1} ⊂ φc}]. (6)

Proof. The left- and right-hand sides of (6) do not depend of the choice of the basis of E.
Choose the basis given by the CS decomposition related to the set J = {2, . . . , n − 1}, with the
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reordering (2, . . . , n − 1, 1, n)t and N − p − n + 2> 0 (the general situation, case I). The first
n coordinates of these bases have the following form:

2

...

n − 1

1

n

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

cos θ1u1
1 . . . cos θn−2un−2

1 0 . . . 0

...
...

cos θ1u1
n−2 . . . cos θn−2un−2

n−2 0 . . . 0

sin θ1V1
1 . . . sin θn−2Vn−2

1 W1
1 . . .W

p−n+2
1

sin θ1V1
2 . . . sin θn−2Vn−2

2 W1
2 . . .W

p−n+2
2

sin θ1u1
1 . . . sin θn−2un−2

1 0 . . . 0

...
...

sin θ1u1
n−2 . . . sin θn−2un−2

n−2 0 . . . 0

− cos θ1V1
1 · · · − cos θn−2Vn−2

1 W̃1
1 . . . W̃

N+2−n−p
1

− cos θ1V1
2 · · · − cos θn−2Vn−2

2 W̃1
2 . . . W̃

N+2−n−p
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

It follows from Proposition 1 that

(a) P{{x2, . . . , xn−1} ⊂ φc} =∏n−2
i=1 sin2 θi.

(b) P{{x2, . . . , xn} ⊂ φc} =∏n−2
i=1 sin2 θi‖W̃2‖2.

(c) P{x1 ∈ φ|{x2, . . . , xn−1} ⊂ φc} = ‖V1‖2 + ‖W1‖2.

(d) P{x1 ∈ φ|{x2, . . . , xn} ⊂ φc} =

P{x1 ∈ φ, xn ∈ φc | {x2, . . . , xn−1} ⊂ φc} × P{{x2, . . . , xn−1} ⊂ φc}
P{{x2, . . . , xn} ⊂ φc}

= [
P{x1 ∈ φ | {x2, . . . , xn−1} ⊂ φc} − P{x1 ∈ φ, xn ∈ φ | {x2, . . . , xn−1} ⊂ φc}]

× P{{x2, . . . , xn−1} ⊂ φc}
P{{x2, . . . , xn} ⊂ φc}

= [‖V1‖2 + ‖W1‖2 − ‖(V1,W1) ∧ (V2,W2)‖2]× 1

‖W̃2‖2
.

From (a)–(d), an elementary computation gives the right-hand side of (6) (note that ‖V2‖2 +
‖W2‖2 + ‖W̃2‖2 = 1). Indeed, we get

P{{x2, . . . , xn} ⊂ φc} × P{{x2, . . . , xn−1} ⊂ φc}
× [

P{x1 ∈ φ | {x2, . . . , xn} ⊂ φc} − P{x1 ∈ φ | {x2, . . . , xn−1} ⊂ φc}]
=

n−2∏
i=2

sin4 θi
[
(‖V1‖2 + ‖W1‖2)(1 − ‖W̃2‖2) − ‖(V1,W1) ∧ (V2,W2)‖2]

=
n−2∏
i=1

sin4 θi|〈(V1,W1), (V2,W2)〉|2. (7)

https://doi.org/10.1017/jpr.2022.41 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2022.41


CS decomposition and the BK inequality 197

To compute the left-hand side of (6), we write z0
1 = (sin θ1V1

1 , . . . , sin θn−2Vn−2
1 ), z0

n =
(sin θ1V1

2 , . . . , sin θn−2Vn−2
2 ), and z̃i = (cos θiui

1, . . . , cos θiui
n−2, 0)t. Observe that

〈z1, zn〉 +
n−2∑
k=1

(−1)k
∑

2≤i1<···<ik≤n−1

〈
z1 ∧

(
k∧

j=1

zij

)
, zn ∧

(
k∧

j=1

zij

)〉
= A + B, (8)

with

A = 〈z0
1, z0

n〉 +
n−2∑
k=1

(−1)k
∑

2≤i1<···<ik≤n−1

〈
z0

1 ∧
(

k∧
j=1

zij

)
, z0

n ∧
(

k∧
j=1

zij

)〉
, (9)

B = 〈W1,W2〉
(

1 +
n−2∑
k=1

(−1)k
∑

1≤i1<···<ik≤n−2

∥∥∥∥
k∧

j=1

z̃ij

∥∥∥∥
2
)

.

Obviously, ‖∧k
j=1 z̃ij‖2 =∏k

j=1 cos2 θij , and thus

1 +
n−2∑
k=1

(−1)k
∑

1≤i1<···<ik≤n−2

∥∥∥∥
k∧

j=1

z̃ij

∥∥∥∥
2

=
n−2∏
i=1

(1 − cos2 θi) =
n−2∏
i=1

sin2 θi,

and consequently

B = 〈W1,W2〉
n−2∏
i=1

sin2 θi. (10)

In order to compute A we introduce z̃i,l = (cos θiui
1, . . . , cos θiui

n−2, sin θiVi
l )

t, l = 1, 2 and
i = 1, . . . , n − 2. A little thought shows that, for k ≥ 1,

∑
2≤i1<···<ik≤n−1

〈
z0

1 ∧
(

k∧
j=1

zij

)
, z0

n ∧
(

k∧
j=1

zij

)〉

=
∑

1≤i1<···<ik+1≤n−2

[〈
k+1∧
j=1

z̃ij,1,

k+1∧
j=1

z̃ij,2

〉
−
∥∥∥∥

k+1∧
j=1

z̃ij

∥∥∥∥
2
]

. (11)

Moreover, we have

k∧
j=1

z̃ij,l =
k∧

j=1

(
z̃ij + (e(n − 2), sin θijV

ij
l )t)

=
k∧

j=1

z̃ij +
k∑

j=1

(−1)j+1(e(n − 2), sin θijV
ij
l )t) ∧

(
k∧

s=1,s�=j

z̃is

)
.
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From the orthogonality properties of the relevant multivectors we obtain, from the last
equation,

〈
k∧

j=1

z̃ij,1,

k∧
j=1

z̃ij,2

〉
−
∥∥∥∥

k∧
j=1

z̃ij

∥∥∥∥
2

=
k∑

j=1

〈
(e(n − 2), sin θijV

ij
1 )t ∧

(
k∧

s=1,s�=j

z̃is

)
, (e(n − 2), sin θijV

ij
2 )t ∧

(
k∧

s=1,s�=j

z̃is

)〉

=
k∑

j=1

V
ij
1 V

ij
2 sin2 θij

∥∥∥∥
k∧

s=1,s�=j

z̃is

∥∥∥∥
2

=
k∑

j=1

V
ij
1 V

ij
2 sin2 θij

k∏
s=1,s�=j

cos2 θ is. (12)

From (9), (11), and (12), an elementary computation gives

A =
n−2∑
i=1

Vi
1Vi

2 sin2 θi

n−2∏
j=1,j �=i

(1 − cos2 θj) = 〈V1, V2〉
n−2∏
i=1

sin2 θi,

and, with (10), A + B = 〈(V1,W1), (V2,W2)〉∏n−2
i=1 sin2 θi. This and (7) prove Proposition 2.

Note that from the last equation we also get that (8) is identified as a scalar product. �

For further results by using the CSD, and for some extensions of Proposition 2, see [10].

3. The BK inequality for increasing events generated by disjoint sets

Let A,B⊂ 2N , N = {1, . . . ,N}, be a pair of increasing events, and suppose (obviously)
that ∅ /∈A∪B. The events being increasing, there exist two minimal sets S1 = S(A) = {Ai, i =
1, . . . , n1} ⊂A and S2 = S(B) = {Bi, i = 1, . . . , n2} ⊂B such that A ∈A if and only if there
exists Ai such that A ⊃ Ai, and B ∈B if and only if there exists Bi such that B ⊃ Bi. The sets Ai

and Bi are minimal in the sense that none of A ∈A (resp. B ∈B) is stricly included in Ai (resp.
in Bi).

Consider now a basic determinantal process φ on N . In the particular case when A ∩ B = ∅
for all A ∈ S1 and B ∈ S2, we at once have P{φ ∈A∩B} = P{φ ∈A ◦B}, and thus the BK
inequality (1) becomes P{φ ∈A∩B} ≤ P{φ ∈A} × P{φ ∈B}, which is a negative association
inequality. It was proved in [17, 18] that determinantal processes have negative association,
meaning that this inequality is fulfilled.

In the general situation it is helpful to reformulate the BK inequality (1) as follows.

Proposition 3. The inequality (1) is satisfied if and only if

P{φ /∈A∪B} ≤ P{φ /∈A} × P{φ /∈B} + P{φ ∈A∩B} − P{φ ∈A ◦B}. (13)

Proof. Observe that

P{φ /∈A∪B} = 1 − P{φ ∈A∪B} = 1 − P{φ ∈A} − P{φ ∈B} + P{φ ∈A∩B}
= P{φ /∈A} × P{φ /∈B} − P{φ ∈A} × P{φ ∈B} + P{φ ∈A∩B}.

Thus, P{φ /∈A∪B} − P{φ /∈A} × P{φ /∈B} − P{φ ∈A∩B} + P{φ ∈A ◦B} ≤ 0 if and
only if P{φ ∈A ◦B} − P{φ ∈A} × P{φ ∈B} ≤ 0. �
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Suppose now that A=B. The inequality in (13) becomes

P{φ /∈A} ≤ P{φ /∈A}2 + P{φ ∈A} − P{φ ∈A ◦A}. (14)

If the sets of S(A) = {A1, . . . , An} are disjoint, that is if Ai ∩ Aj = ∅ for all i �= j, then {φ ∈
A\(A ◦A)} =⋃n

i=1{Ai ⊂ φ, Aj �⊂ φ, for all j �= i}. Therefore,

P{φ ∈A} − P{φ ∈A ◦A} = P{A\(A ◦A)}

=
n∑

i=1

P{Ai ⊂ φ, Aj �⊂ φ, for all j �= i}

=
n∑

i=1

[
P{Aj �⊂ φ, for all j �= i} − P{Ai �⊂ φ, for all i = 1, . . . , n}]

=
n∑

i=1

P{Aj �⊂ φ, for all j �= i} − nP{φ /∈A},

and (14) takes the form

(n + 1)P{φ /∈A} ≤ P{φ /∈A}2 +
n∑

i=1

P{Aj �⊂ φ, for all j �= i}. (15)

Now fix n0 ≥ 2, and suppose that Conjecture 1 is fulfilled for all 2 ≤ n ≤ n0.

Lemma 1. Under this hypothesis, for all Ai, i = 1, . . . , n, disjoint subsets of {1, . . . ,N} with
2 ≤ n ≤ n0 and such that P{Ai �⊂ φ, for all i = 1, . . . , n}> 0, we have

P{Ai �⊂ φ, for all i = 1, . . . , n}n−1 ≤
n∏

i=1

P{Aj �⊂ φ, for all j �= i}. (16)

Proof. For n = 2 the inequality (16) is the well-known correlation inequality. For
n> 2, applying (2) we get

∏n
k=2 P{Ak �⊂ φ | Aj �⊂ φ, for all j �= k} ≤∏n

k=2 P{Ak �⊂ φ | Aj �⊂
φ, for all j �= 1, k} if and only if

P{Ai �⊂ φ, for all i = 1, . . . , n}n−1∏n
i=1 P{Aj �⊂ φ, for all j �= i} ≤ P{Ai �⊂ φ, for all i �= 1}n−2∏n

k=2 P{Aj �⊂ φ, for all j �= 1, k} ,

and thus Lemma 1 follows by induction. �

We will need the following elementary lemma. Its proof being trivial, we omit it.

Lemma 2. For all 0< a ≤ 1 and n> 0, (n + 1) − a − na−1/n ≤ 0.

Theorem 1. Let A be an increasing event generated by disjoint sets A1, . . . , An. Suppose that
Conjecture 1 holds. Then

P{φ ∈A ◦A} ≤ P{φ ∈A}2. (17)

Proof. We have to prove (15). By Lemma 2 we obtain (n + 1)P{φ /∈A} ≤ P{φ /∈A}2 +
nP{φ /∈A}(n−1)/n. Lemma 1 implies that P{φ /∈A}n−1 = P{Ai �⊂ φ, for all i = 1, . . . , n}n−1 ≤∏n

i=1 P{Aj �⊂ φ, for all j �= i}, so it remains to apply the arithmetic–geometric mean inequality,

n
∏n

i=1 P{Aj �⊂ φ, for all j �= i} 1
n ≤∑n

i=1 P{Aj �⊂ φ, for all j �= i}, to obtain (15) as desired. �
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Remark 4. Consider an event S̃ = {D1, . . . ,Dn0} ⊂ 2N of disjoint sets such that P{D �⊂ φ,

for all D ∈ S̃}> 0. Write ψ = {φ | D �⊂ φ, for all D ∈ S̃}. If Conjecture 1 holds, then it is obvi-
ous that the inequality (2) is also satisfied for the conditioned process ψ provided that the sets
occuring in (2) are disjoint from those in S̃. Consequently, if A is an increasing event generated
by disjoint sets A1, . . . , An such that Ai ∩ D = ∅ for all i = 1, . . . , n and D ∈ S̃, then we obtain

P{ψ ∈A ◦A} ≤ P{ψ ∈A}2. (18)

Let S1 = {Ai, i = 1, . . . , n1}, S2 = {Bi, i = 1, . . . , n2}, and S = {Ci, i = 1, . . . , n3} be events
such that all sets in S1 ∪ S2 ∪ S ⊂ 2N are pairwise disjoint.

Theorem 2. Suppose that Conjecture 1 holds. Then, for increasing events A and B such that
S(A) = S1 ∪ S and S(B) = S2 ∪ S, we have

P{ψ ∈A ◦B} ≤ P{ψ ∈A} × P{ψ ∈B}, (19)

whereψ = {φ | D �⊂ φ, for all D ∈ S̃} and all sets in S1 ∪ S2 ∪ S ∪ S̃ ⊂ 2N are pairwise disjoint.

Proof. The proof proceeds by induction using Theorem 1 and, starting from (18), applying
Lemma 3 step by step. �

Lemma 3. Fix S1, S2, and S, and suppose that the BK inequality (19) is fulfilled for all con-
ditioned processes ψ subjected to the conditions of Theorem 2. Fix A ⊂N , A �= ∅, such that
A ∩ A′ = ∅ for all A′ ∈ S1 ∪ S2 ∪ S. Denote by Ã= σ {A,A} the increasing event generated by
A and A. Then, the BK inequality

P{ψ ∈ Ã ◦B} ≤ P{ψ ∈ Ã} × P{ψ ∈B} (20)

is satisfied for all conditioned processes ψ = {φ | D �⊂ φ for all D ∈ S̃} such that all sets of
S(Ã) ∪ S2 ∪ S ∪ S̃ ⊂ 2N are pairwise disjoint.

Proof. By (13), we may suppose that P{A′ �⊂ψ, for all A′ ∈ S(Ã) ∪ S2 ∪ S ∪ S̃}> 0. We have
{ψ ∈A∩B \A ◦B} = ∪C∈S{C ⊂ψ, A′ �⊂ψ, for all A′ ∈ S1 ∪ S2 ∪ S, A′ �= C} and

{ψ ∈ Ã∩B \ Ã ◦B}
= ∪C∈S{C ⊂ψ, A �⊂ψ, A′ �⊂ψ, for all A′ ∈ S1 ∪ S2 ∪ S, A′ �= C}. (21)

Formulas (13) and (21) imply that the BK inequality (20) can be written as

P{A �⊂ψ, A′ �⊂ψ, for all A′ ∈ S1 ∪ S2 ∪ S}
≤ P{A �⊂ψ, A′ �⊂ψ, for all A′ ∈ S1 ∪ S} × P{A′ �⊂ψ, for all A′ ∈ S2 ∪ S}

+
∑
C∈S

P{C ⊂ψ, A �⊂ψ, A′ �⊂ψ, for all A′ ∈ S1 ∪ S2 ∪ S, A′ �= C}

or, introducing the process ψ0 = {φ | A �⊂ φ, A′ �⊂ φ for all A′ ∈ S̃}, as

P{A′ �⊂ψ0, for all A′ ∈ S1 ∪ S2 ∪ S}
≤ P{A′ �⊂ψ0, for all A′ ∈ S1 ∪ S} × P{A′ �⊂ψ, for all A′ ∈ S2 ∪ S}

+
∑
C∈S

P{C ⊂ψ0, A′ �⊂ψ, for all A′ ∈ S1 ∪ S2 ∪ S, A′ �= C}. (22)
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The stated hypotheses imply that

P{A′ �⊂ψ0, for all A′ ∈ S1 ∪ S2 ∪ S}
≤ P{A′ �⊂ψ0, for all A′ ∈ S1 ∪ S} × P{A′ �⊂ψ0, for all A′ ∈ S2 ∪ S}

+
∑
C∈S

P{C ⊂ψ0, A′ �⊂ψ, for all A′ ∈ S1 ∪ S2 ∪ S, A′ �= C}. (23)

It is easy to see that Conjecture 1 implies the inequality P{A′ �⊂ψ0, for all A′ ∈ S2 ∪ S} ≤
P{A′ �⊂ψ, for all A′ ∈ S2 ∪ S}, and by this and (23) we obtain (22), which finishes the proof
of Lemma 3. �

4. The BK inequality for increasing events generated by simple points

As mentioned in the introduction, the inequality (2) is satisfied when the occurring sets
are reduced to being simple points. This follows easily, for example, from Proposition 1.
Therefore, Theorem 2 implies the following result.

Theorem 3. Let A, B be increasing events generated by simple points. The BK inequality
P{φ ∈A ◦B} ≤ P{φ ∈A} × P{φ ∈B} is then satisfied for all determinantal discrete processes
φ associated with sets of orthonormal vectors of CN.

Remark 5. For sets reduced to being simple points, the key inequality (16) can be seen
from the point of view given by the CSD. Indeed, consider the CSD in case I applied
to J = {x1, . . . , xn} and, accordingly, let vj = (vj

1, . . . , vj
n)t, vj

i = (sin θj)u
j
i, i, j = 1, . . . , n be

the vectors such that P{{xi1 , . . . , xik} ⊂ φc} = ∥∥∧k
j=1 vij

∥∥2 for all {xi1 , . . . , xik} ⊂ J. Write

ṽi =∧
j �=i

vj = (ṽ1
i , . . . , ṽn

i ) ∈C
n, i = 1, . . . , n, where ṽj

i =
∏

k �=j sin θk × ũj
i and ũj

i is the (i, n −
j + 1)-minor of the unitary matrix U = (uj

i)i,j=1,...,n. By (5), we obtain

P{xi ∈ φc, i = 1, . . . , n}n−1 =
n∏

i=1

(sin θi)
2(n−1)

=
∥∥∥∥

n∧
i=1

vi

∥∥∥∥
2(n−1)

=
∥∥∥∥

n∧
i=1

ṽi

∥∥∥∥
2

≤
n∏

i=1

‖ṽi‖2 =
n∏

i=1

P{xj ∈ φc, for all j �= i}.

Remark 6. It was pointed out to us that for an increasing event A generated by simple points
S = {x1, . . . , xn}, the inequality (17), which can be read as

P{|S ∩ φ| ≥ 2} ≤ P{|S ∩ φ| ≥ 1}2, (24)

can also be obtained by a direct computation from (4) of Proposition 1 and, moreover, if
we consider the product measure μ= ⊗n

i=1((cos2 θi)δ1 + (sin2 θi)δ0) on the product space
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E = {0, 1}n and increasing events Ai = {a = (aj) ∈ E such that
∑n

j=1 aj ≥ i}, i = 0, . . . , n, then
the formulas in (4) imply that P{|S ∩ φ| ≥ i} =μ(Ai). From [26, Theorem 3.3], we get

P{|S ∩ φ| ≥ i + j} ≤ P{|S ∩ φ| ≥ i} × P{|S ∩ φ| ≥ j}, 2 ≤ i + j ≤ n. (25)

Furthermore, note that by Remark 3 the inequalities (24) and (25) are still valid for general
determinantal processes (both discrete and continuous) taking for S a Borel set.

5. Extensions and concluding remarks

Theorem 3 can be easily extended in the setting of general discrete determinantal processes.
From the construction given in [18, Paragraph 2.2], which starts from the basic processes, it
follows at once that Theorems 1 and 2 are valid (the generated sets S(A) and S(B) being finite
or infinite) for determinantal point processes defined on denumerable sets E and associated
with closed subspaces of l2(E). Now, let φ be such a process on E . Fix F ⊂ E and consider the
process ψ = φ ∩F .

Let A,B⊂ 2F , Ã, B̃⊂ 2E be the increasing events generated respectively by S1 = S(A) =
S(Ã) ⊂F and S2 = S(B) = S(B̃) ⊂F . The BK inequalities for φ, Ã, B̃ and ψ , A, B involve
only the generating sets S1 and S2. Consequently, Theorem 3 is valid for ψ as well. To finish,
just note that, by [18, Paragraph 2.2], discrete determinantal processes associated with positive
contractions (the general case) are of the form ψ = φ ∩F .

By the transference principle [18, Section 3.6], Theorem 3 could also be extended to the
continuous case, but this is of little use because in the continuous setting the intensity measures
related to determinantal processes of interest are of diffusive type, which implies that P{x ∈
φ} = 0 for points x (however, as mentioned in Remark 6, inequalities (24) and (25) still hold).
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