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Abstract

For a class of formally hypoelliptic differential operators in divergence form we prove a gener-
alized Girding inequality. Using this inequality and further properties of the sesquilinear form
generated by the differential operator a generalized homogeneous Dirichlet problem is treated
in a suitable Hilbert space. In particular Fredholm's alternative theorem is proved to be valid.

1980 Mathematics subject classification (Amer. Math. Soc.): 35G15, 35H05.

Introduction

For uniformly strongly elliptic differential operators of order 2m in divergence
form, the Dirichlet problem can be treated completely by using Hilbert space
methods (see A. Friedman [2], part I, and L. Nirenberg [15]). For these operators
one can introduce a suitable Hilbert space, the Sobolev space H™(Q), fi CC R",
compactly imbedded in L2(Q) and generalizing homogeneous Dirichlet boundary
data. The sesquilinear form generated by the considered operator is continuous
in ifo*(n) and moreover it satisfies a coercivity inequality, namely Garding's
inequality (see L. Garding [3]). Using some abstract functional analysis, the two
properties of the sesquilinear form mentioned above, and the compactness of
the imbedding of i/o*(n) in L2(Cl), one gets an existence result for a generalized
Dirichlet problem. Under additional regularity assumptions on the coefficients of
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the operator, it is then possible to prove interior regularity results of the solutions

(Weyl's Lemma) and regularity up to the boundary, provided the boundary is

smooth.

There have been several a t t empts to apply these methods to other boundary

value problems for elliptic operators (see M. Schechter [16]-[18] and the references

given there) and to other classes of operators . The lat ter has been done by

J. M. Berezanskii for operators with constant coefficients (see [1], Chap te r IV),

by S. M. Nikol'skii in [14] for a class of symmetric operators wi th real coefficients,

by F . Stummel in [20], Chapter 3.5, for semielliptic operators having coefficients

satisfying the same conditions as the coefficients have to fulfill in the elliptic case

and for a class of formally selfadjoint hypoelliptic operators with C°°-coefficients

by B. Malgrange [12], page 303. For some classes of non-hypoelliptic operators

an existence theorem for a generalized Dirichlet problem was given in [10] and

[11] under some restricted conditions on the oscillation of the coefficients of a

generalized principal par t . Later this was also done independently under more

restricted conditions on the operators by H.-J. Herrler in [4].

The purpose of this paper is to establish the Hilbert space methods for solving

a generalized Dirichlet problem for a large class of operators having divergence

structure and the symbol of which are bounded from below and from above by

the square of a fixed hypoelliptic polynomial P ( £ ) (see C1-C5 below). After we

have given some auxiliary results (Section 2) we prove a coercivity inequality

(Theorems 1 and 2) for the considered operators under the same conditions

on the coefficients as one has to pose in the elliptic case (Sections 3 and 4).

For this it is necessary to define a generalized principal pa r t and a lower order

par t of the operator. As the na tura l space to handle a Dirichlet problem a

Hilbert space HQ(Q), Q C C R n , appears (see Section 5). Indeed, the sesquilinear

form generated by the operator is continuous in HQ(Q) (Theorem 5) and the

coercivity inequality is nothing bu t Garding 's inequality. Since the space HQ(Q)

is compactly imbedded in L2(f i) (Theorem 3) we can solve the Dirichlet problem

in the same way as it is done for elliptic operators (Theorem 6). Moreover it is

shown tha t the space HQ(Q) generalizes homogeneous Dirichlet da t a (Theorem

4). In Section 7 we first show tha t uniformly strongly elliptic and semielliptic

operators in divergence form belong to the class considered here. But we give also

an example of a non-semielliptic operator (Example 3). When the operator has

continuous coefficients (which is a restriction on the coefficients of the lower order

part) we can prove t ha t the operator is of constant s t rength in Q (in the sense

of L. Hormander [8], Definition 13.1.1) and the operator obtained by freezing

the coefficients a t an arbi t rary point XQ € n is hypoelliptic (Proposit ion 5).

Hence, if the coefficients are of class C°°, the operator is hypoelliptic in the sense

of L. Hormander [8], Definition 13.4.3, and interior regularity results for weak

solutions can be applied (see [8], Theorem 13.4.1, in this paper s ta ted as Theorem
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7). Since by L. Hormander ([6], Example 1, page 242) Dirichlet boundary value
problems are hypoelliptic, we can also obtain in the case of constant coefficients
and plane parts of the boundary regularity up to the boundary. However, we
have all estimates needed to carry over the methods used in [2] and [15] to obtain
regularity results under much weaker conditions on the coefficients. But this will
be done elsewhere.

Finally let us remark that Garding's inequality can be derived for some hy-
poelliptic differential operators by methods of the theory of pseudodifferential
operators if we suppose the coefficients to be arbitrarily often differentiable. For
such inequalities see A. Melin [13] and L. Hormander [9], Chapter XXII, and the
references given there. However it seems that for less regular coefficients (such
as we have) these techniques do not apply.

1. Notations

We denote by N, R and C the positive integers, the real numbers and the
complex numbers, respectively. For n € N the Euclidean space is denoted by
Rn. Furthermore let No := N U {0} and Ng be the set of all multi-indices. For
a, /3 € Ng we set

a < /? if and only if otj < )3j, 1 < j' < n,

\a\ :=oti H ha n ,

a! : = a i ! - - a n ! ,

and

The unit vector in the j t h direction is denoted by e, e Rn D IMg. Moreover for
f € Rn and a e NJ we define

ca ca\ can
S •— Cl Cn •

By n C Rn we will always denote a bounded open set. For two open sets
fii, ^2 C Rn we write Qi CC Q2 if the closure of fii is compact and contained in
02- The space of all functions <p: Q —> C which are arbitrarily often differentiable
and have compact support, supp^J, in fi is denoted by CQ?(Q). The space of
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all m-times continuously differentiate functions which, together with all their
derivatives of order less or equal to m, are bounded is denoted by ( ^ ( f i ) . The
space L2(Q) consists of all (equivalence classes of) Lebesgue measurable functions
u : ( l - » C having finite norm ||U||Q = Jn\u(x)\2dx. A Lebesgue measurable
function belongs to L°°(fi) if and only if ||u||oo = e s s s u p a . e n | u ( x ) | is finite.

Let P (£ ) be a polynomial with complex coefficients. For a € Ng we write
for the polynomial

For / = 1,... ,n we write P(<)(f) for P(£|)(£)- By Da we denote the differential
operator

Given a polynomial P(£) = ^2a€Taa^
a, T c Ng, we associate with P(f) the

differential operator P(£>) = ^ a e r a a D ° .
Let tp € Co°(n). The Fourier transform of ip at the point ^ is given by

(x)dx.

For a differential operator P(D), we have the important relation

"/2 f
Jn

Using this formula we can define operators for arbitrary, polynomial bounded
functions. On L2(Q) a scalar product is given by

{tp, V>)o := / <p(x)yt(x)dx,
Jn

with corresponding norm ||||o. When P{D) is a differential operator, Plancherel's
theorem gives

I
/R"

for each tp e Co°(fi). We introduce the following family of norms on Co°(f2).
For s € R let As(£) := (1 + |£|2)s /2; then we define for tp e C^{Q)

IMI2= /
./R/R"

Note, that this is the usual Sobolev-space norm. Finally we mention that J will
always denote a finite set of indices. By e and r) we will always mean arbitrary
positive numbers. By c we denote often an arbitrary, positive constant which
may change from line to line.
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2. Auxiliary results

We give some results needed frequently later.

PROPOSITION 1. Let u and v be two arbitrarily often differentiable functions
and P{D) a differential operator with constant coefficients. Then Leibniz's rule
gives

(2.1) P(D)(u-v) = Y, —,P{a

Note that the above sum is finite. A proof of (2.1) can be found in [7], formula
(1.1.10). We often use (2.1) in the form

(2.2) uP(D)v = P(D){u • v) - ^2 —^P(a\D)uDav.
€N5 a-5

05*0

PROPOSITION 2. Let P(D) be a hypoelliptic differential operator, flcR"
an open bounded set and a € Ng, a ^ 0. Then for each e > 0 there exists a
constant c(e, a) > 0 such that

(2.3) \\P^(D)<p\\0 < e\\P{D)p\\0 + c(e, a)||p||0

holdsforall<peC^{n).

PROOF. Since P{D) is hypoelliptic, there exists two constants CQ > 0 and
p > 0, independently of a e Ng, such that for all f 6 R", |£| > p, the inequality

I [€)\ <• „ I c\-\a\c0

| p ( 0 ( <CaK|
holds (see [8], Theorem 11.1.3). Now for <p € C§°(Q) we have

'\i\<P

'\e\>p

Given r\ > 0, we take p such that cap~2c°lal < r\ holds. Then we get

(2.5)

which implies (2.3).
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PROPOSITION 3 . Let Q(£) and P ( f ) be two polynomials and suppose for

each a 6 Ng, a ^ 0,

(2-6) , ^

to be valid. Then for each e > 0 there exists a constant ca (e) such that

(2.7) \\QlaHD)<p\\o<e\\P(D)<p\\o + ca(e)\\<p\\o

holdsforallipeC^{n).

PROOF. From (2.6) we find that for 77 > 0 there exists a p > 0 such that

(2-8) | Q ( Q ) ( 2 2

holds for all £ € Rn, |£| > p. Therefore we get

\\Q{a)(D)<p\\l= f |«(a)(O|a|*V>(0|9d*

< f IQ^HOflFvWdt + v [
•/|CI<P •'l€l

which gives the proposition.

PROPOSITION 4. Let Q C Rn be a bounded open set. Suppose in addition
that for two polynomials Q{£) and P(f) the estimate

(2-9) IQ(0l<c|J>(fl|

holds with some constant c > 0 and all f € R", |^| > p. Tften t/iere w 0 constant
c' such that

(2.10)

13 valid for all <p € C^(Q).

PROOF. Notice first that

\\Q(D)<p\\l=

< c 2 /
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By Theorem 1.13 in [19] we know also

(2.H) IMIo < c\\P(DMl

and the proposition is proved.

3. Garding's inequality. Par t I

We will prove a generalized Garding inequality for a differential operator

m
(3.1) Lpi(x,D)= J2 Pi(D)aij(x)Qj(D),

where Pi{D) and Qj(D), 1 < i,j < m, are differential polynomials with constant
real coefficients. The operator Lpi (x, D) will serve as the generalized principal
part in the next section. The following conditions are imposed on Lpt(x,D):

Cl. There are two constants Co > 0, po > 0 and a hypoelliptic polynomial
such that for all ^ G R", |^| > p0, the estimate

m
(3.2) Re

holds.
C2. Let P(£) be the polynomial as in Cl and let c' and c" be two non-negative

constants. We assume

(3.3) \Pi(Z)\<c'\P(Z)\, i = l,...,m,

and

(3-4) \QAO\<c"\P(Ol j = l,...,m,

for all ^ e R" with |^| sufficiently large.
C3. For a € Nft, a ^ 0, and 1 < i, j < m

(3-5) l i m ' , P , i , = l i m iP , =0

is required.
C4. The functions a,ij, 1 < i,j < m, are denned on an open bounded set Q

and take values in C. Furthermore we assume

(3.6) sup \aij(x)\ <M, 1 < i,j < m,
n
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and

(3.7) \aij(x) - aij(y)\ < f{\x - y\), 1 < i,j < m,

for all x, y G fi. Here / : R+ —> R is a function satisfying limt_,o f(t) = 0.

THEOREM 1. Suppose that for the differential operator (3.1) the conditions
C1-C4 are fulfilled. Then for all <p € Cg°(n) we have

J2 / aij{x)Qj{
(3.8) Re J2 / aij{x)Qj{D)f{x)Pi{D)<p{x)dx

where CQ is the constant in (3.2) and c >0 is another constant.

PROOF. We prove (3.8) in three steps.

1. In this step we assume the coefficients a^, 1 < i,j < m, to be complex
constants. Then Plancherel's theorem gives

aijQj{D)>p(x)Pi(D)<p{x)dx
i

By Cl and (3.6) we get immediately

Re ] T / aijQj{D)<p(x)Pi{D)<p(x)da

> co / I^(OI2I^(OI2 d€~c

\t\>Po J\S\<Po

2. Now, let xo € n be a fixed point and U CQ an open neighbourhood of xo
such that

(3.9) K2m2 max max |aj,(x) - au{y)\ < co/2
l<i,j<mx,y€U

holds. By K we denote the greatest possible constant in (2.10) which we get by
applying Proposition 4 to the operators Qj{D) and Pi{D), 1 < i,j < m. We
will prove (3.8) for those ip e CQ° (f2) with supp ip CU. By the result of the first
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step we get
m

E f aij(x)Qj(D)<p(x)Pi(D)<p(x)dx

= Re E f aij(x0)Qj(DMx)Pi(D)<p(x)d

E f {aij{x)-aij(x0))Qi(D)ipRe

max max
l<i,j<mx,y€U

where we used for the last estimate (3.9) and the Cauchy-Schwarz inequality.
Using condition C2 we can apply Proposition 4 to estimate ||Qj(£))^||o, 1 < j <
m, and ||Pj(D)^||o, 1 < i < m. With K defined as in (3.9) we get

WQiWPhWPiWvh < K*\\P(D)<p\\l

for 1 < i, j < m. Finally, it follows that

f aij(x)Qj(D)<p(x)Pi(DMx)dx
Jn

= C-%\\P{D)<p\\l-c2\\<p\\l

hence the second step is finished.
3. Let (Uk)k€J be a finite covering of Q with open sets, such that for each

k € J we have

K2m2 max max \aij(x) - o0-(y)| < co/2.

Again /f is the same constant as it is in (3.9). Furthermore let (6jt)fc€J De a
partition of unity subordinate to the covering (Uk)k€J- In addition we assume
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tha t for each k 6 J t he function a* = y/5k is arbitrari ly often differentiable.1

Now, we get

Re J2 / aij(x)Qj(D)<p(x)Pi(DMx)dx

i,j=lk€JJn

= Re E E / 4(x)aij(x)Qj(DMx)Pi(DMx)dx.

With formula (2.2) we obtain

= Qj(D)(ak(x)<p(x))- £ ^{Q^ {D)<p{x)W ak{x)
o\

and

From this it follows that

•

Re f ; / aij(x)Qj(D)<p(x)Pi(D)<p(x)dx

= Ai + A2 + A3 + A4 > Ai - |i42| - |i43| - \A4\,

where

£ XI E / -T«.i(̂ )«i
i,j=lkeJT€HS '

T#0

and
m

t , i = l fc€J <r,r€Nn

/* 1

l / f 2 ' '

'Following [2], p. 35, it is always possible to assume \/5fc € C00. This can be proved by
replacing bk by 6 j / £
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By our second step, we find

(3.10) Al > ^ 2 ( ( l g
k€J

We estimate A%. First we get
m -

\A2\ < C l y y /

E

By Propositions 3 and 4, and by C2 and C3 for each 7/ > 0 it follows that
m

|A2| < c2 E (»?ll̂ (̂ )v>llo + cJ'('?)lbllo)||i'(I>Mlo.

Since for r\ > 0 we have |a||6| < rj\a\2 + l/4r/|6|2 we can find for each e > 0 a
number 77 > 0 such that

\A2\<e\\P(D)<p\\l + c'2{e)\W\\l

holds. Similarly we can handle A3 to get for all e > 0 the inequality

Ml3|<e||P(

In order to estimate A4, notice that

m .

<c5E E

Using Proposition 3 and C3 we get for 7? > 0

\A4\ < c6

Hence, for e > 0 we find
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So far we have proved for each e > 0 the estimate

Re £ / al](x)QJ(DMx)Pi(D)tp(x)d2

>(co/2)J2\\P(D)(ak<p)\\l-
k£J

Let us consider the term

By Leibniz's rule we get

P(D)(ak(x)<p(x)) = ak(x)P(D)<p(x)

and when we take the sum over k, k € J, it follows that

J 3 \\P{D){ak<p)\\Z = B1+B2 + B3 +

where

/
k€JjQ

E / -ia

and

54 = E E / 4 T
<7,T€JV0" J n '

For B2 we find

The hypoellipticity of P{D) implies by Proposition 2 for each r\ > 0

|B 2 |<c 7
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which gives for each s > 0

Since also the estimate

| B 3 | < c 8 £ \\I**HD)<(>\\0\\P(D)<p\\0

holds, we get as before for each e > 0

By Proposition 2 and the obvious estimate

\\P{<T)(D)<p\\0\\pW(D)<p\\0

we get finally for each e > 0

|B4|<
Now, given e > 0, then it follows that

Re V / oyOrJQj-

- \B2\ - \B3\ - \B4\\

- 3e\\P{D)<p\\l - (c2 + c'2(e) + c'z{e) + c'i{e))\\<P\\l

> (co/2 - (3co/2 + 3)e)\\P{D)v\\l - [c2 + ^ c { ( £ ) ) ||^||g.
V J=2 /

For e = (6co + 12)/CQ the desired inequality follows with c — c2 + J2i=2
 c'i-

Appendix to Section 3

We want to prove Theorem 1 for a class of differential operators (3.1) satisfying
C2-C4 but instead of Cl the condition

Cl'. There are constants c0 > 0, p0 > 0 and a function P: Rn -> C, P €
C°°(Rn) such that for all f e Rn, |C| > Po, the estimate (3.2) holds. For the
function P there exists a finite set T C Ng, such that the norms ||P(D)^||o and
ICaer l l^vllo a r e equivalent on Co°(fi). In addition for each a € F and all
@ C Ng, (3^0 and a - /? € IMg, the estimate

(3-12) P a " V l | o <

is assumed to hold for all e > 0.
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THEOREM 1'. Suppose that for the differential operator (3.1) the conditions
Cl', C2-C4 are fulfilled. Then for all <p € C§°(n) inequality (3.8) holds.

PROOF. The proof of Theorem 1 is still valid, but since now the sum

v
crl

is not finite, we have to handle the sum 5Zfce-7 ||P(£>)(afc^)||o in a modified way.
By our assumptions there exists a constant c+ such that

£||P(i?)(a^)||8>c+££
fcej kejaer

Furthermore, for a € F we find

1<7<Q

where

E [a
a)D

<r<a

?k = f ak{x)Da<p{x)

and

£ (a)Da-T(p(x)DTak(x) I dx
IT<O ^ ' /

C?-* + C7«'

dx.
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Using Cl ' we estimate C%'k

<7<a

<7<a

where 77 > 0 is an arbitrary number. Hence, we get for each e > 0

and analogously

Finally it follows that

E H^
a<a W o

and again using Cl ' we find for each rj > 0

\C%' | < d±

which gives, for each e > 0, the estimate

r<a

Now we have

\\P(D)(ak<p)\\2
0 > c+ J2 E

where jf? = 3|J | | r | and R(e) is a suitable constant. By Cl ' we have

[15]
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and by choosing e > 0 appropriately we get

(3.13) J2 l l ^ ) ( ^ ) l l o > {co/2)\\P(D)<p\\l - d\\<p\\l

Now we can again follow the proof of Theorem 1 to get Theorem 1'.

4. Garding's inequality. Part II

Let L(x, D) be a differential operator of the form

(4.1) L(x,D) = Lpr(x,D) + Lr(x,D)

where Lpi(x, D) is a differential operator of form (3.1) satisfying C1-C4. The
operator LT(x,D) is given by

(4.2) Lr(x,D)= £ Daaa0(x)D^
a,0€T'

where I" is a finite subset of NQ. The coefficients aap, a, /? 6 F', are supposed
to belong to L°°(Cl). Furthermore we assume

C5. The operator Lr(x,D) can be written as
(4.3)

Lr(x,D) =

and with the polynomial P(f) from Cl we require for a € Fu U F22

(4.4) ea < c\P(O\2

for all £ € Rn , |£| sufficiently large, and for a € F i 2 U F 2 i U F 3

1=1

for all f G Rn, |^| sufficiently large. We have

THEOREM 2. Let L(x,D) be given by (4.1) and suppose C1-C5 to be valid.
Then for all <p e Co°(0), fi CC Rn, we have

(4.6) Re(L(x, D)<p, <p)0 > (co/8) ||P(I?)^||g - ~d \\<p\\l

Here CQ is the constant in (3.2) and C\ is another constant.

PROOF. By Theorem 1 it is sufficient to prove for all tp G Cfi°

(4.7) £ j aa0(x)D0<p(x)D»<p(x)d3
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Indeed, suppose (4.7) to be valid, then by Theorem 1 it follows that

Re(L(x,D)<p,<p)0 > (co/4)\\P(D)<p\\l - c W o

^2 j aa0{x)D0<p{x)D<*<p{x)dx

>(co/8)||P(I>Ml8-(«!+£) Wo.
which is (4.6).

We start with the proof of (4.7). Since aa0 € L°°(n) it follows with some
constant c that

^2 f aa0{x)D0<p{x)Da<p(x)dx
a,0€T' 1 ' n

< c

\\Dt}<p\\o\\Da<p\\o+

In particular we have for a G Fxi U F22 by (4.4)

<cf (i +
<c\\P{D)<p\\l

where we used for the last estimate Theorem 1.13 in [19]. But for a € Fi2 U
T2i U T3 we find by (4.5) that

where again Theorem 1.13 in [19] was used to obtain the last estimate.
Now, using Proposition 2 and the inequality

^ , r,>0,
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we get for an arbitrary r) > 0

< e\\P(D)p\\0

l=l

c £ W&'HDMZ \\P(D)<p\\0

and

Taking r) sufficiently small we finally obtain

£ I aa0(x)D0<p(x)D°<p(x)dx
*,0ev'n

which proves the theorem.

5. The space H£

Let P(£) be a hypoelliptic polynomial. For ip € Co°(fi), f2 c c Rn, we set

(5-1) IMIP := \\P(D)v\\l
By Theorem 1.13 in [19] it follows that on Cfi°(O) a norm is given by (5.1).
Again, Plancherel's theorem gives

(5-2) I M I P =

The completion of CQS(Q) with respect to the norm (5.1) is denoted by HQ(Q).

By definition HQ(Q) is a Hilbert space. By Theorem 11.1.3 in [8], there are
constants d > 0, p > 0 and c > 0 such that

(5-3)

holds for all f € R", |^| > p. From the proof of Proposition 2 and Corollary 1.16
in [19] the estimate

(5-4) \\p(QHD)<p\\o<c\\P(D)<p\\o
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follows at once for all a € NQ and all <p G Co°(fi). Let P(£) be a polynomial of
degree m and /? e NJJ such that |/3| = m and P(/? )(£) ^ 0. From (5.3) we get
with a constant c'

(5.5) (l + | e | 2 ) m d < c ' ( l + |P(O|2)-

Finally denote by Hfc(Q), t > 0, the usual Sobolev space, that is, the completion
of CQ°(Q) with respect to the norm

(5-6) \\<pft= f (l + K|3)*|Fp(OI2de.

We have

THEOREM 3. A. The imbedding ofH£(Q) inH^d(Q) is continuous. B. The
imbedding of HQ(Q) in L2(fi) is compact.

PROOF. Since for t > 0 the imbedding of HQ(Q) in L2(f2) is always compact
(notice that fi is a bounded set), we only have to prove part A. But from (5.5)
and Theorem 1.13 in [19] we get immediately

= f
./Rn

which proves part A.
We want to show that the space HQ(U) can be interpreted as a space of

functions having generalized homogeneous boundary data. Suppose that fi =
Q = xp=1(aj,6() is a cube in Rn with edges parallel to the coordinate axes.
The part of dQ which is normal to the direction of the unit vector Sj and which
contains no edges is denoted by djQ.

THEOREM 4. Let a € Nft, otj > 0 for some j , 1 < j < n. Then for all

x e djQ and all functions f e Hg{Q) n C*"" 1 ^ ) we have

(5.7) P<-a){D)f{x) = 0.

We recall that the degree of P(£) is equal to rn.
PROOF, (see [5], page 28). Let Z/, C Q be a n-dimensional cylinder with

height h, the base of which is an (n — l)-dimensional ball in the hyperplane
Xj = a,j with center XQ and radius r/,. We assume that r^ is chosen such that
the volume of Zh, n{Zh), is equal to h2. For / € C£°(Q) we find

, . . . , Zn) = 0
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for Xj = a, and YLi^j xf < rl- Therefore we have

and for x G Z/, it follows that

\pM(D)f(x)\2<hJ

which gives

\P^(D)f(x)\2dx<h2 f
Jz

/ f
zh Jzh

or
(5.8) (1/ft2)/" \P^(D)f(x)\2dx< [ \

Jzh Jzh

Inequality (5.8) holds for all / € C^{Q) and therefore by continuity for all
/ G Hg{Q). Since p(«+^)(D)/ G L2{Q) for all / G Hg{Q) (see (5.4)), it
follows that

(5.9) I \Pia+E'){D)f(x)\2dx^0
Jzh

as h -* 0. But for / € Hg(Q) nCm~1{Q) we have, since n{Zh) = h2,

(5.10) pW{D)f(xo) = }imn/h2) [ \P^(D)f(x)\2dx,
h^O JZh

which, together with (5.8) and (5.9), proves the theorem.

6. A generalized homogeneous Dirichlet problem

We now pose
PROBLEM 1. Let n be a bounded open set in Rn, L(x,D) a differential

operator of form (3.1) and / e L2(Q) a given function. Find all elements u €
such that

(6.1) B(u,<p) = (f,<p)0

holds for all <p € Co°(f2). Here B(-, •) is the sesquilinear form denned by

(6.2) B(9,<p) := f J2 aij(x)Qj(D)^(x)Pi(D)<p(x)dx

In order to solve Problem 1 we need the following theorem.
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THEOREM 5. The sesquilinear form B is continuous on HQ(Q).

PROOF. It is sufficient to prove all estimate for elements * , p £ Co°(fi). By
definition we have

\B{9,ip)\<

+ f J2 aQ/}(x)D0*(x)D°<p(x)dx

<M

Since by our assumptions
IIQ^MIo < c2||P(£>)^||0, 1 < j < m,

and
||£>^||0 < c||P(D)^||0, a G T',

hold for all <p € CQ?(Q), we get with some constant c

which proves the theorem.
Using Theorem 2, Theorem 3.B and Theorem 5 we find by the same arguments

as in [2], Theorem 1.14.6

THEOREM 6. Suppose that the differential operator L(x,D) fulfills the con-
ditions C1-C5. Then for Problem 1 Fredholm's alternative holds. That means

The solutions v € HQ(Q) and w € .H<f (fi) °f the equations
B{v, <p) = 0 for all <p e C^(Q)

and
B{<p,w)=0 for all>peC^{n),

respectively, form finite dimensional subspaces V C HQ(Q) and W C H^fl),
respectively. In addition, we have dimV = dimM. Furthermore, in order that
Problem 1 has at least one solution u € HQ{£1), it is necessary and sufficient
that the relation

(6.3) (/,!tf)o = 0

holds for w EW. The solution of Problem 1 is unique up to an element ofV.
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Notice that we have to use representation theorems for antilinear functionals
(see [21], Satz 4.8 and Aufgabe 4.11.e).

7. Examples and further investigations

We want to give some examples of differential operators for which the re-
sults developed above can be applied. The first example shows that strongly
uniformly elliptic operators belong to the class considered here. The second
example demonstrates that the same is true for strongly uniformly semielliptic
operators. The third example shows that also non-semielliptic operators belong
to the class considered here.

EXAMPLE 1. Let

(7.1) Lpr(x,D)= J2 Daaa0
\a\ = \0\=m

and suppose that

and that the coefficients fulfill condition C4. Then the conditions Cl', C2 and
C3 are satisfied. In addition, we can add to Lpr(x,D) any operator

(7.2) LT(x,D)= £ Daaa0(x)D0

\<*\,M<m
\a\+\0\<2m

with coefficients aQp e L°°(Q) and Theorem 2 will still be valid.
EXAMPLE 2. Suppose that the operator

(7.3) Lpi(x,D)= Yl Daaa0{x)DP
|a: r| = l
1/9: T| = 1

is strongly uniformly semielliptic in the sense of [20], page 327. Then, under suit-
able assumptions on the coefficients of (7.3) (see C4), we find that the conditions
Cl', C2 and C3 are fulfilled.

EXAMPLE 3. Let Q(£) be an arbitrary polynomial of degree m with real and
constant coefficients and let k € N be a given number. Suppose that R(£) is a
homogeneous, positive definite polynomial of degree 2km—2{k—1). Furthermore,
for j = 1,... ,4 let a-j•: Q —• C, n CC Rn, be functions satisfying C4 and in
addition

(7.4) Rea,j(x) > c0 > 0, 1 < j < 4.

Consider the operator

(7.5) L(x,D) = Q(D)2k(a1(x)Q(D)2k) + Q(Dfk(a2(x)R(D))

+ R(D)(a3(x)Q(Dfk) + R(D)(a4(x)R(D)).
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Then we have

(7.6) 2k 2

By Theorem 11.1.12 in [8] the polynomial Q{£)2k + R(£) is hypoelliptic, but not

semielliptic. Hence condition C l is satisfied. Conditions C2 and C3 follow from

the proof of Theorem 11.1.12 in [8].

In Proposit ion 5 we prove t ha t if an operator L(x, D) satisfying C1-C5 has

continuous coefficients, it is of constant s trength in the sense of Definition 13.1.1

in [8] and every operator obtained by freezing the coefficients at some Xo> ^o € ^>

is hypoelliptic. In the case where the coefficients are in C°°(fi) , this gives the

following interior regularity result.

THEOREM 7. Let f € L2(U) n B^k(n) and let u € Hg(U) be a solution

to Problem 1 and suppose that the assumptions of Proposition 5 are fulfilled.

Moreover assume that the coefficients of L(x,D) belong to C°°(fi). Then u

belongs to the space B l o | 0 JP)- The space i?J.o£(f2) is defined in [8], page 14,

and we have set for some xo € fi

PROOF. By Proposit ion 5 (see below) we know tha t the differential operator

L(x, D) is of constant s t rength in fi and tha t for each x0 € 0 the operator

L(xo,D) is hypoelliptic. Hence, since the coefficients of L(x, D) are assumed to

belong to C°°(f i) , the operator L(x,D) is formally hypoelliptic in the sense of

Definition 13.1.1 in [8]. Therefore Theorem 7 follows immediately from Theorem

13.4.1 in [8].

PROPOSITION 5. Let L(x,D) be a differential operator of form (4.1) with

continuous coefficients. Suppose in addition that Cl , C2, C3 andCb are fulfilled.

Then the operator L(x, D) is of constant strength in Q and for each XQ £ Q the

operator L{XQ,D) is hypoelliptic.

PROOF. Let xo € 0 be an arbitrary point. We prove that L(xo, £) is hypoel-

liptic. For a € NQ we have
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and moreover

Dirichlet's boundary value problem

? ( E PiitM*o)Qi

347

t,j=l

On the other hand, we have for £ € Rn, |£| > po,

\Lpt(xo, 01 > ReLpr(x0, 0 >

which gives

IQf

But now, by (3.5) it follows that

(7.7)
|Lpr(a;o,OI

holds for a / 0 , hence LPr(i0)0 is hypoelliptic. Moreover, we have, using the
notation from C5

M*0,0=

By C5 we have

+

1/2

<c|P(OI
U = l

and
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For |f | —• oo we find using the hypoellipticity of P{£), t ha t

- \m\ +

Now Corollary 10.4.8 and Theorem 11.1.9 in [8] imply the hypoellipticity of

L(xo, f )• We prove tha t L(x, f) is of constant s t rength in Q. Since the estimate

in (7.8) is independent of xo it is sufficient to show tha t Lpi(x, f) is of constant

s t rength in Q. But this is proved, if we have show tha t the polynomials L p r ( i 0 , f)

and | P ( f ) l 2 a r e °f equal s t rength for each x0 e 0. For f € Rn , |£| sufficiently

large, we find tha t

(z0,0 < \Lpt{xo,t)\;

hence it follows that

(7-9) \P(0\2<c

holds for all XQ € H and f € Rn with a constant c' independent of XQ. On the
other hand, we have by (3.3) and (3.4)

(7.10) |Lpr(*0,01 <

again with a constant c independent of xo- The assertion that the polynomial
|P(f)|2 and L(XQ, f) are equally strong follows now from Theorem 10.4.3 in [8].
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