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Abstract

For a class of formally hypoelliptic differential operators in divergence form we prove a gener-
alized GArding inequality. Using this inequality and further properties of the sesquilinear form
generated by the differential operator a generalized homogeneous Dirichlet problem is treated
in a suitable Hilbert space. In particular Fredholm’s alternative theorem is proved to be valid.

1980 Mathematics subject classification (Amer. Math. Soc.): 35 G 15, 35 H 05.

Introduction

For uniformly strongly elliptic differential operators of order 2m in divergence
form, the Dirichlet problem can be treated completely by using Hilbert space
methods (see A. Friedman [2], part I, and L. Nirenberg [15]). For these operators
one can introduce a suitable Hilbert space, the Sobolev space HF*((1), {1 CC R",
compactly imbedded in L2({1) and generalizing homogeneous Dirichlet boundary
data. The sesquilinear form generated by the considered operator is continuous
in HJ*(Q?) and moreover it satisfies a coercivity inequality, namely Gérding’s
inequality (see L. Garding [3]). Using some abstract functional analysis, the two
properties of the sesquilinear form mentioned above, and the compactness of
the imbedding of HF*({2) in L%((2), one gets an existence result for a generalized
Dirichlet problem. Under additional regularity assumptions on the coefficients of
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the operator, it is then possible to prove interior regularity results of the solutions
(Weyl’s Lemma) and regularity up to the boundary, provided the boundary is
smooth.

There have been several attempts to apply these methods to other boundary
value problems for elliptic operators (see M. Schechter [16]-[18] and the references
given there) and to other classes of operators. The latter has been done by
J. M. Berezanski¥ for operators with constant coefficients (see [1], Chapter IV),
by S. M. Nikol’skil in [14] for a class of symmetric operators with real coefficients,
by F. Stummel in [20], Chapter 3.5, for semielliptic operators having coefficients
satisfying the same conditions as the coefficients have to fulfill in the elliptic case
and for a class of formally selfadjoint hypoelliptic operators with C*°-coefficients
by B. Malgrange [12], page 303. For some classes of non-hypoelliptic operators
an existence theorem for a generalized Dirichlet problem was given in [10] and
[11] under some restricted conditions on the oscillation of the coefficients of a
generalized principal part. Later this was also done independently under more
restricted conditions on the operators by H.-J. Herrler in [4].

The purpose of this paper is to establish the Hilbert space methods for solving
a generalized Dirichlet problem for a large class of operators having divergence
structure and the symbol of which are bounded from below and from above by
the square of a fixed hypoelliptic polynomial P(¢) (see C1-C5 below). After we
have given some auxiliary results (Section 2) we prove a coercivity inequality
(Theorems 1 and 2) for the considered operators under the same conditions
on the coefficients as one has to pose in the elliptic case (Sections 3 and 4).
For this it is necessary to define a generalized principal part and a lower order
part of the operator. As the natural space to handle a Dirichlet problem a
Hilbert space HY (2),  CC R™, appears (see Section 5). Indeed, the sesquilinear
form generated by the operator is continuous in HE (1) (Theorem 5) and the
coercivity inequality is nothing but Garding’s inequality. Since the space HE (£2)
is compactly imbedded in L?(f2) (Theorem 3) we can solve the Dirichlet problem
in the same way as it is done for elliptic operators (Theorem 6). Moreover it is
shown that the space H§ ((1) generalizes homogeneous Dirichlet data (Theorem
4). In Section 7 we first show that uniformly strongly elliptic and semielliptic
operators in divergence form belong to the class considered here. But we give also
an example of a non-semielliptic operator (Example 3). When the operator has
continuous coefficients (which is a restriction on the coeflicients of the lower order
part) we can prove that the operator is of constant strength in Q2 (in the sense
of L. Hormander [8], Definition 13.1.1) and the operator obtained by freezing
the coefficients at an arbitrary point z¢ € 0 is hypoelliptic (Proposition 5).
Hence, if the coefficients are of class C°°, the operator is hypoelliptic in the sense
of L. Hormander [8], Definition 13.4.3, and interior regularity results for weak
solutions can be applied (see [8], Theorem 13.4.1, in this paper stated as Theorem
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7). Since by L. Hérmander ([6], Example 1, page 242) Dirichlet boundary value
problems are hypoelliptic, we can also obtain in the case of constant coefficients
and plane parts of the boundary regularity up to the boundary. However, we
have all estimates needed to carry over the methods used in [2] and [15] to obtain
regularity resuits under much weaker conditions on the coefficients. But this will
be done elsewhere.

Finally let us remark that Garding’s inequality can be derived for some hy-
poelliptic differential operators by methods of the theory of pseudodifferential
operators if we suppose the coefficients to be arbitrarily often differentiable. For
such inequalities see A. Melin [13] and L. Hérmander [9], Chapter XXII, and the
references given there. However it seems that for less regular coefficients (such
as we have) these techniques do not apply.

1. Notations

We denote by N, R and C the positive integers, the real numbers and the
complex numbers, respectively. For n € N the Euclidean space is denoted by
R". Furthermore let No := N U {0} and N3 be the set of all multi-indices. For
a, B € Nj we set

axf:=(a1+P1,...,0m £ Bp),
o < B if and only if o; < G;, 1<j<n,
o == a1 + - + o,

al:=aq! - ap!,
(5)-() ()
,B - ﬂl ,Bn
le: 8| = ; %,

The unit vector in the jth direction is denoted by £; € R™ N Nj. Moreover for
£ €R™ and a € Nj we define

and

€% = €21 ... gon
: an.,
By 1 C R™ we will always denote a bounded open set. For two open sets
01,02 C R™ we write 13 CC g if the closure of (1, is compact and contained in
3. The space of all functions ¢: {1 — C which are arbitrarily often differentiable
and have compact support, supp ¢, in {2 is denoted by C§°(f2). The space of
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all m-times continuously differentiable functions which, together with all their
derivatives of order less or equal to m, are bounded is denoted by Um(ﬂ). The
space L%() consists of all (equivalence classes of ) Lebesgue measurable functions
u: 1 — C having finite norm ||u[|} = [, |u(z)|*dz. A Lebesgue measurable
function belongs to L*°((2) if and only if ||ul|c = esssup,eqlu(z)| is finite.

Let P(§) be a polynomial with complex coefficients. For o € N we write
P(®)(¢) for the polynomial

o dlelp(e
PO = o

For l =1,...,n we write P (¢) for P(¢1)(¢). By D* we denote the differential

operator
S8 \™ ( ) )"" 9
D% = | —1— co i —g— , 1= —-1.
< zéfl) Zagn

Given a polynomial P(€) = Y .raqa€* I' C N, we associate with P(£) the
differential operator P(D) =} cr aaD*.
Let ¢ € C§°(£2). The Fourier transform of ¢ at the point £ is given by

Fp(€) = (2%)_"/2/ e 8p(z) da.
0
For a differential operator P(D), we have the important relation

F(P(D)p)(€) = P()Fp(§).

Using this formula we can define operators for arbitrary, polynomial bounded
functions. On L?() a scalar product is given by

(0, %)o = /n o(2)¥(z) dz,

with corresponding norm ||-||o. When P(D) is a differential operator, Plancherel’s
theorem gives

IPO)elR = [ IPEPIFROF de

for each p € C§*(€1). We introduce the following family of norms on C§°(Q).
For s € R let A*(§) := (1 + |€]2)*/?; then we define for ¢ € C§°((2)

ol = [ A (@IPe(e)? .

Note, that this is the usual Sobolev-space norm. Finally we mention that J will
always denote a finite set of indices. By € and n we will always mean arbitrary
positive numbers. By ¢ we denote often an arbitrary, positive constant which
may change from line to line.
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2. Auxiliary results

We give some results needed frequently later.

PROPOSITION 1. Letu and v be two arbitrarily often differentiable functions
and P(D) a differential operator with constant coefficients. Then Leibniz’s rule
gives

(2.1) P(D)(u-v)= )Y %P(") (D)yuD*v.

a€Ng

Note that the above sum is finite. A proof of (2.1) can be found in [7], formula
(1.1.10). We often use (2.1) in the form

(2.2) uP(D)v=P(D)(u-v)~ Y al—'P(")(D)uD"v.
aeNg
a#0

PROPOSITION 2. Let P(D) be a hypoelliptic differential operator, @ C R®
an open bounded set and o € N, a # 0. Then for each € > 0 there exists a
constant c(e,a) > 0 such that

(2.3) 1P (D)ello < el P(D)ello + c(e, @)llello
holds for all p € C§°(02).

PROOF. Since P(D) is hypoelliptic, there exists two constants ¢o > 0 and
p > 0, independently of o € Ng, such that for all £ € R", || > p, the inequality

(2.4) PO ¢ g, g-toeo,

ZG]
holds (see [8], Theorem 11.1.3). Now for ¢ € C§°(f1) we have
1Pl = [ 1P EPIFo(O de
< / P (&) | Foo(€)[? dé
1€1<p

tea / |€|~2e0lel| P(€) 2| Fo(€) 2 dé
1€1>p

< Ea(p)llelid + cap20l | P(D)p|2.
Given n > 0, we take p such that cop~2¢0l®! < 5 holds. Then we get
(2.5) 1P (D)eli§ < nllP(D)ell§ + &(n, @)llll3,
which implies (2.3).
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PROPOSITION 3. Let Q(€) and P(&) be two polynomials and suppose for
each a €N, a #0,

Q@)
s PR

to be valid. Then for each € > 0 there exists a constant cn(€) such that
(2.7) IR (D)ello < el P(D)pllo + ca(€)liello
holds for all p € C§°(11).

(2.6)

PROOF. From (2.6) we find that for > 0 there exists a p > 0 such that
(2.8) 1R (&) < nlP (&)
holds for all £ € R™, |¢] > p. Therefore we get
1Q@ (D)l = [ 1QHOPIF(e)? de
<[ @@@PFe©rde+n [ IPEPIFeR
1€1<p [€l>p

< n|P(D)el? + éa(n)llell3,

which gives the proposition.

PROPOSITION 4. Let 2 C R" be a bounded open set. Suppose in addition
that for two polynomials Q(€) and P(£) the estimate

(2.9) Q&) < | P(€)]

holds with some constant ¢ > 0 and all £ € R™, |€| > p. Then there is a constant
¢’ such that

(2.10) 1QD)ello < ¢'IP(D)ello
18 valid for all p € C§° (Q).

PROOF. Notice first that
leDll = [ 1@ PIFe(oF de

< / IP(6)PIFp(€)? de
Rﬂ
+ [ 1Q@PIFee)P ae
|€1<p

< &|IP(D)elly + ¢ llells-
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By Theorem 1.13 in [19] we know also

(2.11) lelld < ellP(D)ell3,

and the proposition is proved.

3. Garding’s inequality. Part I

We will prove a generalized Garding inequality for a differential operator

m
(3.1) Lye(z,D) = Y Pi(D)aj(2)Q;(D),
i,5=1

where F;(D) and Q;(D), 1 <¢,j < m, are differential polynomials with constant
real coefficients. The operator Ly (z, D) will serve as the generalized principal
part in the next section. The following conditions are imposed on Ly, (z, D):

C1. There are two constants ¢g > 0, po > 0 and a hypoelliptic polynomial
P(&) such that for all £ € R, || > po, the estimate

m

(3.2) Re E Pi(£)ai;(2)Q;(€) > co| P(€)I?

i,5=1

holds.
C2. Let P(€) be the polynomial as in C1 and let ¢/ and ¢” be two non-negative
constants. We assume

(3.3) I[P <P, i=1,...,m,
and
(3:4) Qs (O < "IP), j=1,...,m,

for all £ € R™ with |¢| sufficiently large.
C3. ForaeNg, a#0,and1<4,5<m

_P@) 1Rl
3:5) |el|151oo |P(€)] '|el|linoo 1ZG 0

is required.
C4. The functions a;;, 1 < 4,7 < m, are defined on an open bounded set {2
and take values in C. Furthermore we assume

(36) sup 'aij(z)l S My 1 S 11] S m,
z€QN
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and
3.7) laij(z) —ai;(¥)| < fllz—yl), 1<4,5<m,

for all 7,y € 1. Here f: Rt — R is a function satisfying lim,_.¢ f(t) = 0.

THEOREM 1. Suppose that for the differential operator (3.1) the conditions
C1-C4 are fulfilled. Then for all p € C§°(£1) we have

(38) Re 3 [ ay(@)Q(D)o(@PDIRE) da

t,7=1
> (co/4)IP(D)ells — llella,

where co 13 the constant in (3.2) and é > 0 s another constant.

PROOF. We prove {3.8) in three steps.
1. In this step we assume the coefficients a;;, 1 < ¢,7 < m, to be complex
constants. Then Plancherel’s theorem gives

Re 3 [ 0yQ,(D)e(a)FDIPE ds

i,j=1
m

- /R _Re Y- ayQ;(OP(&)IFe(8)” de.

t,5=1
By C1 and (3.6) we get immediately
Re Y [ ayQy(D)e(@) DI dz
ij=1"0
e [ IP@OPIFe©PdE-c [ IFolo)de
1€12 0 l€l<po
> col P(D)pll5 - é1lleli.

2. Now, let zg € ) be a fixed point and U C (2 an open neighbourhood of zg
such that

2,2
. .. —_ Qs <
(3.9) K*m (Jpax  max laij(z) — ai;(y)] < co/2

holds. By K we denote the greatest possible constant in (2.10) which we get by
applying Proposition 4 to the operators Q,(D) and Fi(D), 1 < 7,57 < m. We
will prove (3.8) for those p € C§°(1) with suppp C U. By the result of the first
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step we get

Re 3 [ ay(0)Q, (Do) PDI(E) da

ij=1

=Re 3 [ ay(20)Q, (D) RDYPE) dz

1,7=1
+Re ) /n(“if (z) — ai(20))Q; (D)p(z) Pi(D)p(z) dz
£,7=1
> coll P(D)ellg — & llella

-3 /n las (2) — a43(20)11Q; (D)) [P (D) o(2)] de

t,7=1
> ol P(D)ellg - éllell3

- max  max la;;(2z) - ai;(y)] Y /n 1Q;(D)p(2)||P:(D)p(z)| dz

1<¢,j<mz,y€U -
=1

> coll PDYI — eullelld - gz 3 1Qs(DIelollPi(D)elo

t,7=1
where we used for the last estimate (3.9) and the Cauchy-Schwarz inequality.
Using condition C2 we can apply Proposition 4 to estimate ||Q,(D)pllo, 1 £j <
m, and ||P;(D)p|lo, 1 £t < m. With K defined as in (3.9) we get
1Q;(D)elloll P:i(D)ello < K*||P(D)ell3
for 1 < 1,5 < m. Finally, it follows that

Re 3 | ay(0)Q, (D)e(a) PDIR(E) ds

1,7=1
> col| P(D)ell3 - Eillelld

m
co
~ 5K > KX|P(D)el}
$,5=1

Co ~
= 7IIP(D)¢JIIS — &llell3,

hence the second step is finished.
3. Let (Ux)kes be a finite covering of  with open sets, such that for each
k € J we have

2,2
. — s < 2.
K*m® max max |a;;(z) - aii(y)| < co/

Again K is the same constant as it is in (3.9). Furthermore let (bx)xes be a
partition of unity subordinate to the covering (Ux)xcs. In addition we assume
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that for each k € J the function a; = /by is arbitrarily often differentiable.!
Now, we get

Re Y [ 0(0)Q(D)o(e) PDYR(a) da

1,5=1
=Re 3 ¥ [ d(2)ay(@)Qs (D)o@ FDIP(E)
ij=1kes’0
With formula (2.2) we obtain
a(@)Q;(D)p(a) = (D) (ax@)e(@) - 3 (@ (D)p(e))Dax(2)
o;re;zg‘
and
ax(@)Pi(D)e(z) = P(D)(ax(2)e(#)) — Y- (P (D)el2))D"ax(a)
1'16;!:(])3
From this it follows that
Re Y [ 0, (0)Q;(D)o(e) RIDYR(a) da

$,7=1
=A; + A+ A3 + As > Ay — |Az| — |A3| — |A4l,
where

Av=ke 3 3 [ 05000, (D)ex(@)e(a) RN ax@w (@) ds,

t,0=1ke€J

Mr=-Re 3 T T [ 204(2)(@ (D)o(a)(D°ax(a) FADYP(E) d,
i,j=1k€.laa€;:0{,‘ oo

A=-Re 3 Y T [ 2a5(@)Qi(D)e@) (P (D)p (@) Don(2) ds
i,j=1k€.lrr€;z)3 a’

and :

A=Re 5 % [ es@@ (D))

1,j=1k€J o,7EN"
o#£0,7#£0

X (D% ax(x))(P(” (D)p(2)) D" ax(x) dz.

Following [2], p. 35, it is always possible to assume /by € C®. This can be proved by
replacing by by bi/(zke.l b).
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By our second step, we find

(3.10) A1 2 ((co/2)IP(D)(aro)li§ - E2llarelld)
keJ
> (co/2) Y |P(D)(ax)lI} — é2llell3-
keJ

We estimate A;. First we get

Al <e 3 T / Q) (D)e(2)|| P:(D)p(2)) de
i,j=la€:08 0

m
<e Y. 1RV (D)ellollPi(D)ello.
1,j=10€N]
o#0

By Propositions 3 and 4, and by C2 and C3 for each n > 0 it follows that

|4z| < ¢ D (nllP(D)pllo + & (m)llllo) 1 P(D)¢llo-
ij=1

Since for n > 0 we have |a||b] < nla|? + 1/47|b|> we can find for each ¢ > 0 a
number 7 > 0 such that

|42| < el P(D)pl|d + ca(e)lloll
holds. Similarly we can handle A3 to get for all € > 0 the inequality
|4s| < €]|P(D)p||3 + ca(e)llellp-
In order to estimate A4, notice that
m
<Y ¥ [ QPDIEIP D) de

1,7=1 o,7€NG
o#£0,7#0

m
<es o X 1@ (DelollE” (Dello.
i,5=1 o,TENG
o#0,7#£0

Using Proposition 3 and C3 we get for n > 0

| 44| < c6 Z (@l P(D)ello + & (m)llello) | P(D)ello + & (n)llello)-

Hence, for € > 0 we find

|A4| < €| P(D)elig + cae)llell3-
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So far we have proved for each € > 0 the estimate

Re Y [ ay(@)Q,(D)p@) PDNo(E) dz

i,7=1
> (co/2) Y_ IIP(D)(axp)ll3 — 3¢l P(D)ell
keJ
~ (&2 + ch(€) +c5(e) + ¢4 (e))llell3-
Let us consider the term
(3.11) Y IP(D)(axe)ll3.
keJ
By Leibniz’s rule we get
P(D)(ax(z)p(z)) = ax(2) P(D)p(a) + 3 = (P (D)p(@))(Dax(2)),

o&Ng
o#0

and when we take the sum over k, k € J, it follows that
3" IP(D)(ax@)lI§ = By + Ba + Bs + Ba,

keJ
where
Bi= Y [ adt@IPD)ela)? dz = |PO)eIR,
keJ 0
Ba=)_ > / l,ak(z)(P(D)SO(Z))(D"ak(z))P(")(D)go(a:)dz,
keJoeng 70 T
c#£0
Ba=3. 2 / = 1ax(2) (D7 ax (@) (P*) (D) (a) PV (z) da,
ke oeng Y "
g#£0
and
Be=3_ 3. / #(D"ak(@)(D’ak(z))(P“”(D)«.o(x))P(f)(D)so(z)dx.
kGJ:;,erOe:\;é'o Q=

For B, we find
|Bz| < ez Y IP(D)elloll P (D)ello-

o€ENG
The hypoellipticity of P(D) implies by Proposition 2 for each > 0
|B2l < ¢z Y [IP(D)ello(mliP(D)ello + ¢ (m)llello),

geNp
o#0
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which gives for each £ > 0
|Bz| < el P(D)ell3 + cs(e)llell3-

Since also the estimate
|Bs| <cs > [P (D)pllollP(D)epllo

oENG
o€0

holds, we get as before for each ¢ > 0
|Bs| < el P(D)ell3 + cgle)llell3-
By Proposition 2 and the obvious estimate
|Bal Seo D IP(D)elloll P (D)ollo

o,TENg
o#0,77#£0

we get finally for each € > 0
|B4| < ellP(D)ell3 + cr(e)llell3-
Now, given € > 0, then it follows that

Re 3 [ as(e)Q, (D) DY) do

t,7==1
> (co/2)(B1 — | Be| — | B3| — | B4|).

= 3¢||[P(D)plly — (é2 + c3(e) + c5(e) + 02(6))I|¢|I3

2 (co/2 — (3c0/2 + 3)&)|P(D)pll§ ~ (62 + 201(6 ) llellg-

For € = (6cp + 12)/co the desired inequality follows with ¢ = é; + 217=2 -

Appendix to Section 3

(13]

We want to prove Theorem 1 for a class of differential operators (3.1) satisfying

C2-C4 but instead of C1 the condition

C1'. There are constants ¢y > 0, po > 0 and a function P:R* — C, P €
C*(R™) such that for all ¢ € R", |€| > po, the estimate (3.2) holds. For the
function P there exists a finite set I' C N3, such that the norms ||P(D)y||2 and
Y acr ID*0||3 are equivalent on C§°(€2). In addition for each o € T and all

B CNg, 8#0 and oo — B € NG, the estimate
(3.12) I1D*Pollo < ellP(D)pllo + c(e)l|wllo
is assumed to hold for all € > 0.
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THEOREM 1’. Suppose that for the differential operator (3.1} the conditions
C1',C2-C4 are fulfilled. Then for all p € C$°(0) inequality (3.8) holds.

PROOF. The proof of Theorem 1 is still valid, but since now the sum

1
> P (D)p(2)D%ax(z)
oc€ENg
o#0

is not finite, we have to handle the sum ¥, ; ||[P(D)(ax)||§ in a modified way.
By our assumptions there exists a constant ¢t such that

Y IPD)axolig 2 ¢t D Y 11D (ake)lI3.

keJ keJ a€l

Furthermore, for a € I" we find

10 (@)l = | (; (2) Da-“w(z)uﬂak(z))
x (Z (:_!) D“‘Tw(x)D’ak(z)) dz

7<a

= / a2 ()| D%p(2)|? dz + C2* + CoF 4 2
[9]

where
ook =/n Z (Z) D*?p(z) D ax(z) ﬁk(z)D“go(z) dz,
50
03* = [ o@D e(a) 2 (f) D57p@)D ax(a) | da
T#0
and
)
oxk = /ﬂ > (j) D*~%p(z) D% ax(z)
2 )

x Z(C:)Da‘fw(z)DTak(:c) dz.

k‘rSa
T#0
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Using C1’ we estimate Cg*

vk -
IC3* < dv ) 1D ellollD%ello
o<la

o#0
<d; Y_ (llP(D)ollo + ¢ (m)llello)ID*ello

o<a

o#0
<dy Y (lP(D)¢llo + ¢ () ello)IP(D)ello,

o<a

o#0
where 7 > 0 is an arbitrary number. Hence, we get for each € > 0

|C3*| < el P(D)olI3 + dae)lll3
and analogously

|C37*| < e P(D)ll3 + da(e) [l ll3.
Finally it follows that

k - —
cs* < da | D7 0lo | | 3 1D° " 6llo
o<a <o

o#£0 7#0
and again using C1’ we find for each n > 0

ICE* < da | Y- nllP(D)ello +e*()llello | | D nllP(D)ello +¢" (il | »
o<a <o

o#0 7#0
which gives, for each € > 0, the estimate
.k 3
1C3*| < el P(D)ell + da(e)llell3-
Now we have

Y 1PD) ey 2 ¢ 3 > 1D (axo)lI

keJ keJ a€l’

>t ¥ 5 [ dt@ione(a)l ds

keJ acT

-t Y S (erk + ok + Ice k)

k€J a€l

> ct Y 1D*el§ - Rel| P(D)ell3 — R(e)llell3,
a€l’

where R = 3|J||T| and R(e) is a suitable constant. By C1’ we have

ST ID%eld > ¢TI P(D)eli}
acl
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and by choosing € > 0 appropriately we get
(3.13) Y IP(D)(axo)lF = (co/DIP(D)eli§ - dllell3:
keJ
Now we can again follow the proof of Theorem 1 to get Theorem 1’.

4. GAarding’s inequality. Part II

Let L(z, D) be a differential operator of the form
(4.1) L(z,D) = Ly (z,D) + L,(z, D)

where Ly (z, D) is a differential operator of form (3.1) satisfying C1-C4. The
operator L,(z, D) is given by
(4.2) L(z,D)= Y D%aas(z)D?

a,Ber

where I" is a finite subset of N§j. The coefficients an3, o, f € I, are supposed
to belong to L>°((1). Furthermore we assume
C5. The operator L.(z, D) can be written as

(4.3)
Li(z,D)= Y D%aap(z)DP+ > D°aap(z)D’+ > D%aap(z
o€l a€ls; o,B€ls
BET 12 BET 22

and with the polynomial P(¢) from C1 we require for a € T'y; UT29

(4.4) €2 < c|P(8)?
for all £ € R®, |¢| sufficiently large, and for a € 12 UT'9; UT;
(4.5) g <e)y PO

=1

for all £ € R™, |£| sufficiently large. We have

THEOREM 2. Let L(z,D) be given by (4.1) and suppose C1-C5 to be valid.
Then for all p € C§° (), } CC R™, we have

(4.6) Re(L(z, D)p, )o 2 (co/8)| P(D)pllg — rlloll3-

Here cq is the constant in (3.2) and ¢; is another constant.

PROOF. By Theorem 1 it is sufficient to prove for all ¢ € C§°(Q)

4D | [ sas@)D0(e)D0) da < (co/8IPD)IB +liel
«,BeT
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Indeed, suppose (4.7) to be valid, then by Theorem 1 it follows that
Re(L(z, D)p, p)o 2 (co/DIP(D)elif - clielly

2 /n aap(2) DP p(z)D*p(z) dz

a,per’
> (co/8)IIP(D)elig ~ (&1 + O)lell3,

which is (4.6).
We start with the proof of (4.7). Since aqg € L°°(f1) it follows with some
constant ¢ that

Z /naaﬂ(z)DﬂSO(I)DO‘QO(x)dx

a,f€T’

<c| X ID%lloliD*¢llo

a€l,
BET 12

+ 3 ID%loliD%ello + 3 1D%eloliDello

a€l2; o,B€ls
BET 22

In particular we have for a € T'y; UT2; by (4.4)
1013 = [ eIPe(e) ae

<e / (1+ |P(O)P)|F(e)|? de
Rn
< c| P(D)l2,

where we used for the last estimate Theorem 1.13 in [19]. But for @ € T'12 U
I'2; UT'3 we find by (4.5) that

ID*pll < ¢ /R ) (1 +> |P<‘>(e)|2) IFo(&)I* d¢

=1
n
<c Y IPO(D)eld,
=1

where again Theorem 1.13 in [19] was used to obtain the last estimate.
Now, using Proposition 2 and the inequality

b2
allel <nlo + Lo, 0 >0,
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we get for an arbitrary n > 0

n 1/2
> IID%pllollDPello < cllP(D)ello (Z ||P(')(D)<P||3)
a€l; =1

BET 12

< nllP(D)el§ + e llells,

1/2
> IID"‘sOIIoIID"sOII2<C<Z I1PO(D ‘P"o) IP(D)ello

a€l'a; =1
BET 22

< nllP(D)eli + c(n)llell3

and n
Z | D*ollo|lDPollo < CZ | PY(D)pl|3

a,B€T; =1

< nllP(D)pli§ + c(m)llellg.
Taking n sufficiently small we finally obtain

> /aaa )DP p(z)D2p(z) dz| < (co/B)IP(D)ll3 + clll?,

a,BeT’

which proves the theorem.

5. The space H} (Q)

Let P(£) be a hypoelliptic polynomial. For ¢ € C§°(2), {2 CC R"™, we set

(5.1) lellp = IP(D)ell3.

By Theorem 1.13 in [19] it follows that on C§°(f2) a norm is given by (5.1).
Again, Plancherel’s theorem gives

(5.2 el = [ IPOPIFpO de.

The completion of C°(2) with respect to the norm (5.1) is denoted by HZ (Q2).
By definition Hf (1) is a Hilbert space. By Theorem 11.1.3 in [8], there are
constants d > 0, p > 0 and ¢ > 0 such that

[P (¢)]
|P(&)]

holds for all £ € R", || > p. From the proof of Proposition 2 and Corollary 1.16
in [19] the estimate

(5.4) 1P (D)ello < e P(D)ello

(5.3) < c|g|leld
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follows at once for all & € N§ and all ¢ € Cg°(§1). Let P(§) be a polynomial of
degree m and § € Ng such that || = m and P®)(€) # 0. From (5.3) we get
with a constant ¢/

(5.5) (L+1E2)™ < (1 +IP(E)).

Finally denote by H§((2), t > 0, the usual Sobolev space, that is, the completion
of C§°(£1) with respect to the norm

(5.6) loll? = / (1 +|€]?)*|Fp(€)]* de.
Rn
We have

THEOREM 3. A. The imbedding of HY (1) in H**(Q) is continuous. B. The
imbedding of HY(Q) in L%(Q) is compact.

PROOF. Since for ¢ > 0 the imbedding of H{((?) in L?() is always compact
(notice that 2 is a bounded set), we only have to prove part A. But from (5.5)
and Theorem 1.13 in [19] we get immediately

el = [ (@+1eFy™ P de
R'I

<d R"(1 +|P(§)1*)|Fe(§)I? d¢

< "|IP(D)pllg = "llell?,
which proves part A.

We want to show that the space H{ (Q2) can be interpreted as a space of
functions having generalized homogeneous boundary data. Suppose that () =
Q = X[—;(ai,b;) is a cube in R™ with edges parallel to the coordinate axes.
The part of dQ which is normal to the direction of the unit vector €; and which
contains no edges is denoted by 0;Q.

THEOREM 4. Let a € N§, a; > 0 for some j, 1 < j < n. Then for all
z € 3;Q and all functions f € HE(Q) ﬂFn_l(Q) we have
(5.7) P@)(D)f(z) =0.

We recall that the degree of P(€) is equal to m.

PROOF. (see [5], page 28). Let Z, C @ be a n-dimensional cylinder with
height h, the base of which is an (n — 1)-dimensional ball in the hyperplane

z; = a;j with center 2o and radius r,. We assume that rj, is chosen such that
the volume of Zj, u(Z), is equal to h%. For f € C§°(Q) we find

P("‘)(D)f(a:l, ey L51,85,T541,-- .,Zn) =0
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for z; = aj and 3, z? < r2. Therefore we have

x5 a
P(a)(D)f(.’lZ) =/ WP(Q)(D)f(Il,---,xj—l,yjazj+1,~--,xn)dyj,

aj J

and for z € Z, it follows that
2

h
a
POD@P < [ | POD) a1ty dos
7
which gives

/ |P)(D)f(z)|? dz < h? / |Pe*e)(D) f ()| dz,
Zn

Zp
or

(5.8) (1/h%) /Z [P (D) f(z)|* dz < /Z |Plete)(D) f(z)|? da.

Inequality (5.8) holds for all f € C§°(Q) and therefore by continuity for all
f € HY(Q). Since Pete:)(D)f € L%(Q) for all f € HE(Q) (see (5.4)), it
follows that

(5.9) | 1P (D) @) dz — 0
Zp
as h — 0. But for f € H(Q) nC“"‘“(Q) we have, since u(Z,) = h?,
(610 POD)f(ao) = Jim(1/w%) [ |P(D)f(@)] da,
h—0 Zn

which, together with (5.8) and (5.9), proves the theorem.

6. A generalized homogeneous Dirichlet problem

We now pose

PROBLEM 1. Let 0 be a bounded open set in R®, L{z,D) a differential
operator of form (3.1) and f € L?() a given function. Find all elements u €
HF(Q) such that
(6.1) B(u,0) = (f,9)o
holds for all ¢ € C§°((2). Here B(:,-) is the sesquilinear form defined by

(62) B(¥.0)i= [ () (D) V(@) FDIp (o) da

1,7=1

z 6 z)D%p(z) dzx.
+ /ﬂ a%;,aaa( ) D% (z) Do p(z) d

In order to solve Problem 1 we need the following theorem.
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THEOREM 5. The sesquilinear form B is continuous on HE ().

PROOF. It is sufficient to prove all estimate for elements ¥, p € C§°(Q2). By
definition we have

1B(¥,p)| <

/n Z a5 (2)Q;(D)¥(z) Pi(D)p(z) dz

i,7=1

+/n Z aop(z)DP¥(z)Dep(z) dz

a,B€T’

m
<M (Z 1Q;(D)|lo||P:(D)ello + Y IIDB‘I'IIoIID"‘wllo) .
i5=1 a,B€r

Since by our assumptions
1Qi(D)ello < c2llP(D)elle,  1<j<m,
I1P(D)ello < eal|P(D)pllo, 1<i<m,
and
[D%ello < cllP(D)pllo,  a€T,

hold for all p € C§°((2), we get with some constant c

|B(¥,0)| <c (Z IP(D)¥llollP(D)ello+ D ||P(D)‘I’||o||P(D)¢>||0) ;

1,7=1 a,fer’
which proves the theorem.
Using Theorem 2, Theorem 3.B and Theorem 5 we find by the same arguments
as in [2], Theorem 1.14.6

THEOREM 6. Suppose that the differential operator L(z, D) fulfills the con-
ditions C1-C5. Then for Problem 1 Fredholm’s alternative holds. That means
The solutions v € HE (1) and w € HE (Q) of the equations
B(v,p) =0 for all p € CP(0)
and
B(p,w) =0 for all p € C§°(Q),
respectively, form finite dimensional subspaces V C HE (1) and W C HE (),
respectively. In addition, we have dimV = dim M. Furthermore, tn order that

Problem 1 has at least one solution u € HE (Q), it is necessary and sufficient
that the relation

holds for w € W. The solution of Problem 1 is unique up to an element of V.

https://doi.org/10.1017/51446788700032134 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700032134

(22] Dirichlet’s boundary value problem 345

Notice that we have to use representation theorems for antilinear functionals
(see [21], Satz 4.8 and Aufgabe 4.11.e).

7. Examples and further investigations

We want to give some examples of differential operators for which the re-
sults developed above can be applied. The first example shows that strongly
uniformly elliptic operators belong to the class considered here. The second
example demonstrates that the same is true for strongly uniformly semielliptic
operators. The third example shows that also non-semielliptic operators belong
to the class considered here.

EXAMPLE 1. Let
(7.1) Lpe(z,D)= > D%aap(z)D”

lee|=|Bl=m
and suppose that
Re Ly (2, £) > c[¢]*™,
and that the coefficients fulfill condition C4. Then the conditions C1’, C2 and
C3 are satisfied. In addition, we can add to Ly (z, D) any operator

(7.2) L/(z,D)= Y, D%aas(z)D?

jal,|8|<m
a|+|8|<2m

with coefficients a,g € L°°(Q2) and Theorem 2 will still be valid.
EXAMPLE 2. Suppose that the operator
(7.3) Lye(z,D)= 3 D%aqp(z)Df

|oae: r]=1

18: 7]=1
is strongly uniformly semielliptic in the sense of [20], page 327. Then, under suit-
able assumptions on the coefficients of (7.3) (see C4), we find that the conditions
C1’, C2 and C3 are fulfilled.

EXAMPLE 3. Let Q(£) be an arbitrary polynomial of degree m with real and
constant coefficients and let k € N be a given number. Suppose that R(§) is a
homogeneous, positive definite polynomial of degree 2km—2(k—1). Furthermore,
forj =1,...,41let a;: 1 — C, 1 CC R", be functions satisfying C4 and in
addition
(7.4) Rea;(r) > co >0, 1<j<4.

Consider the operator
(7.5) L(z, D) = Q(D)**(a1(2)Q(D)**) + Q(D)**(a2(z) R(D))
+ R(D)(a3(2)Q(D)**) + R(D)(as(z)R(D)).
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Then we have

(7.6) Re L(z, &) > co|Q(€)** + R(¢))%.

By Theorem 11.1.12 in [8] the polynomial Q(¢)2* + R(€) is hypoelliptic, but not
semielliptic. Hence condition C1 is satisfied. Conditions C2 and C3 follow from
the proof of Theorem 11.1.12 in [8].

In Proposition 5 we prove that if an operator L(z, D) satisfying C1-C5 has
continuous coefficients, it is of constant strength in the sense of Definition 13.1.1
in [8] and every operator obtained by freezing the coefficients at some zg, 2o € 12,
is hypoelliptic. In the case where the coefficients are in C° (1), this gives the
following interior regularity result.

THEOREM 7. Let f € L*(Q) N BR5() and let u € HE(Q) be a solution
to Problem 1 and suppose that the assumptwns of Proposition 5 are fulfilled.
Moreover assume that the coefficients of L(z, D) belong to C°(Q). Then u
belongs to the space BIOZo k(ﬂ). The space B}:;(Q) is defined in [8], page 14,
and we have set for some xg € (2

1/2

L. =1 > 1L (0,6

a€Ng

PROOF. By Proposition 5 (see below) we know that the differential operator
L(z, D) is of constant strength in {1 and that for each zo €  the operator
L(zg, D) is hypoelliptic. Hence, since the coefficients of L(z, D) are assumed to
belong to C°((1), the operator L(z, D) is formally hypoelliptic in the sense of
Definition 13.1.1 in [8]. Therefore Theorem 7 follows immediately from Theorem
13.4.1 in [8].

PROPOSITION 5. Let L(z,D) be a differential operator of form (4.1) with
continuous coefficients. Suppose in addition that C1, C2, C3 and C5 are fulfilled.
Then the operator L(x, D) ts of constant strength in () and for each xo € Q) the
operator L(zo, D) 1s hypoelliptic.

PROOF. Let zg € (2 be an arbitrary point. We prove that L(z, §) is hypoel-
liptic. For o € N§ we have

L(a)(x()’ 5) = Ll(;l)‘t)(IOa f) + LS'a) (-’EO, 6)
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and moreover

|L(a)(30y€)| < (Z Pi(£)ai;(z0)Q; (€ )) l

1,7=1

m

> asteo) T (§ ) 087 (P€)O2(Q,(©)

t,5=1 Bla

<c Y IR ©)1RP ).
1,0=10<a

On the other hand, we have for £ € R", |£| > po,
|Lpr (%0, €)| = Re Lpr(zo, §) = CO|P(§)l2v

which gives

ILD (20, 6)] _ ¢ & « [PCP )] 1@ (¢)l
£

|Lpr(-’50,€)| =% Pl PO~

But now, by (3.5) it follows that
po L8P (20, 8)|
|€|—o0 |Lpr(370v§)|

holds for a # 0, hence Ly (2o, §) is hypoelliptic. Moreover, we have, using the
notation from C5

Li(m0,€) = Y 0ap(z0)€%E° + D 6ap(20)6*EP + Y aap(zo)E*EP.
o€l a€ly; o,B€Er;
BET 12 BET 22

By C5 we have

(7.7) =0

n 1/2
Y aap(z0)6€P| <clP(¢)] (ZlP‘”(&)P) ,
a€l;, =1
BET 12

n 1/2

Y- aap(z0)€*€” Sc(ZIP“Mf)P) |P(¢)|
a€l2; =1
BET 22

< ci PO (€)%

=1

Z aas(o) £a+ﬂ

a,B€ls
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For |€| — oo we find using the hypoellipticity of P(£), that

Lo(@0,6)] _ I Th IPO@DY? T, PP
Pel ¢ el T ree

Now Corollary 10.4.8 and Theorem 11.1.9 in [8] imply the hypoellipticity of
L(zp, &). We prove that L(z, ) is of constant strength in ). Since the estimate
in (7.8) is independent of zg it is sufficient to show that L (z, £) is of constant
strength in (2. But this is proved, if we have show that the polynomials Lp.(zp, §)
and |P(¢)|? are of equal strength for each zo € ). For £ € R", |¢| sufficiently
large, we find that

(7.8)

|P(£)|2 < CReLpr(IO, 6) < ILpr(ZO,E)l;

hence it follows that

(7.9) PO <c| Y ILE (20,6

aENg

holds for all zyp €  and ¢ € R™ with a constant ¢’ independent of 5. On the
other hand, we have by (3.3) and (3.4)

(7.10) |Loe (20, ) S EP(E)IP <& Y [P,

aENG

again with a constant ¢ independent of zy. The assertion that the polynomial
|P(€)|? and L(zo, £) are equally strong follows now from Theorem 10.4.3 in [8].
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