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Abstract

Phenomenological models are popular for describing the epidemic curve. We present how
they can be used at different phases in the epidemic, by modelling the daily number of
new hospitalisations (or cases). As real-time prediction of the hospital capacity is important,
a joint model of the new hospitalisations, number of patients in hospital and in intensive care
unit (ICU) is proposed. This model allows estimation of the length of stay in hospital and
ICU, even if no (or limited) individual level information on length of stay is available.
Estimation is done in a Bayesian framework. In this framework, real-time alarms, defined
as the probability of exceeding hospital capacity, can be easily derived. The methods are illu-
strated using data from the COVID-19 pandemic in March–June 2020 in Belgium, but are
widely applicable.

Introduction

Since the first outbreak of corona virus disease 2019 (COVID-19) in China in December 2020,
many countries are struggling to get the ongoing outbreak under control. Worldwide,
researchers are using epidemic models to generate short- and long-term forecasts as these
are crucial for public health-care decision makers. Indeed, it is of paramount importance to
understand how the outbreak is evolving and to make predictions, such that health authorities
can plan the response to the outbreak. One of the major issues with COVID-19 is the high
hospitalisation rate. In many countries, including Belgium, a large number of hospitalisations
of COVID-19 patients has forced hospitals to postpone regular care of non-COVID-19
patients. The authors in [1, 2] indicate that a timely intervention is needed to preserve the hos-
pital capacity. It is therefore crucial to track and predict also the total number of patients in the
hospital and in the intensive care units (ICUs).

Mathematical and statistical models are commonly used to describe the epidemic, and
derive epidemiological parameters of the outbreak. Important parameters describing the evo-
lution of the outbreak are the growth rate, the number of hospitalisations at the peak of the
outbreak, the turning point, the final size of the epidemic and length of the epidemic wave.
The analysis of the outbreak in real time is challenging because of different phases in the epi-
demic curve, in which often only limited information is available. At the start, the epidemic is
described by exponential growth, followed by a slowing down of the growth due to interven-
tion measures. If control measures are successful, a turning point can be observed followed by
a decline in the number of new cases and hospitalisations. The prediction model should adapt
to these different phases. Chowell discusses some phenomenological models to characterise
and forecast the cumulative number of cases and connects these models to ordinary differen-
tial equations describing the dynamics of the epidemic [3, 4]. Commonly used phenomeno-
logical models are the exponential model, the three-parameter logistic [5] and the Richard
model [6–9], which have been applied for epidemics of severe acute respiratory syndrome cor-
onavirus 2 (SARS-CoV-1) [7], Ebola [10], Zika [11] and SARS-CoV-2 [12]. Sebrango-
Rodriquez et al. use model averaging based on different phenomenological models to predict
final size and turning point of the epidemic in real-time while taking into account model
uncertainty [11].

An outdated strategy is to fit the growth model to cumulative case counts using least
squares for model fitting or likelihood estimation. King et al. have shown via simulations
that with such methods the confidence in parameter estimates and forecasts can be far over-
estimated [13]. The problem with fitting the model to the cumulative case counts is due to the
underlying assumption of independence of the sequential measurement errors, which is
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violated when observations are accumulated through time [13–16].
In this paper, the focus is therefore on modelling the daily observed
new hospitalisations with parameter estimation using Bayesian
Markov Chain Monte Carlo (MCMC) methods. One of the advan-
tages of the Bayesian framework is the flexibility in which nonlinear
models can be estimated, prediction intervals (PIs) of derived para-
meters can be obtained and fit complex models on multiple end-
points. Starting from a growth model for the daily new
hospitalisations, we propose a method to forecast the required hos-
pital capacity in terms of hospital beds and ICU beds, and calculate
the risk to exceed certain thresholds in hospital capacity.

We first discuss the different phases in real-time short-term
prediction based on the number of new hospitalisations, describ-
ing each phase with a different phenomenological model, and
providing guidance on the use of simple phenomenological mod-
els. Then, the focus is on methods for prediction of the number of
beds required in the hospital and in the ICU, and measuring
exceedance probabilities of the bed capacity. Both methods in
which information on the length of stay in hospital is available
(univariate method) and is unavailable (multivariate analysis)
are presented. Analyses are illustrated using the first wave of the
COVID-19 pandemic in Belgium.

Data

The number of new hospitalisations, number of patients in hos-
pital (denoted as the number of hospital beds) and number of
patients in ICUs are collected and made publicly available by
Sciensano. Data are collected daily via a hospital surge capacity
survey, a mandatory survey with daily questionnaire sent to all
Belgian hospitals. These numbers are aggregated to the national
and provincial levels and are made available since 11 March
2020 [17]. Table 1 summarises the daily number of new hospita-
lisations and the daily number of beds occupied by COVID-19
patients in the hospital and ICU during the first wave of the out-
break from 11 March 2020 until 6 June 2020. The corresponding
time trends are presented in Figure 1.

Methodology

In this section, we first present the growth curve models during
four phases: (1) the exponential growth model during the initial
epidemic growth phase, (2) the logistic growth model during
the phase of growth to stabilisation, (3) the logistic distribution
model when the turning point is reached and (4) the Richards
model during the descending phase of the epidemic. We then
provide some details on the estimation of the models in the
Bayesian framework. Finally, we present a method to predict
the hospital load, using either (1) the estimated growth curve
model from the new hospitalisation in case information on the
length of stay in hospital and prevalence of ICU care is available
and (2) a joint model of new hospitalisations, hospital beds and

ICU beds, in case information on length of stay is not readily
available.

Growth curve models

Let Y(t) denote the number of new hospitalisations on day t (t = 0, 1,
…, T ). The number of hospitalisations is a count variable and can
be modelled by a Poisson distribution Y(t)∼ Poisson(μ(t)) or,
to account for the heterogeneity which is typically observed
during an outbreak, by a negative binomial distribution Y(t)∼
NegBin(μ(t), θ), with μ(t) the mean trajectory of the outbreak
(mean number of new hospitalisations) and θ an overdispersion par-
ameter (when θ→∞, the negative binomial distribution reduces to
a Poisson distribution). An important property of the Poisson distri-
bution is that the mean and variance of Y(t) are equal (equidisper-
sion). In real life, the equidispersion assumption does not usually
hold, and the use of the negative binomial distribution which allows
the variability of the data to be greater than that predicted by the
Poisson model (overdispersion) is recommended in the context of
epidemic data [18]. We further assume that conditional on the
mean epidemic trend, the number of new cases is independent.

In a real-time data analysis, we model the number of hospita-
lisations using four different phases, depending on how far the
epidemic curve has evolved in time. We review growth models
that are useful in each of these phases and model the observed
number of new hospitalisations directly (instead of modelling
the cumulative number of cases C(t)). The growth models are for-
mulated as differential equations in continuous time, although
epidemic data in real life is observed in discrete time intervals.
Therefore, a discrete approximation of the derivative is used,
such as replacing the derivative of cumulative number of cases
by the number of new cases during one day, and resulting in a
discrete-time growth model.

Phase 1: initial epidemic growth
At the start of an outbreak, the number of new cases/hospitalisa-
tions typically grows exponentially. The rate of change in the
expected number of new hospitalisations, μ

′
(t), can then be writ-

ten as

m′(t) = pm(t).

This assumption is similar as in the initial phase of the math-
ematical SIR model. The parameter p represents the growth rate
during this initial epidemic phase, with a corresponding doubling
time of the number of new hospitalisations equal to ln(2)‒/p. The
expected number of new hospitalisations can be derived analytic-
ally from this model and can be used to describe the early trajec-
tory of the outbreak:

mP1 (t) ; m(t) = a exp ( pt),

Table 1. Summary characteristics of hospital load during the first wave of the COVID-19 pandemic in Belgium from 11 March 2020 until 6 Jun 2020

Notation Description Mean Range IQR

Y(t) Number of new COVID hospitalisations 199.1 7–629 248.7

H(t) Total number of beds used in hospital by COVID patients 2831.8 14–5759 3537.2

ICU(t) Total number of beds used in ICU 613.3 2–1285 776.5
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where α is the number of cases at time t = 0 and P1 refers to the
phase 1 model. This model produces a J-shaped curve, as pre-
sented in Figure 2 (top left).

Phase 2: from growth to stabilisation
Sometime after intervention measures take place or individuals
start to change social behaviour, the growth rate of new hospita-
lisations starts to diminish until it reaches a plateau. At the plat-
eau, there is no more growth of the number of new
hospitalisations and the number of new hospitalisations becomes

constant (i.e. stabilisation). As a result, the initial exponential
growth is not sustained in phase 2. In this case, the time
course of the number of new hospitalisations is better described
by the logistic growth model, as proposed by Verhulst [19],
with the rate of change in the number of new hospitalisations
described by

m′(t) = pm(t) 1− m(t)
k

( )

Fig. 1. Epidemic curve in Belgium: number of new
COVID-19 hospitalisations (red line), number of
COVID-19 patients in the hospital (green line) and
in the ICU (blue line).

Fig. 2. Visualisation of growth models at different phases. Phase 1: exponential growth model; phase 2: logistic growth model; phase 3: logistic distribution model;
phase 4: Richards model.
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which can be expressed in terms of the expected number of new
hospitalisations as

mP2 (t) ; m(t) = ak
a+ (k− a) exp (−pt)

,

with parameters p, k and α, and P2 refers to the phase 2 model.
This model produces an S-shaped curve (Fig. 2, top right),
which increases to a maximal daily number of new hospitalisa-
tions k (horizontal dashed line). When k =∞, this model reduces
to the exponential model as described in phase 1. The parameter
p represents the initial growth rate, which increases until time tp =
ln((k− α)/α)/p, at which there are k/2 new hospitalisations and
growth rate is pk/4 (dotted lines), after which the growth rate
decreases until the number of new hospitalisations reaches a plat-
eau equal to k. The parameter α is the number of new hospitalisa-
tions at time t = 0.

Phase 3: turning point reached
When the outbreak is in a later phase, we might observe again a
decrease in the number of new hospitalisations. In this phase, the
time course of the cumulative number of hospitalisations C(t)
(instead of the number of new hospitalisations) is better described
by the logistic model:

C(t) = aK
a+ (K − a) exp (−pt)

,

which can be re-formulated into a model for the new hospitalisa-
tions (μ(t) = C

′
(t))

mP3 (t) ; m(t) = pC(t) 1− C(t)
K

( )
.

This curve is a symmetric bell-shaped curve, as presented in
Figure 2 (bottom left). The curve increases to the maximal daily
number of new hospitalisations k = pK/4, which is reached on
the turning point tm = ln((K− α)/α)/p (dashed lines), and then
declines. The parameter p is the initial growth rate and K is the
final size of the epidemic wave (or sometimes called the carrying
capacity). As the logistic curve is symmetric, there are a total of K/
2 hospitalisations before and after the turning point.

Phase 4: descending phase
When more data become available in the descending phase of the
epidemic curve, we might observe that the decline in the number
of new cases is slower or faster as compared to the increase. In
such a case, the Richards model [6], allowing for an asymmetric
epidemic curve, is better used (Fig. 2, bottom right). The
Richards model is an extension of the Verhulst model with one
additional parameter, and has been used in the context of real-
time prediction of outbreak of diseases [7, 20], though for speci-
fying the cumulative number of cases. The cumulative number of
cases based on the model is given by

C(t) = K

[1+ g exp (−p(t − h))]1/g
.

A model for the number of new hospitalisations can be derived
from this by taking the derivative of this function (μ(t) = C

′
(t)),

leading to

mP4 (t) ; m(t) = p
g
C(t) 1− C(t)

K

( )g( )
.

Wang et al. describe the connection of the Richards model with
a simple epidemic SIR model. In this model, K is the final size of
the epidemic, p/γ is the initial growth rate and η is the turning
point of the epidemic [21]. The maximal number of new hospita-
lisations at the peak is k = pK/(1 + γ)1+1/γ (horizontal dashed line).
At this time point, there have been a total of K/(γ + 1)1/γ hospita-
lisations, with 1/(γ + 1)1/γ the fraction of hospitalisations during
the epidemic wave that occur before the turning point. If γ = 1,
the model reduces to the symmetric phase 3 logistic model.

Estimation

While it would be tempting to use e.g. the Richards model in the
first phase of the outbreak already, to predict the peak of the out-
break and the final size; this would lead to unreliable estimates, as
no information is yet available about later phases of the outbreak;
and indeed multiple models could results in the same fit to the
observed cases but with major differences of the peak estimation.
Therefore, the use of different models at different phases of the
outbreaks is recommended, as well as using only short-term pre-
dictions (e.g. up to 5–10 days) based on these growth models.

The following process is proposed for model selection and to
move from one epidemic phase to the next epidemic phase.
First, it is possible only to move successively through the different
phases, e.g. it is possible to move from phase 2 to phase 3, but not
to move back from phase 3 to phase 2. Second, the current epi-
demic phase model is always compared with the next epidemic
phase model using Wakaike’s information criterion (WAIC).
Three situation can occur when comparing the WAIC of the cur-
rent model (phase k) with the next model (phase k + 1): (1) if
WAIC(phase k + 1) −WAIC(phase k) < 0, use model phase k;
(2) if 0 <WAIC(phase k + 1)−WAIC(phase k) < 2, then the
phase k and k + 1 models are equally likely, and they provide
best and worst case scenario predictions and (3) if WAIC(phase
k + 1) −WAIC(phase k) > 2, use model phase k + 1. Note that
this is similar to the proposal by [22] to switch from one phase
to the next phase. In Section ‘Real-time analysis’, we will investi-
gate the predictive performance of the models using different
measures of predictive performance.

In order to take into account the uncertainty in the data, a
Bayesian estimation method is used. Weakly informative priors
were used for all parameters, namely a N(0, 0.01) prior for α0
and log ( p) and a log N(0, 0.1) for k, KP3 , KP4 , g, h. Based on
samples from the posterior distribution of the parameters, the
predictive distribution for the number of new cases Ŷ(t) can be
easily derived. Implementation of the models is done using
NIMBLE (2020). NIMBLE is a system for building computation-
ally intensive Bayesian statistical models in R, but compiling them
using C++ for speed [23]. The code is available at https://github.
com/ChristelFaes/GrowthModels.

Prediction of hospital load

The hospital load with respect to the number of hospital beds
occupied by COVID-19 patients and the number of COVID-19
patients in ICUs depends on the number of new hospitalisations,
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the length of stay in the hospital and ICU and the probability to
require intensive care.

Let dHk and dICUk denote, respectively, the probability that a
patient is on day k after hospitalisation still in the hospital or in
the ICU. The number of required hospital beds (H(t)) can then
be estimated as

mH(t) =
∑t

i=0
dHt−im(i)

while the number of ICU beds (ICU(t)) is calculated as

mICU (t) =
∑t

i=0
dICUt−i p

ICUm(i)

with πICU the probability that a hospitalised patient needs inten-
sive care (which is assumed to be constant) and μ(.) the mean
number of new hospitalisations as specified in Section ‘Growth
curve models’. If the distribution of length of stay (dHk and
dICUk ) and the probability to require intensive care (πICU) are
known, the number of hospital beds and ICU beds can be directly
obtained from the posterior and predictive distribution on the
number of new hospitalisations, from which both point estimate
and uncertainty bands can be obtained. Availability of the
whole predictive distribution allows us to compute the probability
of exceeding certain hospital loads, which is of importance for
policy makers. For common and well-known diseases, the hos-
pital length of stay is indeed well known, allowing to directly com-
pute the hospital load. For the COVID-19 pandemic however,
only very limited information was available in the first half of
2020, requiring additional analyses.

When information on hospital care is limited, a joint model of
the number of new hospitalisations (Y(t)), total number of
patients in the hospital (H(t)) and number of patients in the
intensive care (ICU(t)) can be used to estimate these parameters.
This multivariate model can be formulated as

Y(t) � NegBin(m(t), uY ),

H(t) � NegBin(mH(t), uH),

dHk � g(a1, b1),

mH(t) =
∑t

i=0

dHt−im(i),

ICU(t) � NegBin(mICU (t), uICU ),

dICUk � g(a2, b2),

mICU (t) =
∑t

i=0

dICUt−i p
ICUm(i),

where μ(t) is described by one of the growth models as given in
Section ‘Growth curve models’ and g(.) is a distribution for a
time to event outcome, such as a gamma, Weibull or lognormal
distribution with parameters α and β. The parameters θY, θH
and θICU are overdispersion parameters corresponding to each
of these processes. The different components of the model
share the mean growth rate function μ(t). The advantage of the
shared function is that the growth function is less impacted by
the heterogeneity in the individual time series, and both the
length of stay and probability of requiring intensive care are
jointly estimated. The intensive care patients in hospitals is actu-
ally modelled as a thinned Poisson negative binomial process of
the newly hospitalised patients.

Estimation is done in the Bayesian framework, with the use of
vague priors for each of the parameters in the model. The same
priors are used as in the univariate model, with the addition of
the following priors: a U(0, 50) for the overdispersion parameters
θY, θH and θICU, a N(2.069, 1) and N(2.101, 1) for α1 and α2 (in
line with the information from the individual hospital survey
[24]) and U(0, 10) for the parameters β1 and β2. A sensitivity ana-
lysis of the priors was performed to investigate the impact of the
priors.

Real-time analysis

In this section, an illustration is given of the real-time forecast of
the number of new hospitalisations and derived hospital load.
Also important characteristics of the epidemic such as the turning
point and final size are derived. Section ‘Forecasting new hospita-
lisations at different phases in the epidemic’ focuses on the growth
models of new hospitalisations using the univariate models
described in Section ‘Growth curve models’. Section ‘Forecasting
the hospital load’ incorporates the hospital load using the multi-
variate model as described in Section ‘Prediction of hospital load’.

Forecasting new hospitalisations at different phases in the
epidemic

We first illustrate the use of the different growth phase models at
different phases of the epidemic. We present the forecasts based
on the historical data. We perform a 5-day, 7-day and 10-day
ahead forecast at different time points, in which data are used
from the start of the epidemic until the time point of prediction,
and compare the forecasts with the real data obtained for the fore-
casting period. To assess the forecasting performance, we visually
assess the forecast, and calculate several measures of the predictive
performance: the root mean squared error (RMSE), the mean
absolute percentage error (MAPE), the symmetric mean absolute
percentage error (sMAPE), the 95% coverage of the PI and the
mean interval score (MIS). The measures for the number of
new hospitalisations are defined as

RMSE =
������������������
1
N

∑N
i=1

(Ŷ i − Yi)
2

√√√√ ,

MAPE = 1
N ×m

∑N
i=1

∑m
j=1

|Ŷ ij − Yi|
|Yi| ,

sMAPE = 1
N ×m

∑N
i=1

∑m
j=1

|Ŷ ij − Yi|
(|Ŷ ij| + |Yi|)/2

,

PI coverage = 1
N

∑N
i=1

1{Yi ≥ Li > Yi ≤ Ui},

MIS = 1
N

∑N
i=1

(Ui − Li)+ 2
a
(Li − Yi)1{Yi , Li}

+ 2
a
(Yi − Ui)1{Yi . Ui},

with Yi the observed number of hospitalisations and Ŷij the jth
MCMC sample of the posterior predictive number. m is the num-
ber of samples and N is the prediction sample size. Li and Ui are,
respectively, the lower and upper limits of the 95% PI, α = 0.05 is
the significance level, 1 is an indicator with value 1 if the
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condition is satisfied or 0 otherwise. These are defined similarly
for the number of hospital beds and ICU beds. While the
RMSE is commonly used to assess the predictive performance,
it has the disadvantage that it depends on the size of the epidemic,
i.e. larger cases will tend to result in larger RMSE [25]. The MAPE
and sMAPE are independent from the scale of the epidemic. The
sMAPE has an attractive interpretation with values between 0 and
2, with smaller values corresponding to more accurate prediction.
With the same PI coverage, the model with the smaller MIS has
less uncertainty [12]. In addition, goodness-of-fit of models are
compared using WAIC, with smaller values (difference larger
than 5) corresponding to a better fitting model [26, 27].

Figure 3 presents the 5-day ahead predictions for the number
of new hospitalisations at different phases of the epidemic. The
dots are observed data, where black and red ones correspond to
calibration and prediction period, respectively. The line and enve-
lope are posterior mean and 95% confidence interval (CI) for
models from phase 1 (exponential growth model, purple), phase
2 (logistic growth model, orange), phase 3 (logistic distribution
model, green) and phase 4 (Richards model, blue). Table 2 sum-
marises the overall goodness of fit and prediction performance of
5-, 7- and 10-day ahead prediction using WAIC and sMAPE. The
other measures of predictive performance are provided in
Appendix Tables 13–16. The parameter estimates of the models
are available in Appendix B and visualised in Figure 4.

As a starting point, the Poisson and negative binomial dis-
tributions were compared in the first phase of the pandemic.
The negative binomial model consistently showed a better
goodness of fit as compared to the Poisson model (results in
Appendix A). This is to be expected as the number of new
hospitalisations shows a considerable amount of variation.
Therefore, all models presented are based on the negative bino-
mial distribution.

In the initial phase of the outbreak (phase 1), the exponential
model was considered. This is illustrated for predictions early in
the epidemic on 16 and 20 March (mean curve presented by pur-
ple line, PI by purple shaded area). At this initial stage of the epi-
demic, only 6 and 10 data points are available respectively, and
the main question of interest is to get an estimation of the doub-
ling time. It was estimated as 1.967 (1.042–4.068) on 16 March
and 2.386 (1.884–3.025) on 20 March. While the estimation of
epidemic is consistent with the data, the prediction of the number
of future cases at this point is still highly uncertain, leading to
wide prediction bands. With an increased amount of data in
the calibration phase, the prediction bands become narrower,
but the overestimation in the prediction becomes more obvious.
This is to be expected as multiple restriction measures (closing
of schools, cafes and restaurants) went into effect after 13
March (and were further enforced on 23 March), resulting in a
major decrease of the number of social contacts. A comparison

Fig. 3. 5-day ahead prediction for the number of new COVID-19 hospitalisations. The dots are observed data, where black and red ones correspond to calibration
and prediction period, respectively. The line and envelope are posterior mean and 95% CI for models from phase 1 (purple), phase 2 (orange), phase 3 (green) and
phase 4 (blue).
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with the logistic model from phase 2 is therefore made (orange
curves), resulting in a best and worst case scenario prediction.

During the transition from phase 1 to phase 2, goodness-of-fit
for both models are similar (as observed by WAIC on 20 March),
although prediction is better based on the phase 2 model (as
observed by the sMAPE). The same conclusion can be made
based on RMSE and MAPE. Note that the RMSE varies a lot
from day to day, due to it being impacted by the size of the

epidemic at the time of prediction. The prediction bands show
good coverage for the selected model (Table 15 in the appendix)
and the smallest MIS (Table 16 in the appendix). Moving further
in time (as from 24 March), the phase 2 model outperforms the
exponential phase 1 model also in WAIC.

Once the stabilisation of new hospitalisations was reached, the
phase 2 model was compared to the phase 3 model (green curve),
also allowing to estimate the peak of the epidemic. The transition

Table 2. Model goodness of fit and prediction performance via sMAPE for the COVID pandemic in Belgium from March to June 2020

sMAPE (new hosp) sMAPE (patients in hosp) sMAPE (patients in ICU)

Date Phase WAIC 5-day 7-day 10-day 5-day 7-day 10-day 5-day 7-day 10-day

16 Mar P1 60.1 0.67 0.83 0.99 0.43 0.55 0.72 0.50 0.62 0.79

20 Mar P1 101.5 0.70 0.82 1.02 0.31 0.42 0.60 0.41 0.51 0.70

P2 103.4 0.44 0.49 0.54 0.26 0.32 0.39 0.21 0.26 0.33

24 Mar P1 152.8 0.60 0.78 0.97 0.24 0.34 0.53 0.31 0.42 0.60

P2 145.2 0.45 0.43 0.43 0.35 0.38 0.41 0.24 0.27 0.30

28 Mar P2 195.4 0.21 0.22 0.29 0.17 0.16 0.15 0.10 0.10 0.11

2 Apr P2 250.4 0.32 0.29 0.34 0.10 0.09 0.09 0.07 0.08 0.11

P3 258.3 0.42 0.59 0.78 0.21 0.25 0.32 0.13 0.17 0.23

6 Apr P2 304.3 0.22 0.34 0.39 0.09 0.08 0.08 0.07 0.08 0.11

P3 301.5 0.88 0.92 1.08 0.28 0.34 0.42 0.18 0.23 0.30

10 Apr P3 367.8 0.50 0.66 0.80 0.20 0.23 0.30 0.10 0.12 0.17

P4 341.2 0.22 0.24 0.25 0.16 0.17 0.19 0.05 0.06 0.07

14 Apr P3 413.6 0.84 0.91 1.04 0.26 0.31 0.37 0.12 0.16 0.21

P4 383.6 0.33 0.34 0.41 0.22 0.24 0.27 0.08 0.10 0.12

11 May P4 658.7 0.51 0.49 0.59 0.26 0.28 0.31 0.05 0.05 0.05

27 May P4 823.1 0.48 0.51 0.58 0.23 0.26 0.28 0.12 0.11 0.10

Fig. 4. Model estimates for maximum daily new hospitalisations, turning point, final size and fraction before turning point. The dot and line are posterior mean and
95% CI for models from phase 2 (orange), phase 3 (green) and phase 4 (blue).

Epidemiology and Infection 7

https://doi.org/10.1017/S0950268821002491 Published online by Cambridge University Press

https://doi.org/10.1017/S0950268821002491


phase is again first marked by the similarity amongst WAIC
values, with a worst and best case scenario prediction, and fol-
lowed by improved predictions in phase 3 in terms of sMAPE
on 10 April. The same is concluded from the PI coverage and
MIS, indicating that the phase 3 model is outperforming the
phase 2 model as from 10 April. As the epidemic evolves, more
data points become available allowing for more flexible models.
It becomes more and more apparent that the decline is slower
as compared to the epidemic increase. The Richards model fits
the data well and provides good forecasts for a short-term period.

Overall, the 5-day ahead predictions have better predictive per-
formances as compared to the 7- and 10-day predictions, indicat-
ing that short prediction periods are to be recommended.
However, for the Richards model, the predictive performance of

the 5-, 7- and 10-day forecast are very alike, indicating that at
this point somewhat longer forecasts can safely be performed.
Longer forecasting horizons were not investigated in this setting,
as these models assume that there are no behavioural changes that
would impact the growth of the epidemic.

Figure 4 shows how the peak (maximal daily number of new
hospitalisations and the turning point), the final size and the frac-
tion before (or after) turning point are estimated through time.
The point estimate and credible interval, estimated at different
time points and using different models, are presented by the
dots and vertical lines. It is clear that estimation of the peak,
before the peak is reached, is very difficult, leading to unstable
estimates. But, fairly stable estimates are obtained after the turning
point. The final size of the first wave is already stable as from the

Fig. 5. 5-day ahead prediction for the number of new COVID-19 hospitalisations, patients in the hospital and patients in the ICU from the joint process. The dots are
observed data, where black and red ones are corresponding to calibration and prediction period, respectively. The line and envelope are model fitted line and 95%
CI from phase 1 (purple), phase 2 (orange), phase 3 (green) and phase 4 (blue). Column correspond to new hospitalisations (left), total number of patients in the
hospital (middle) and number of patients in the ICU (right). Rows correspond to different prediction dates during the epidemic.
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end of April, as well as the amount of new hospitalisations to
come after the turning point.

Forecasting the hospital load

In this section, we estimate the hospital load based on the different
growth models. As explained before, two methods can be used for
this: (1) by derivation of hospital load based on the univariate
model of the new hospitalisations and knowledge about the length
of stay in hospital and (2) by joint modelling of the number of new
hospitalisations, total hospital beds and total patients in intensive
care. Especially in the beginning of the COVID-19 epidemic, no
detailed information was available on the length of stay in hospital.
Therefore, we present the joint model in this section. Note that dur-
ing the epidemic, information was collected on the length of stay in
hospital and in the Appendix, we use this information, in retrospect,
to illustrate the univariate model for a setting in which information

would be available. Table 2 presents the sMAPE for the number of
patients hospitalised and patients in ICU based on this univariate
model. The other predictive measures are given in the Appendix.
Predictions of the number of patients in the hospital and in the
ICU, based on the univariate model, are provided in Appendix B.

Figure 5 shows the 5-day ahead prediction for the number of
new COVID-19 hospitalisations, patients in the hospital and
patients in the ICU, based on the joint model, using lognormal
distributions for the length of stay in the hospital and in the
ICU. The dots are observed data, where black and red ones cor-
respond to calibration and prediction period, respectively. The
line and envelope are posterior mean and 95% CI for models
from phase 1 (purple), phase 2 (orange), phase 3 (green) and
phase 4 (blue). Columns correspond to new hospitalisations
(left), total number of patients in the hospital (middle) and num-
ber of patients in the ICU (right). Rows correspond to different
prediction dates during the epidemic.

Fig. 5. Continued.
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Similar conclusions with respect to the use of the different
models at different time points can be made as based on the uni-
variate model in Section ‘Forecasting new hospitalisations at dif-
ferent phases in the epidemic’. Comparing the left column of
Figure 5 (prediction of new hospitalisation based on the joint
model) with Figure 3 (prediction of new hospitalisation based
on the univariate model), we observe that results are very much
alike. Depending on the amount of information available about
the ongoing epidemic, different models are better suited to fit
the data at hand and to make short-term predictions. When mod-
els perform similar in terms of WAIC, they are best used as best
and worst case scenario’s that can occur. When the WAIC is
smaller for the next phase, it is best to switch to the next phase
model. This is also confirmed by the sMAPE (and equivalently
by RMSE and MAPE) and the length and coverage of PI (PIcov
and MIS) of the new hospitalisations. This indicates that the
WAIC can indeed be used as an early indicator for the predictive
behaviour, while the predictive measures can in a practical setting
be calculated only after the predictive interval has past.

An advantage of the joint model is that it also provides esti-
mates and predictions for the number of patients in the hospital
(middle column of Fig. 5) and number of patients in the ICU
(right column of Fig. 5). The models clearly perform very well
in predicting the hospital load. The sMAPE of the 5-, 7- and
10-day predictions of patients in the hospital and in the ICU
are also presented in Table 3.

Estimates of the maximal number of new hospitalisations, the
turning point, the final size, the fraction of hospitalisations before
the turning point and the length of stay in the hospital and ICU
over time are visualised in Figure 6 (and summarised in Appendix
C). The maximal number of daily hospitalisations is estimated
around 500. This peak is very difficult to predict very early in
the epidemic, as can be seen by the large amount of uncertainty
and variability at the beginning of the epidemic on these

parameters. It is stably estimated as from end of March, which
is close to the turning point of the epidemic. This confirms that
early prediction of the turning point is not feasible early in the
epidemic using phenomenological models. The final size con-
verges to around 17 245 hospitalisations. This is very close to
the actual number, as there have been a total of 17 388 hospitali-
sations between 11 March and 1 June. Already on 10 April, just
after the peak, the fraction of hospitalisations before the turning
points was estimated as 38% (37–41%). This estimate is very
stable, and gives an early prediction of the amount of hospitalisa-
tions to still follow after the peak. The distribution of length of
stay in the hospital and ICU was estimated in this joint model
using a lognormal distribution. The figures show the estimated
mean length of stay, together with the 2.5% and 97.5% quantiles
of the length of stay distribution. The mean hospital length of stay
is estimated to be around 15 days, while the average ICU length of
stay is estimated to be higher at around 30 days. However, a very
large amount of patient variability is observed for the ICU length
of stay. As a sensitivity analysis, a gamma distribution was
assumed as well, which provided very similar results (results are
given in Appendix D).

Of major importance for health authorities is to know whether
the required hospital capacity will be above the available hospital
capacity. In Belgium, initial interest was whether or not the num-
ber of patients in hospital would exceed 5000 and in ICU exceed
2100. Such threshold probabilities can be easily obtained from
simulations from the predictive distributions (Fig. 7 shows the
exceedance probability in 5 days from the prediction date). This
is an important tool that can be used as an early warning tool.

Discussion

During the COVID-19 pandemic, the use of phenomenological
models for short-term prediction of the epidemic curve and/or

Table 3. Model goodness of fit and prediction performance via sMAPE for COVID pandemic in Belgium from March to June 2020 from the joint process

sMAPE (new hosp) sMAPE (patients in hosp) sMAPE (patients in ICU)

Date Phase WAIC 5-day 7-day 10-day 5-day 7-day 10-day 5-day 7-day 10-day

16 Mar P1 153.57 0.75 0.93 1.11 0.36 0.48 0.69 0.45 0.59 0.77

20 Mar P1 273.50 0.66 0.78 0.98 0.30 0.39 0.56 0.33 0.41 0.59

P2 272.60 0.38 0.42 0.46 0.25 0.31 0.40 0.25 0.30 0.38

24 Mar P1 423.30 0.62 0.79 1.00 0.31 0.42 0.61 0.31 0.42 0.61

P2 407.81 0.43 0.41 0.40 0.25 0.28 0.31 0.25 0.28 0.31

28 Mar P2 561.09 0.20 0.21 0.28 0.15 0.16 0.19 0.15 0.16 0.18

2 Apr P2 755.53 0.29 0.27 0.32 0.21 0.24 0.27 0.21 0.24 0.29

P3 767.70 0.49 0.66 0.85 0.17 0.18 0.23 0.16 0.16 0.17

6 Apr P2 924.65 0.21 0.32 0.37 0.22 0.23 0.25 0.27 0.30 0.34

P3 924.90 0.95 1.00 1.14 0.25 0.32 0.46 0.18 0.21 0.26

10 Apr P3 1115.37 0.77 0.92 1.07 0.38 0.48 0.64 0.23 0.28 0.39

P4 1067.19 0.22 0.25 0.25 0.16 0.18 0.22 0.15 0.15 0.16

14 Apr P3 1293.40 1.06 1.13 1.25 0.42 0.53 0.68 0.31 0.39 0.52

P4 1220.31 0.31 0.33 0.39 0.20 0.24 0.30 0.15 0.17 0.21

11 May P4 2251.76 0.40 0.37 0.47 0.31 0.34 0.38 0.26 0.29 0.32

27 May P4 2837.38 0.35 0.36 0.41 0.26 0.29 0.31 0.23 0.27 0.27
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derivation of characteristics of the epidemic wave has become very
popular [12, 25, 28, 29]. In this paper, we illustrate how simple
phenomenological models such as the exponential model, logistic
growth model and Richards model can be used to fit the daily
number of new hospitalisations from epidemic outbreaks in a
Bayesian framework. Recent developments in MCMC algorithms
facilitate the implementation of these Bayesian analyses. The
advantage of the Bayesian framework is the ease in which non-
linear models are fitted to the data, the simplicity in getting cred-
ible intervals and predictive intervals of derived parameters, as
well as the possibility to derive the exceedance probabilities. A
joint model of the number of new hospitalisations, number of
patients in the hospital and in the ICU allows prediction of the
hospital load from the epidemic growth model of the new hospi-
talisations, even without knowledge of the length of stay in the
hospital and proportion of patients requiring intensive care.
These models enable us to provide short-term predictions, pro-
vide worst and best case scenarios, estimate turning points and
final sizes of the outbreak, and forecast hospital load. The pro-
posed modelling procedure provides insights into ongoing out-
breaks, and uses the available information at different phases of
the epidemic. The proposed method facilitates real-time public
health responses when faced with infectious disease outbreaks
such as COVID-19.

Several alternative phenomenological models exist for the pro-
posed phases of an epidemic outbreak. Chowell et al. introduced
the generalised logistic and generalised Richards growth model,
which includes an additional deceleration of growth parameter
and which allows for sub-exponential growth [3]. Li et al. show
that also other alternative growth curve models can be used for
short-term forecasting of COVID-19 cases and that these models
can be cast into a Bayesian framework, including the generalised
logistic and generalised Richards model, the von Bertalanffy
model, Gompertz model and the generalised growth curve
model [25]. While some of these models are best suited for
phase 3 of the epidemic (due to the property of symmetry), the
other models are more suitable for modelling in the phase 4 of
the outbreak. In future research, it should be investigated how
alternative growth models could be combined within each phase
(e.g. using ensemble modelling), to improve the predictive behav-
iour [11, 25, 30]. This model does not take into account covari-
ates, which can be a constraint. Especially when the epidemic
shows an erratic behaviour, due to changes in policy and interven-
tion measures, inclusion of covariates is important. While it is
feasible to include covariates in this phenomenological model,
alternative methods such as generalised additive models can be
useful. Note that the missing covariates can cause extra heterogen-
eity in the counts, which is taken into account by use of the

Fig. 6. 5-day ahead prediction for the number of new COVID-19 hospitalisations, patients in the hospital and patients in the ICU from the joint process. The dots are
observed data, where black and red ones are corresponding to calibration and prediction period, respectively. The line and envelope are model fitted line and 95%
CI from phase 1 (purple), phase 2 (orange), phase 3 (green) and phase 4 (blue). Column correspond to new hospitalisations (left), total number of patients in the
hospital (middle) and number of patients in the ICU (right). Rows correspond to different prediction dates during the epidemic. Model estimates from the joint
process for maximum daily new hospitalisations, turning point, final size, fraction before turning point and length of stay in the hospital and ICU. The dots
and lines are posterior means and 95% CI for models from phase 1 (purple), phase 2 (orange), phase 3 (green) and phase 4 (blue), respectively.
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negative binomial distribution instead of a Poisson distribution.
Another approach is to model 3-day or 7-day smoothing averages
of the time series [32]. In addition, while in this paper the focus is
on modelling data of a single epidemic wave, the development of
phenomenological models that allow for multiple epidemic waves
is important. Models that deal with successive waves have been
proposed [20], and it would be interesting to investigate how
such method can be unified with the approach proposed in this
paper.

An important assumption in the joint modelling framework
when information on the length of stay in the hospital or ICU
is not available is that the proportion of patients that receive
intensive care is constant. While this assumption is limiting, it
is a necessary assumption to allow all parameters to be estimable.
Especially when longer time frames are considered, this assump-
tion is probably incorrect; though in such a case information on
length of stay might become available. In addition, an important
assumption of phenomenological models is that there are no
behavioural changes that would impact the growth of the epi-
demic. Therefore, it is recommended to use these models only
for short-term forecasting horizons. The use of individual-based
modelling approaches and stochastic compartmental models are
recommended for studying the impact policy measures and
longer forecasting horizons [2, 31].

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/S0950268821002491.
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