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Abstract Consider a Markov process on a locally compact metric space arising from
iteratively applying maps chosen randomly from a finite set of Lipschitz maps which,
on the average, contract between any two points (no map need be a global contrac-
tion) The distribution of the maps is allowed to depend on current position, with
mild restrictions Such processes have unique stationary initial distribution [BE],
[BDEG]

We show that, starting at any point, time averages along trajectories of the process
converge almost surely to a constant independent of the starting point This has
applications to computer graphics

1 Introduction
Let (X, d) be a metnc space in which sets of finite diameter are relatively compact.
Let w, X •* X be Lipschitz maps, with d(w,x, wj>)< s,d(x, y) for x,y in X, i =
1, ,N A good example is affine maps on U" Let p, X-*[0,1] such that p,(x)>0
and £fiiP,(x) = 1, and assume that the p,'s are continuous Define a Markov
transition probability by

p(x,B) = I p,(x)lB(w,x)
1 = 1

This is the probability of transfer from x e X into the Borel set B Intuitively, pick
a number i between 1 and N according to the distribution p,(x) and go to w,x

Such processes have been discussed in many places under the assumption that
the maps are contractions and usually that the p,'s are constants [BD], [DF], [DS],
[H], [K] (Karlin [K] discussed vanable p,'s ) It was shown recently [BE], [BDEG]
that none of the w,'s need be contractions, but that if there is contraction 'on the
average' between any two points, I e

N

I] d{w,x, wy)"-(x)<rd(x,y) Vx,y, where r < l ,
1 = 1

and if the p,'s are bounded away from 0 and have moduli of continuity <j>, satisfying
Dim's condition (I e </>,(0/' is integrable over (0, a) for some a > 0), then there is
a unique, attractive stationary initial probability distribution /J, for the process This
means
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for all Borel sets B and, for all initial probability distributions v, V"v converges in
distribution (that is, weakly) to /a, 1 e \fdVnv^\fd^, for all bounded continuous
functions / on X

Our object is to show that starting at any xe X, the trajectories (orbits) of the
process converge in distribution to fj. almost surely By this we mean that for almost
all trajectories x, xt,x2, of the process starting at x, the time averages

« + 1 k = 0

converge to \fd)x for all bounded continuous f, or in yet other terms, the empirical
distribution

1 "vn=——-r I S
n + l j t = o

of the first n + l points along the trajectory converges weakly to fi as n -* oo
Let us explain why this is important It follows (see Lemma 1) from the classical

pointwise ergodic theorem that for fi-almost all xe X, almost all trajectories starting
at x converge in distribution to /x (in the sense just explained) But in applications
to computer graphics, for example (see [BD]) we may have no way of choosing the
starting x according to the measure (JL, in fact, the idea is to start at some x and let
a computer-generated realization of the process 'draw a picture' of p

A special case of this result, when the maps w, are contractions with a special
disjointness condition, and the p,'s are constants, was stated already by Diaconis
and Shashahani [DS] Most of the difficulty of our proof arises from having
non-contractions and variable p,'s

First we prove a general lemma about Markov processes, and then we state and
prove the main theorem, using a martingale argument

2 Markov processes with unique stationary distribution
Let {X, SF) be an arbitrary measurable space, and let p( , ) Xxf-»[O,1] be a
transition probability, I e p(x, ) is a probability measure for each x, and p( , A) is
a measurable function for all Ae & A (discrete-time) stochastic process {Zn, n =
0,1, } with values in X is called a Markov process with transition probability p if

P{Zn+le A\Z0 = z0, ,Zn = zn}=p(zn,A) as

X is called the state space Define the operator V on finite measures by

1=1 P(x,Vv(A) = p(x, A) dv{x), A e f

A probability measure /A IS called a stationary initial distribution if Vfj. = /J. If /x is
a stationary initial distribution and if Zo has distribution fi, then {Zn} will be a
stationary stochastic process Assume for the rest of this paragraph that Zo has a
stationary initial distribution so that {Zn} is a stationary process A is called an
invariant event if there exists C e f ^ such that A = {(ZL, Zk+l, ) e C} for all k > 0,
where ^ is the cr-algebra in Xx generated by measurable cylinders A is called
almost invariant if there is an invariant event B so that P( A A B) = 0 Let $> denote
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the cr-algebra of almost invariant events The process {Zn} is called ergodic if for
every A e $>, P( A) = 0 or 1 A reference for the above definitions is [D]

The next lemma is surely known, but we were unable to find a statement of it for
general Markov processes We did find it stated in [FK] for a special case In any
case, it follows very easily from well-known results

LEMMA 1 If n is the unique stationary initial distribution (or just an extreme point
of the set of stationary initial distributions), then the process {Zn} with Zo having
distribution y. is ergodic

Proof If not, there is AeJ> with 0<P(A)< 1 Then there exists C e f such that
A = {ZneC}ae for all n>0, since {Zn} is a stationary Markov process [see S]
Define

v(B) = n{BnC)/fj.(C) and A(B) = /u.(Bn~C)//u,(~C)

(note that n(C) = P{A) and fi(~C) = P(~A)) Then fx = fx(C)v + fi(~C)\, so the
proof will be completed by showing that v (and hence A) is a stationary initial
distribution, since clearly v ¥" A

Now

= P((ZieB)n(ZleC))/li(C)

= P((Z,6B)n(ZoeC))//1(C)

I
JC

p(z,B)dfi(z)
I C

= j p(z, B) <Mz),

since clearly dv/dfj. = (l//u,(C))lc But this says that v is a stationary initial distribu-
tion D

Remark The processes discussed in the introduction and the next section are not
what is called indecomposable in [B] and Markov ergodic in [S], as the following
simple example shows, so we could not quote the theorems in those references for
our application

Example Let X = [0,1], wxx=\x, w2x = \ + \x, p, = 1/2, i = 1,2 Then all trajectories
starting at a rational number in [0,1] stay in the rationals, and all trajectories starting
at an irrational number in [0,1] stay in the irrationals Thus the process is not
indecomposable/Markov ergodic as defined in [B], [S] (some people use the word
'indecomposable' differently) However, the process is ergodic, since there is a
unique stationary initial distribution

3 Main results
Let Cl = N°° = {(h,i2, ) l s i ; < N and x, is an integer for each j} Let sd be the
cr-algebra generated by the cylinders in il
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Return now to the setup of the introduction For each x e X, let Px be the
probability measure on s& defined on cylinders by

Px((h,h, , O)=.P,1(x)P,2(w,1x)/>.3(w,2wIix) P,Sw'n-x
 w-,x)

(we abuse notation by writing Px((h, i2, , in)) when we mean Px({ii, i2, , („)}><
Nx Nx N x )) It is clear this is precisely the probability measure for realizations
of the Markov process starting at x That is, if we consider a Markov process
{Zn, n = 0 , 1 , } with state space X and transition probability p as given in the
introduction, then

P((Z 0 ,Z, , ) e B | Z 0 = x)

= Pxiih ,h, ) (x, whx, wl2whx, ) e B}

for every B e &x

THEOREM Suppose there exists r<\ such that
N

Ft d(w,x, wy)"'^ •£, rd{x, y) \/x,yinX
1 = 1

Assume there is 8>0 such that p,(x)>8 for all x and i, and that the moduli of
continuity of the p,'s satisfy Dim's condition Let /JL be the unique stationary initial
distribution for the Markov process described above (see [BDEG]) Then for every x
in X, there exists Gx <= ii such that PX(GX) = 1 and for (i,, i2, ) e Gx, we have

1 - f
Jn + l k=o

for allfe C(X), that is, almost all trajectories x, whx, w^whx, starting at x converge
in distribution to ix (in the sense explained in the introduction)

COROLLARY 1 Let v be any probability measure, and let {Zn} be the Markov process
with initial distribution v and transition probability as above Assume the hypotheses
of the Theorem Then for all feC(X),

-J-T I/(Zk)-» (fdn as
n + l k=o J

Remark It is shown in [FK] that Corollary 1 holds, in case X is a compact metric
space, for a general transition probability for which it is only required that x<->p(x, )
is continuous with the measures being given the w*-topology, and that there is a
unique stationary initial distribution

COROLLARY2 IfB^Xissuchthatfi(dB) = 0,thenforanyxeX,if(il,i2, J eG, ,
the average amount of time the trajectory spends in B converges to n(B), that is,

#{j 0<7<fc, w whxeB}
hm —-i =fi(B)
k^cc fc+1

This follows from a well-known consequence of weak convergence, and generalizes
a statement of [DS]

We prove two lemmas and then the Theorem and Corollary 1 The first lemma
uses a martingale argument
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LEMMA 2 Let x,yeX, x^y Assume the hypotheses of the theorem Let r < r, < 1
(l) For all e >0, there exist ne and S c f i with PX(S) < e such that

n>ne=$d(w,n whx,w,n w,j)< r" d(x,y)

except for (i, , i2, ) in S,
(n) limbec d(w,n w,,x, w,n w,ty) = 0 a s -Px

Proof Let 5 = max{s,, i = 1, , N} W/og assume s > l Define random variables
Xn on a by

Fi rf(w.n
 WH*, w<n w.j) 1 1 , , , ,

log-- a ' v-log (r/s)
L d(wln w x, w,n • w y)j Sif d(w,n_t whx,wl 1 wly)^:O,

log r otherwise

The purpose of the (1/S) log (r/s) term is to keep Xn bounded below, it is already
bounded above by log s

Claim E(Xn\iu , !„_,)<log r for all n > 1 The expectation means with respect

to the probability measure Px on fl

Proof Assume d(w,nl wMx, w,n_t w,i>
>)#0 Then

= I P.n(
w.n_, w',x) l o g l7 : v - l o g (r/s)

Assume the expression in brackets is a(1/5) log (r/s) for each in Then the
hypothesis of the Theorem (take logarithms) implies that the above is s log r If
for some in the expression in brackets is <(l /5) log (r/s) (which is negative), the
fact that p,n > 5 is easily seen to imply that the above is still <log r The claim is
proved

Now let Dn = Xn-E(Xn\il, ,in-\), so Dn is a martingale difference sequence,
and |D n |<2 |X n |<B, say

Let yn=S^=1(l/fc)Dk, so Yn is a martingale Now E(Y2
n)< B2^=l l/k2 since

Dk 1D, for k T± I (because they are martingale differences) Thus Yn is an L2-bounded
martingale, and so F ^ a s Then by Kronecker's lemma,

Thus,

1 "
h m - X Dk = 0 as

-—1 " d(w,k wx,w wy)
h m - I log— ' '• * ' --logr<0 as

n k=i d(w,k_l w,,x, w,k t w,j)

This telescopes to

hm log = -) f '— s log r a s ,
\ d(x,y) }
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that is,

l im I n- -j f *— <r<rx as
\ d(x,y) }

It is now easy to get from this that (1) of the conclusion holds, (n) follows immediately
from (1) •

LEMMA 3 Assume the hypotheses of the theorem Then for all x, y in X, Pv is absolutely
continuous with respect to Px

Proof Let PX(E) = 0, and let e > 0 We shall show Py(E)<e Let r, be as in Lemma
2

Let 4>t be the modulus of continuity of p,, and let <j> — </>i v 4>2v 4>N Note 4>
is increasing

Claim lt^(f>(rU(

Proof

oo> dt = £ dt
JO t A. = l J r\d(x,y) t

which proves the claim

Now choose m so large that m>ne/2 from (1) of Lemma 2 and also

Let sdn be the cylinder sets in H depending only on the first n coordinates By a
standard approximation result, there exist sets An e sin such that E <= U An, the sets
An are disjoint and PX(U AJ<(e /4 ) (8 / ( l -5 ) ) " m

Let Qn = {(h, h, ) d(w,k w,tx,w,k w,j)<rk
xd{x,y) for m<fe<n}, n>m

Let Qn = O for M < m Thus (?„ e ja?n Let Q= Dn 3 1 (?„ By Lemma 2(i), P>(~<?)<
e/2 Le tn>m Nowif(i, , i2, )&Qn,

( i _ s

El 1+ ;
= m + l L O J

But
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so

( 1 —

—

When n<m, this holds trivially for any ( i , , i2, )

Thus,

Py(QnAn)<Py(QnnAn)

( " l , I*) ( ' i '2

So PV(U ( Q n A J ) s 2 ( ( l - 5 ) / 5 ) m P x ( U ^ n ) since the An's are disjoint Now the
right side is <e/2 by construction

Also PV(U (~<? n AJ) < Pv(~<?) < e/2, so we have then P,(£) < PV(U AJ < e
D

Proof of the Theorem Let {Zn} be the Markov process with transition probability p
as given in the introduction and such that Zo has distribution /it Then the process
is stationary since /A is a stationary initial distribution, and is ergodic by Lemma 1
since ix is unique Let /e CC{X), the continuous functions with compact support
Then {/(Zn), n = 0,1, } is also stationary and ergodic [B, p 119] Let

n + l k=o

By the classical pointwise ergodic theorem, P((Z0, Zx, ) e B) = 1
But

= J P((Z0,Z1, )

Thus, for some x0 G X,

Let G = {(i!,i2, ) (x0, w-.̂ o, w.jW.̂ o )eB} Thus PXo(G) = l and for
(ii,i2, ) e G ,

1 f
, x 0 ) ^

J

By Lemma 3, Py(G) = l for every y e X By Lemma 2(n), for every yeX, there
exists Hy with PyiH^) = 1 and for (i,, i2, ) e H,,,

1 "
— 7 I /(w,k w,^)-/(wlk w,ixo)^0
n + l k=o

https://doi.org/10.1017/S0143385700004168 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700004168


488 J H Elton

(note / is uniformly continuous) Thus for (i,, i2, )eGr\Hy,

1 f
• I f(w,k w.,

n-r i k=0

and Py(GnHy) = l
In the above, G and Hv depended on / But since CC(X) is separable (since X

is tr-compact), we obtain that for each yeX, there exists Gy with Py(Gv) = 1 such
that

1 " ,, f
J

for each / in a countable dense subset of CC(X), and then a 3e argument gives this
for each fe CC{X) Finally, since fi is a probability measure, it is easy to see (by
Urysohn's lemma) that this holds for all fe C(X) •

Proo/ of Corollary 1 As in the proof of the theorem, let

B = \(xo,xl, )eX°° -^-i

Then

Z,, )eB)

J= JP((Z0,Z1,J
= I

, h, ) (x, whx, w,2wtix, )eB) dv(x)

But the integrand is 1 for each x by the theorem •
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