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Abstract Let C be a finite category and let k be a field. We consider the category algebra kC and show
that kC-mod is closed symmetric monoidal. Through comparing kC with a co-commutative bialgebra, we
exhibit the similarities and differences between them in terms of homological properties. In particular,
we give a module-theoretic approach to the multiplicative structure of the cohomology rings of small
categories. As an application, we prove that the Hochschild cohomology rings of a certain type of finite
category algebras are finitely generated.
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1. Introduction

Let C be a finite category (that is, Mor C is a finite set), let k be a field and let Vectk be the
category of finite-dimensional k-vector spaces. There are three well-defined mathematical
subjects: the category algebra kC, the functor category VectC

k and the classifying space
BC. These seemingly different things are closely related in terms of their homological
properties, as in the special case where C = G is a group considered as a category with
a single object. Recall that the category algebra kC [23, 24] as a k-vector space has
as a basis the set of all morphisms in C, and the product of any two base elements is
their composition in C, or zero if they are not composable. By a result of Mitchell [14],
there is an isomorphism VectC

k
∼= kC-mod, where kC-mod is the category of finitely

generated kC-modules. This gives kC-mod a symmetric monoidal category structure,
although a category algebra is usually not a bialgebra. Despite the fact that kC is not a
bialgebra, we show it does behave like a co-commutative bialgebra. In fact, the canonical
diagonal functor ∆ : C → C × C induces a co-multiplication on kC, still denoted by
∆ : kC → kC ⊗k kC, and thus gives kC some sort of ‘co-algebra’ structure. Moreover, this
diagonal functor can be used to define an internal hom on kC-mod. Hence, kC-mod is
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closed in the sense of [13]. We shall see in this paper that the multiplication and co-
multiplication on kC are compatible in a way (see Proposition 2.2) with the symmetric
monoidal category structure on kC-mod. As a consequence, a category algebra and a
co-commutative bialgebra share many common homological properties. Notably, let k

be the tensor identity of kC-mod. We can introduce the ordinary cohomology ring of
kC as Ext∗

kC(k,k), in which the cup product is defined by the tensor product on kC-
mod. From this definition we can easily identify the ordinary cohomology ring of kC
with H∗(BC, k) where the cup product is described via the Alexander–Whitney map.
The new construction gives us a module-theoretic way to understand the cohomology
ring structure, complementing the existing simplicial method (see, for instance, [23,25]).
Moreover, it allows further applications. After our description of the cohomology ring
action on Ext groups, we continue to show that the Hochschild cohomology rings of a
certain type of finite categories are finitely generated.

The paper is organized as follows. Section 2 is devoted to describing the closed sym-
metric monoidal category structure on kC-mod and to listing properties of kC that are
comparable to a co-commutative bialgebra. Section 3 is mainly devoted to demonstrat-
ing how one can define the cup product on the cohomology ring of C using the tensor
structure on kC-mod. We prove that this cup product is identified with the one defined
by simplicial methods. Then we use this new definition of cup product to reinterpret
certain homomorphisms among several cohomology rings. In § 4, we prove the finite gen-
eration of certain Hochschild cohomology rings. Finally, we include the construction of
the Grothendieck spectral sequence in Appendix A.

2. Tensor structure on kC-mod

Let us fix a field k and a finite category C (that is, Mor C is a finite set). The category
algebra kC [23,24] is defined as a k-vector space with a basis the set of morphisms in C.
The multiplication is given on base elements by α ∗β = α ◦β if α, β ∈ C are composable,
or zero otherwise. The category algebra kC is a finite dimensional associative algebra with
an identity 1kC =

∑
x∈Ob C 1x. In this section, we aim to describe the co-multiplicative

structure on kC and furthermore the closed symmetric monoidal category structure on
kC-mod, the category of finitely generated kC-modules. We do so through comparing
them with a finite-dimensional co-commutative bialgebra A, together with its module
category.

The category Vectk is a symmetric monoidal category equipped with a tensor product
⊗k and a tensor identity k. A key property which makes a co-commutative k-bialgebra A

interesting is that A-mod inherits the tensor product and the tensor identity. Moreover,
the tensor identity k plays the role of both the unit and co-unit of A. In what follows, we
begin with a description about how Vectk gives rise to a symmetric monoidal category
structure on kC-mod, which is well known. Then we characterize the structure of kC
using some structure maps comparable to those of a co-commutative bialgebra. In this
way we demonstrate why a category algebra and a co-commutative bialgebra, as well as
their module categories, are similar yet different. It is the intrinsic structure of a category
algebra that makes it a natural and interesting subject of investigation. We note that
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Vectk itself is the module category of the k-category algebra of the trivial category, based
on the result of Mitchell stated in § 1.

Fix a finite category C. The so-called internal product on VectC
k

∼= kC-mod, in which
the tensor product is denoted by ⊗̂k, is defined by (M ⊗̂k N)(x) = M(x)⊗k N(x) for any
M, N ∈ kC-mod ∼= VectC

k and x ∈ Ob C. The module structure of M ⊗̂ N can be viewed
as being given by the co-multiplication ∆ : kC → kC ⊗k kC, induced by the canonical
diagonal functor ∆ : C → C × C whose action on each α ∈ Mor C is ∆(α) = α ⊗ α. One
can easily verify that the constant functor k, which takes the tensor identity k of Vectk

as its value at each object, is the tensor identity with respect to ⊗̂k. Sometimes we also
call k the trivial kC-module, because when C is a group, k = k is exactly the trivial
module of the group algebra. For the sake of simplicity, we shall write ⊗ for ⊗k, and ⊗̂
for ⊗̂k, throughout this paper. We note that in the literature (see, for example, [7]), the
symbol ⊗ is often used instead of ⊗̂ for the internal tensor product of functors. The new
notation ⊗̂ is introduced because we need to distinguish between M ⊗ N and M ⊗̂ N .
In fact, as k-vector spaces, the inclusion M ⊗̂ N ⊂ M ⊗ N , for any kC-modules M and
N , is often strict.

As we mentioned above, the diagonal functor ∆ : C → C×C induces a co-multiplication
on the category algebra kC. The co-multiplication ∆ : kC → kC⊗kC gives us an almost co-
algebra structure on kC except that there is not a suitable choice of a map kC → k which
would serve as the co-unitary map. However, we have the following natural construction.

Lemma 2.1. There exists a surjective linear map

kC
ε� k Ob C,

defined on base elements by
ε(α) = t(α),

where t(α) is the target of α. It gives k Ob C a kC-module structure such that k Ob C ∼= k,
the trivial kC-module and the tensor identity in kC-mod with respect to ⊗̂.

Proof. The surjective map induces a kC-module structure on k Ob C as follows. If
x ∈ Ob C and β ∈ HomC(x′, y), then βx = y when x = x′, and βx = 0 otherwise. Using
Mitchell’s equivalence described in the first paragraph of § 1, one can easily verify that
this is isomorphic to k. �

From now on, we shall identify k Ob C with k, and write kC ε−→ k always. When C is a
group, ε is exactly the augmentation map to k.

If we return to ∆, we realize that the image of it really lies in kC ⊗̂ kC, a subspace
of kC ⊗ kC, and moreover ∆ : kC → kC ⊗̂ kC becomes a kC-map, since kC ⊗̂ kC, unlike
kC ⊗ kC, is a well-defined kC-module. The above observations hint that, in order to get
a sound ‘co-algebra’ structure, one needs to use ⊗̂ rather than ⊗ to define the structure
maps. This motivates us to write down the following maps, which resemble almost all of
the structure maps for a co-commutative bialgebra. Abusing terminology, we adopt the
same names for the structure maps of a category algebra, such as co-multiplication and
co-unit, as their counterparts for a bialgebra. In a coalgebra, the augmentation map and
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co-unit are the same, so by analogy the map ε in Lemma 2.1 will occasionally be called the
co-unit. We emphasize that the unit, given by the natural inclusion map k ∼= k ·1kC

ι−→ kC,
is different from the co-unit.

Proposition 2.2. Let kC be the category algebra of a finite category C. Then we have
the following k-linear maps: a co-multiplication ∆ : kC → kC ⊗ kC, defined by

∆

( ∑
α

λαα

)
=

∑
α

λαα ⊗ α,

a co-unit ε : kC → k defined as above, and a twist map τ : kC ⊗ kC → kC ⊗ kC defined on
base elements by τ(α ⊗ α′) = α′ ⊗ α, such that the following diagrams are commutative:

(1) co-associativity

kC ∆ ��

∆

��

kC ⊗ kC
∆⊗Id

��
kC ⊗ kC

Id ⊗∆
�� kC ⊗ kC ⊗ kC

(2) co-unitary property

kC
∼=

������������

∆

��

∼=

������������

k ⊗̂ kC kC ⊗̂ kC
ε⊗Id

��
Id ⊗ε

�� kC ⊗̂ k

(3) co-commutativity
kC

∆

�����������
∆

�����������

kC ⊗ kC τ
�� kC ⊗ kC

If we denote the multiplication by µ, then we have three further commutative diagrams:

(4) multiplication and co-multiplication

kC ⊗ kC
µ ��

∆⊗∆

��

kC ∆ �� kC ⊗ kC

kC ⊗ kC ⊗ kC ⊗ kC
Id ⊗τ⊗Id

�� kC ⊗ kC ⊗ kC ⊗ kC

µ⊗µ

��

(5) unit and co-multiplication

k ⊗ k
µ

		��������
ι⊗ι

�����������

kC
∆

�� kC ⊗̂ kC
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(6) unit and co-unit
k

ι



��
��

��
�� η

���
��

��
��

kC ε
�� k

where the k-linear map η : k → k is defined by 1 �→
∑

x∈Ob C x.

We note that the only missing diagram is the compatibility of multiplication and co-
unit. The reason for this is that one usually cannot give k a meaningful algebra structure,
so ε : kC → k becomes an algebra homomorphism. The existence of the above tensor
structure ⊗̂ is well known. Notably, it has been used to define the internal product in
functor homology theory (see, for example, [7]). The earlier considerations on ⊗̂ in the
literature are quite different in nature from what we are about to do, and, in particular,
it has not been formulated in such a way that one may compare a category algebra with
a co-commutative bialgebra. Before we switch to cohomology theory, we state some facts
that illustrate the differences between a category algebra and a co-commutative Hopf
algebra.

Remark 2.3. There are significant differences between a category algebra and a co-
commutative Hopf algebra. Most importantly, usually one cannot define an antipode for
a category algebra. This causes a problem when one attempts to define Homk(M, N)
as a kC-module (the internal hom). We shall give a remedy below. Another relevant
fact is that the product of two projective kC-modules is in general not projective. These
make many homological properties, such as the cohomology ring structure, of a category
algebra different from those of a co-commutative Hopf algebra.

Proposition 2.4. Let M, N ∈ kC-mod. Then we can define an internal hom
hom(M, N) ∈ kC-mod.

Proof. Consider the diagonal functor ∆ : C → C×C. It naturally induces a functor, the
restriction along ∆, Res∆ : k(C ×C)-mod → kC-mod, which has a right adjoint, the right
Kan extension RK∆ : kC-mod → k(C × C)-mod (see [13]). Because k(C × C) ∼= kC ⊗ kC,
for L, M, N ∈ kC-mod, L ⊗ M is a k(C × C)-module, and

HomkC(L ⊗̂ M, N) = HomkC(Res∆(L ⊗ M), N)
∼= Homk(C×C)(L ⊗ M, RK∆N)
∼= HomkC⊗kC(L ⊗ M, RK∆N)
∼= HomkC(L,HomkC(M, RK∆N)).

Here in HomkC(M, RK∆N), RK∆N ∈ kC⊗kC-mod is considered as a (k·1kC)⊗kC-module
and hence a kC-module. The kC⊗kC-module structure, or rather the kC⊗(k ·1kC)-module
structure, on RK∆N provides a kC-module structure on HomkC(M, RK∆N). Then we
define hom(M, N) = HomkC(M, RK∆N) and one can easily verify that it is an internal
hom. �
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Swenson built the internal hom in a different way in his 2009 PhD thesis [21, § 12.3], and
hence we attribute this construction to him. In his definition, he defines Hom(M, N) ∈
kC-mod by Hom(M, N)(x) = HomkC(xF ⊗̂ M, N), where xF = kC ·1x for each x ∈ Ob C.
Since, using the method in our proof,

HomkC(xF ⊗̂ M, N) = HomkC(Res∆(xF ⊗ M), N)
∼= HomkC⊗kC(xF ⊗ M, RK∆N)
∼= HomkC(xF, HomkC(M, RK∆N))
∼= HomkC(M, RK∆N)(x)

= hom(M, N)(x),

Swenson’s construction is identified with ours. When C = G is a group, it is straightfor-
ward from Swenson’s definition that hom(M, N) ∼= Homk(M, N) as kG-modules. From
our definition, if one notes that RK∆

∼=↑G×G
G , then, by applying the Mackey decompo-

sition formula, one gets the same isomorphism.

Example 2.5. Let k be a field of characteristic 2 and let C be the following category:

x{1x} ��
α ��
β

�� y {1y,g}



with g2 = 1y, gα = α and gβ = β. One can describe the indecomposable projectives and
simples of kC using general methods given in [23,24]. Indeed, the algebra kC has two
(one-dimensional) simples Sx,k, Sy,k and their projective covers are Px,k = k{1x, α, β}
and Py,k = k{1y, g}, respectively. The product Px,k ⊗̂ Px,k

∼= Px,k ⊕S2
y,k is not projective

because Sy,k �= Py,k.

Remark 2.6. Using the tensor product, one can introduce a ‘representation ring’
of kC, namely a(kC), which consists of Z-linear combinations of symbols such as [M ],
representing an isomorphism class of a kC-module M . For any two elements [M ] and [N ],
the multiplication is defined by [M ] · [N ] = [M ⊗̂ N ]. However, this product does not
exist in K0(kC), which is spanned over the set of isomorphism classes of indecomposable
projectives.

Remark 2.7. If we remove the finiteness condition on C, then there is no identity in
the algebra kC. Nevertheless, many of the constructions are still valid, although in this
case we are forced to use the full subcategory VectC

k because kC-mod does not have a
tensor structure.

Remark 2.8. If C happens to be a poset, then there is another co-multiplication,
which one can find in [20]. Let α ∈ Mor C. One then has ∆̄ : kC → kC ⊗ kC such that

∆̄(α) =
∑

{β,γ|βγ=α}
β ⊗ γ.
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Remark 2.9. Let A be an algebra. Although A-mod is not monoidal in general, the
module category Ae-mod is always equipped with a tensor product ⊗A such that A is
the tensor identity.

When A = kC is a category algebra, (kC)e ∼= kCe becomes the category algebra of the
category Ce := C×Cop, and hence there are two distinct monoidal structures on kCe-mod.
The monoidal structure given by ⊗kC is more interesting to us, and we shall deal with it
in the next section.

3. Cup products

The homology and cohomology of small categories with coefficients in functors have been
studied since the 1960s [1,8], but mainly using simplicial methods. Among well-known
results is that Ext∗

kC(k,k) ∼= H∗(BC, k) as graded k-vector spaces (see, for example, [15]).
This is indeed an algebra isomorphism. Here, using the tensor structure on kC-mod,
we provide a module-theoretic description to the ring Ext∗

kC(k,k), and then it follows
that the above-mentioned algebra isomorphism naturally exists. In the meantime we
pave the way for studying the ring action of Ext∗

kC(k,k) on various Ext groups. We
comment that since (kC-mod, ⊗̂,k) is a monoidal category with an exact tensor product,
it gives rise to a suspended monoidal category (D−(kC), ⊗̂,k), and then, following a
general statement [19] on the endomorphisms of the identity in a suspended monoidal
category, EndD−(kC)(k) is a graded commutative ring. It will be clear in this section
that this endomorphism ring is isomorphic to what we call the ordinary cohomology ring
Ext∗

kC(k,k).
Let M, M ′, N, N ′ ∈ kC-mod. We will define the cup product to be

⋃
: Exti

kC(M, N) ⊗ Extj
kC(M ′, N ′) → Exti+j

kC (M ⊗̂ M ′, N ⊗̂ N ′).

Since k is the identity with respect to ⊗̂, this will give us a ring structure on Ext∗
kC(k,k),

as well as an action of Ext∗
kC(k,k) on Ext∗

kC(M, N) for arbitrary M, N ∈ kC-mod. We
shall compare our construction with [2, § 3.2] for co-commutative Hopf algebras.

We first provide some elementary results and then describe the cup products in detail.
Suppose C is a complex of kC-modules. The homology group Hn(C), n ∈ Z, is a
kC-module such that Hn(C)(x) = Hn(C(x)) for each x ∈ Ob C. Thus, the complex C

is exact if and only if its evaluation at each object x ∈ Ob C, C(x), is exact. Let C and
D be two complexes of kC-modules. We can define the product of them as

(C ⊗̂ D)n =
⊕

i+j=n

Ci ⊗̂ Dj ,

with the differential (a natural transformation) given by

∂x(a ⊗ b) = ∂C

x a ⊗ b + (−1)ia ⊗ ∂D

x b,

where a ∈ Ci(x) and b ∈ Dj(x) for each x ∈ Ob C. We need a result deduced from the
Künneth Formula.
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Lemma 3.1. Given two complexes of kC-modules C and D, for each integer n we have

Hn(C ⊗̂ D) ∼=
⊕

i+j=n

Hi(C) ⊗̂ Hj(D).

Proof. For each x ∈ Ob C, we apply the Künneth Formula on (C ⊗̂ D)(x) = C(x) ⊗
D(x), and then the above result follows. �

Now we are ready to give a precise definition to the cup product. Suppose that ζ ∈
Extm

kC(M, N) is represented by

0 → N → Lm−1 → · · · → L0 → M → 0,

and ζ ′ ∈ Extn
kC(M ′, N ′) is represented by

0 → N ′ → L′
n−1 → · · · → L′

0 → M ′ → 0.

Then, applying Lemma 3.1 to 0 → N → Lm−1 → · · · → L0 and 0 → N ′ → L′
n−1 →

· · · → L′
0, we get an exact sequence

0 → N ⊗̂ N ′ → (Lm−1 ⊗̂ N) ⊕ (N ⊗̂ L′
n−1) → · · · → L0 ⊗̂ L′

0 → M ⊗̂ M ′ → 0,

which is defined to be the cup product of ζ and ζ ′, ζ ∪ ζ ′ ∈ Extm+n
kC (M ⊗̂ M ′, N ⊗̂ N ′).

Lemma 3.2. Let ζ, ζ ′ be as above. The cup product ζ ∪ ζ ′ is the Yoneda splice of

ζ ⊗̂ IdN ′ ∈ Exti
kC(M ⊗̂ N ′, N ⊗̂ N ′)

with

IdM ⊗̂ ζ ′ ∈ Extj
kC(M ⊗̂ M ′, M ⊗̂ N ′).

The image of Ext∗
kC(k,k) → Ext∗

kC(M, M) lies in the graded centre for any M ∈ kC-mod.
In particular, Ext∗

kC(k,k) is graded commutative.

Proof. This is entirely analogous to [2, Proposition 3.2.1], but here we use the tensor
structure on kC-mod. The key fact is that, given the cocommutativity τ∆ = ∆, we can
establish an isomorphism of complexes of kC-modules

C ⊗̂ D → D ⊗̂ C,

by a ⊗ b �→ (−1)deg a deg bb ⊗ a. �

In terms of projective resolutions, we can describe the cup product as follows. Let M ,
M ′, N , N ′ be kC-modules. Take two projective resolutions P∗ → M → 0 and Q∗ → M ′ →
0. Then, by our previous observation, P∗ ⊗̂ Q∗ → M ⊗̂ M ′ → 0 is an exact sequence.
This is usually not a projective resolution as the tensor product of two projective is not
projective, in contrast to the case of a co-commutative Hopf algebra. However, we can
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build a projective resolution, unique up to chain homotopy, R∗ → M ⊗̂ M ′ → 0 such
that there exists a chain map δ : R∗ → P∗ ⊗̂ Q∗ and a commutative diagram

R∗ ��

δ

��

M ⊗̂ M ′ �� 0

P∗ ⊗̂ Q∗ �� M ⊗̂ M ′ �� 0

If, for two integers m, n, ζ ∈ Extm
kC(M, N) and ζ ′ ∈ Extn

kC(M ′, N ′) are represented by
two cocycles f : Pm → N and g : Qn → N ′, then the product ζ ∪ ζ ′ is represented by
(f ⊗̂ g) ◦ δ : Rm+n → N ⊗̂ N ′.

As an example we show how to establish the algebra isomorphism Ext∗
kC(k,k) ∼=

H∗(BC, k). It is well known that Ext∗
kC(k,k) and H∗(BC, k) are isomorphic as graded

vector spaces (see, for instance, [15]), and our proof is based on that.

Theorem 3.3. With the above cup product, Ext∗
kC(k,k) ∼= H∗(BC, k) as algebras.

Proof. We begin with a quick description of H∗(BC, k). This ring can be computed
using a simplicial complex from the nerve N∗C of C. For each n � 0, NnC is the set
of n-chains of morphisms in C. In particular, we have N0C = Ob C. On the simplicial
complex kN∗C → 0, for each x0

α1−→ x1 → · · · αn−−→ xn ∈ kNnC, we have

δ(x0
α1−→ x1 → · · · αn−−→ xn) =

n∑
i=0

(−1)ix0
α1−→ · · · → x̂i → · · · αn−−→ xn,

in which the hat denotes the removal of an object. The cohomology ring H∗(BC, k)
is computed as a graded k-vector space as the homology of the cochain complex 0 →
Homk(kN∗C, k), and the cup product is obtained using the Alexander–Whitney map on
a simplicial complex.

In order to compare H∗(BC, k) with Ext∗
kC(k,k), we note that each kNnC has a

kC-module structure and, in particular, kN0C ∼= k. This enables us to modify the above
chain complex to get the bar resolution BC

∗ = B∗ of k as follows. For each x ∈ Ob C,
Bn(x) is the k-vector space with base elements of the form

x0
α1−→ x1 → · · · αn−−→ xn

α−→ x

(see [8] or [15] for more details) with xi, x ∈ Ob C, αi, α ∈ Mor(C), and a non-negative
n ∈ Z. The differential, as a natural transformation, is defined subsequently as

δx(x0
α1−→ x1 → · · · αn−−→ xn

α−→ x) =
n∑

i=0

(−1)ix0
α1−→ · · · → x̂i → · · · αn−−→ xn

α−→ x.

The complex of kC-modules B∗ → k → 0 is exact (see, for instance, [15]) and, further-
more, since, for any M ∈ kC-mod,

HomkC(Bn, M) ∼=
∏

x0→x1→···→xn∈NnC
M(xn),
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we see Bn is projective and hence we get a projective resolution of k. When C = G is a
group, this is exactly the bar resolution for the trivial module k.

Using the bar resolution B∗ → k → 0, we can describe the cup product on Ext∗
kC(k,k).

In fact, we can explicitly write out a diagonal approximation map (unique up to chain
homotopy) D : B∗ → B∗ ⊗̂ B∗, as a natural transformation, given by

Dx(x0
α1−→ x1 → · · · αn−−→ xn

α−→ x)

=
n∑

i=0

(x0
α1−→ · · · → xi

α···αi+1−−−−−→ x) ⊗ (xi
αi+1−−−→ · · · αn−−→ xn

α−→ x)

for any x ∈ Ob C and integer n. We note that HomkC(B∗,k) ∼= Homk(kN∗C, k) as
complexes and that the diagonal approximation map D corresponds to the Alexander–
Whitney map, which is used to calculate the cup product in the cohomology ring. These
imply Ext∗

kC(k,k) ∼= H∗(BC, k) as algebras. �

The bar resolution can also be constructed via the nerve of overcategories associated
with the identity functor IdC : C → C, as B∗ ∼= C∗(IdC /?) := kN∗(IdC /?) (see, for
example, [23, 25]). In this form, Bn(x) ∼= Cn(IdC /x), for each x ∈ Ob C and integer
n � 0, consists of chains of the following form as base elements:

(x0, β0)
γ1−→ (x1, β1) → · · · → (xn−1, βn−1)

γn−→ (xn, βn),

in which βi is a morphism in HomC(xi, x), and γi ∈ HomC(xi−1, xi) such that βi−1 =
βiγi−1. The previously defined diagonal map D is given by

Dx((x0, β0)
γ1−→ (x1, β1) → · · · → (xn−1, βn−1)

γn−→ (xn, βn))

=
n∑

i=0

[(x0, β0)
γ1−→ · · · γi−→ (xi, βi)] ⊗ [(xi, βi)

γi+1−−−→ · · · γn−→ (xn, βn)]. (3.1)

This is exactly the Alexander–Whitney map for the simplicial chain complex from the
nerve of the overcategory IdC /x.

Using the above description of cup products, one may continue to describe the split
surjective algebra homomorphism from the Hochschild cohomology ring of kC to the
ordinary cohomology ring [25]

φC : Ext∗
kCe(kC, kC) → Ext∗

kC(k,k).

This algebra homomorphism is given by −⊗kC k, and we have proved it is split surjective.
The proof of it relies on the use of F (C) of [17], which is the category of factorizations
in C and plays the role of the diagonal subgroup ∆G ⊂ G × G ∼= G × Gop when C = G

is a group. Indeed, there exists a commutative diagram of categories and functors:

F (C) τ ��

t
��		

		
		

		
Ce = C × Cop

pr
��












C
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The category of factorizations in C, F (C), has all the morphisms in C as its objects. For
any two objects in F (C), there exists a morphism from one to the other if the first is
a factor of the second in Mor(C). The category F (C) is used by Quillen [17] to show
that there exist natural functors C t←− F (C) s−→ Cop which induce homotopy equivalences.
One can find more information about F (C) in [25, § 2.1]. Here we just describe the key
steps in comparing the cup products in the Hochschild cohomology ring and the ordinary
cohomology ring. The preceding diagram naturally induces new commutative diagrams
of module categories and functors, among them:

kF (C)-mod kCe-mod
Resτ�� kF (C)-mod

LKt �������������
LKτ �� kCe-mod

LKpr�������������

kC-mod
Rest

������������� Respr

������������
kC-mod

Here Resτ is the functor induced by τ by precomposition and is called the restriction
along τ . The functor LKτ is the well-known left adjoint of it, called the left Kan extension
of τ . The other two pairs of functors, Rest, LKt and Respr, LKpr, are constructed in the
same way over t and pr, respectively. We shall focus on the functors LKτ , LKt and
LKpr. It is known that LKpr acts as − ⊗kC k and sends each projective resolution of kC
to a projective resolution of k. We showed in [25] that LKt maps the bar resolution of
kF (C)-modules BF (C)

∗ → k → 0 to a projective resolution of kC-modules

LKtBF (C)
∗ → LKtk ∼= k → 0.

Meanwhile, LKτ takes the bar resolution to a projective resolution of kCe-modules
LKτBF (C)

∗ → LKτk ∼= kC → 0. These are the main facts that we need to proceed. We
have to warn the reader that since normally a functor, such as Resτ and LKτ , between
the module categories of two category algebras does not come from an algebra homomor-
phism, module-theoretic methods are not sufficient for our work. This is the main reason
why simplicial constructions, such as the bar resolution, are necessary. Along with the
adjunctions with corresponding restrictions, the previous observations on the three left
Kan extensions lead to a commutative diagram of cohomology rings:

Ext∗
kF (C)(k,k) τ∗

��

t∗

∼=

��












Ext∗

kCe(kC, kC)

pr∗=φC��������������

Ext∗
kC(k,k)

The map pr∗ is the same as the one induced by − ⊗kC k and is often written as φk or
φC . The map t∗ is an isomorphism and can be thought as the inverse to

Bt∗ : H∗(BC, k) → H∗(BF (C), k),

induced by the topological map Bt : BF (C) → BC (a homotopy equivalence). In fact, the
composite of the chain maps,

HomkC(BC
∗ ,k)

Rest �� HomkF (C)(BF (C)
∗ ,k)

LKt

∼=
�� HomkC(LKtBF (C)

∗ ,k),
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comes from a chain homotopy LKtBF (C)
∗ → BC

∗ lifting the identity map k → k. It gives
rise to the isomorphisms

Ext∗
kC(k,k) Bt∗

�� Ext∗
kF (C)(k,k) t∗

�� Ext∗
kC(k,k).

Then τ∗(t∗)−1 is a right inverse of pr∗ = φC .
We shall take some time to explain how to show that τ∗ is an algebra homomorphism.

Based on our new description on the cup products in the source ring, we illustrate how
this map τ∗ preserves cup products. Take the bar resolution BF (C)

∗ → k → 0. We have
seen that LKτBF (C)

∗ → LKτk ∼= kC → 0 is a projective resolution of the kCe-module kC.
Let f , g be two cocycles representing two cohomology classes. Then we construct the
following diagram:

BF (C)
∗

DF (C)
�� BF (C)

∗ ⊗̂ BF (C)
∗

⇓LKτ

f⊗g �� k ⊗̂ k
∼= �� k

LKτBF (C)
∗

LKτ (DF (C))�� LKτ (BF (C)
∗ ⊗̂ BF (C)

∗ )
LKτ (f⊗g) �� LKτ (k ⊗̂ k)

∼= �� kC

LKτBF (C)
∗

DCe
�� LKτBF (C)

∗ ⊗kC LKτBF (C)
∗ LKτ (f)⊗LKτ (g)

��

Θτ

��

LKτ (k) ⊗kC LKτ (k)

∼=Θ0

��

∼=
�� kC

The first row represents f ∪ g, the cup product of f and g. The left Kan extension
LKτ maps it to the second row of kCe-modules, which represents the image of the cup
product, and we want to show that it gives rise to the cup product of LKτ (f) and LKτ (g)
as Hochschild cohomology classes. Since we have

LKτ (DF (C)) : LKτBF (C)
∗ → LKτ (BF (C)

∗ ⊗̂ BF (C)
∗ ),

and LKτ (BF (C)
∗ ) and LKτ (BF (C)

∗ ) ⊗kC LKτ (BF (C)
∗ ) are chain homotopy equivalent as

both of them are projective resolutions of kC, we can construct chain maps DCe

and
Θτ , unique up to chain homotopy, such that the above diagram is commutative. Because
the Hochschild diagonal approximation map always exists and is unique up to chain
homotopy, independent of the choice of a projective resolution of kC [18], DCe

will serve
as the Hochschild diagonal approximation map. Then since the lower two rows form a
commutative diagram, we know they represent the same cohomology class, i.e. the cup
product LKτ (f) ∪ LKτ (g), in Ext∗

kCe(kC, kC).

Remark 3.4. Slightly modifying the previous argument, we can also demonstrate the
action of Ext∗

kCe(kC, kC) on Ext∗
kCe(kC, M) alternatively via ⊗̂ on kF (C)-mod. As we

proved in [25], for any M ∈ kCe-mod, one gets

Ext∗
kCe(kC, M) ∼= Ext∗

kF (C)(k, Resτ M).

It was also shown that the kF (C)-module Resτ kC naturally splits as k ⊕ NC for some
NC ∈ kF (C)-mod. This provides a surjective homomorphism ρ : Resτ kC ⊗̂ Resτ M →
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Resτ M , and hence a map

ρ∗ : Ext∗
kF (C)(k, Resτ kC ⊗̂ Resτ M) → Ext∗

kF (C)(k, Resτ M).

The latter fits into the following commutative diagram:

Ext∗
kF (C)(k, Resτ kC) ⊗ Ext∗

kF (C)(k, Resτ M)

∪
��

Ext∗
kCe(kC, kC) ⊗ Ext∗

kCe(kC, M)

∪
��

Ext∗
kF (C)(k, Resτ kC ⊗̂ Resτ M)

∼=
��

Ext∗
kF (C)(k, Resτ M)

ρ∗

��
Ext∗

kCe(kC, kC ⊗kC M) Ext∗
kCe(kC, M),

which reduces to [18, Proposition 3.1] when C = G is a group. The left-hand column
is the so-called cup product with respect to the pairing ρ. Since Ext∗

kF (C)(k,k) is a
direct summand of Ext∗

kF (C)(k, Resτ kC), it also exhibits the action of Ext∗
kC(k,k) on

Ext∗
kCe(kC, M), via its identification with Ext∗

kF (C)(k,k).

Remark 3.5. It is interesting to point out a conjecture by Etingof and Ostrik which
asserts that the cohomology ring of the tensor identity in a finite tensor category is finitely
generated [6, Conjecture 2.18]. Their cohomology ring is comparable to our ordinary
cohomology ring of a category algebra, which is not finitely generated modulo nilpotents
(see [25]). The only difference between our settings seems to be the condition that they
require the tensor identity to be simple, while in our situation k is not simple unless the
category is equivalent to a group.

4. Finite generation of certain Hochschild cohomology rings

In [25] we saw that the ordinary cohomology ring of a finite category can be infinitely
generated even after we quotient out nilpotents. Based on the main theorem therein, the
Hochschild cohomology ring of such a finite category algebra is not finitely generated
either. However, in § 4, we show there are some interesting finite category algebras whose
Hochschild cohomology rings are finitely generated. The motivating question is to find out
whether or not Ext∗

kCe(kC, kC) modulo nilpotents is finitely generated over Ext∗
kC(k,k) if

the latter is Noetherian (see Remark 3.5 and the discussions below). On the first attempt
to solve that question, one may want to check whether the Evens–Venkov Theorem on
the finite generation of group cohomology could be generalized to category cohomology.
Unfortunately, the answer is negative.

Example 4.1. Let k be a field of characteristic 2 and let C be the following category:

x{1x} ��
α �� y {1y,g}



with gα = α. There are two one-dimensional simple modules Sx,k and Sy,k, together with
their projective covers Px,k = k{1x, α} and Py,k = {1y, g}. We see that k ∼= Px,k is pro-
jective; hence, Ext∗

kC(k, M) ∼= M(x) for any M ∈ kC-mod. In particular, Ext∗
kC(k,k) ∼= k.

However, both modules Ext∗
kC(Sx,k, Sy,k) and Ext∗

kC(Sy,k, Sy,k) are infinite dimensional.
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If we look at the opposite category Cop, again we have Ext∗
kCop(k,k) ∼= Ext∗

kC(k,k) ∼= k,
and Ext∗

kCop(k, Sy,k) ∼= Ext∗
kCop(Sy,k, Sy,k) is infinite dimensional. This means we do not

have the finite generation of Ext∗
kC(k, M) over Ext∗

kC(k,k), even if they can be calculated
by using the same projective resolution.

The computation of Hochschild cohomology can be found in [25, § 3.2]. Indeed, the
Hochschild cohomology ring of kC is infinite dimensional but its quotient ring by nilpo-
tents is just k.

The above example implies that we cannot expect a finite generation property of
Ext∗

kC(M, N) over Ext∗
kC(k,k). Thus, we need to develop other means to examine the

finite generation of Hochschild cohomology ring modulo nilpotents as a module over the
ordinary cohomology ring. In what follows, we show certain categories constructed over a
finite group have their Hochschild cohomology closely related to the group cohomology.
This is inspired by the well-known fact that one may approximate group cohomology
via the ordinary cohomology of certain finite categories (see, for example, [5]). Based on
this observation, we prove the finite generation of the Hochschild cohomology rings of a
certain kind of finite category algebras. Before we state any results, we construct several
categories, and along the way one can see why we are interested in them and the finite
generation of their cohomology rings.

Let G be a finite group and let k be an algebraically closed field with positive char-
acteristic p | |G|. Given a p-block b, according to Alperin and Broué (see [22]), one
has a poset of b-Brauer pairs (Brauer pairs associated to b) Sb = Sb(G), in which the
objects are of the form (Q, eQ) for Q a subgroup of some defect of b, and eQ a Brauer
correspondent of b in kCG(Q). When b = b0 is the principal block, this poset is iso-
morphic to S1

p , that is, the poset of all p-subgroups of G. Just like the poset S1
p , every

Sb has a natural G-action and thus is a so-called G-poset. By adding all possible mor-
phisms among b-Brauer pairs, induced by conjugations by elements in G, one obtains
a larger category which has the same objects as Sb. Such a category may be called a
‘b-transporter category’, and is denoted by Trb(G). In fact, Sb can be identified with a
subcategory of Trb(G). (We note that our transporter categories are usually not trans-
porter systems in the sense of Oliver and Ventura [16].) When b = b0, Trb0(G) is exactly
the p-transporter category of G, usually written as Trp(G). A concise but conceptual way
to introduce Trb(G) is to assert that Trb(G) is the Grothendieck construction (recalled
below) for the G-poset Sb. In practice, one often fixes a defect P of b, and only con-
siders the full subcategory Trb(G)�(P,eP ), which is equivalent to Trb(G) as categories.
Moreover, since the second entry in each b-Brauer pair (Q, eQ) is uniquely determined
by b and the first entry Q, for convenience one often writes Q instead of (Q, eQ) as an
object when a certain block b is chosen. Under this convention, one replaces the notation
Trb(G)�(P,eP ) by Trb(G)�P . The category Trb(G)�P has an important quotient category
Fb = Fb(G), called the fusion system of b on the defect group P . The fusion system is a
key concept in the modular representation theory of finite groups [22] and the homotopy
theory of classifying spaces [4]. There are some objects (certain subgroups of P ) in Fb

which are of particular interest. These subgroups are called F-centric subgroups, and P

is always one of them. One normally denotes the full subcategory of Fb, consisting of all
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F-centric subgroups, by Fc
b . Similarly, we have a full subcategory Trcb(G) ⊂ Trb(G) with

Ob Trcb(G) = ObFc
b . Note that, when b = b0, the Fb0-centric subgroups are exactly the

p-centric subgroups.
A p-local finite group on a defect group P of b is defined to be a triple (P,Fb,Lb),

where Lb is a certain categorical extension of Fc
b satisfying some axioms (see [4] for

general definition). If b = b0 is the principal block, one can explicitly construct Lb0

(usually written as Lc
p) as a quotient category of Trcp(G)�P , although in general the

existence and uniqueness of Lb for a given Fb are still unknown. If Lb exists, there will
be important implications in both representation theory [11] and homotopy theory [4].
For example, the ordinary cohomology ring H∗(Lb; k) ∼= H∗(BLb, k) is isomorphic to the
cohomology ring of b, usually written as H∗(b), which is defined as the stable elements
in H∗(P, k) [10]. It is known that H∗(b) is Noetherian [4,10]. Now one has the following
algebra homomorphisms:

HH∗(kLb) ∼= Ext∗
kLe

b
(kLb, kLb) → Ext∗

kLb
(k,k) ∼= H∗(BLb, k) ∼= H∗(b) → HH∗(b),

in which the left-hand ‘→’ is split surjective by [25], while the right-hand ‘→’ is injective
[10]. Note that the algebras kLb and b are usually not derived to be equivalent, and the
rightmost map induces an isomorphism upon passing to the quotient rings by nilpotents
[12]. Naturally, we want to compare HH∗(kLb) with HH∗(b), and we would like to see
whether HH∗(kLb) is finitely generated or, even better, if the two rings are isomorphic
after modulo nilpotents. At this stage we do not know the answer to our questions.
However, we are able to prove the finite generation of the Hochschild cohomology rings
of certain transporter categories.

Let G be a finite group and let P be a finite G-poset. Then we have a Grothendieck
construction (see, for instance, [5]) which is a finite category, written as TrP(G). The
objects are just objects of P, but a morphism x → y is a pair (g, gx � y) for some g ∈ G.
Such a category admits a natural functor to G, regarded as a category with one object
∗. In fact, there exists a sequence of functors:

P γ−→ TrP(G) αG−−→ G,

where γ is the natural embedding, and whose topological realization is a fibration:

|P|
|γ| ��

=

��

|TrP(G)|
|αG| ��

	
��

|G|

	
��

|P| �� EG ×G |P| �� EG ×G ∗.

In order to study the finite generation of cohomology rings, we need to recall the
Grothendieck cohomology spectral sequence for a functor θ : D → C (see Appendix A)

Hi(C; Hj(?\θ; N)) ⇒ Hi+j(D; N),

where x\θ is the undercategory for each x ∈ Ob C (i.e. the comma category in [13, X.3])
and N is a kD-module that can be regarded as an x\θ-module through the forgetful
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functor x\θ → D. As a reminder, the cohomology of a small category C with coefficients
in some M ∈ kC-mod is written as H∗(C; M), and is isomorphic to Ext∗

kC(k, M), as a
well-known result. Since G only has one object, the Grothendieck spectral sequence for
αG : TrP(G) → G reads as follows:

Hi(G; Hj(P̃; N)) ⇒ Hi+j(TrP(G); N),

or, to be consistent with our Ext notation,

Exti
kG(k,Extj

kP̃(k, N)) ⇒ Exti+j
k TrP(G)(k, N)

for any N ∈ k TrP(G)-mod, in which P̃ is the (finite) undercategory (the ‘fibre’) ∗\αG

whose skeleton is isomorphic to the poset P (thus P̃ � P as categories). By Appendix A,
the above spectral sequence is a module over

Exti
kG(k,Extj

kP̃(k,k)) ⇒ Exti+j
k TrP(G)(k,k).

Meanwhile, we have a morphism between the following Grothendieck spectral sequences,
induced by

P
γ ��

��

TrP(G)
αG ��

αG

��

G

pt �� Trpt(G) =
�� G

where ‘pt’ is a point fixed by G,

Exti
kG(k,Extj

kpt(k,k)) ��

��

Exti+j
k Trpt(G)(k,k)

��
Exti

kG(k,Extj

kP̃(k,k)) �� Exti+j
k TrP(G)(k,k)

This makes the lower spectral sequence, and hence

Exti
kG(k,Extj

kP̃(k, N)) ⇒ Exti+j
k TrP(G)(k, N)

modules over Ext∗
k Trpt(G)(k,k) = Ext∗

kG(k, k). We point out that the group cohomology
ring H∗(G, k) ∼= Ext∗

kG(k, k) acts on H∗(TrP(G); N) ∼= Ext∗
k TrP(G)(k, N) via the algebra

homomorphism induced by αG (or |αG|),

Ext∗
kG(k, k) ∼= H∗(G, k) → H∗(|TrP(G)|, k) ∼= H∗(TrP(G); k) ∼= Ext∗

k TrP(G)(k,k).

Since P has the property that k is of finite projective dimension, Hj(P̃; −) ∼=
Ext∗

kP̃(k,−) vanishes for large j. Furthermore, the well-known theorem of Evens and
Venkov says that, for each j, Ext∗

kG(k,Extj

kP̃(k, N)) is a finitely generated Ext∗
kG(k, k)-

module. Since E∞ is a subquotient of E2 of a cohomology spectral sequence, we have the
following statement. We comment that our argument works for any small G-categories
P with the property that k ∈ kP-mod is of finite projective dimension.
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Lemma 4.2. For any N ∈ k TrP(G)-mod, Ext∗
k TrP(G)(k, N) is a finitely generated

Ext∗
kG(k, k)- and Ext∗

k TrP(G)(k,k)-module.

To examine the Hochschild cohomology ring

Ext∗
kTrP(G)e(kTrP(G), kTrP(G)) ∼= Ext∗

kF (TrP(G))(k, Resτ (kTrP(G))),

we have to consider the category of factorizations F (TrP(G)). In fact, we can always
define a functor α̃G = αG ◦ t:

F (TrP(G)) t ��

α̃G ������������
TrP(G)

αG
����

��
��

��
�

G

When we look at the Grothendieck spectral sequence for α̃G, the undercategory ∗\α̃G

similarly amounts to a finite poset, and hence we have the next result.

Lemma 4.3. For any U ∈ kF (TrP(G))-mod, Ext∗
kF (TrP(G))(k, U) becomes a finitely

generated Ext∗
kG(k, k)- and Ext∗

kF (TrP(G))(k,k)-module.

Now we can state our main result in this section.

Theorem 4.4. Let G be a finite group and let P be a finite G-poset. The Hochschild
cohomology ring Ext∗

k TrP(G)e(k TrP(G), k TrP(G)) is a finitely generated algebra.

If P = pt, we get the usual assertion that Ext∗
kGe(kG, kG) is finitely generated over

Ext∗
kG(k, k). If P = Sb, we have Ext∗

kG(k, k) acting on Ext∗
k Trb(G)e(k Trb(G), k Trb(G)) via

Ext∗
k Trb(G)(k,k). In particular, when b = b0, Ext∗

k Trp(G)(k,k) ∼= H∗(b0) ∼= Ext∗
kG(k, k).

Corollary 4.5. If k is a field with positive characteristic p | |G| and b is a p-block,
then, for any full subcategory Tr ⊂ Trb(G) whose objects are closed under G-conjugation,
Ext∗

k Tre(k Tr, k Tr) is a finitely generated algebra.

Given the principal block b0 of a group algebra kG, we have a fusion system Fb0 = Fp

over a fixed Sylow p-subgroup S. As we mentioned earlier, there exists a centric linking
system Lb0 = Lc

p, which is determined by the full subcategory Trcp(G)�S of the trans-
porter category Trp(G), consisting of all p-centric subgroups contained in S [3]. In fact,
Lc

p is a quotient category of Trcp(G)�S by some p′-groups. In other words, if one looks
at the canonical functor π : Trcp(G)�S → Lc

p, each undercategory has the property such
that it has a minimal object whose automorphism group is p′ and, if one regards this
p′-automorphism group as a subcategory, the left Kan extension along the inclusion is
exact. Furthermore, the left Kan extension of the trivial group module is the trivial
module of the undercategory. This implies, by an Eckmann–Shapiro-type result, that
the cohomology of each undercategory can be reduced to the cohomology of the auto-
morphism group of the above-specified minimal object in it. Consequently, the mod-p
cohomology of each undercategory of π with arbitrary coefficients vanishes in positive
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degrees. To summarize, since Trcp(G)�S is equivalent to Trcp(G) and the Grothendieck
spectral sequence for π collapses, we have an isomorphism

Ext∗
kTrc

p(G)(k, V ) ∼= Ext∗
kTrc

p(G)�S
(k, V ) ∼= Ext∗

kLc
p
(k, RKπV ),

where
RKπV = H0(?\π; V ) ∼= lim←−

?\π

V

is the right Kan extension along π of V . It is similar to [3, Lemma 1.3 (iii)], in which
right modules are considered and thus the left Kan extension is applied. In particular,
the functors

G ← Trcp(G) ←↩ Trcp(G)�S → Lc
p

induce isomorphisms of mod-p ordinary cohomology rings.

Proposition 4.6. Let Lc
p be the centric linking system associated to the principal

block of a finite group algebra kG. Then Ext∗
kLc

p
(k, RKπV ) is finitely generated as an

Ext∗
kLc

p
(k,k)-module.

However this still leaves us some way from understanding the finite generation of the
Hochschild cohomology ring Ext∗

k(Lc
p)e(kLc

p, kLc
p) ∼= Ext∗

kF (Lc
p)(k, Resτ (kLc

p)).

Appendix A. Grothendieck spectral sequence

Let θ : D → C be a functor between two small categories. For each module M ∈ kD-mod,
it is known to the experts that there exists a Grothendieck spectral sequence E∗,∗

2 (M) ⇒
E∗,∗

∞ (M) or, more explicitly,

H∗(C; H∗(?\θ); M) ⇒ H∗(D; M),

which comes from a double complex E∗,∗
0 (M). Here we mainly want to assure the reader

that there exists a natural pairing of such double complexes E∗,∗
0 (M) ⊗ E∗,∗

0 (N) →
E∗,∗

0 (M ⊗̂ N). With the pairing, we have a product on each page of the Grothendieck
spectral sequences

Ei,j
n (M) ⊗ Es,t

n (N) → Ei+s,j+t
n (M ⊗̂ N),

and

Ei,j
∞ (M) ⊗ Es,t

∞ (N) → Ei+s,j+t
∞ (M ⊗̂ N),

Thus, we have a ring structure on

H∗(C; H∗(?\θ); k) ⇒ H∗(D; k),

over which the following is a module

H∗(C; H∗(?\θ); M) ⇒ H∗(D; M).
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Now we recall how one constructs the Grothendieck spectral sequence. Consider the
composite of the following two functors:

kD-mod RKθ−−−→ kC-mod
lim←−C−−−→ Vectk,

in which RKθ = lim←−?\θ
is the right Kan extension along θ. Since RKθ sends injectives

to injectives and lim←−C RKθ
∼= lim←−D, we have a Grothendieck spectral sequence (see, for

instance, [9, § VIII.9]) for each M ∈ kD-mod. Note that, for a given small category E ,
one has

i

lim←−
E

∼= Hi(E ; −) ∼= Exti
kE(k,−).

Fix a kD-module M ; we start with a double complex E∗,∗
0 (M). First take an injective

resolution of M

0 → M → I0 → I1 → I2 → · · · .

Then we apply RKθ to get a complex of injective kC-modules

RKθI0 → RKθI1 → RKθI2 → · · · ,

and consequently a commutative diagram

RKθI0 ��

��

RKθI1 ��

��

RKθI2 ��

��

· · ·

J0,0 ��

��

J1,0 ��

��

J2,0 ��

��

· · ·

J0,1 ��

��

J1,1 ��

��

J2,1 ��

��

· · ·

...
...

...

in which every column is an injective resolution of the top module. Now we apply lim←−C
and obtain a double cochain complex, denoted by E∗,∗

0 (M),

lim←−C J0,0 ��

��

lim←−C J1,0 ��

��

lim←−C J2,0 ��

��

· · ·

lim←−C J0,1 ��

��

lim←−C J1,1 ��

��

lim←−C J2,1 ��

��

· · ·

lim←−C J0,2 ��

��

lim←−C J1,2 ��

��

lim←−C J2,2 ��

��

· · ·

...
...

...
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and it gives rise to the Grothendieck spectral sequence recorded above. We omit the
details, as the construction is standard and we are more interested in finding a pairing.
Suppose we also have a double complex E∗,∗

0 (N) for another kD-module N :

lim←−C J ′
0,0 ��

��

lim←−C J ′
1,0 ��

��

lim←−C J ′
2,0 ��

��

· · ·

lim←−C J ′
0,1 ��

��

lim←−C J ′
1,1 ��

��

lim←−C J ′
2,1 ��

��

· · ·

lim←−C J ′
0,2 ��

��

lim←−C J ′
1,2 ��

��

lim←−C J ′
2,2 ��

��

· · ·

...
...

...

and, furthermore, a double complex E∗,∗
0 (M ⊗̂ N) for the kD-module M ⊗̂ N :

lim←−C J ′′
0,0 ��

��

lim←−C J ′′
1,0 ��

��

lim←−C J ′′
2,0 ��

��

· · ·

lim←−C J ′′
0,1 ��

��

lim←−C J ′′
1,1 ��

��

lim←−C J ′′
2,1 ��

��

· · ·

lim←−C J ′′
0,2 ��

��

lim←−C J ′′
1,2 ��

��

lim←−C J ′′
2,2 ��

��

· · ·

...
...

...

We want to establish a natural map

lim←−CJi,j ⊗ lim←−CJ ′
s,t → lim←−CJ ′′

i+s,j+t

that is compatible with the differentials. In fact, since there is a unique map, given by
the universal property of lim←−,

lim←−CJi,j ⊗ lim←−CJ ′
s,t → lim←−CJi,j ⊗̂ J ′

s,t,

we only need to construct a map

lim←−
C

Ji,j ⊗̂ J ′
s,t → lim←−

C
J ′′

i+s,j+t.

Our definition is again based on the universal property of lim←−, along with the tensor
product of complexes of functors in § 3. We emphasize that

lim←−CJi,j ⊗ lim←−CJ ′
s,t → lim←−CJi,j ⊗̂ J ′

s,t
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respects the differentials in E∗,∗
0 due to its construction via the universal property. This

is the case when we define

lim←−CJi,j ⊗̂ J ′
s,t → lim←−CJ ′′

i+s,j+t

and thus we will not verify that the map we are about to construct does respect differ-
entials.

From the two injective resolutions 0 → M → I∗ and 0 → N → I ′
∗, we can build a

commutative diagram
0 �� M ⊗̂ N �� I∗ ⊗̂ I ′

∗

��
0 �� M ⊗̂ N ���� I ′′

∗

in which the upper row is an exact sequence and the lower one is the injective
resolution used to define E∗,∗

0 (M ⊗̂ N). Applying RKθ, we obtain a chain map
RKθ(I∗ ⊗̂ I ′

∗) → RKθI
′′
∗ . In particular, we have for any non-negative integers i and s

a map RKθ(Ii ⊗̂ I ′
s) → RKθI

′′
i+s. The universal property of lim←− provides a morphism

RKθIi ⊗̂ RKθI
′
s → RKθ(Ii ⊗̂ I ′

s). Thus, we have a natural map

RKθIi ⊗̂ RKθI
′
s → RKθI

′′
i+s.

Next we repeat the above tensor construction for the two injective resolutions
0 → RKθIi → Ji,∗ and 0 → RKθI

′
s → J ′

s,∗. It follows from our discussions that there
is a commutative diagram

0 �� RKθIi ⊗̂ RKθI
′
s

��

��

Ji,∗ ⊗̂ J ′
s,∗

��
0 �� RKθI

′′
i+s

���� J ′′
i+s,∗+∗.

In particular there exists Ji,j ⊗̂ J ′
s,t → J ′′

i+s,j+t, and consequently the desired map

lim←−
C

Ji,j ⊗̂ J ′
s,t → lim←−

C
J ′′

i+s,j+t.

Hence, we do obtain a pairing E∗,∗
0 (M) ⊗ E∗,∗

0 (N) → E∗,∗
0 (M ⊗̂ N).
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