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Abstract

Let p be an odd prime. In this note, we show that a finite group G is solvable if all degrees of irreducible
complex characters of G not divisible by p are either 1 or a prime.
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1. Introduction

Let p be a prime and G a finite group. Define Irr(G) to be the set of all
irreducible complex characters of G and Irr, (G) the subset of those irreducible
complex characters of G of p’-degrees, that is, characters whose degrees are not
divisible by p. Irreducible characters of a finite group of p’-degrees have attracted
considerable attention, partly due to the famous McKay conjecture asserting that
[Irr,» (G)| = [Irry (NG (P))|, where Ng(P) is the normaliser of a Sylow p-subgroup P of
G. It was known that they (or some of them) have an influence on the structure of G.
For instance, the I[to—Michler theorem states that a finite group G has a normal abelian
Sylow p-subgroup if and only if all of the irreducible complex characters of G have
p’-degrees [14, Theorem 2.3], and a special case of the recently proved Gluck—Wolf
theorem for arbitrary finite groups states that if A € Irr(Z) is a linear complex character
of a normal subgroup Z of G such that y(1) is not divisible by p for all y € Irr(G) lying
over Z, then G/Z has abelian Sylow p-subgroups [16, Theorem A].

As usual, let cd(G) and cd,(G) be the degree sets of Irr(G) and Irr, (G),
respectively. The main purpose of this note is to investigate finite groups G under
some assumption on cd, (G). This is motivated by the classification of finite groups
with only one nonlinear irreducible character of p’-degree and the recent work of the
authors on finite groups almost all of whose irreducible character degrees are primes
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(see [9, Theorem A] and [11], respectively). Our main result gives a character-theoretic
criterion for a finite group to be solvable.

TueOREM 1.1. Let p be an odd prime. If G is a finite group such that each member of
cd, (G) is either 1 or a prime, then G is solvable.

We remark here that Theorem 1.1 does not hold if p =2. A counterexample is
G = S5 with cd(G) = {1,4, 5, 6}. As another illustration, note that G = Aut(L,(27)) is
not solvable and cds (G) = {1, 26}. Finally, we mention that it is not in general possible
to determine the solvability of a group from its character degrees [15].

2. Preliminaries

Here we list some results for later use. We begin with a result that plays an important
role in the proof of Theorem 1.1.

Lemma 2.1 [4, Lemma 5]. Let N be a minimal normal subgroup of G so that N =
Sy XX S§;, where S; = S is a nonabelian simple group. Let A be the automorphism
group of S. If o € Irr(S) extends to A, then o X - - - X o € Itr(N) extends to G.

The Steinberg character of a finite simple group of Lie type is significant in our
investigation.

Lemma 2.2 [17, 18]. Let S be a finite simple group of Lie type of characteristic r and
St the Steinberg character of S. Then St(1) = |S|, and St extends to the automorphism

group of S.

The following lemma gives the classification of faithful irreducible characters of
prime degree of quasi-simple groups.

Lemma 2.3. Let G be a quasi-simple group such that S := G/Z(G) is nonabelian and
simple and let y be a faithful irreducible complex character of G. Suppose that y(1) = r
is a prime. Then one of the following holds:

(1) G =S is a simple group of Lie type of characteristic r and y is the Steinberg
character of G (so x(1) = |G|,);

2) S =Ly(g) and x(1) € {g = 1}, or q is an odd prime and x(1) € {(q + 1)/2};

3) S =Lu(q@),q>2, nisan odd prime, (n,qg—1)=1, (1) =(¢g" - 1)/(g - 1);

@) S =Uy(g), nisan odd prime, (n,qg+1)=1, y(1)=(¢" + 1)/(g + 1);

(5) S =PSpa(q),n>1, q=p* with p an odd prime, kn is a 2-power, x(1) =
(" + D/2;

(6) S =PSpon(3), n>1isaprime, y(1)=3"-1)/2;

(7) r=1,G=Sps2).

Proor. This is a special case of [13, Theorem 1.1] and [13, Conjecture], which has
been proved in [2, 3]. O

To prove Theorem 1.1, we also need the following result, which is a slightly stronger
version of [4, Theorems 3 and 4].
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TasLE 1. Aut(S )-extendible irreducible characters of coprime composite degrees.

Group  Chars. Degrees Group  Chars. Degrees
M, X3 44 =22 .11 Co; X5 275=5%-11

X9 45=3%.5 X21 26082=2-3%.7.23
M34 X7 252:22327 C()z X4 275:52 11

X8 253 =11-23 X36 312984 =23.35.7.23

Lemma 2.4. Let S be a sporadic simple group, the Tits group or the alternating group
A, forn=7. Then S has two nonlinear Aut(S)-extendible irreducible characters y
and y, such that (x1(1), x2(1)) = 1 and neither (1) nor x»(1) is a prime.

Proor. The result follows directly from [4, Theorem 3] if S = A,. For S a sporadic
simple group or the Tits group, the result follows from the Atlas [5] (or by [4, Table 1]
for most of the cases and from Table 1 for the remaining four cases). ]

Finally, we mention a result of Isaacs and Knutson [8], which is a strengthened
version of a theorem of Berkovich [1]. For a group G, G’ denotes the derived group
of G and, for N <« G, we write Irr(G | N) = {y € Irr(G) | N € ker(y)} and c¢d(G | N) =
() | x €Trr(G | N)}.

Lemma 2.5 [8, Theorem D]. Let N < G and suppose that every member of cd(G | N) is
divisible by some fixed prime p. Then N is solvable and has a normal p-complement.

3. Proof of Theorem 1.1

Lemma 3.1. Let G be a finite group such that each member of cd, (G) is either I or a
prime. Suppose that G has a unique minimal normal subgroup N, which is nonabelian
and has order divisible by p. Then N is a simple group of Lie type of characteristic p
and has an irreducible character 6 such that 6(1) is a prime different from p.

Proor. Let N =8 X --- x § be the direct product of ¢ copies of a nonabelian simple
group S. By Lemma 2.5, we may choose y € Irr(G) such that N £ ker(y) and x(1) = r,
for a prime r different from p. Observe that the trivial character 1y of N is the
unique irreducible character of N of degree 1. We have 8 = yy € Irr(N). In particular,
I5(0) = G and 6(1) = r is a prime. Since § = 6; X - - - X 6, for some 8; € Irr(S ), we have
0; =--- =6, sothatt =1 and hence N is simple.

By Lemma 2.4, N is a simple group of Lie type. Let £ be the defining characteristic
of N. If € # p, then, by Lemma 2.2, |S|; € cd(G), whence N = L,(£) with £ > 5. In
particular, £ is odd. Notice that Aut(N) = PGL,(¢) and {¢ — 1,¢,¢ + 1} C c¢d(G). Since
p is odd, it follows that p divides at most one of £ — 1 and € + 1. Therefore, G has an
irreducible character of p’-degree that is not a prime. This contradiction shows that
{=p. O

Proor oF THEOREM 1.1. We first suppose that p 1 |G|, so that all degrees of irreducible
characters of G are 1 or a prime. By [10, Theorem 4.1], |cd(G)| < 3. Hence, by
[7, Theorem 12.15], G is solvable. So, we now suppose that p is a prime divisor of |G].
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Let N be a minimal normal subgroup of G. If G has another minimal normal
subgroup M, then, by induction on |G|, both G/N and G/M are solvable, so that
I' = G/N X G/M is solvable. Since G can be viewed as a subgroup of I', we conclude
that G is solvable. Therefore, we may assume that N is the unique minimal normal
subgroup of G.

If N is a p-group or an abelian p’-group, then G/N and so G is solvable. Assume
that N is a nonabelian p’-group, so that N = §| X --- X §;, where S; = §, a nonabelian
simple group. If N # L,(r) for some prime r > 7, then, by Lemmas 2.1, 2.2 and 2.4,
N and so G has an irreducible character whose degree is composite and not divisible
by p, which is a contradiction. So, we have N = L,(r) for some prime r > 7. Let
G = G/Cg(N), so that G has socle isomorphic to N. Note that both r — 1 and r + 1
are composite and p | IG/NI. Checking the degrees of irreducible characters of G from
[19, Theorem A], we get a contradiction.

From now on, we assume that N is nonabelian with p | [N]|. Suppose that N has
a P-invariant irreducible character 6 with 6(1) composite and coprime to p. By [7,
Theorem 8.15], 6 extends to P. Let e Irr(P) be an extension of #. Then 6° has
p’-degree, whence it has an irreducible constituent of p’-degree divisible by 6(1),
which is a contradiction.

So, it remains to show that N has a P-invariant irreducible character 8 with 6(1)
composite and coprime to p. By Lemma 3.1, N is a simple group of Lie type of
characteristic p and has an irreducible character 6 such that (1) is some prime r
different from p. Since N is one of the groups in Lemma 2.3, we can take a case-
by-case analysis to the possibilities for N. Clearly, N # PSpg(2) since p is odd and, if
N = L5(q), then the result follows from [19, Theorem A]. So, we may assume that N
is one of the groups listed in (3)—(6) of Lemma 2.3.

Let N = G /Z(G"), where G is a simple simply-connected algebraic group defined
over an algebraically closed field of characteristic p, and F is a standard Frobenius
map of G with finite group of fixed points G := G¥. Let (G*, F*) be the dual pair of
(G,F) and G* = G*I". Let sbe a semisimple element of G*. Recall that a Lusztig
series &E(G, s) associated to the geometric conjugacy class (s) is the set of irreducible
characters of G which occur in some Deligne-Lusztig character [6, Definition 13.16].
By [6, Theorem 13.23 and Remark 13.24], there is a bijection between &(G, s) and
the set of unipotent characters of Cg-(s). Moreover, if  denotes this bijection,
then x(1) = (IGl/|Cq- () ¥ (x)(1) for any y € E(G, s). In particular, the semisimple
character y s € &G, s), which corresponds to the trivial character of Cg-(s), has degree
(IG1/ICg+(s)]),. If we choose s # 1 to be a semisimple element in the derived subgroup
of G, then, by [16, Lemma 4.4], Z(G) C kery, so that y, can be viewed as a character
of N. In addition, if (s) is Aut(G*)-invariant, then, by [12], y is Aut(G)-invariant. In
the following, we choose a suitable s such that 8 = y is the desired character.

If N = PSp,,(3), then p =3 and G* has a maximal torus T of order |T'| = 3" + 1.
Moreover, T N (G*)’ has a regular element s of order ry, where ry is a primitive prime
divisor of |T|. Now y(1) = (|G|/|T])3, which can be easily seen to be composite, and
the result follows from the fact that |[P/N| = 1 in this case.
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To check the remaining cases, we write ¢ = p/, where f = p®k with (p,k) = 1. Let
N = L,(q), Uy(q) for an odd prime n or PSp,,(q) for a prime power n of 2, as listed
in Lemma 2.3(3)—(5). We first assume that a = 0. Since G* has a maximal torus 7 of
order (¢" — 1)/(g—1),(¢" + 1)/(g + 1) or ¢" + 1, we may choose a regular element s in
T N (G*) of order ry, where ry is a primitive prime divisor of ¢* — 1,¢" + 1 or ¢" + 1,
respectively. Since |P/N| = 1, it is easy to see that § = y/ is the desired character.

We now assume that a > 0 and |P/N| > 1. Let a be a field automorphism of G*
of order p® and gy = p*. Then the centraliser C of a in G* is PGL,(go), PGU,(qo)
or PCSp,, (qo), respectively. As we did in the previous paragraph, we may choose a
semisimple element s in the derived subgroup C’ of C. Also, 6 = y; is the desired
character, finishing the proof. O
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