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On the stability of ring relative equilibria
in the N-body problem on S2 with Hodge
potential
Jaime Andrade , Stefanella Boatto , F. Crespo , and D.E. Espejo
Abstract. In this paper, we study the stability of the ring solution of the N-body problem in the entire
sphere S2 by using the logarithmic potential proposed in Boatto et al. (2016, Proceedings of the Royal
Society of London. Series A. Mathematical, Physical and Engineering Sciences 472, 20160020) and
Dritschel (2019, Philosophical Transactions of the Royal Society of London. Series A. Mathematical,
Physical and Engineering Sciences 377, 20180349), derived through a definition of central force and
Hodge decomposition theorem for 1-forms in manifolds. First, we characterize the ring solution and
study its spectral stability, obtaining regions (spherical caps) where the ring solution is spectrally
stable for 2 ≤ N ≤ 6, while, for N ≥ 7, the ring is spectrally unstable. The nonlinear stability is
studied by reducing the system to the homographic regular polygonal solutions, obtaining a 2-d.o.f.
Hamiltonian system, and therefore some classic results on stability for 2-d.o.f. Hamiltonian systems
are applied to prove that the ring solution is unstable at any parallel where it is placed. Additionally,
this system can be reduced to 1-d.o.f. by using the angular momentum integral, which enables us to
describe the phase portraits and use them to find periodic ring solutions to the full system. Some of
those solutions are numerically approximated.

1 Introduction

The study of N-body problems over curved spaces has its origins in the works of
Bolyai [4] and Lobachevsky, on the theory of parallels, published in German in 1849
(see part of this work translated into English and published over a century later
in [9]). In [11], the gravitational potential is extended to the sphere S2, where the
potential obtained is of cotangent type. Using the cotangent potential leads to some
nonintuitive behavior at a physical level, since it corresponds to a potential defined
for a sphere without a point, namely, the punctured sphere S2

p , which gives rise to
antipodal singularities (see, e.g., [2]).

This paper considers the potential derived by considering the unit sphere from
an intrinsic geometry point of view and using the Hodge decomposition theorem to
derive the central force extension to the various surfaces of interest. In the case of
the sphere, the resulting potential is a logarithmic one and it is defined over the entire
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sphereS2. For more details, see [1, 2]. Additionally, the corresponding Hodge potential
for closed hyper-surfaces is derived by Dritschel in [5].

Thus, for the unit sphere S2, a system of N masses m1 , m2 , . . . , mN with positions
r1 , r2 , . . . , rN , respectively, where r j = (φ j , θ j) (with φ j the longitude and θ j the
co-latitude), the potential energy of the system is a function U(r), with

U(r) = γ
N
∑
j=1

N
∑
k> j

m jmk ln(1 − d jk),(1.1)

where r = (r1 , r2 , . . . , rN), d jk = cos θ j cos θk + sin θ j sin θk cos(φ j − φk) and γ is the
gravitational constant.

We will focus on the analysis of stability of a ring of bodies lying on a fixed parallel
and rotating uniformly with respect to the z-axis. For this purpose, we consider N
bodies with identical masses m1 = ⋅ ⋅ ⋅ = mN = 1 in the Hamiltonian system associated
with the potential (1.1). We will show that the regular N-gon configuration is a solution
with position φ j = νt + ϕ j , ϕ j = 2π( j−1)

N , θ j = θ0 ∈ (0, π), for j = 1, . . . , N and ν ≠ 0, if
and only if, the angular velocity is taken as

ν =
√

N − 1
sin θ0

.

In addition to the aforementioned articles, we can find more recent works in which
similar problems defined in curved surfaces are studied for both the N-vortex problem
and the N-body problem. The linear stability of a ring-poles configuration with total
vorticity equal to zero is studied in [3], whereas the linear stability of a ring solution
in an infinite cylinder is studied in [1]. Furthermore, the problem of determining the
stability of a ring of bodies in the sphereS2 with a cotangent potential has been recently
studied in [8], obtaining results about spectral instability for a ring close to the poles
and close to the equator. For logarithmic potential, this problem has not been studied
previously and it will be totally characterized in this paper.

1.1 Equations of motion

We consider a system of N masses m1 , m2 , . . . , mN with positions r1 , r2 , . . . , rN ,
respectively, where r j = (φ j , θ j) (with φ j the longitude and θ j the co-latitude). The
potential energy of the system is the function U(r), where r = (r1 , r2 , . . . , rN) and
U(r) is the potential energy obtained in [2] and given in (1.1). On the other hand, if
v1 , v2 , . . . , vN are the velocity vectors, then the kinetic energy is defined by

K = 1
2

N
∑
j=1

m jvT
j g jv j ,(1.2)

where g is the metric tensor

g j = (
sin2 θ j 0

0 1 ) .(1.3)
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Thus, the Lagrangian of the system is L =K −U and the Legendre transformation
allows to write the velocities in terms of the momentum p j = (pφ j , pθ j). In fact,

p j =
∂K
∂v j
= m jvT

j g j ⇒ v j =
1

m j
(g−1

j )T pT
j ,

and the kinetic energy in terms of the momentum takes the form

K =
N
∑
j=1

1
2m j

p j(g−1
j )T pT

j =
N
∑
j=1

1
2m j
(p2

φ j
csc2 θ j + p2

θ j
).(1.4)

The Hamiltonian function is given by

H(Q , P) =K(Q , P) +U(Q),(1.5)

with Q = (r1 , r2 , . . . , rN) and P = (p1 , p2 , . . . , pN). Thus, the corresponding Hamilto-
nian equations take the form

φ̇ j =
∂H

∂pφ j

= 1
m j

csc2 θ j pφ j ,

θ̇ j =
∂H

∂pθ j

= 1
m j

pθ j ,

ṗφ j = −
∂H
∂φ j
= −γ

N
∑

k=1,k≠ j

m jmk sin θ j sin θk sin(φ j − φk)
1 − d jk

,

ṗθ j = −
∂H
∂θ j
= 1

m j
cot θ j csc2 θ j p2

φ j

− γ
N
∑

k=1,k≠ j

m jmk (cos θk sin θ j − cos θ j sin θk cos(φ j − φk))
1 − d jk

.

(1.6)

1.2 Symmetries

The Hamiltonian (1.5) is invariant under the action of SO(3), in particular, by
rotations of SO(2) about the z-axis, which implies the conservation of the total φ
component of the angular momentum Pφ = ∑ pφ j . Additionally, it is easy to see that
the Hamiltonian function (1.5) also has the translation time-dependent symmetry
φ j ↦ φ j + vt.

1.3 Ring solution

Let us consider a system of N bodies with identical masses m1 = ⋅ ⋅ ⋅ = mN = m. By this
assumption, the Hamiltonian function becomes simpler. Moreover, we may assume
without lost of generality that m = γ = 1. Indeed, it is achieved by introducing the
( 1

c )−symplectic change of coordinates (Q , P) ↦ (Q , cP) and the scaling x ↦ m
c x in

time and energy, with c = γ1/2m3/2. Thus, we arrive to the Hamiltonian function

H =
N
∑
j=1

1
2
(p2

φ j
csc2 θ j + p2

θ j
) +

N
∑
j=1

N
∑
k> j

ln(1 − d jk).(1.7)
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Now, we consider a polygonal configuration formed by N identical masses placed
at the vertices of a regular polygon, rotating with respect to its normal vector with
constant angular velocity. Due to the SO(3)-symmetry, we can consider without loss
of generality that the polygon is rotating in a fixed latitude around the z-axis. Such a
particular configuration must be of the form

φ j = νt + ϕ j , θ j = θ0 ∈ (0, π), pφ j = ν sin2 θ0 , pθ j = 0,(1.8)

where ϕ j = 2π( j−1)
N and ν is the constant angular velocity. It is verified that if θ0 ≠ π

2 ,
then the configuration (1.8) will be a relative equilibrium of the system associated with
(1.7), if and only if the angular velocity satisfies

ν2 = N − 1
sin2 θ0

.(1.9)

For θ0 = π
2 , the formula (1.9) is no longer valid and we get the nonisolated solution

φ j = pφ t + ϕ j , θ j =
π
2

, pφ j = pφ , pθ j = 0.(1.10)

The structure of this work is as follows. In Section 1, we describe the equations of
motion for the N-body problem over the entire sphere S2 and for identical masses
m1 = ⋅ ⋅ ⋅ = mN , we can find a particular solution called ring solution. In Section 2, the
spectral stability of the ring solution of the complete problem is studied, obtaining
spectral stability for 2 ≤ N ≤ 6 and spectral instability for N ≥ 7. In Section 3, on
the space of homothetic solutions, we reduce the system to two and one degrees of
freedom, respectively. Additionally, we calculate the equilibrium solutions of both
reduced systems and study the phase portraits near the equilibria of the reduced
system with one degree of freedom. To examine the stability of the ring solution,
we normalize the Hamiltonian to terms of degree three via the Lie algorithm, and
we determine that the ring solution is unstable in the Lyapunov sense. Finally, in
Section 4, we give conditions for the existence of periodic orbits in the complete system
along with some examples.

2 Spectral stability of the ring solution

From now on, we move to a co-rotating frame associated with the solution (1.8)
(θ0 ≠ π/2). Hence, it becomes a fixed equilibrium of the new Hamiltonian system.
To analyze the spectral stability of the ring solution, we compute the Hessian matrix
evaluated at the solution (1.8)

D2
zH(z) =

⎛
⎜⎜⎜
⎝

S 0N 0N 0N
0N R αIN 0N
0N αIN βIN 0N
0N 0N 0N IN

⎞
⎟⎟⎟
⎠

,(2.1)

where z = (φ1 , . . . , φN , θ1 , . . . , θN , pφ1 , . . . , pφN , pθ 1 , . . . , pθ N ), α = −2ν cot θ0, β =
csc2 θ0, 0N , and IN are the zero and identity matrix of order N × N , respectively, and

S = sIN + PN , R = rIN − βPN ,
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with

s = − 1
6
(N2 − 1), r = ν2 (2 + cos 2θ0) +

β
6
(N − 5)(N − 1), PN = (ρ i j)N×N ,

ρ i j =
⎧⎪⎪⎨⎪⎪⎩

1
1−cos( 2π(i− j)

N )
, i ≠ j,

0, i = j.

The spectral stability of the solution (1.8) is determined through the eigenvalues
of the matrix JD2H, where J is the standard symplectic matrix. The characteristic
polynomial is

p(λ) = det[D2H + λJ] = βN det [−βP2
N + δPN + g(λ)IN] ,

where δ = −α2/β + r − βs, g(λ) = 1/βλ4 + (r/β + s) λ2 + rs − α2s/β and PN is a circu-
lant matrix

PN =

⎛
⎜⎜⎜⎜⎜
⎝

p1 p2 p3 . . . pN−2 pN−1 pN
pN p1 p2 . . . pN−3 pN−2 pN−1

pN−1 pN p1 . . . pN−4 pN−3 pN−2
⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮

p2 p3 p4 . . . p3 p2 p1

⎞
⎟⎟⎟⎟⎟
⎠

∶= Circ [p1 , p2 , . . . , pN] ,

with p1 = 0 and pk = ρk1 , k = 2, . . . , N . Furthermore, taking into account the follow-
ing relation:

p j = pN− j+2 , j = 2, . . . , N ,(2.2)

we have that PN is a symmetric circulant matrix. Therefore, the matrix ΛN ∶= −βP2
N +

δPN + g(λ)IN is also symmetric circulant, i.e.,

ΛN ∶= Circ [x1 , x2 , . . . , xN] , with x j = xN− j+2 , j = 2, . . . , N .

Thus, ignoring the constant factor βN , we get the characteristic polynomial

p(λ) = det ΛN =
N
∏
j=1
(x1 + x2ω j + x3ω2

j + ⋅ ⋅ ⋅ + xN ωN−1
j ) ,(2.3)

where ω j is the jth root of unity. The eigenvalues of the matrix PN are given by

τ j = p1 + p2ω j + p3ω2
j + ⋅ ⋅ ⋅ + pN ωN−1

j , j = 1, . . . , N ,

and denoting P2
N = Circ [q1 , q2 , . . . , qN], it is verified that the eigenvalues of P2

N are
given by

σ j = q1 + q2ω j + q3ω2
j + ⋅ ⋅ ⋅ + qN ωN−1

j = τ2
j .

See [6] for more details about circulant matrices results. Now, from the definition
of ΛN it follows that

x1 = −βq1 + g(λ), and xk = −βqk + δpk , k = 2, . . . , N .(2.4)
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By replacing the quantities (2.4) into (2.3), we arrive at

p(λ) =
N
∏
j=1
(g(λ) + δτ j − βτ2

j ) .(2.5)

Note that from condition (2.2), using the fact that ωN−k+1
j = ωk−1

j and in virtue of the
formula given in [7, p. 271], we obtain an explicit expression for the eigenvalues of PN ,
namely

τ j =
N−1
∑
m=1

pm+1 cos(2πm j
N
) =

N−1
∑
m=1

cos( 2πm j
N )

1 − cos ( 2πm
N )
= 1

6
(N2 − 1) − j(N − j).

Thus, we obtain that the 4N eigenvalues read as follows:

λ1 j =
1√
2

√
a +
√

b j , λ2 j =
1√
2

√
a −
√

b j , λ3 j = −λ1 j , λ4 j = −λ2 j ,(2.6)

with j = 1, . . . , N , and

a = −r − sβ,
b j = 4α2s + (r − βs)2 + 4τ j (α2 + β2τ j − βr + β2s) .(2.7)

By replacing the expressions r, s, α, β, τ j in terms of θ0 , N , and j, we obtain

λ1 j =
√
−( j − 1)( j − N + 1) − (N − 1) cos 2θ0 csc θ0 , λ2 j = i

√
j(N − j) csc θ0 ,

where we observe the following properties:

(i) λ2 j ∈ iR, for all j = 1, . . . , N − 1.
(ii) λ2N = 0.

(iii) λp j = λp,N− j for all j = 1, . . . , ⌊ N−1
2 ⌋, p = 1, 2.

Note that property (iii) implies that for N even, ±λp, N
2

,±λ1N are the only eigenvalues
with multiplicity one, while the remaining 4N − 6 eigenvalues have multiplicity two.
For N odd, ±λ1N are the only eigenvalues with multiplicity one, while the remaining
4N − 2 eigenvalues have multiplicity two.

Finally, the spectral stability depends on the eigenvalues λ1N . It is easy to verify that

λmax ∶=
√

max
j

λ2
1 j = λ1,⌊ N

2 ⌋ =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

√
(1 − N

2 )
2 − (N − 1) cos 2θ0 csc θ0 , if N is even,

1
2

√
(N − 1)(N − 3 − 4 cos 2θ0) csc θ0 , if N is odd,

and it follows that λ2
max ≤ 0, if and only if, θ0 ∈ (0, ΘN] ∪ [π −ΘN , π) with

ΘN =
1
2

⎧⎪⎪⎨⎪⎪⎩

arccos( (N−2)2

4(N−1)) , if N is even,
arccos ( N−3

4 ) , if N is odd,

which is a real number only for 2 ≤ N ≤ 6.
Therefore, we may conclude the following result.
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Figure 1: Shaded regions correspond to zones of S2 where the ring solution is spectrally stable.
These regions exist only for 2 ≤ N ≤ 6.

Theorem 2.1. For 2 ≤ N ≤ 6, there exists ΘN ∈ (0, π) such that the ring solution is
spectrally stable for any θ0 ∈ (0, ΘN) ∪ (π −ΘN , π) (see Figure 1) if N = 2, 3 and any
θ0 ∈ (0, ΘN] ∪ [π −ΘN , π) if N = 4, 5, 6. For N ≥ 7, the ring solution is unstable at any
parallel where the ring is located.

The stability of the ring placed at the equator must be studied separately. Since the
set θ1 = ⋅ ⋅ ⋅ = θN = π/2 is an invariant set, we can restrict the system to the equator.
The equations of motion restricted to the equator and written in a co-rotating frame
are given by the N-d.o.f. Hamiltonian system:

ϕ̇ j = pϕ j − ν,

θ̇ j = 0,

ṗϕ j = −
N
∑

k=1,k≠ j

sin(ϕ j − ϕk)
1 − cos(ϕ j − ϕk)

,

ṗθ j = 0.

(2.8)

Solution (1.10) corresponds to the fixed equilibrium ϕ j = 2π( j − 1)/N , pϕ j = ν. The
matrix of the linearization at this equilibrium is given by

A = ( RN 0N
0N IN

) ,

with RN = sIN − PN , where s and PN are defined in the previous case.
Similarly to the case θ0 ≠ π/2, we get the eigenvalues

λ j = ±
√

1
3
(N2 − 1) − j(N − j) ∈ R, j = 1, . . . , N .

Thus, we conclude the following result.

Theorem 2.2. For θ0 = π/2 and N ≥ 2, the ring solution (1.10) is unstable.
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Remark 2.3 The study stability of the ring relative equilibria for cotangent potential
has been recently treated in [8], where the authors prove spectral instability for a ring
close to the poles for any N ≥ 2, which differs with the results obtained in Theorem 2.1
for 2 ≤ N ≤ 6.

3 Nonlinear stability of the ring solution in the space
of homothetic ring solutions

3.1 Reduction

In order to study the nonlinear stability, we consider identical masses such that at any
time they form a regular polygon contained in a plane parallel to the x y plane. Thus,
we consider solutions with positions given by

r j = (φ j , θ j) = (φ + 2( j − 1)π
N

, θ) , j = 1, . . . , N .(3.1)

By replacing (3.1) into (1.6) with the Hamiltonian given in (1.7), we obtain that φ is a
cyclic variable and the system may be reduced by one degree of freedom:

φ̇ = pφ csc2 θ ,
θ̇ = pθ ,

ṗφ = 0,
ṗθ = cot θ csc2 θ p2

φ − (N − 1) cot θ .

(3.2)

Thus, the reduction is carried out by fixing the integral of motion pφ = c, and the
reduced Hamiltonian function read as follows:

Hc =
1
2
(p2

θ + c2 csc2 θ) + (N − 1) ln(sin θ),(3.3)

with associated Hamiltonian system:

θ̇ = pθ ,
ṗθ = c2 cot θ csc2 θ − (N − 1) cot θ .

(3.4)

3.2 Equilibria and periodic solutions

The equilibrium points of (3.4) give rise to periodic solutions of the two degrees of
freedom system (3.2) of the form

z(t) = (νt + φ0 , θ0 , ν sin2 θ0 , 0),

where ν is either a constant depending on (θ0 , N) (for a nonequatorial ring) or an
arbitrary value (for an equatorial ring). Furthermore, if θ0 ≠ π

2 , then this periodic
solution coincides with the ring solution defined in Section 1.3. Such a particular
periodic solution can also be obtained as a fixed equilibrium of the system (3.2)
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provided a co-rotating frame, i.e., by introducing the change of coordinates φ = νt + ϕ
to obtain the new Hamiltonian

H = 1
2
(csc2 θ p2

ϕ + p2
θ) − νpϕ + (N − 1) ln(sin θ),(3.5)

with Hamiltonian equations:

ϕ̇ = pϕ csc2 θ − ν,
θ̇ = pθ ,

ṗϕ = 0,
ṗθ = cot θ (p2

ϕ csc2 θ − (N − 1)) .

(3.6)

To characterize the equilibria of (3.6), we distinguish the following three cases:
(1) General equilibrium: ν > 0 and θ ≠ π/2 given by

X0 ∶ ϕ = 0, θ = θ0 ∈ (0, π)/{π/2}, pϕ =
√
(N − 1) sin θ0 , and pθ = 0.(3.7)

(2) Equatorial equilibrium 1: ν ≠ 0 and θ = π/2 ∶

X0 ∶ ϕ = 0, θ = θ0 = π/2, pϕ = ν, and pθ = 0.(3.8)

(3) Equatorial equilibrium 2: ν = 0:

X0 ∶ ϕ = 0, θ = θ0 = π/2, pϕ = 0, and pθ = 0.(3.9)

3.3 Dynamics in the reduced 1-d.o.f. system

Notice that the equilibrium points of the 1-d.o.f. reduced system (3.4) are of the form
(θ , 0), where θ ∈ (0, π) is a zero of the function fc(θ) = cot θ(c2 csc2 θ − (N − 1)),
with c = pϕ . Therefore, it follows that the equilibria are given by:
• The equatorial equilibrium:

pθ = 0, θ = π/2, ∀c ∈ R.(3.10)

• The nonequatorial equilibria:

pθ = 0, θ = ± arcsin( c√
N − 1
) ∈ (0, π), ∀0 < ∣c∣ <

√
N − 1.(3.11)

When we consider c = 0, the only type of equilibria is the equatorial one (see
Figure 2). In the case of nonequatorial equilibria, we have that the eigenvalues are
given by

λ±ne =
√

2(N − 1)
c

√
c2 − (N − 1),

while in the equatorial equilibrium, the eigenvalues read as follows:

λ±e = ±
√

N − 1 − c2 .
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Figure 2: Equilibria bifurcation diagram of system (3.4).

Figure 3: Phase portrait associated with the reduced Hamiltonian system (3.4).

Thus, if c = 0, the only equilibrium is the equatorial one, which is a saddle. If
0 < ∣c∣ <

√
N − 1, then the equatorial equilibrium is a saddle and the nonequatorial

equilibria are centers. If ∣c∣ ≥
√

N − 1, then the only equilibrium is the equatorial
one and it is a center. Note that the values c = ±

√
N − 1 correspond to Hamiltonian

pitchfork bifurcation values (see Figure 3).

Remark 3.1 Note that the nonequatorial relative equilibria are centers in the 1-d.o.f.
reduced system, which implies that they are orbitally stable within homothetic ring
solutions. On the other hand, in [8], the authors prove for the cotangent potential that
the orbital stability in the reduced manifold is guaranteed only for θ in a neighborhood
of π/2, θ ≠ π/2, and N odd.

3.4 Nonlinear stability of the ring solution for ν > 0 and θ0 ∈ (0, π/2)

It is clear that the nonlinear stability in the 1-d.o.f. system does not guarantee the
nonlinear stability in the full system (1.6), but the instability in the reduced one is,
in fact, a sufficient condition to assure instability in the full system.
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In this section, we make a study of the nonlinear stability of the ring solution
described in case (3.7).

The linearization matrix associated with the Hamiltonian system (3.6) along the
equilibrium solution defined in (3.7) is given by

A = JHess(H(X0)) =
⎛
⎜⎜⎜
⎝

0 0 1 0
−2
√

N − 1 cot θ0 csc θ0 0 0 csc2 θ0
−2(N − 1) cot2 θ0 0 0 2

√
N − 1 cot θ0 csc θ0

0 0 0 0

⎞
⎟⎟⎟
⎠

,

whose eigenvalues are obtained as

λ1,2 = 0, λ3,4 = ±i
√

2(N − 1) cot θ0 ,(3.12)

with N ≥ 2 and θ0 ∈ (0, π/2) is the colatitude angle of the ring. Although this solution
is stable for the reduced system (3.4), we can not ensure that the full system will inherit
this property (3.6).

Let us denote by a2 and a4 the eigenvector and associated generalized eigenvector,
respectively, associated with the null eigenvalue. Similarly, we denote by a1 = r1 + is1
the eigenvector associated with the eigenvalue iω1. A simple computation shows that
a2, a4, r1, and s1 are given by

a2 =
⎛
⎜⎜⎜
⎝

0
1
0
0

⎞
⎟⎟⎟
⎠

, a4 =
⎛
⎜⎜⎜⎜
⎝

− sin θ0 tan θ0√
N−1

0
0

− sin2 θ0

⎞
⎟⎟⎟⎟
⎠

, r1 =
⎛
⎜⎜⎜⎜
⎝

0
sec θ0√

N−1
1
0

⎞
⎟⎟⎟⎟
⎠

, s1 =
⎛
⎜⎜⎜⎜
⎝

− tan θ0√
2(N−1)
0
0
0

⎞
⎟⎟⎟⎟
⎠

.

By using the algorithm provided in [10], we construct the symplectic matrix

N = [δ1κ1r1 δ2κ2a2 κ1s1 κ2a4],

where δ1 = sgn({r1 , s1}) = 1, δ2 = sgn({a2 , a4}) = −1, κ1 = 1√
∣{r1 ,s1}∣

, and
κ2 = 1√

∣{a2 ,a4}∣
, where { ⋅, ⋅} denotes the Poisson bracket between vectors, that

is, {u, v} = uT Jv. By introducing the symplectic linear change of coordinates induced
by the above matrix into the Hamiltonian (3.5), we obtain that the quadratic part
assumes its normal form

K2 =
ω1

2
(x2 + p2

x) −
p2

y

2
, ω1 =

√
2(N − 1) cot(θ0),(3.13)

with its corresponding transpose quadratic term

KT
2 =

y2

2
− ω1

2
(x2 + p2

x).(3.14)
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Remark 3.1 For the case where ν > 0 and θ ∈ (π/2, π), the same steps of the previous
case are followed and we obtain that

K2 = −
ω1

2
(x2 + p2

x) −
p2

y

2
and KT

2 =
y2

2
+ ω1

2
(x2 + p2

x).

We are now assuming that the Hamiltonian (3.5) is written in the coordinates that
normalize the quadratic terms of the Taylor expansion. We proceed to normalize the
cubic terms by introducing a near identity symplectic coordinates obtained through
a suitable generating function (see Appendix B) and taking into account the Lie
equation {G3 , KT

2 } = 0, we get that the normalized third-order terms are given by

G3 = y(x2 + p2
x)g2100 + y3 g0300 ,(3.15)

with coefficients

g0300 = −
4
√

8(N − 1)(4 + cos(2θ0)) csc4 θ0 sec θ0

3
√

tan θ0
,

g2100 = −
sec3 θ0 +

√
2(N − 1)5(4 + cos(2θ0)) csc3(θ0)

4
√

8(N − 1)5 tan 3
2 θ0

(see Appendix B.1 for the explicit coefficients of the generating function).
Therefore, we have that g0300 ≠ 0, for all θ0 ∈ (0, π/2) and, according to Sokol’skii’s

Theorem (A.1), we conclude that the equilibrium is unstable in the Lyapunov sense.

Remark 3.2 In the case where ν > 0 and θ0 ∈ (π/2, π), we have that the terms of
degree three in their normal form is as in (3.15), where g0300 is given by

g0300 =
4
√

8(N − 1)(4 + cos(2θ0)) csc4 θ0 sec θ0

3
√
∣ tan θ0∣

≠ 0.

Proposition 3.1 The ring solution is Lyapunov unstable for any ν and θ0 ∈
(0, π)/{π/2}.

4 Periodic orbits

In this section, we will study some periodic solutions of the N-body problem on
the sphere S2 emerging from the ring solution. More precisely, we look for periodic
solutions that preserve the regular polygon configuration of the bodies, but not
necessarily rotating uniformly in a fixed parallel. For this purpose, we first note that in
the reduced 1-d.o.f. system, the nonequatorial equilibrium point (θ0 , 0) given in (3.11)
is surrounded by periodic orbits whenever c ∈ (0,

√
N − 1). Let η(t) = (θ(t), pθ(t))

one of these periodic solutions with η(0) = (θ , 0) and period τ(θ), then we need to
find a suitable initial value θ(0) = θ ∈ (π/2, θ0) such that the variable φ in (3.2) verifies
the equation

φ(nτ(θ)) = φ(0)mod (2π),(4.1)
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Figure 4: Graph of the function f (θ) = A(c, θ) for N = 2 and c = (2 +
√

3)/5.

N○ m n θ∗ TF

1 2 1 0.5759770806073893‘ 10.401954398957935‘

2 2 1 0.624322279750267‘ 13.34487228193203‘

3 3 2 0.4812090229194145‘ 6.362189077257438‘

4 3 2 0.6289478386427696‘ 9.080108087002557‘

5 3 2 1.7091952021830619‘ 9.080063873702084‘

6 3 2 2.5217269786955137‘ 9.195817485260322‘

7 2 2 2.517270315553412‘ 6.672579176853166‘

8 2 2 2.565615608913528‘ 5.200975192175653‘

Table 1: Initial conditions θ∗ and periods TF that give rise to periodic orbits in the
complete system for N = 2 and c = (2 +

√
3)/5.

for some n ∈ N. By using the integral form of φ(t)

φ(t) = φ0 + c∫
t

0
csc2 θ(s)ds,(4.2)

and taking into account that θ(s) is a τ(θ)-periodic function, we get that equation
(4.1) assumes the form

c
2π ∫

τ(θ)

0
csc2 θ(s, θ)ds = m

n
.(4.3)

Now, we define

A(c, θ) = c
2π ∫

τ(θ)

0
csc2 θ(s, θ)ds,(4.4)

and note that if we fix c in (4.4), we can take A(c, θ) as a function depending only
on θ, namely, f (θ). Next, we define the function g(x , θ) = f (θ) − x. If θ = θ0 is a
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Figure 5: Periodic orbits on the sphereS2 for N = 2, c = (2 +
√

3)/5 with initial condition given
in Table 1.
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Figure 6: Graph of the function f (θ) = A(c, θ) for N = 3 and c = 1 −
√

3/5.

N○ m n θ∗ TF

1 1 2 1.3770293531731441‘ 2.159805256919048‘

2 1 2 2.8582707622368555‘ 2.159822954834652‘

3 1 1 0.28332190140248037‘ 4.319619500151175‘

4 1 1 1.7645618100195024‘ 4.319582499689864‘

5 3 2 0.2553629252331931‘ 4.757886479607715‘

Table 2: Initial conditions θ∗ and periods TF that give rise to periodic orbits in the
complete system for N = 3 and c = 1 −

√
3/5.

nonequatorial equilibrium and denoting by τ0 = τ(θ0), with τ0 a value that will be
suitable chosen later, then it follows that

g(x , θ0) =
ντ0

2π
− x and φ(t) = φ0 + νt,(4.5)

with ν = c csc2 θ0. Since φ is 2π
ν -periodic, we can choose τ0 = 2π

ν and obtain that
g(x , θ0) = 1 − x. Now, we can easily see that

g(1, θ0) = 0 y ∂g(x , θ)
∂x

∣ (1,θ0) = −1 ≠ 0.

Then, by the Implicit Function Theorem, we have that there are open intervals
Iε = (θ0 − ε, θ0 + ε) and J = (1 − δ, 1 + δ) such that g(x , θ) = 0, for all (x , θ) ∈ J × Iε .
Furthermore, there exists a Ck class function, x ∶ Iε → J, such that g(x(θ), θ) = 0
and x(θ0) = 1. Then, by density of Q en R, we have that J ∩Q ≠ ∅. Therefore, the
set Υ = x−1(J ∩Q) ≠ ∅, is such that given m/n ∈ J ∩Q, there exists θ∗ ∈ Υ such
that g(m/n, θ∗) = 0. Therefore, we conclude that there are initial conditions θ∗ that
generate periodic orbits in the complete system.
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Figure 7: Periodic orbits on the sphere S2 for N = 3, c = 1 −
√

3/5 with initial condition given
in Table 2.
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Figure 8: Graph of the function f (θ) = A(c, θ) for N = 4 and c = 2
√

5 +
√

2/5.

N○ m n θ∗ TF

1 1 2 1.1963809469081823‘ 1.4724533519714116‘

2 1 2 2.7190241813008105‘ 1.4724503122514878‘

3 1 1 0.42256876046583774‘ 2.944897452098061‘

4 1 1 1.9452119521433546‘ 2.9448981256444933‘

5 2 2 2.74727275996211‘ 3.2124622727718513‘

6 3 2 1.6085027918855728‘ 6.200496191217298‘

Table 3: Initial conditions θ∗ and periods TF that give rise to periodic orbits in the
complete system for N = 4 and c = 2

√
5 +
√

2/5.

4.1 Some examples of periodic orbits on the sphere S2

In this section, we present some examples of periodic orbits on the sphere S2 obtained
through the method described above. Note that the initial conditions that generate
polygonal periodic orbits are the zeros of the equation (4.3). Thus, for a fixed value
of c, we can consider the graph of the function f (θ) = A(c, θ) and approximate their
intersections with horizontal lines of the form y = m/n.

For the case N = 2, the value of c must be chosen such that ∣c∣ < 1. In particular, for
c = (2 +

√
3)/5 the graph of A(c, θ) is shown in Figure 4.

The following table gives initial conditions for some values of (m, n) and their
corresponding period.

In Table 1, for different rationals m/n, we find initial conditions θ∗ giving rise
to periodic orbits in the complete system. Some of them are located close to the
equilibrium θ0 = 2.298941328617731‘ and others are close to the homoclinic orbit
shown in Figure 3b, which also correspond to periodic orbits that cross the equator.
Similarly, near the symmetric equilibrium θ0 = 0.8426513249720621‘, we can also find
initial conditions that give periodic solutions in the whole system (Figure 5).
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Figure 9: Periodic orbits on the sphere S
2 for N = 4, c = 2

√
5 +
√

2/5 with initial condition
given in Table 3.
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For the case N = 3, the value of c must be chosen such that ∣c∣ <
√

2. In particular,
for c = 1 −

√
3/5 the graph of A(c, θ) is shown in Figure 6.

The following table gives initial conditions for some values of (m, n) and their
corresponding period.

In Table 2, for different rationals m/n, we can find initial conditions θ∗ that
give rise to periodic orbits in the complete system. Some of them are close to
the equilibrium θ0 = 2.6611657363097923‘ (or in the symmetric equilibrium θ0 =
0.48042691728000075‘), and others are close to the homoclinic orbit shown in
Figure 3b. Moreover, we chose all initial conditions except row 5 inside the homoclinic
orbit (Figure 7).

For the case N = 4, the value of c must be chosen such that ∣c∣ <
√

3. In particular,
for c = 2

√
5 +
√

2/5 the graph of A(c, θ) is shown in Figure 8.
The following table gives initial conditions for some values of (m, n) and their

corresponding period.
In Table 3, we find initial conditions θ∗ leading to periodic orbits in the complete

system for different rationals m/n. Some of them are close to the equilibrium θ0 =
2.51685340624551‘ (or in the symmetric equilibrium θ0 = 0.6247392473442833‘), and
others are close to the homoclinic orbit shown in Figure 3b. Moreover, we chose all
initial conditions except row 5 inside the homoclinic orbit (Figure 9).

A Reduced system

A.1 Reduction to two degrees of freedom

In this section, we will see the details regarding the reduction of the system (1.6)
to a Hamiltonian system with two degrees of freedom. For this, let us consider the
Hamiltonian function defined in (1.7), then we see that from the first equation of the
system (1.6) the moment pφ j is given by

pφ j = φ̇ j sin2 θ j .(A.1)

Differentiating with respect to time in this last relation and using the third equation
defined in (1.6), we find the following equality:

φ̈ j sin2 θ j + 2φ̇ j sin θ j cos θ j θ̇ j = −
N
∑

k=1, j≠k

sin θ j sin θk sin(φ j − φk)
1 − d jk

,(A.2)

and having into account that

N
∑

k=1, j≠k

sin θ j sin θk sin(φ j − φk)
1 − d jk

= −
N
∑

k=1, j≠k

sin θk sin θ j sin(φk − φ j)
1 − dk j

,

we finally get

N
∑
j=1

N
∑

k=1, j≠k

sin θ j sin θk sin(φ j − φk)
1 − d jk

= 0.

https://doi.org/10.4153/S0008414X23000123 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X23000123


514 J. Andrade, S. Boatto, F. Crespo, and D. E. Espejo

Therefore, using this last relation together with (3.1) in (A.2), we have

0 =
N
∑
j=1

φ̈ j sin2 θ j + 2φ̇ j sin θ j cos θ j θ̇ j

=
N
∑
j=1

φ̈ sin2 θ + 2φ̇ sin θ cos θ θ̇

= N(φ̈ sin2 θ + 2φ̇ sin θ cos θ θ̇)
= φ̈ sin2 θ + 2φ̇ sin θ cos θ θ̇

= d
dt
(φ̇ sin2 θ) = ṗφ .

On the other hand, differentiating the second equation obtained in (1.6) and using the
fourth equation of the system (1.6) together with (A.2), we obtain

θ̈ j = cot θ j csc2 θ j p2
φ j
−

N
∑

k=1, j≠k

cos θk sin θ j − cos θ j sin θk cos(φ j − φk)
1 − d jk

= cot θ j csc2 θ j(φ̇ j sin2 θ j)2 −
N
∑

k=1, j≠k

cos θk sin θ j − cos θ j sin θk cos(φ j − φk)
1 − d jk

= cos θ j sin θ j φ̇2
j −

N
∑

k=1, j≠k

cos θk sin θ j − cos θ j sin θk cos(φ j − φk)
1 − d jk

.

Again, in this last relation, we can use the equations defined in (3.1) to get

θ̈ = cos θ sin θ φ̇2 − cos θ sin θ
N
∑

k=1, j≠k

1 − cos(φ j − φk)
1 − cos2 θ − sin2 θ cos(φ j − φk)

= cos θ sin θ φ̇2 − (N − 1) cot θ .

= cos θ
sin3 θ

(sin2 θ φ̇)2 − (N − 1) cot θ .

= cot θ csc2 θ p2
φ − (N − 1) cot θ .

Therefore, we obtain that our reduced Hamiltonian is a Hamiltonian with two degrees
of freedom of the form

H = 1
2
(csc2 θ p2

φ + p2
θ) + (N − 1) ln(sin θ).

A.2 Sokol’skii stability theorem 1977

Suppose that the Hamiltonian function in its normal form admits the following form:

H = δ1

2
q2

1 +
ωδ2

2
(q2

2 + p2
2) +

M
∑
s=3

[s/2]
∑
j=0

as−2 j, j ps−2 j
1 (q2

2 + p2
2) j +HM+1 + ⋅ ⋅ ⋅ ,(A.3)

where as−2 j, j are real constants. The normalization must be carried out up to terms of
order M such that aM ,0 is different from zero.
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Theorem A.1 (A.G. Sokol’skii, 1977) Suppose that a canonic system with two degrees
of freedom has one zero frequency and multiple elementary divisors and that its
Hamiltonian function has been reduced to form (A.3). Then:

(1) If M is odd, the equilibrium position is unstable.
(2) If M is even and δ1aM ,0 < 0, the equilibrium position is unstable.
(3) If M is even and δ1aM ,0 > 0, the equilibrium position is Lyapunov-stable.

For more information, see [12].

B Normal form of high-order terms

Let us consider the Taylor expansion of H

H = H2 +H3 +H4 + ⋅ ⋅ ⋅ +Hs + ⋅ ⋅ ⋅ ,

with

Hs = ∑
∣k∣+∣l ∣=s

hk1 k2 l1 l2 qk1
1 qk2

2 pl1
1 pl2

2 ,

and H2 in its normal form. The normalized Hamiltonian G of H is obtained via the
Lie algorithm

G = G2 +G3 +G4 + ⋅ ⋅ ⋅ +Gs + ⋅ ⋅ ⋅ ,

where G2 = H2 and Gs are homogeneous polynomials of degree s

Gs = ∑
∣k∣+∣l ∣=s

gk1 k2 l1 l2 qk1
1 qk2

2 pl1
1 pl2

2 .

Similarly, we define the generating function of the symplectic transformation that
becomes H into G, denoted by

W = q1 p1 + q2 p2 + S3 + S4 + ⋅ ⋅ ⋅ + Ss + ⋅ ⋅ ⋅ ,(B.1)

where Ss are homogeneous polynomials of degree s, so that

Ss = ∑
∣k∣+∣l ∣=s

sk1 k2 l1 l2 qk1
1 qk2

2 pl1
1 pl2

2 .

B.1 Normal form of the third-order terms with quadratic part as (3.13)

Since, in our case, the quadratic term is degenerated, the Lie equation takes the form
{HT

0 , Gs} = 0. We start with the case s = 3; that is, we will determine the Lie normal
form of the terms H3 of degree three of the Hamiltonian H under the assumption
that the quadratic part H2 is already normalized. Furthermore, the matrix associated
with the linear system is nondiagonalizable. Therefore, we must solve the system of
equations generated by the following Lie equation:

{KT
2 , G3} = 0,
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where KT
2 is defined in equation (3.14). From where we get that

g3000 = 0, g2010 = 0, g2001 = 0, g1200 = 0, g1110 = 0, g1101 = 0, g1020 = 0,
g1011 = 0, g1002 = 0, g0210 = 0, g0201 = 0, g0111 = 0, g0102 = 0, g0030 = 0,
g0021 = 0, g0012 = 0, g0003 = 0, g0120 = g2100 .

Therefore, the terms of degree three of the normalized Hamiltonian are given by

G3 = y(x2 + p2
x)g2100 + y3 g0300 .(B.2)

Furthermore, according to the Lie triangle and the recurrence formula, we have

G3 = H3 + {HT
0 , S3} ≡ H2 +G3 ∣(q1 ,q2 , ∂W

∂q1
, ∂W

∂q2
) = H2 +H3 ∣( ∂W

∂ p1
, ∂W

∂ p2
, p1 , p2)

.(B.3)

It is verified that equation (B.3) is satisfied for G3 is as it appears in (B.2), for this
purpose, we must choose the coefficients of S3 in a convenient way. More precisely,

s3000 =
3 4
√

2 tan θ0 sec2 θ0 + 27/4(N − 1)5/2(4 + cos(2θ0)) csc2 θ0

9(N − 1)3/4ω1 tan 5
2 θ0

,

s2100 = −
(2 + cos(2θ0)) csc3 θ0 sec θ0((N − 1)ω1 cos(2θ0) + (N − 1)ω1 − 2)

2
√

2ω1
,

s2010 = 0, s2001 = 0, s0102 = 0, s0003 = 0,

s1200 =
4
√

8(N − 1)3(4 + cos(2θ0)) csc4 θ0

ω1
√

tan θ0
,

s1110 =
√

2(N − 1)5(4 + cos(2θ0)) csc3 θ0 − sec3 θ0
4
√

8(N − 1)5ω1 tan 3
2 θ0

,

s1101 = −
2
√

2 csc θ0(2(N − 1)ω1 + 3(1 − (N − 1)ω1) csc2 θ0 + sec2 θ0)√
N − 1ω2

1
,

s1020 =
23/4(N − 1)7/4(4 + cos(2θ0)) csc2 θ0

3ω1 tan 5
2 θ0

,

s1011 =
(2 + cos(2θ0)) csc3 θ0 sec θ0((N − 1)ω1 cos(2θ0) + (N − 1)ω1 − 2)

2
√

2ω2
1

,

s1002 = −
4
√

2 (2ω1 sec2 θ0 − (N − 1)ω2
1 + 2
√

2(N − 1)3/2(4 + cos(2θ0)) csc3 θ0 sec θ0)
(N − 1)3/4ω3

1 tan 3
2 θ0

,

s0300 = −
√

2
3

csc θ0(3 cot θ0 csc θ0 + sec θ0),

s0210 = −
√

2 csc θ0(3 csc2 θ0 + sec2 θ0)√
N − 1ω1

,

s0201 = −
csc θ0

4
√

8(N − 1)
√

tan θ0
,
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s0120 = −
(2 + cos(2θ0)) csc3 θ0 sec θ0((N − 1)ω1 cos(2θ0) + (N − 1)ω1 + 2)

2
√

2ω1
,

s0111 = −
2 4
√

2 csc4 θ0 (ω1 sin3 θ0 sec θ0 +
√

2(N − 1)3/2(4 + cos(2θ0)))
(N − 1)3/4ω2

1
√

tan θ0
,

s0030 = −
√

2(N − 1)(2 + cos(2θ0)) csc3 θ0

3ω1
,

s0021 = −
√

2(N − 1)5(4 + cos(2θ0)) + 4(N − 1)ω1 sec θ0 − sec3 θ0

2
√

2(N − 1)5ω2
1 tan 3

2 θ0
,

s0012 =
2
√

2 csc θ0(2(N − 1)ω1 + 3(1 − (N − 1)ω1) csc2 θ0 + sec2 θ0)√
N − 1ω3

1
.

This choice of the coefficients of the generating function implies that the terms of
degree three of the normalized Hamiltonian are given by (B.2), where

g0300 = −
4
√

8(N − 1)(4 + cos(2θ0)) csc4 θ0 sec θ0

3
√

tan θ0
,

g2100 = −
sec3 θ0 +

√
2(N − 1)5(4 + cos(2θ0)) csc3(θ0)

4
√

8(N − 1)5 tan 3
2 θ0

.
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