COMPOSITIO MATHEMATICA

Duality for relative logarithmic de Rham—Witt
sheaves and wildly ramified class field theory over
finite fields

Uwe Jannsen, Shuji Saito and Yigeng Zhao

Compositio Math. 154 (2018), 1306-1331.

doi:10.1112/S0010437X1800711X

A LONDON
FOUNDATION V/\\R MATHEMATICAL
COMPOSITIO AR [socieTy
MATHEMATICA 5 st 065

https://doi.org/10.1112/50010437X1800711X Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X1800711X
https://doi.org/10.1112/S0010437X1800711X

<{\\\ Compositio Math. 154 (2018) 13061331

%f// doi:10.1112/S0010437X1800711X

Duality for relative logarithmic de Rham—Witt
sheaves and wildly ramified class field theory over
finite fields

Uwe Jannsen, Shuji Saito and Yigeng Zhao

ABSTRACT

In order to study p-adic étale cohomology of an open subvariety U of a smooth proper
variety X over a perfect field of characteristic p > 0, we introduce new p-primary torsion
sheaves. It is a modification of the logarithmic de Rham—Witt sheaves of X depending
on effective divisors D supported in X —U. Then we establish a perfect duality between
cohomology groups of the logarithmic de Rham—-Witt cohomology of U and an inverse
limit of those of the mentioned modified sheaves. Over a finite field, the duality can be
used to study wildly ramified class field theory for the open subvariety U.
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Introduction

Let k be a perfect field of characteristic p > 0 and let X be a smooth proper variety of dimension
d over k. The logarithmic de Rham—Witt sheaves WmQ’"leog are defined as the subsheaves of the
de Rham-Witt sheaves W, {Y’, which are étale locally generated by sections dlog[z1]m A -+ A
dlogz,]m, with , € O% for all v [11179]. By the Gersten resolution [Ros96, Ker10, GS88] and the
Bloch—-Gabber-Kato theorem [BKS86], the dlog map induces an isomorphism of étale sheaves

dlog[~] : KMy /p™ S Wil 1og 3 {215+ 2} = dloglailn A -+ A dlog[z,]m, (1)

where IC%X is the sheaf of Milnor K-groups. It is conceived as a p-adic analogue of the f-adic

sheaf u?,,f with £ #£ p. If k is a finite field, there is a non-degenerate pairing of finite groups due
to Milne [Mil86]:

H(X, Wi 1) X HEH (X, W Q4T ) — HWLX, Wi 1) = Z/p" 2.
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DUALITY FOR RELATIVE LOGARITHMIC DE RHAM—WITT SHEAVES

It induces a natural isomorphism
HYX, Wi 10g) = HN(X, Z/p"Z)" = 7{"(X) [p™,

where AV is the Pontryagin dual of a discrete abelian group and W‘fb(X ) is the maximal abelian
quotient of Grothendieck’s étale fundamental group of X. This gives a description of W%b(X )/p™
in terms of étale cohomology with p-adic coefficient. For ¢-adic étale cohomology, we also have a
non-degenerate pairing of finite groups for a smooth non-proper variety U of dimension d over a
finite field k [SGA43, Sai89)]

HY(U,Z/e™(5)) x HXH (U, Z/07(d = 5)) > HZH(U,Z/07(d) = Z/¢"Z,
which can be used to describe 7¢*(U)/¢™ by f-adic étale cohomology:
HZ'(U,Z/0™(d)) = H'(U, Z/0™)" = ={*(U) /e™.

In the p-adic setting there is no obvious analogue of étale cohomology with compact support for
logarithmic de Rham-Witt sheaves.

In this paper, we propose a new approach. Let X be a proper smooth variety over a perfect
field k£ as before, and let j : U — X be the complement of an effective divisor D such that
Supp(D) has simple normal crossings. We introduce new p-primary torsion sheaves Wmﬁgﬂ D.log
(see Definition 1.1.1), which we call relative logarithmic de Rham-Witt sheaves. 1t is defined
as the subsheaf of the de Rham-Witt sheaf W,,{) which is étale locally generated by sections
dlog[zi]mA. .. Adlog[xy],, with 21 € Ker(O% — OF), and z,, € 5,0 for all v. As in the classical
situation, we have the following theorem.

THEOREM 1 (see Theorem 1.1.5). The map dlog induces an isomorphism

dlog[—] : ’nym/(ﬁm’C%X N ’Ci\,/lxm) = Wil D 1og
{z1,..., 2} = dlog[xi]m A - - A dlog[xr]m. (2)

Here le,V[X| p is the sheaf of relative Milnor K-groups which has been studied by one of the

authors (Saito) and Riilling in [RS18].
If D1 > Do, we have inclusions (see Proposition 1.1.4)

r r r
WmQX|D1,10g - WmQX|D2,10g - WmQX,log?

r

XD log’ where D runs over the set

and thus obtain a pro-system of Z/p"Z-sheaves “l(ir_n D” W2
of all effective divisors with Supp(D) C X —U.

In case m = 1 these sheaves are related to sheaves of differential forms by the exact sequence
(see Theorem 1.2.1)

1-c! r—1

0= Q% prog = Uxp —— Q§(|D/dQX|D — 0, (3)

where 'y, , = Q% (log D) ®0, Ox(—D) and C~! is the inverse Cartier morphism. In order to
extend the above exact sequence to the case m > 1, we need introduce the filtered relative de
Rham—Witt complex WmQBQD for which we have WlQBQD = QB(\D (see §2.3 and Theorem 2.3.1).
Its construction uses the de Rham-Witt complexes in log geometry [HK94], which can be seen
as the higher analogue of Q' (log D).

Using the generalization of (3) to the case m > 1, we can define a pairing between WmQ’(}JOg
d—r

X|D,log and obtain the following theorem.

«“ls R
and the pro-system l(gl D W2
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THEOREM 2 (see Theorem 4.1.4). Let X, D and U be as above and assume that k is finite. Then
the groups H7(X, WmQS(‘ Dilo g) are finite and there are natural perfect pairings of topological
abelian groups

1 . —q _ Tr
H'(U, WmQT(}’log) X @Hd—l—l (X, WinﬂBJog) N Hd+1(X, WmQ?(,log) = 7/p"Z,
D

where the first group is endowed with discrete topology, and the second is endowed with profinite
topology.

From the case : = 1 and r = 0 of the above theorem, we get a natural isomorphism

lim HO(X, W% p1og) = H (U, Z/p"2)" = i (U) /p",
D

which gives rise to a series of quotients 73 (X, D)/p™ of 74P (U)/p™ using the inverse limit. It is
thought of as classifying abelian étale covering of U whose degree divides p™ and ramification is
bounded by the divisor D.

One of the authors (Zhao) [Zhal6] has proved a similar duality theorem for a projective
semi-stable scheme over an equi-characteristic discrete valuation ring k[[t]] with & finite.

When the base field k is prefect but not necessarily finite, we follow the method of Milne
[Mil86] and work in the category .7 (p™) of Z/p™Z-sheaves on perfect étale site (Pf/k)¢ (see
§5.1). Let D*((p™)) be the derived category of bounded complexes in .%(p™). We then get
from X, D objects of D*(.7(p™)):

R WG D10y and  Rm R Wi 1o,

where 7 : X — S = Spec(k) is the structure morphism and j : U — X is the open immersion.
Then our duality theorem reads as follows.

THEOREM 3 (see Theorem 5.2.1). There is a natural isomorphism in D°(.%(p™)):

o

R %n RTr*WdeX*‘BJOg — RHom po( g (ym)) (BT Rjs Wi Qs 0 Z/p™ 1) [—d),

where Rl(iLn b denotes the homotopy limit over effective Cartier divisors supported on X — U.

The paper is organized as follows.
In § 1, we study the two important results on the relative logarithmic de Rham—-Witt sheaves:

the first one is a computation of the kernel of the restriction map R™ ! : W,,Q%

X|DJog

Wi p 1o the second is the exact sequence (3).

In order to define the desired pairing, we introduce filtered de Rham—Witt complexes in § 2,
and study the behavior of Frobenius and Verschiebung morphisms on these complexes.

Using two-term complexes, we define the pairing in §3 and prove its perfectness when the
base field k is finite in §4. The last §5 is on the duality over a general perfect field.

1. Relative logarithmic de Rham—Witt sheaves

Let X be a smooth proper variety of dimension d over a perfect field k£ of characteristic p > 0,
let D be an effective divisor such that Supp(D) is a simple normal crossing divisor on X, and
let j: U :=X — D < X be the complement of D.
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1.1 Basic properties
DEeFINITION 1.1.1. For r € N let

WmQSﬂD,log C 3 Wi 10g
be the subsheaf generated étale locally by sections
dlog[zi]m A -+ Adlog[zy], with z1 € Ker(Ox — Of),z, € 4O for all v.
For r € N let IC be the rth Milnor K-sheaf on X given by
Vn—)Ker( @ KM (k(n) @ ) for an étale V — X,
neVv (0 zevV (@)

where V() is the set of points of codimension i in V, for i = 0, 1, and 8, : KM (k(n)) = KM (k(x))
is the tame symbol from [BT73, §4]. By [Kerl0, Proposition 10(8) and Theorem 13], K%X is

étale locally generated by symbols {z1,...,z,} with z; € O% . We have a natural isomorphism
of étale sheaves

dlogl=] : K% /0™ = WinSx 1og
{z1,..., 2} = dlog[xi]m A -+ - A dlogxy]m. (1.1.1)

This follows from the Gersten resolutions of €, y and e Wi,y |, from [Ros96] and [GS8S]
together with the Bloch—Gabber—Kato theorem [BK86] where € : Xg — X7z 1s the map of sites.

DEFINITION 1.1.2 [RS18, Definition 2.4]. For r € N, we define the relative Milnor K-sheaf K,
to be image of the map

rX|D
Ker(O% — Of) ®z j*IC%LU — j*IC%U; r@{x1,... 1} > {z, 21, 20}

Using some symbol calculations, we get the following proposition.

ProprosITION 1.1.3 [RS18, Corollary 2.9]. Let D1, Dy be two effective divisors on X whose
supports are simple normal crossing divisors. Assume Dy < Ds. Then we have the inclusions
of sheaves
M M
’CrX|D2 C K. xp, CKrx

COROLLARY 1.1.4. Under the assumption of Proposition 1.1.3, we have inclusions

T T T
Wins2x Dy 10g © Wmslx D, 1og © Wty og-

Proof. This follows from the fact that the sheaf W, X|D,Jog is the image of ICi\/[X‘ p under the
map dlog[—]. O

The isomorphism (1.1.1) also has the following relative version.

THEOREM 1.1.5. The dlog map induces an isomorphism of étale sheaves

dlog[—] : ’nyw/(]?mlcf«\,/jx N ’Ci\?xm) = W% D 1og
{z1,..., 2} = dlog[z1]m A -+ A dlog[x,]m. (1.1.2)
1309
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Proof. The assertion follows directly by the following commutative diagram.

M M M C M
IC7~7X|D/(pm,Cr,X n IC7~,X|D) ]CT,X/pm
dlogi dlogl“‘ Od
>
WmQTX\D,log WmQTX,log

In the rest of this section, we will prove two fundamental results for the relative logarithmic
de Rham—Witt sheaves.

THEOREM 1.1.6. Write D = ), .\ naDy, where Dy (X € A) are irreducible components of D.
Then we have an exact sequence

T B T T
0= Wi 1%/l 10g = WinS¥x D 10g = W1k D 10g = 0;
where [D/p] = 3"\ calna/p)Dx with [n/p] = min{n’ € Z | pn’ > n}.
Proof. The claim follows from Theorem 1.1.7 below by the isomorphism (1.1.2). O

Let R be the henselization of a local ring of a smooth scheme over a field k of characteristic
p > 0. Let (T1,...,Ty) C R be a part of a system of regular parameters and put 7' =T - - - Ty.
We endow N? with a semi-order by

(n1,...,nq) < (n},...,ny) ifn; <nj foralli
and put
Following [BKS86, §4], we define UKM(R) ¢ KM(R) for n = (n1,...,nq) € N¢ as the subgroup
generated by symbols
{z1,... 2} withzy € T+ T - TR, x; € R[1/T]* (2<i<d).

(Here having the injectivity of KM (R) — KM (K) with the quotient field K of R, the above
symbols are considered in KM (K).) For an integer m > 0, put

U™k, (R)m = Image(UK (R) — KM (R)/p™).
THEOREM 1.1.7. We have the following exact sequence:
0 — ULPIEM(R) oy 5 UM (R) — UM (R), — 0,
where [n/p] = min{v € N¥| pv > n} € N,
For the proof we compute

%
\

gr®kM(R),, = UM (R),, /U KM (R),, with 6; = (0,...,1,...,0).
We need some preliminaries. For n € N and 1 < i < d and an integer ¢ > 1 put

Wl =I1"0%(logT) ®p Ry with R; = R/(T}),
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where 1% = (T ---T;*) C R and Q%(log T') is the sheaf of (absolute) differential g-forms of R
with logarithmic poles along T' = 0. It is easy to check the exterior derivative induces

q.,,d q+1
d? : Wi = Wy -

Put

—1
q—1 d? q
n,t wﬂ,i)'

Z} i = Ker(w} ; LA ), By ;= TImage(w
We can easily check the following.
LEMMA 1.1.8 [RS18, Theorem 2.16]. Let the notation be as above. Then the inverse Cartier

morphism

Cc7l: Q% — Q% /d0s !

induces an isomorphism
-1., 4 = 7 q
C’m P Wi Zﬂ,i/Bﬂ,i'

We define subgroups

Bl;,=B] .cBy .C---CZj

1ln,i 2|n,i

CZ} =2 Cwl

|n,g 1|n,i n,i?
by the inductive formulae

q = q q q = q q
Biwsi o7 Beripi/ Puir Zommi = Zatiinal/ Bui
n,i

n,i

PROPOSITION 1.1.9. Fixn = (n1,...,ng) € N? and 1 <i < d.

(1) There is a natural map
P : w£;1 — g% EM(R),,

such that for a € R, by, ...,bg € R[1/T]*,

db db, N
P (a(T{“ TR TR A A b) = {1+all T} by, ... b} € UKM(R).
2 r

(2) Write n; =p®-n’ withp fn'. If m > s, pn; induces an isomorphism

r—1 r—1 = n,i .M
Wi Bs|ﬂyi—>gr k" (R) -

If m < s, pp,; induces an isomorphism

w&;l Z;l_mll iy grﬂ’ik,{w(R)m.
Proof. The existence of p, ; together with the fact that it induces the surjective maps as in (2) is
shown by the same argument as [BK86, (4.5) and (4.6)]. Note that w&;l/B”_l. and wg’:l/Z;_liz

s|n,i
are free Rf e—modules, for some e > 0. By localization, the injectivity of the maps is reduced to
the case R is a discrete valuation ring, which has been treated in [BK86, (4.8)]. O
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Now we prove Theorem 1.1.7. It is easy to see that we have a complex as in the theorem. Its
exactness on the left follows from the fact that KM (R) is p-torsion free (cf. [GL00, Theorem 8.1]
and [Ros96, Theorem 6.1]). It remains to show the exactness in the middle. For this it suffices
to show the injectivity of the map induced by multiplication by p:

KM (R)/URPKM (R) + p" KM (R) & KM (R) /UK (R) +p" KM (R).
This follows from the following claims.

CLAIM 1.1.10. The multiplication by p induces an injective map:
KM (R)/ULKM (R) + p™ KM (R) - KM(R) /UK (R) + p™ K (R).
Proof. We have a map (cf. [RS18, the first displayed formula in the proof of Proposition 2.10])
MR)JULKM(R) > €D KM (Ri); {ar,...,a,} — @i{as mod T, ..., a, mod T3},
1<i<d

where (a mod T;) € R; is the image of a € R. By [RS18, Proposition 2.10] and Proposition 1.1.3,
we see that this map is injective. Combining with the fact that ;<4 KM(R;) is p-torsion free,
we conclude this claim. O

CrLAIM 1.1.11. For n and i as in Proposition 1.1.9, the multiplication by p induces an injective
map: A ‘
gr PN (R)1 = gr™ kM (R) .

Proof. 1t is easy to check that the multiplication by p induces such a map. Its injectivity follows
from the commutative diagram

n,i r—1 r—1
il Be il — “ni /B

l: l: ifm>s,
gr[ﬂ/p}vikiw(R)mf]_ — grﬂ,lkiw(R)m

and the commutative diagram

r—1 r—1 n. r—1 r—1
Win/pli! Zmtlnfpli ~ > Wni /Zmini

l: lg if m <s,
gr[ﬂ/p}»ik;iw(R)m_l Emm— grﬂﬂk’f‘w(R)m

where the vertical isomorphisms are from Proposition 1.1.9. a

1.2 Relation with differential forms
The sheaf ng D.log relates to coherent sheaves as follows.

THEOREM 1.2.1. We have an exact sequence

1-C~

0= Q% prog = Xxip = 0% p/d¥q , = 0,

X|D

where Uy, = Q% . (log D) ®oy Ox(=D).
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Proof. For the exactness on the right, it suffices to show the surjectivity of 1 — C~! on sections
over the strict henselization of a local ring of X. In fact, by the argument in the classical case
where D = ¢ [Mil76, Lemma 1.3], it suffices to show the following claim.

CrLAM 1.2.2. Let A be a strictly henselian regular local ring of equi-characteristic p > 0 and
m C A be the maximal ideal. Let m € m and a € A. If a € A, then there exists b € A, such that
benmA and b° — b = a.

Proof of Claim 1.2.2. Let k be the residue field of A. Since ¢ : A — A is surjective, there exists
b € A such that 0¥ — b = a. Letting 8 € k be the image of b, 8 — 3 = 0 € k by the assumption
a€mACm. Hence f €F, C Aand we put b=>b— € A. Then

Pl —1) =P —b=0 —b=a e 7A.
Since b € my by the construction, b»~! — 1 € A* and we get b € TA. O

It remains to show the exactness in the middle, i.e., to show that QTX‘D N Q’”XJOg = QTX‘D log*
This is a étale local question, which is a consequence of Proposition 1.2.3 below, which is a
refinement of [Kat82, Proposition 1]. O

Let R be the henselization of a local ring of X and choose a system T, ..., T, of regular
parameters of R such that Supp(D) = Spec(R/(T7---T.)) C Spec(R) for some e < d = dim(R).
Let Qk(log D) denotes the module of differentials with logarithmic poles along D and put

0% (log D) = A QL (log D). For a tuple of integers n = (n1,...,n.) with n; > 1, put
G"Q% = (T7" - T)) - Q% (log D) C QF,

Gmp(q) = Ker (G202 =5 Q2 (log D) /d2% (log D)).

PROPOSITION 1.2.3. G™vg(q) is generated by elements of the form

dzy dzg I .
Tl/\/\?qq Wlthxlel—i‘(T{”Tene), xZER[H] (2§2§q)

Proof. The following argument is a variant of Part (B) of the proof of [Kat82, Proposition 1 (see
p. 224)]. By [Art69], we may replace R by R = k[[11, ..., Ty]]. Indeed, to use Artin approximation
we have to equip any R-algebra with the log structure coming via pullback from the canonical
one on (R, D) to extend the group G®vgr(q) to a functor on R-algebras S — GZvg(q). Put
A=Fk[T,...,Ty_1]) and T = Ty so that R = A[[T]]. Let Q7 (log E') be the module of differential
g-forms on Spec(A) with logarithmic poles along F = Spec(A/(Ty ---Ty—1)) C Spec A. By [Kat82,
Proposition 1], we have an isomorphism

. T
(R4 Q% (log E)) @ (R2a Q% '(log E)) ~ Q%(log D);  (a®@w,b®v) — aw +bv A T (1.2.1)
For each n > 1, let V,, C Q% (log D) be the image of
(T A[[T]] © 9 (log E)) & (T A[[T]) @4 O (log E)).

We easily check the following.
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CLAIM 1.2.4. For a tuple of integers n = (n1,...,nq—1,n) with n,n; > 1, we have G2Q% C V,
and it coincides with the image of

(T"A[[T]) @a (T7" - Ty) - QY (log B)) @ (TMA[T]) @4 (T7 - Ty0H) - 4 (log B)).
The map (1.2.1) restricted on V,, induces an isomorphism
(TPt T3 - Q4 (log E) @ (T -+ T ") - Q9 log B) > G204, /G 04,

dT
(w,v) — T"(w—i—v/\T),

where ' = (nq,...,ng_1,n+1).

Let I, be the set of strictly increasing functions {1,...,¢} — {1,...,d—1}. For s € I, write

Ty Ty
A A c Q% (logE).
Ty Ty 4(log B)

W =
q)

Then w; (s € I,) form a basis of Q7 (log E') over A. Put

_n—1
U, = Vi N Ker (2% (log D) ~—5— Q4 (log D)/dQ% *(log D)).
We have the following description of U,/U,+1 (see Part (B) of the proof of [Kat82,

Proposition 1]).
If (p,n) = 1, we have an isomorphism

Pn: qul(logE) i Un /UnJrl,

d(1+ as
Z Asws > Z 1t T") ANws (as € A). (1.2.2)

s€lq_1 s€lg—1

If p|n, we have an isomorphism

n Q95 (log E) /9% (log E)ao @ Q%2 (log E) /9% (log E)d:0 = Uy /Ui,

a1 +a, 1) d(1+bT") dT
( Z AsWg, Z btWt> —> Z W Z _|_th77, /\?/\Wt, (123)

SEIq,1 tEIq72 SEIq,1 I

where ag, b; € A.

CrLam 1.2.5. Fix a tuple of integers n = (ny,...,ng—1,n) with n; > 1.
(1) Assume (p,n) =1 and pp(w) € G2QY, mod Upy, for

Z asws € Q% (log E).

SEqul

Then we have as € (T{" - T;*,") for all s € I;_1.
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(2) Assume p|n and pp(w) € G2QY, mod Uy for
w = (wi,wa) € Q% (log B) /% (log E)a=o © Q% *(log E) /Q% > (log E) 4=o-
Then one can write

Wy = Z asws mod Qi_l(logE)dzo,
SEIq_l

Wy = Z biw; mod 9?4_2(10g E)a—o,

tely_2
with ag,by € (T - T*7") for all s € Iy and t € Iy_s.

Proof of Claim 1.2.5. Assume (p,n) = 1. From (1.2.2) we get
p Zaw :T”Zda/\w:lznT”Zaw/\d—T mod U,
n sWs s s sWs T n+1-
SEIq_l SEIq_l SEIq_l

Hence (1) follows from Claim 1.2.4 noting das A w, € Q% (log E). Next assume p|n. From (1.2.3)
we get

pn<< Z asWs, Z btwt>> =T7" Z das Nws £T" Z dbs A\ wi A d?T
s€lg—1 te€ly—2 s€lg—1 t€lq—2
By Claim 1.2.4, if the left-hand side lies in G2Qf, mod Uy41, we get
das Aws € (TP --- T34 - Q4 (log E),  dby Awy € (T --- Ty ) - Q% (log E).
Thus the desired assertion follows from the following.
CLAIM 1.2.6. Assume dn € (I7" -+~ T;*")- QY (log E) for = D sel,y OsWs € Q% ' (log E). Then

there exist as € A for s € I,y such that as — o € (T]" ---T;f;l) for all s and that d¢ = 0 for
£= Zselq,l QsWs-

. Nd—
Indeed write a; = a + a), where a, € (T ---T,“]") and a; are expanded as
E S i, pla-1 o
asﬂlvuﬂdflj}, kal (aﬁﬂ1r~ﬂd71 € k)?
U1yeeid—1

where i1,...,74_1 range over non-negative integers such that there exists 1 < v < d — 1 with
iy, < ny,. Then one easily check that « satisfy the desired condition. O

Now we can finish the proof of Proposition 1.2.3. In the following we fix a tuple of integers
n = (ni,...,ng_1,nq) with n; > 1 and take w € GQQ?%. By Claim 1.2.5 there exist a series of

elements

asp € (T Ty*Y) (s € Ipm1,m = nyg),
bipm € (T1" - Ty'1") (L € Ig—2,m > na/p),
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such that
0+ 00, ) H0 bt i
WZZ 2—7/\033"'2 2—7/\7/\0%
n2ng s€lq—1 (1 + as’nTn) pm2ng t€l;_o (1 T bt’mTpm) T
d(1+ as nT”)) < d(l + by mTpm)) dT
- Doy )Nt 2D g ey ) N e
s€lg—1 <">nd (1 . as’nT”) tely—2 “pmz=ng (1 + bt,mTpm) T

The products
z= ] O +anT™, y= ] Q+bmT")

nzng pmz=ng
converge in 1+ (77" ---T}*) C R* and we get
dx dy dT
w= > — Aws + > 5 N e
861q71 tEIq72

This completes the proof of Proposition 1.2.3. a

Remark 1.2.7. In fact, the above proof shows that the exactness in the middle of the complex
in Theorem 1.2.1 already holds in the Nisnevich topology.

2. Filtered de Rham—Witt complexes

Let X,D,j: : U < X be as before. Let {D)} ea be the (smooth) irreducible components of D.
We endow Z* with a semi-order by

n = (ny)rea =0 = (n))xea if ny =0 forall X € A. (2.0.1)

For n = (ny)xea € 72 let

Dy =) naD,
AEA

be the associated divisor.

2.1 Definition and basic properties
Let E be a Cartier divisor on X. It is given by {V;, fi}, where {V;}; is an open cover of X and
fi € T(Vi, M%) is a section of the sheaf of total fractional ring.

DEFINITION 2.1.1. We define an invertible W,,Ox-module W,,,Ox (FE) associated to E as

1
WmOX(E)W,- = WmOVi : |:f:| C Wm./\/lvi,

where [-];,: O = W,,,O the Teichmiiller lifting.

This definition gives us an invertible sheaf W,,Ox(D,,) for any D,, as above.

LEMMA 2.1.2. We have:

(i) F(Wim+10x(Dy)) C Wi Ox(Dypn);
(ii) V(WmoX(Dp@)) C Wm-i-lOX(Dﬂ);
(i) R(Win+10x(Dy)) C Wi, Ox (Dy,).
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Proof. The claims (i) and (iii) are clear by the definition. Claim (ii) follows from the equalities
V(e Fy)=V(z) yand Flylm1 = [y"]m- o

Let W;,,Q% (log D) be the de Rham-Witt complex with respect to the canonical log structure
(X, 705 NOx) defined in [HK94, §4].

DEFINITION 2.1.3. For n = (ny)xea € Z*, we define the filtered de Rham-Witt complex as
WmQ;QDQ = WinOx(—=Dy) - Wi (log D) C 5. Wi 82,
where W,,,Q0% (log D) is canonically viewed as a subsheaf of j,W,,8)}; (cf. [HK94, (4.20)]).

Note that
WmQ}wﬁ = W, Q% (log D) @w,,0x WinOx(—Dy).

In particular, W1 Q% , = Q% (log D) ® Ox(—Dy) = b, (cf. notation in Theorem 1.2.1).

LEMMA 2.1.4. We have the following inclusions:
(ii) V(WmQ}lDM) C WmHQ}'Dﬂ;
(iii) R(Wm+1Q§(|Dﬂ) C WmQ}lDﬂ.

Proof. This follows from Lemma 2.1.2 and the basic properties of de Rham—Witt complex [HK94,
§4.1] [Lor02, Proposition 1.5]. O

2.2 Canonical filtration
On W,,,Q% (log D), we can define the canonical filtration as in [I1179, I (3.1.1)]:

Wi (log D) ifs<0Oorr <0,
Fil*W,,¥ (log D) := { Ker(R™* : W, Q0% (log D) — W, Q% (log D)) if 1 <s<m,
0 if s > m.

For 1 < s < m, we have [Lor02, Proposition 1.16]
Fil*W,,,Q% (log D) = VW, Q% (log D) + dV*W,,_sQ% ! (log D).

DEFINITION 2.2.1. For 1 < s < m, we define

WmQ;an ifs<0orr <0,
FilSWngﬂDn = ¢ Ker(R™™%: WmQTX|Dn — WSQTX|DH) if1<s<m,
0 if s > m.

THEOREM 2.2.2. We have

FllszQTxan = VSWm—sQTx‘DpSn + stWm—SQTX_ﬁ) Sp
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Proof. We only need to show the inclusion ‘C’. By the definition of the canonical filtration and
the fact that W,,,Ox(—D,) is an invertible sheaf, we have

FilSWmQ}"{'Dn = WnOx(—D,) - Fil*W,,,Q (log D),
and it suffices to show that the group on the right-hand side is contained in

VWi sQxp ., + dVSWm_Sanll)psﬂ.

Using the formula z - Vy = V(F(z) - y) repeatedly, we see that for any w € W,,_,Q% (log D),
w' € Wy sQ' *(log D) and = € W,,Ox(-Dy,),

z- (V¥(w)+dV3(W)) = V¥(F*(z) - w) + dV*(F*(z) - ') £ dx - V(). (2.2.1)

By our definition, we have F*(x) -w € T/Vm_SSYmesﬂ and F*(x)-w' € Wm—SQTXWEI,Sﬁ' It suffices

to prove that dx - V5 (w') € V* Wm_SQT)qD . - Since the problem is local on X, it is enough to
pSn
show the following claim.

CrAmM 2.2.3. For any t € Ox, and 2’ € Wy, Q% (log D),

d[t]n V() = V* ([t =5 d[t]m-s?)-
Indeed, we know (cf. [I1179, I, Proposition 1.5.2]),
dt]mV (2) = V({12 d[tlm_12) for any t € Ox, and z € Wy, 1% (log D).
Using this formula and x - Vy = V(F(x) - y) repeatedly, we get the claim. O
COROLLARY 2.2.4. There are the following inclusions:
(i) FEPWRyp ) C FI T Wo 1 Qs

(i) V(FPWnQyp ) C PP W1 O
(iii) R(FilSWmQTXmQ) C Filsz_lﬁ&lDﬂ.
Proof. This follows from Lemma 2.1.4, FV =p =V F and FdV =d. O

For n > 1, i.e. n € N}, we have

W% p, C WinS-

Indeed, for m = 1 this follows from the fact W1y, = s (log D)(—Dy,) C . Then the claim
follows by induction on m using Theorem 2.2.2.

LEMMA 2.2.5. For n € N*, we have
Fil*W,,,Q% N WmQSQDQ = FiISWmQT)(lDE,

and
Ker(p® : WmQrX|Dﬂ — WmQTX‘Dﬂ) = Filmf‘SWmQTX‘Dﬂ.

In particular the multiplication by p® induces an injective homomorphism

p° VVm,SQTXWﬂ — WmQS{IDﬂ' (2.2.2)
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Proof. The first equality follows from the following commutative diagram.

0— > FIISWmQT;QDﬂ - WmQrX|Dﬂ E) WSQTX\DQ —0

| | |

0 — FilP W, Q0 ——> W —— > W, Q5 ——0

The second equality follows from the first and the fact (cf. [I179, I, Proposition 3.11})
Ker(p® : W, Q% — W, Q%) = Fil"*W,,, Q.

Recall (cf. the proof of [11179, I, Proposition 3.11, p. 575])

Ker(F™ 1 W, Q% — Q%) = VW, 1Q%, (2.2.
Ker(F™ td: W, — Q1) = FW,,11Q%. (2.2.

We have the following analogues for the filtered de Rham-Witt sheaves.

PROPOSITION 2.2.6. For n € N*, we have:
(i) Ker(Fm1: Wil p, = Q’"X|me71ﬂ) =VWnaQ%p, - L€,

(i) Ker(F"~td: WSy p = Ufp ) = FWaynaQyp, . ie,

FWm+1QTX N WmQS(‘Dpﬂ - FWm+1QS(‘D£'

Proof. This is proved by the same argument as in the proof of [I1179, I, Proposition 3.11], which

we recall below.
(i) For m =1 it is trivial. For m > 1 we have

Ker F" ™! € Kerp™ ™' = Fil'Woy p, = VWao1Qy p,, +dVWaa QY

by Theorem 2.2.2 and Lemma 2.2.5. It suffices to show that, for 1 < s < m,

(Ker F™ 1) 0 (VW1 Q% p, + FIPW5 Q% p ) C VWi Q% p  + FIPH W0, o (2.2.5)

Let z = Vo + dV*y with x € Wm_lSl;qun, Y € Wp_ o2k be such that F™ 1z = 0. Noting

X|Dpsn

F=lVg =pFm 22 =0 and F™1dV* = F™~1754, it follows that F1=%dy = 0. Let 7 be the
under the restriction map R™~!1=%. Then, by [11179, I, Proposition 3.3], we

r—1
X|Dpsyn

get C~(m=1=5) gy — 0 and dg = 0 in QS(‘D . . By Lemma 1.1.8 there exists (locally) 3’ € Q
pSn

image of y in 2
r—1

)(‘Dpsflﬂ

Y =>4 GaWa With ay € Ox(=Dps-1,,) and w, € Q’"Xfl(log D), we take § = ) [aa|m+1—s@as

where @, € Wm+1_8QTXfl(log D) is a lift of wy. By the construction we have

y = Fymod Fil' Wy, Qp, .

1319

https://doi.org/10.1112/50010437X1800711X Published online by Cambridge University Press

)(|DpsflE
such that 7 = C~1(y). We can then take a lift § of 3/ in Wy,y1_ Q%+ . Indeed, writing


https://doi.org/10.1112/S0010437X1800711X

U. JANNSEN, S. SAITO AND Y. ZHAO

By taking V¢ on both sides, we get

Viy = VSFg mod Fil** ' W, Qg .
Hence

dVey = dV*Fjj = pdV*1j = VdV* 2§ mod Fﬂsﬂwmg’“g@.

That is
dV*y € VW1 Q p  + Fil* W, 0% .
Hence z = Vz +dV®y € VWm,lQ’”X“)pﬂ + FilSJermQTX'DH, which proves (2.2.5).
(ii) It suffices to prove that, for 1 < s < m,

Ker(F™1d) NFiP Wy, Q% p  C FWy1Qp, + Fil* Wy, Q% (2.2.6)
Let z = Vo +dVy with o € Wi Q% ., ¥ € Wm_sQ”X_ul)pMﬂ be such that F™dz = 0.
Noting F™~1dV* = F™~1754_ it follows that F™~1~%dz = 0. Let T be the image of z in Q_TX|D o
pSTin
As in (i), there exist & € Wm—s-ﬁ—ler‘D ., such that
pSn
z = F# mod Fil'W,,_ ’"X|Dp5+lﬂ.
By taking V*® on both sides, we obtain
Vo = FV°Z mod Fil* 'W,, Q% .
Noting that dV®y = FdVstly ¢ FWmHQS{\Dnv we obtain the inclusion (2.2.6). O

COROLLARY 2.2.7. Forn € N* and x € W, _1Q%, p-a € Wity p, (cf. (2.2.2)) implies x €

;
Won 1D

Proof. Recall we have the following diagram [I1179, Proposition 3.4].

W1

Hence there exists 2 € W,,Q% such that pZ = p- 2z and R = z. By the assumption, we have
VFt=pit=p -z € WmQ”Xan. Thanks to Corollary 2.2.6(i), it follows that there exists 3’ €

Wm,lQ”X| Dy such that

VFi=Vy'.
Recall the identity in [I1179, 1. 3.21.1.4]:
Ker(V : Wy 1% — W, Q%) = Fav™ 11
Therefore there exists 2’ € Q' * such that F# —y' = FdV™ 2. That is

F(E—dv™ ') =y e Wy aQp .
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Corollary 2.2.6(ii) implies that there exists y” € WinS¥y p, such that
F(z —adv™ 1) = Fy.
Thanks to the identity [I1179, I. 3.21.1.2]
Ker(F : W, — Wy 1 Q%) = V1%,

we find 2" € Q% such that
5 — y// — dvmflzl + melz//

Noting that Ker(R : W, Q05 — Wy1Q%) = V105 +dV™ 105 we get

r=Ri=Ry' € Wm_lﬁ’”an. O

2.3 Logarithmic part of filtered de Rham—Witt complexes
The relation between the filtered de Rham—Witt sheaves and the relative logarithmic de Rham—
Witt sheaves is given by the following theorem, which is a generalization of Theorem 1.2.1.

We first introduce some notations. Let

Y :={D,|n=(n\)rer € NA}

be the set of effective divisors with supports in X — U, whose irreducible components are same
as those of D. The semi-order on Z* defined in (2.0.1) induces a semi-order on X:

D, > D,y ifn>n.

For Dy, Dy € ¥ with Dy > D4, we have a natural injective map W, — W%

X|D1,log X|D2,log
(see Corollary 1.1.4), which gives a pro-system of sheaves
“1}21” WmQrX|D,log'
Dex
In order to simplify the notation, we simply write it as “l(i_r_n D” WmQ”X| D.log"
THEOREM 2.3.1. We have the following exact sequence of pro-sheaves,
— 0,

1-F

W2 r €3 T 7 EeRT r m—1nr—1

0 = “Gm" Wil p 1og = " Wiy p — “lim WiSx p/dV QX‘pm—lD
D D D

where D runs over the set 3.
We need the following lemma, which follows from easy calculations with Witt vectors.
LEMMA 2.3.2 [GHO06, Lemma 1.2.3]. Let R be any ring, and t € R, then [1 + t]p, — [1]m =

(Y0, - - -, Ym—1) With y; =t mod t*R for 0 < i < m — 1. Here [z],, = (,0,...,0) € W,,(R) is the
Teichmiiller representative of x € R.
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Proof of Theorem 2.3.1. First we show that WmQ’S(|me—1Q7IOg C Wil 10g (cf. Definition 1.1.1)

lies in W, QX|D This is a local question so that we may assume that X = Spec(A) and D = ()
for some t € A. By Lemma 2.3.2 we can write

L+ ]y = [ = @ g0, T )
with y; € A for 0 < i < m — 1. Noting dx = 0 for z € W,,,(FF,,), we get
(m—1) (m—1) (m—1)
d[l +t* "a)y, = d(t? "0, ..., 1P "Ym—1) = d([t]}, - (coy- -+ Cm—1))

with ¢; € A for 0 < i < m — 1, where the second equality follows from the formula

p(m—1)

[tml . (Co, e ,Cm_l) = (tnCQ, tnpcl’ . ,tn Cm—l)-
Hence we get
dlog[l+ 7" ™y = ([L+ """ ") ([t (co, - m1)) € WK, (2.3.1)

m—1

noting 1+t "], is a unit of W,,,O0x.

The surjectivity of 1 — F' as pro-systems follows by the same argument as in the proof of
[11179, 1, Proposition 3.26]. Indeed, the formula dz = (F —1)(dVz+dV2z+---+dV™ 1x) implies
that

-1

Therefore it is enough to show that
1
Wi QX|D RN Wi Qs X|Dn /AW, QSQD

is surjective.

Theorem 2.2.2 implies that W, (' X|Dn JAW,, QY7 is generated by sections

X\D
Vilz]m_sdlog[yi]m - - - dlogly,]m with 0 <i<m —1,

where © € Ox(—D,;

i) for some n' <n and y; € O for 1 < j <7 such that

dlog[yi]m - - - dlogly,|m € WngﬂD -

n—n

(Note that in view of (2.3.1), dlog|y;],, may also contribute to the multiplicity.) We may then
choose (étale locally) y € Ox (—D,i,/) such that y” —y = x. Then we have

(1= F) (V' [Ylm—idlogyi]m - - - d1og[yr]m) = V' [2]m—id1og[y1]m - - - d10g[ys]m

which implies the desired surjectivity.
Finally we show the exactness in the middle. It suffices to show the following equality in
WSl
Wil p, VWil jog = Wil D, log-

We prove this by induction on m. For m = 1, this is Theorem 1.2.1.
Let x € W, QX|D N WmQS(’log, then we have

Rx=Fz ¢ Wm,lﬁgﬂpw N Wm,19;(710g.
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By induction hypothesis, we have
. T
Rx =Fzx € Wm%QX\me_lElog-

On the other hand, there is a commutative diagram

R
T T
WmQXlemflﬂvlog m_IQX‘meflﬂvlog 0

. |

T - T T
00— 0% g — Wil 1o, Win—18 15g —>0

where the lower sequence is exact by [CSS83, Lemma 3]. Hence there exist y € I/Vmﬂg(| D1, o8

m—1 |

and z € Q% logs Such that z —y =p z.

Since Qm_l cz=x —y € WpQk Corollary 2.2.7 implies z € Q’,—)‘{an' By Theorem 1.2.1,

X[Dn?
this implies z € @'y, ., and hence prtze WmQ?{Ime_lﬂ,log (cf. Theorem 1.1.6). This proves
r=y+pm 2z W, as desired. O

= X‘meflﬂ’log

3. The pairing on the relative logarithmic de Rham—Witt sheaves

Let X, D,j: U X beasin §2. In the following we want to define a pairing between cohomology

group of WmQ{]’log and cohomology group of “l(i_r_n D” Wmﬂgl{'g’log. In order to define a pairing on

the sheaves level, we have to write W, Qf; log &5 ind-system of sheaves on X.

3.1 The pairing
To define our desired pairing, we will use the notation of two-term complexes. We briefly recall
the definition. In [Mil86], Milne defined a pairing of two-term complexes as follows.

Let

F = (75 T, 9= (4" %
and
A = (A0 s )
be two-term complexes. A pairing of two-term complexes
F* XG> H°
is a system of pairings

:ﬁoxgo—x%ﬂo;
RS AE Y
c Flx @Y -

such that
dw((,9)00) = (2, dy(y))o,1 + (dz(2),9)1 0 (3.1.1)

for all z € Z9, y € 4°. Such a pairing is the same as a mapping

FCRYG* — A
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In our situation, for any tuple of integers n > 1 we set
. 1-C
WinZl5 = [Z1WnQ p_, — W% p_ ], (3.1.2)
where Zﬂ/Vng(uL2 = g 21 W2 N I/V,,JZS(‘[Lﬂ with 5 : U — X the canonical map and

(2.2.4)

ZleQ’{] = Image(F : WerlQTU — WmQZ) KGI‘(Fm_ld : WmQ?] N QT[:J+1)’

and C is the higher Cartier map [Kat85, §4]:
C: Zy Wy JdV™ 1 5 W, 05

We also set

W™ = WD, = Walh, AV 055, (3.1.3)
Wit = [WnQd =5 W,,0%]. (3.1.4)

By [Mil86, Lemma 1.1] we have a canonical isomorphism
Win Q% 10g[0] = Wi H°. (3.1.5)

LEMMA 3.1.1. For any tuple of integers n > 1 we have a natural pairing of two-term complexes
Win T lom % WGk 12 — Wi H°. (3.1.6)

Proof. By the definition of filtered de Rham—Witt complexes, the cup product induces pairings

d_
Wil p_, * WaQ(p, = WT,LinqDl C W%

and

Zi Wl p_, X WG D = Winl p, € WinQ% .

By composing with the higher Cartier operators, we have the following pairing:

Wk p_ X Wng’;Ugﬂ+l /dvm—lagl;‘g;ﬂn - W% (a,8) = —C(aAB).
It is easy to see that these pairings are compatible. O

If we now let n run over N, we get a pairing between an ind-object and a pro-object

“Um” W, FL5 x “ljm” WG — Wit (3.1.7)
n n

or equivalently, a morphism in the category of pro-objects of complexes of abelian sheaves

oy d—r,e g ,®
“lim W9, 1" — “lim Hom (Wi T 10, Wi %),

n n

where W,,,7¢°® is viewed as a constant pro-object.

Remark 3.1.2. To construct the pairing (3.1.7) in a more natural way, we could use a full
subcategory of the ind-category of pro-objects of coherent complexes (cf. [Kat00, §2.1]).
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4. Duality over finite fields

In this section we assume that the base field k is finite. By taking hypercohomology groups of
the pairing (3.1.7) using (3.1.5), we get a pairing

lim H (X, Wi Z20) x Tm H (X, W@ 1) — HO (X, Wi Q4 Jog)-

n n

Note that there is an isomorphism in the bounded derived category D®(X,Z/p™Z) of étale
Z/p™Z-modules:

lig Wi 778 = [ 21 W) > juWonS2] & RjaWon 1o,

7ﬂ_
n

where the second isomorphism comes from the fact that j is affine. Hence we get

lim H' (X, W, FIp) 2 H' (U, Wiy 1) - for any i € Z.

-n
n

Theorem 2.3.1 implies that

. 3 d—r,e\ ~u 1: —3 _
im H (X, W@ 1) & lim HE (X, ngﬁflg,log). (4.1.1)
n D

Combining these facts, we obtain the following corollary.
COROLLARY 4.1.1. We have a natural pairing of abelian groups

H' (U, Wi 106) * lim HH (X, WinTZ,loQ — HNX, W% 1) N z/pmz,  (4.1.2)
D

where the trace map is the canonical trace map of logarithmic de Rham—Witt sheaves (cf. [Mil86,
Corollary 1.12]).

Noting that H1=#(X, WmQ?{T}S,lag) are finite, we can endow lim | HAH1-(X Wmﬁ?(_\g,log)

with the inverse limit topology, i.e, the profinite topology.

PROPOSITION 4.1.2. The pairing is continuous if we endow H'(U, W,, 2, log) With the discrete
topology and lim | HAF=i(X, Wngl(_ug,log) with the profinite topology.

Proof. Tt suffices to show that the annihilator of each a € H(U, Wi 10g) is open in the

projective limit 1(21 b HIFI=(X, Wngl{'g,log). This follows directly from the lemma below. O
LEMMA 4.1.3. For any o € H'(U, WS 10g), the morphism induced by (4.1.2)

<a7 > : l(iLan—H_i(Xa WmQ.U)lag,log) - Hd+1(X’ WdeXJog)
D

factors through H*'="(X W,,Q%" . ) for some D € X.

X|D,log

Proof. This follows directly by the construction of the pairing. a

Our main result in this section is the following duality theorem.

1325

https://doi.org/10.1112/50010437X1800711X Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X1800711X

U. JANNSEN, S. SAITO AND Y. ZHAO

THEOREM 4.1.4. The pairing (4.1.2) is a perfect pairing of topological 7 /p™Z-modules, i.e, it
induces an isomorphism of profinite groups

1<i—r—n H (X, WdeX_\B,log) = Hi(U’ ngzﬂlog)v’
D

where AV is the Pontryagin dual of a discrete group A.

The proof is divided into two steps, the first step is to reduce the theorem to the case where
m = 1; then we prove this special case in the second step.

Proof.
Step 1. We have the following commutative diagram with exact rows

I d+1—i d— NN d+1—i d— s d+1—i d— s
I(IEIH Z(X’Wm_lﬂX\g,log) 1(11_1’1H Z(X’WmQX\B,Iog) l(li’lH 7((‘XV’QX|B,IOg)

D D D

e e

= H (U W19y ) —————> H (U W Q) ——————> H(UQ ) —— ..

where the first row is induced by Theorem 1.1.6, and it is exact since the inverse limit is exact
for projective system of finite groups. The exactness of the second row is clear. Using this
commutative diagram and induction on m, we reduce our question to the case m = 1.

Step 2. For m =1 the pairing (3.1.6) is identified with

1-C d— F-1 d— d—r— 4 1-C d
[ZQTX|D*E Q;qug] X [QX\EEJd QX\Eﬂﬂ/dQX@ﬁL] - [QX QX]:

where for any n = (n))xea € N* (cf. the notation in (3.1.2)),
Vxp, = Lx(log D) @ Ox(=Du),
2V p_, = Ker(d: Qxp. — 5.90"),  dQ% 1 = Image(d: Q5 1 — Q7).

The perfectness of the pairings

Q% (log D) ® Q% "(log D)(—D) — Q% (log D)(—D) = Q% (4.1.3)
implies that the following pairings
Dsip_, @D, ~ Wop, = %, (Em) = Enn; (4.1.4)
T d—r d—r— d d
Z%p_, ® D, /I 5, = Uiip, = %, (€)= —C(EAm); (4.1.5)

are perfect. In fact the perfectness of the pairing (4.1.5) follows from [Mil76, Lemma 1.7].
By Grothendieck—Serre duality, we obtain the following isomorphisms as k-vector spaces:

. ~ d—i d— *
HY(X, Qyp_,) = HTH X D, )

and

H(X, 2% ) = HT&Y(X, Qgiagm /dgg(—lg;l)*.

Note that, for any two k-vector spaces V and W, an isomorphism of k-vector spaces

W = Homy(V, k) =: V*
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uniquely corresponds to an isomorphism of [F,-vector spaces
~Y . Vv
W = Homp, (V,Fp,) =: V.

The above two isomorphisms give the isomorphism (1) in the following commutative diagram

~

lim F (X, WA %) —— o (i (X, W 200)

n+1
gl(z) ®3)
) i _r ; ey 1-C A
hm B Q5 ) (X (.29 = 5.00])

I

1(11_11 HdJrlii (X, QdX_\B,log) Hl (U’ Q{]JOg)v
D

where the isomorphism (2) is induced by Theorem 1.2.1, (3) follows from the observation that
7« = li_I)l’ln QS{|D,E’ and the isomorphism (4) is due to the fact that Rj Q2 10g & (7282, =<

7<) Therefore the last horizontal map is an isomorphism. O

In particular, for ¢ = 1 and r = 0 we get isomorphisms

lim HY(X, W% 10p) = H (U, Z/p™2)" = w(U) /p™,
D

and

HY(U,Z/p"Z) = lig H(X, W% p 100) -
D

These isomorphisms can be used to define a measure of ramification for étale abelian covers
of U whose degree divides p™.

DEFINITION 4.1.5. For any D € 3, we define
FilpH' (U, Z/p"™Z) := H*(X, Win Q% p10g) "
FilpH'(U,Q/Z) := H'(U,Q/Z){p'} B | FilpH"(U, Z/p™Z),

m>=1

where H1(U,Q/Z){p'} is the prime-to-p part of H(U,Q/Z). Dually we define

(X, D)/p™ := Hom(Filp H\(U, Z/p™7Z), Z./ p™7Z),
m*(X, D) := Hom(Filp H(U,Q/Z),Q/Z).

The group 7% (X, D)/p™ is a quotient of 7 (U)/p™, which can be thought of as classifying

abelian étale coverings of U whose degree divides p™ with ramification bounded by D. These
groups are important objects in higher-dimensional class field theory.
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5. Duality over perfect fields

When the base field k is finite, our duality theory is formulated by endowing the cohomology
groups with the structure of topological groups. When the base field k is not finite, it is necessary
to endow the cohomology groups with stronger structures, namely the structures of proalgebraic
and indalgebraic groups, and use Breen—Serre duality instead of Pontryagin duality. In this
section, k denotes a perfect field of characteristic p > 0, not necessarily finite, and we put
S = Spec(k).

5.1 The relative perfect étale site
Recall a scheme T is said to be perfect if the absolute Frobenius morphism F : T — T is an
isomorphism. For any S-scheme X, the perfection XPf of X is the projective limit of the system

X EXEE L E X0 E

9

where Xr(f ) is the scheme Xeq with the structure map F"oxw : X — S. It is a perfect scheme,

and has the universal property that
Homg(X,Y) = Homg(XP! V)

for any perfect S-scheme Y. A perfect S-scheme X is said to be algebraic if it is the perfection
of a scheme of finite type over S. One sees easily that the perfect algebraic group schemes over
S form an abelian category. Let (Pf/S)¢ be the perfect étale site over S, i.e., the category of
perfect schemes over S with étale topology.

In what follows we fix a smooth proper morphism 7 : X — S and an effective divisor D
such that Supp(D) is a simple normal crossing divisor on X. Let j : U := X — D < X be the
complement of D. Let (PfX/S)e be the relative perfect étale site over X/S, i.e., the category
of pairs (T,Y), where T is a perfect scheme over S and Y is étale over X xg T equipped with
étale topology. We define 2" and . to be the category of abelian sheaves on (PfX/S)s and
on (Pf/S)e, respectively. For any integer m > 1, we denote 2" (p™) (respectively . (p™)) to be
the category of sheaves of Z/p™Z-modules on (PfX/S)e (respectively (Pf/S)¢). The structure
morphism 7 : X — S induces a morphism of sites

w: (PfX/S)et = (Pf/S)et, (T,Y) T,
which gives rise to adjoint functors
T X == 7" and m.:Z(P")=—= (") 7".

Definition 1.1.1 gives an object Wy &y p . of Z (p™) such that RiW*WmQ&‘DJOg is the

sheaf on (Pf/S)s associated to the presheaf

T — Hi(XTa WmQTXT|DT,10g) (T < Ob((Pf/S)et))

5.2 Duality theorem
By (3.1.2) we have an isomorphism

i Wi T = [ 2a WonS2y ——> W] 2 R W2 o,

n
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where the second isomorphism follows from the fact that j is affine. Therefore

Rlim R W, F05 = R Rj Wi Qi 10, € DY( (0™)), (5.2.1)

n

since Rlim ~commutes with R,. By (3.1.6) and (3.1.5), we have a map

R, WinGar 0 — RHom.y (Rm W Fln, R W Q% 10)-

—n>

By taking the homotopy limit Rl(ir_nn on both sides, we obtain a map

n+1
n n

. d—r,e . r,e
Rl(l_r_an W% — Rl(l_rllR’Homy(RmW F,, Rm W, QXlog)

~ R?—Lomy<Rli_r)nR7r*W FI R Wi, QXlog)

~ RHomy(RW*Rj*WmQT[']Jog, RW*Wmﬂc)i(,log)
— RHom.y(Rr Rju Wi 10g, Z/0™Z) [ —d]

where the second isomorphism follows from (5.2.1) and the last map is induced by the trace map
Tr: Rﬂ'*WmQS{(’log — Z/p™Z[—d]. Thus Theorem 2.3.1 gives rise to a map

R hm Rm . W,, 0%
D

X‘Dlo — RHom gym) (R Rjsx WS 100, Z/p" Z) [—d]. (5.2.2)

THEOREM 5.2.1. The map (5.2.2) is an isomorphism in D(.7(p™)).

Proof. By the same method as in the proof of Theorem 4.1.4, we reduce the claim to the case
m = 1. We then use the following result from [Mil76, Proposition 2.1], [Ber81, Lemma 3.6].

PROPOSITION 5.2.2. Let .Z be a locally free O x-module of finite rank and put £ = Homo,, (£,
Ox). Then the natural pairing

9 o4 = 04,01

and the trace map Rmﬂgl(’log — 7 /pZ]—d] induces an isomorphism

L x (LY ®ak) > [0

R = RHom () (Rm. (LY @ O%), Z/pZ)[~d + 1].
COROLLARY 5.2.3. The perfect pairings (4.1.4) and (4.1.5) induce isomorphisms
RW*Q%E = RH0m=y(p)(R7['*QTX‘D_ﬂ, Z/pZ)|—d + 1];
Rm. Q%1 /A% = RHom.y ) (Rm 20 Z/pZ)[—d + 1].
Therefore, we have an isomorphism

R WA%2,, = RHom () (Rm W12, Z/pZ)[d),

where W1.7"; and ng 1'* were defined in (3.1.2) and (3.1.3).
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Proof of Theorem 5.2.1(continued). By taking the limit, we obtain

Z

~

= Rhme*Qd_’" = RhmRmWIgd rye

X\Dl og X|Dni1log

Rhm RW*Q
D
— R l(in RHom » ) (RW*WL@E;, Z/pZ)|—d]

n

i R"Homy( )(R lim RW*chgZ Z/pZ)[ ]

n

- RHom/( )(RW*RJ*QUlogﬂ Z/pZ)[ ]

This is our theorem in the case that m = 1. O

Remark 5.2.4. In fact we can endow Rl(ing Rm W, Q§(|glog with a structure of a complex
of proalgebraic groups, i.e., as an object in the bounded derived category of quasi-unipotent
proalgebraic groups, and similarly view RTr*Rj*WmQZJOg as an object in the bounded
derived category of quasi-unipotent indalgebraic groups. Then Theorem 5.2.2 identifies

Rlim  Rr, W, 9%51 with the Breen-Serre dual of R, Rjs W), (cf. [Pépld, §2.5]).
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