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1. Introduction. Let sd be either a C*-algebra (with norm || ||) or a symmetric ideal
of operators on a Hilbert space (with norm denoted by a). Let au... ,an be self-adjoint

m

elements, and let a0 = E a] I .
V=i V

Let Dn = {-1,1}", with elements denoted by e = ( e , , . . . , £„). Write AE = 2 e}a}. We
shall consider inequalities involving ;

av,p4«|=4 2 \Ae\.

In the same way as for scalars, it is elementary that di\eA\ = a\, and hence

ave|i4,|£a0- (1)

The most important case of the inequality of Khinchin (alias Khintchine, etc.) for scalars
is the following converse of (1):

fl0sV5av,|i4e|. (2)

Many proofs are known. Until recently, methods giving the best constant V2 were
substantially harder, but a short and elegant proof has now been given in [6]. (This
method actually proves the vector-valued version, i.e. Kahane's inequality.)

Three possible generalizations of (2) for operators, in descending order of strength,
are:

(Cl) a0 s. Cave \A£\ (an operator inequality),
(C2) <r(ao)< C<x(av£ \AE\) for the norm considered,
(C3) <r(a0)sCav,o-(i4e).
When the ay are general (not self-adjoint) elements, both |a| and "a0" appear in three

different versions, so that these statements can be reformulated in various ways.
A very simple example shows that (Cl) is false, seemingly beyond hope of rescue by

any reasonable reformulation. Even (C3) fails for the trace-class norm. (We give a direct
example to show this, although it is implicit in the results of [9].) In the light of these
facts, it is interesting that a statement midway between (Cl) and (C2) is correct. We shall
prove the following operator inequality:

a§sV3||ao| |ave|i4e|,

from which it follows that (C2) holds for C*-algebra norms. We actually prove versions
for the left, right and symmetric modulus. These have to be formulated with some care:
the simple-minded generalization obtained by writing (for example) ofa, throughout is
easily seen to be false.

The method imitates a version of the classic one using fourth powers. For scalars, this
is based on the inequality a\eAe £ 3a<> The generalization of this to self-adjoint elements
of C*-algebras was given by Pisier [10]. (This was a vital step in the proofs of the

Glasgow Math. J. 38 (1996) 327-336.

https://doi.org/10.1017/S001708950003175X Published online by Cambridge University Press

https://doi.org/10.1017/S001708950003175X


328 G. J. O. JAMESON

non-commutative Grothendieck inequality in [10] and [3].) Our proof requires an
extension of Pisier's theorem to non-self-adjoint elements, which we give in two variants.

2. Preliminaries. Before proceeding further, we show that two 2 x 2 matrices are
enough to provide a counter-example to (Cl).

EXAMPLE 1. Let

a o\ _/o i\

where A>0, / i .>0 and A / t ^ l . Then a , + a 2 ^ 0 and a,— a2 — 0; hence ave \Ae\ = ax.
Also, a\ = I and hence (with the above notation)

/A' ON

vo /t'r•0

where A'= (1 + A2)1/2, fi' = (1 + /x2)"2. Given any K>0, let A = / T \ Since A'>1, the
inequality a0 ^ K av£ \Ae\ is false.

Now let (E, || || £) be a symmetric Banach sequence space (cf. [2,11]. Define si to be
the space of compact operators a on l2 such that

aE(a) = :\\[sn(a)]\\E

is finite, where [sn(a)] is the sequence of singular numbers of a. By a "symmetric ideal" of
operators, and a "symmetric" norm, we mean an algebra si and a norm <rB defined in this
way. The properties of such norms that matter for our purposes are:

a(xay)<\\x\\<r{a)

if -a<b<a, then cr(b)<cr(a).

The last property is an immediate consequence of the characterization in terms of
orthonormal bases (e.g. [11, Theorem 2.6]). We write crp for cr,, so that (for example) a2

is the Hilbert-Schmidt norm.
We use the following notation for the three moduli of an element:

\a\R = (a*a)m,

\a\L = (aa*)lf2,

a, . ^

(\a\s only appears as an optional extra in the results below.) Since \a\R and |a|L have the
same singular numbers as a, we have (r(\a\R) = cr(\a\L) = a(a) for any symmetric norm a.
Note that \a\2

s = \\a\2
R + \\a\2

L = b2 + c2, where a = b + ic. Clearly, |a|K<2|a|s; hence
\a\R ^ V5 \a\s (and similarly for \a\L), by the well-known fact that if a, b are positive and
0 < a2 < b2, then a < b.
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Given elements a1 ( . . . , an, we define
1/2 / \ 1/2

and aL, as correspondingly. For self-adjoint a,-, each of these clearly coincides with the a0

above. When n = 1, aR coincides with \a\R. Again, 2a| = a\ + a2
L and hence aR ̂  V2as.

It is a well-known property of symmetric norms (proved by considering suitable
operators on the product H") that if each a; is in si, then so are aR and aL\ also o-(aR) and
cr(aL) are not greater than 2 o-(dj). The norm a is said to be (strictly) 2-convex if for

self-adjoint elements a; with a0 = aR = aL, we have

and (strictly) 2-concave if the opposite inequality holds. (The word "strictly" implies that
this occurs with constant 1, but we shall leave it to be understood.) For non-self-adjoint ah

we see by applying the definition to the elements \at\R that the same inequality then holds
with a0 replaced by aR (or aL). It is elementary that a C*-algebra norm is 2-convex and ap

is 2-convex for p^2, 2-concave for p ^ 2 . More generally, aE is 2-convex or 2-concave if
II HE is. See [9].

The next lemma clarifies the relationship with as.

LEMMA 1. We have max[a(aR), (r(aL)] < V2 a{as) ^ cr(aR) + cr(AL).
If a is 2-convex, then (r(as) s max[cr(aR), <r(aL)].
If a is 2-concave, then cr(as) > min[<7(a A <r(aL)].
In particular, for one element, (1/V2)cr(a) ^ c(|a|5) < V5 cr[a). The right-hand

constant becomes 1 when a is 2-convex and the left-hand constant becomes 1 when a is
2 -concave.

Proof. The left-hand inequality follows from the fact that aR < V2 as (and similarly
for aL), and the right-hand inequality from 2a | = a\ + a\, together with the remark
above. The statements for 2-convex and 2-convave norms also follow easily from this
identity. The statements for a single element a follow at once when we recall that
<r(\a\R) = <r(\a\L) = a{a).

By the last statement in Lemma 1, it is clear that a0 can be replaced by as in the
definition of 2-convex and 2-concave.

We shall require the following Cauchy-Schwarz inequality. It is actually a special case
of the Cauchy-Schwarz inequality for "inner-product ,s#-modules" given in [5, Proposition
1.1], but the proof is short and so we include it for completeness.

PROPOSITION 1. For elements Xj, y, (1 £ j' ^ n) of a C*-algebra, we have

In particular, for scalars A, (with the above notation),

2 A / * , * S 2|Ay|
2) xR,

(and similarly for xL, xs).
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Proof. Consider dn, with elements x = (xu... , x n ) . For a e i and x,y e d", define:

ax = (axu... ,axn),

Our statement is (x,y)(y,x)< \\{y,y)\\ (x,x). Note that {x,x)>0 and (x,ay) = {x,y)a*. It
is enough to consider the case where ||(y,.y)ll = 1. For any a e si, we then have

0^(x — ay,x — ay)
= (x,x) -a(y,x) - (x,y)a* + a(y,y)a*.

Since ||(y,.y)ll = 1, we have a(y,y)a* <aa*. Take a = (x,y) to obtain

0<(x,x) — aa* - aa* + aa*
= (x,x)-(x,y)(y,x),

as required. The second statement is obtained by putting _y; = A;e, where e is the identity.
(Note that Xj and y; cannot be interchanged on the right-hand side, even when n = 1.

Also, Example 2 below shows that 'Zyiyf cannot be replaced by S.y*.y;.)

In particular, for positive elements au..., an, we have

1/2

Returning to our basic problem, let au... ,an be elements of si (not necessarily

self-adjoint), and let Ae = S £/«/. Then

Since E £,-£.• = 0 for each fixed i, j , we have (exactly as in the scalar case)
EEC,

that is,

™e\Ae\
2
R = a2

R (3)

and hence, by Proposition 1,

ave\Ae\R<aR. (4)

Similar statements apply to aL and as- (This is the full version of our original inequality

(I)-)
We mention at this point an elementary fact about ave \Ae\ in the self-adjoint case.

LEMMA 2. Let au... ,an be self-adjoint and A = av£ |j4e|. Then ±aj^A, for each j .
Hence if a is any symmetric norm, then a(aj)^a(A). If a is 2-convex, then o-(a0) —
nma{A).
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Proof. For fixed ;, we have av£ e,/ie = a,. Now ±/!£<|>l£|; hence ±aj^A and
cr(a;) ̂  a(A). If cr is 2-convex, then cr(a0)

2 ^ 2 cr(ay)
2.

Afore. It is not true in general that a(aj) s tr(ave \Ae\R). This is shown by the
elements bj in Example 2 below.

3. Extensions of Pisier's theorem for fourth powers. In our notation, Pisier's
Khinchin-type inequality for fourth powers [10] states that for self-adjoint elements
au... ,an,

This is a C*-algebra inequality, implying (for norms ) ||av£/l£|| < 3 ||floll4- We remark that
in Example 1, the statement avcA

A
e^Kat) is false for all K. Pisier's result is sufficient for

the self-adjoint case in our theorem, but for the general case, we need the following
adaptation: the proof is essentially the same, but with careful attention to the positions in
which elements a* occur.

PROPOSITION 2. Let au...,an be elements of si. Then we have (with the above
notation)

In particular, if M = max(||a/j||, ||ai.||), then

av£ \ A e \ \ ^ {\\aR\\2 + 2 \\aL\\2)a2
R =s 3M2a2

K.

Proof. We have

\Ae\% = A*Ae = 2 «/*<»/ + 2 ^{afa, + afa,).
i K;

After squaring again and removing terms that average to 0, we have

av£ \Ae\
A

R = aR + 2 (afaj + afa,)2.

By the elementary inequality (JC + x*)2 ̂  2(xx* + x*x), we have

(afaj + afOi)2 < liafajOfa, + afafifoj).

Hence

2 (afaj + afa,)1 * 2 2 «f (2 aflf)a, + 2 2 affe aflt)a,

V'"'

The statement follows.
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We shall see later (Example 2) that the aL appearing in Proposition 1 cannot be
replaced by aR.

Proposition 2 is adequate for our main theorem, but it is clearly highly unsymmetri-
cal. Before going on to the main theorem, we show how to derive a symmetrical version.

PROPOSITION 3. With the same notation, we have

wE\Ae\U<>U \\aLfa%+ \\aR\\2a2
L<a$ +4\\as\\

2 a%

Proof. We have

\Ae\
2
s = -A*At + ~AeA* = a2

s + -2 e,e,K + u,y),

where utj = afaj + afat, v(> = ataf + OjO*. Squaring again and cancelling as before, we have

^e\AE\4s = aA
s + -.2(uij + viif.

For self-adjoint u, v, we have (u + vf = 2(u2 + v2) - (u - v)2 < 2(M2 + u2). Hence

As shown in proposition 2, E u2.^2 \\aL\2a2
R. Substituting a* for ah we obtain also

S t ; ^ 2 ||o/?||2ai- The left-hand inequality follows. For the right-hand inequality, note
«/
that

4. The main theorem: statement (C2). The following imitates the proof for the
scalar case found in [4]. Other known methods (including the elegant new one of [6]) do
not appear to adapt readily to a form relevant to (C2). The key step is the following
lemma.

LEMMA 3. For any self-adjoint element a and any t>0,we have

> 3 2 _ 1 3 4
| f l | ~ 2 M 2ta'

Proof. For real x > 0 it is elementary that 3x - x3 < 2. Hence \x\ > \x2 - \x4 for all
real x. By the Gelfand representation, it follows that the same inequality holds for any
self-adjoint element a of si. Hence for any t>Q, we have t \a\ ^ \t2a2 - \t4a4. The
statement follows.

Our Theorem now follows quite easily. We remark that the statement becomes much
simpler when the elements are self-adjoint, though the proof is the same.

THEOREM 1. Let au..., an be elements of si. Write AR = av£ \Ae\R, and define AL, As

similarly. Let aR, aL be as above, and let M = max(||flyj||, \\aL\\). Then
(i) a\ < V3 MAR {and similarly for AL);
(ix) M^yf7>m^{\\AR\\,\\AL\\).
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In particular, if the a; are self-adjoint and A = a\e \AE\, then
(i) al<V3U0\\A,
(ii) |fl0||sV§||>l||.

Further, we have a2
s<V5 \\as\\ A

s and \\as\\ < V5 \\AS\\.

Proof. By Lemma 3, for any t > 0, we have

AR > ^ t av£ \Ae\\-\?av£ \Ae\
4
R.

Hence by (3) and Proposition 2,

The maximum value of \(t - A/V) is 1/(V3M), occurring when f = l/(V3M). This
proves (i).

It follows that
\\aR\\2=\\a2

R\\^M\\AR\\.

Together with the similar inequality for aL, this gives

M2<V3Mmax(\\AR\\,\\AL\\),

and so (ii) is proved.
By Proposition 3, avE |/4££<5 ||a5||2a|. Hence

As>\ta2
s-\?\\as\\

2a2
s.

Choosing t = 1/(V! ||as||), we obtain As > (l/V5)a|/||as||, and hence ||as|| < V5 \\AS\\.
This inequality, with V6 instead of V5, can also be deduced from (ii) without Proposition
3, using the elementary relations ||as|| < M (from Lemma 1 noting that || || is 2-convex)

R V s

Note. Let a be any symmetric norm, and let a(2) be its 2-convexification, defined (for
self-adjoint elements) by «r(2)(fl) = (a(a2))m. In particular, if a = ap, then a(2) = a2p. For
self-adjoint aJt we have a\< V5 ||ao|| A; hence cr(2)(ao)2 = V3~ ||flo|| a(A). Since ||ao|| s
o-(2)(fl0), this gives o-(2)(a0) ^ V3 cr(y4). The corresponding statement for non-self-adjoint
elements is

max (<rm(aR), a(2)(aL)) < V5 max((r(AR), a{AL)).

The following example shows how comprehensively the one-sided version \\aR\\ ̂
C||i4*|| fails.

EXAMPLE 2. Consider operators on n-dimensional Hilbert space. Let eu...,en

denote the usual basis. For l < ; < n , let bj = e1<8>ej, so that bj(x) = (x,ej)eu and let
Pj = ej®et. From the relation {x®y){u®v) = {u,y)(x®v), one has bfbj=Pj and
bjbf =P\, so that
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hence bR = I,bL = nmpx. Also, ave(B*BE) = 2 bfbj = /. Now

Be(x) = 2 Bj(x, e,)e, = (x, e)eu
i

in which we now regard e = 2 e,-ey as an element of /̂ . Also, 6*(«i) = e,-, so that B*(e i )= e

and hence B*Be = e®e. Therefore

\BC\R = {B*Be)
m = n'me®e = n~mB*Be.

and so BR = av£ \RE\R = n'v2I = n~mbR.
We remark that BeB* = npx and hence BL-bL = nmpi. Also, to give a direct

counter-example to the one-sided version of Proposition 2, note that

5. Problems, remarks and special cases. An obvious problem is to find the best
constant in our statements. Can the V3 be replaced by V5, as in the scalar case? As
mentioned above, the author does not see any way of adapting the method of [6] to
operators: it appears to depend fundamentally on |2 a;| ^ 2 |fl;|- However, it is not
surprising that v2 is correct in the case n = 2. In fact, two different stronger variants of
our basic result apply in this case. One of these is the statement for 2-convex norms given
in Lemma 2. The other is the following result.

LEMMA 4. For the elements au az, we have aR<V2 \\aR\\ AR; hence \\aR\\ £ VI \\AR\\.

Proof. We have

hence ||fli ±a2|| ^V2\\aR\\ and

-\a1 + a2\
2
R + -\

-\\ai+a2\\ |«i + a2\R + - \\ay -a2\\ | f l i -

= V2\\aR\\A*.

Note that this differs from Theorem 1 in being one-sided throughout. For n elements,
the V2 becomes 2<"-1)/2.

Failing an answer to the general question, does the constant V2 apply for 2 x 2
matrices?

REMARKS ON (C3). If a is 2-convex, then we have from (3)
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By Kahane's inequality (with the constant V2 obtained in [6]).

[aveO-04£)
2]1/2^V2ave<r(,4£).

Hence (C3) holds trivially for any 2-convex norm a (also for variants such as a(as) and
max[o-(fl/?), a-(aL)]).

Clearly, the opposite inequalities hold for 2-concave norms. However, the true
comparison in this case is with the following quantity, introduced in [9]. Define

&(au...,an) = M{a(bR) + <r(cj :o, = bj + cs for each ;}.

The significance of this norm is that (si", &) is predual to si'" with norm
max[(x'(xR), CT'XL)], where cr' is the dual norm to a. In the easy direction, we have the
following result.

LEMMA 5. / / a is 2-concave, then [av£cr(.AE)2]1/2 < o-(au... ,an).

Proof. For any decomposition a, = bj + c,, we have cr(Ae) ̂  a(Be) + a-(Ce) and

[av£o-(C£)
2]1/2<O-(cz.);

hence by Minkowski's inequality

Similarly, we have 2 0"(fl/)2 — d-{au..., an).

The Hilbert-Schmidt norm a2 satisfies o-2(aR)2 = ^(fl/.)2 = S o"2(fl/)2 a°d so if
aj = bj + Cj, then cr2(aR) < <r2(bR) + <T2(CR) = <r2(bR) + cr2(cL); hence ;

&2(au ... ,an) = a2{aR) = a-2(aL).

(This also follows from (3) and Lemma 5.) This property is quite special to cr2. The next
example shows that for other norms (in particular, || || and o^), &(au... ,an) is not
equivalent to min[a(aR), cr(aL)], even for self-adjoint elements. For au this constitutes a
counter-example to (C2) and (C3) (which of course coincide in the case of o-j).

EXAMPLE 3. Consider again the operators bj in Example 2. Let c7 = b* and
ai ~ bj + Cj. Clearly,

For / ^ 2, we have bj = 0 and hence a) = px +Pj. Therefore 2 a2 = diag(n + 3 , 1 , . . . , 1)

and
,1/2

2 a,2) =diag((/J
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It is now clear that ||ao|| = (n+ 2>)m, while if a = || ||, then

* ( * „ . . . , fln)£||M + | |c t | |= 2.

Also, U^OQ) = (n - 1) + (n + 3)1/2, while

o-iCflj,... , an) < o-jCfeJ + ax{cR) = 2nm.

It is shown in [9] that for 2-concave norms subject to certain conditions, the reverse
inequality to Lemma 5 holds (with an intervening constant), so that av£ a(AE) is
equivalent to &. This is the proper "Khinchin" inequality for this case. Two proofs are
given in [9], both quite deep. One of the methods shows that the statement is essentially
equivalent to the Grothendieck-type factorization theorem of [8] (given the results of [1])
and so a simple direct proof, though desirable, seems unlikely.

Problem. Is (C2) true for Hilbert-Schmidt norm cr2, or even for 2-convex norms
generally? By Theorem 1, if the a, are such that o-2(a0) ĤoH -Ccr2(al), then o-2(fl0) —
V3 Ca2(A), and so a counter-example must avoid this condition. The as in Example 3 fail
to provide a counter-example for the even simpler reason that they satisfy cr2(a0) s 2 ||ao||.
The general difficulty in constructing counter-examples is of course that it is very
laborious to calculate ave \Ae\.
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