
J. Plasma Phys. (2025), vol. 91, E35 © The Author(s), 2025.
Published by Cambridge University Press

1

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution and reproduction,
provided the original article is properly cited.
doi:10.1017/S0022377824001521

Metastability of stratified magnetohydrostatic
equilibria and their relaxation

D.N. Hosking 1,2,†, D. Wasserman3 and S.C. Cowley 4

1Princeton Center for Theoretical Science, Princeton, NJ 08540, USA
2Gonville & Caius College, Trinity Street, Cambridge CB2 1TA, UK

3Northeastern University, Boston, MA 02115, USA
4Princeton Plasma Physics Laboratory, Princeton, NJ 08540, USA

(Received 1 June 2024; revised 6 November 2024; accepted 8 November 2024)

Motivated by explosive releases of energy in fusion, space and astrophysical plasmas,
we consider the nonlinear stability of stratified magnetohydrodynamic equilibria against
two-dimensional interchanges of straight magnetic-flux tubes. We demonstrate that,
even within this restricted class of dynamics, the linear stability of an equilibrium
does not guarantee its nonlinear stability: equilibria can be metastable. We show that
the minimum-energy state accessible to a metastable equilibrium under non-diffusive
two-dimensional dynamics can be found by solving a combinatorial optimisation problem.
These minimum-energy states are, to good approximation, the final states reached by our
simulations of destabilised metastable equilibria for which turbulent mixing is suppressed
by viscosity. To predict the result of fully turbulent relaxation, we construct a statistical
mechanical theory based on the maximisation of Boltzmann’s mixing entropy. This
theory is analogous to the Lynden-Bell statistical mechanics of collisionless stellar
systems and plasma, and to the Robert–Sommeria–Miller theory of two-dimensional
vortex turbulence. Our theory reproduces well the results of our numerical simulations
for sufficiently large perturbations to the metastable equilibrium.

Keywords: plasma nonlinear phenomena, plasma instabilities

1. Introduction

Both in the laboratory and in nature, plasmas that host strong magnetic fields
sometimes exist in slowly evolving quasi-equilibrium states. Such plasmas may have
a dynamical time scale τA ∼ L/vA (L is the system’s length scale and vA the Alfvén
speed) that is much smaller than the time scales associated with energy injection and
transport. In the solar corona, for example, the footpoints of magnetic-flux loops evolve
on the photospheric driving time scale of ∼10 min, while τA ∼ 10 s (Cranmer &
Winebarger 2019). Likewise, the transport time scale for magnetic-confinement-fusion
devices is typically ∼ 0.1 s, much larger than τA ∼ 10−6 s (ITER Physics Basis 1999).
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Occasionally, these plasmas depart suddenly and violently from their quasi-equilibria.
Explosive releases of energy – eruptions – involving substantial reconfiguration of
the magnetic field happen both in the corona (coronal mass ejections; see, e.g. Chen
2011 for a review) and fusion experiments (disruption events; see, e.g. Hender et al.
2007). Evidently, the quasi-equilibria can become unstable during their evolution. When
eruptions occur, the system relaxes towards a new state that is a lower minimum
of the potential energy in configuration space. For a significant amount of potential
energy to be liberated, the new minimum must be distant from the original one. The
instability must therefore be nonlinear: eruptions happen when metastable states are
destabilised.

Ideal magnetohydrodynamic (MHD) instabilities may be categorised into two types:
kink and interchange (or ballooning) instabilities. Kink instabilities are global, occurring
at the system scale, and are characterised by significant variation along magnetic-field lines
(k‖ ∼ k⊥, where k‖ and k⊥ are characteristic wavenumbers along and across the magnetic
field, respectively). In contrast, interchange instabilities (Connor, Hastie & Taylor 1979)
are local and scale-independent, with elongation along magnetic-field lines (k‖ � k⊥). In
most known cases, a supercritical bifurcation occurs when an MHD equilibrium crosses
the linear threshold for kink instability; two new stable equilibria that are nearby in
configuration space become realisable (Friedrichs 1960; Rutherford, Furth & Rosenbluth
1971; White et al. 1977; Lorenzini et al. 2009). Because these equilibria are nearby, no
significant release of potential energy is possible if the system is pushed out of one and
into the other. On the other hand, subcritical bifurcation is possible at the linear threshold
for interchange instability. In this case, the system is nonlinearly unstable at marginal linear
stability. Any stable equilibrium to which the system can relax is distant in configuration
space, meaning that a finite amount of potential energy can be liberated.

Previous studies have elucidated certain properties of the relaxation of MHD equilibria
from states that are metastable to interchange-type dynamics. Cowley & Artun (1997)
studied the case of a stratified equilibrium with initially horizontal magnetic field
embedded in conducting walls (fixed field-line endpoints). They showed that gradients of
thermal or magnetic pressure (balanced in equilibrium by gravity) can provide sources of
free energy for a buoyancy instability that is stabilised by magnetic tension only for linear
perturbations – not nonlinear ones. By solving the weakly nonlinear equations of motion
numerically, Cowley & Artun (1997) observed a phenomenon that they termed detonation:
progressive destabilisation of the metastable equilibrium by erupting finger-like magnetic
structures. These results were extended to more general geometry by Hurricane, Fong &
Cowley (1997), Wilson & Cowley (2004) and Ham et al. (2018). Cowley et al. (2015)
showed that, with fast thermal conduction along field lines, erupting flux tubes have two
possible fates: either they find a new equilibrium position or they reach a singular state
with zero magnetic-field strength (flux expulsion).

Despite the successes of these studies, certain fundamental questions remain difficult to
answer accurately because of the geometrical complexity that arises from the bending of
magnetic field lines. Such questions include: To what state does a metastable equilibrium
relax when it is destabilised? What fraction of its energy is available for liberation? Is that
energy always liberated in practice, i.e. is relaxation complete?

The aim of this paper is to consider metastability in a simpler setting where these
questions can be answered. A key result (which, to our knowledge, has not been recognised
previously) is that bending of magnetic field lines, while certainly a feature of eruptions
in the corona and fusion devices, is not a requirement for the existence of nonlinear
instability. We demonstrate this fact in figures 1 and 2, which visualise numerical
simulations that are two-dimensional (2D) with out-of-plane magnetic field only. In
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Metastability of stratified MHD equilibria and their relaxation 3

FIGURE 1. Two-dimensional simulation of a MHD atmosphere subjected to an impulse that
does not trigger instability. The atmosphere relaxes to a final state that approximates the initial
condition. The quantity visualised is the natural logarithm of the ratio of the entropy function
(2.20) to the specific magnetic flux (2.19). This quantity is conserved in a Lagrangian sense in the
absence of diffusion and controls the compressibility of the fluid, with larger values being more
compressible (see § 2.5). The initial velocity field is u = u0ẑ exp(−[x2 + (z − 1.0)2]/0.12) with
u0 = 0.2. The equilibrium is defined by (2.30) with ε0 = 10−2 in (2.34). The co-ordinates x and
z are measured in units of the total-pressure scale height at z = 0 and the time t is measured in
units of the sound-crossing time of the total-pressure scale height at z = 0 (see § 2.6 for details).
A movie version of this figure is available at https://doi.org/10.1017/S0022377824001521.

figure 1, a small perturbation to a stratified equilibrium or ‘atmosphere’ (gravity is in
the negative-z direction) does not lead to destabilisation: the original state is restored. In
figure 2, a larger perturbation destabilises the same equilibrium: a rising plume of material
does not return to its original position, but establishes a new equilibrium state (see figure
captions for further information about the physical set-up and Appendix A for details of
numerical methods).

In the 2D context (upon which we focus exclusively in this paper) metastability is
enabled by the fact that less magnetised fluid (i.e. fluid with a larger ratio β of the
thermal to magnetic pressures) is more compressible than fluid that is more magnetised
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FIGURE 2. As figure 1, but for an initial velocity field that is twice as large (u0 = 0.4). The
equilibrium is destabilised. A movie version of this figure is available at https://doi.org/10.1017/
S0022377824001521.

(smaller β). A flux tube may therefore experience a greater change in density in response
to a large (nonlinear) displacement than the background density profile does over the same
distance, provided its β is larger than that of the surrounding flux tubes. This produces a
destabilising buoyancy force, even though the equilibrium may be stable linearly. In fact,
a precisely analogous phenomenon occurs in the Earth’s atmosphere. This is because air
that is saturated (i.e. sufficiently cool for water vapour to condense) is more compressible
than unsaturated air. As a result, the atmosphere can be linearly stable to convection but
unstable nonlinearly to displacement of saturated air through the so-called level of free
convection. The resulting updraughts lead to the formation of cumulonimbus clouds and,
as a result, thunderstorms (see, e.g. Rogers & Yau 1996). We present a general theoretical
treatment of metastability due to composition-dependent compressibility in § 2 and review
its application to the terrestrial atmosphere in Appendix B.

The rest of our paper is concerned with the question of how metastable MHD equilibria
relax when they are destabilised. In § 3, we show that the available energy under nonlinear
interchanges of flux tubes may be determined accurately by solving a combinatorial
optimisation problem (linear sum assignment) – although we believe that we are the
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Metastability of stratified MHD equilibria and their relaxation 5

first to use this approach for a magnetised system, we note that a similar one has been
employed recently by Hieronymus & Nycander (2015), Su & Ingersoll (2016) and Stansifer,
O’Gorman & Holt (2017) to calculate available potential energy in atmospheric and
oceanic contexts. We show in § 3.3 that the states that are global minima of the potential
energy typically turn out to have horizontal structure over a finite range of the vertical
coordinate z, even if the initial configurations are one-dimensional in z. This appears to be
a new observation. We further find that the amount of energy that can be liberated from a
metastable MHD equilibrium in 2D is always a small fraction (at most a few per cent) of
its total potential energy (§ 3.1). The reason is that flux tubes exclude each other: when a
flux tube moves to the top or bottom of an atmosphere, it prevents others from doing the
same.

The smallness of the available potential energy means that the kinetic energy that
develops during relaxation is small compared with the internal energy of the fluid.
Hence, relaxation is subsonic (for the vast majority of fluid). This has two important
consequences. First, the decay of kinetic energy due to viscosity results in negligible
heating, so that the thermal entropy of the fluid is unchanged during relaxation, provided
that thermal and magnetic diffusion can be neglected. A corollary is that, if viscosity is
sufficiently large to suppress turbulent mixing, i.e. the Reynolds number is sufficiently
small (we estimate precisely how small in § 4.1), then relaxation terminates in a state close
to the one with minimum energy with respect to ideal rearrangements. We confirm this
expectation with direct numerical simulations in § 4.2.

A second consequence of relaxation being subsonic is that fluid parcels maintain local
pressure balance during relaxation: the fractional variation in pressure at fixed height is
small compared with that of density. We utilise this fact in § 5 to construct a statistical
mechanical theory of turbulent relaxation at large Reynolds number. We conjecture that
the state that develops as a result of turbulent mixing is the ‘most mixed’ (in the sense of
maximising the Boltzmann mixing entropy with respect to non-diffusive rearrangements
of flux tubes) locally pressure-balanced state with the given total energy (§ 5.2). This idea
is analogous to the Lynden-Bell (1967) statistical mechanics of collisionless stellar systems
and plasma, and to the Robert–Sommeria–Miller (RSM) theory of 2D vortex turbulence
(Miller 1990; Robert 1991; Robert & Sommeria 1991; Miller, Weichman & Cross 1992),
which has found widespread application in geophysical fluid dynamics (see Singh &
O’Neill 2022 for a recent review). In our theory, the specific entropy s and magnetic
flux χ , each of which is conserved in a fluid-element-wise sense under a non-dissipative
dynamics, play the role of the phase-space density or vorticity in the Lynden-Bell or RSM
theories, respectively.

Of course, neglect of diffusion is valid only until such time as the turbulent mixing
develops sufficiently fine-scale structure in s and χ . In the Lynden-Bell (RSM) theory,
diffusion due to collisions (viscosity) is straightforwardly modelled: when diffusion
acts, the statistical mechanical probability distribution function for phase-space density
(vorticity) collapses onto its expectation value. Our case is different: magnetic diffusion
and thermal conduction increase the total thermal entropy (by a much larger amount than
viscous heating does). Thus, we extract predictions for diffused states by assuming that
our probability distribution function collapses not onto its expectation value but onto the
value consistent with flux and energy conservation (§ 5.3). As it turns out, the resulting 1D
equilibrium state may itself be unstable, linearly or nonlinearly, because diffusion alters
buoyancy.1 We consider taking the predicted unstable diffused state to be the starting point

1A well-known example is the phenomenon of ‘buoyancy reversal’ in the terrestrial atmosphere: when buoyantly
rising dry air mixes with moist air, it may, after diffusion, become more dense than the unmixed moist air and sink again
as a result (see, e.g. Stevens 2005).
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for a new relaxation (if necessary, this procedure can be repeated until a stable diffused
state is reached, although we find that one iteration is often enough to do so). The profiles
of s and χ produced by this procedure are typically only slightly modified from the ones
derived from the statistical mechanics in the first instance – qualitatively, the subsequent
rearrangements and accompanied diffusion tend to produce local plateaus in the profiles
of s and χ .

In § 6, we compare our theoretical predictions with the results of direct numerical
simulations of relaxing metastable equilibria at large Reynolds number. The agreement
turns out to be reasonably good, although less so for small initial perturbations. The
reason for this appears to be that the detonation is incomplete in such cases: the system
becomes trapped in a new metastable state and does not mix thoroughly. We conclude with
a discussion of the possible implications and applications of our study in § 7.

2. Theory of convective metastability
2.1. Definitions

In this paper, we shall be concerned with a fluid dynamics defined by the momentum
equation

ρ
du
dt

= −∇P − ρgẑ, (2.1)

where ρ is density, u fluid velocity, t time, P total pressure, g the constant gravitational
acceleration and d/dt ≡ ∂/∂t + u · ∇ the material derivative. Density evolves according
to the continuity equation

dρ
dt

= −ρ∇ · u, (2.2)

and is related to P by the equation of state

ρ = ρ(P,Q) =⇒ P = P(ρ,Q). (2.3)

The vector Q encodes the conserved material properties of the fluid (i.e. its Lagrangian
invariants), which we allow to vary spatially. We shall primarily be concerned with the
case of 2D MHD with out-of-plane magnetic field, for which the relevant components
of Q are the specific entropy s and specific magnetic flux χ ≡ B/ρ, where B is the
magnetic-field strength; we shall specialise to this case in § 2.5. In different contexts,
the components of Q might instead (or additionally) include mixing ratios (e.g. salinity
or specific humidity) or the entropies of a coupled radiation field or cosmic rays. Over
sufficiently small time scales and at sufficiently large spatial scales that diffusion can be
neglected, Q is conserved following fluid particles, i.e.

dQ
dt

= 0. (2.4)

By neglecting diffusion, we exclude double-diffusive buoyancy instabilities (see, e.g.
Garaud 2018, Hughes & Brummell 2021 and references therein) from our analysis. We
likewise exclude instabilities relating to anisotropic thermal conductivity (Balbus 2000;
Quataert 2008). The application of our methods to the saturation of such instabilities is a
topic to which we plan to return in future work (see the discussion in § 7.2).

2.2. Stability analysis
We now consider the stability under (2.1)–(2.4) of a 1D static equilibrium state, i.e. one
for which u = 0 and P, ρ and Q depend on z only, with dP/dz = −ρg. The net force F
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Metastability of stratified MHD equilibria and their relaxation 7

on a small parcel of fluid moved in pressure balance with its surroundings and without
diffusion (i.e. satisfying (2.4)) from initial height z1 to new height z2 is

F = −gV2ẑ[ρ(P2,Q1)− ρ(P2,Q2)], (2.5)

where V2 is the volume of the parcel at z2 and P2 = P(z2), etc. Writing the difference in
densities as an integral in z, we obtain

F = gV2ẑ
∫ z2

z1

dz
dQ
dz

· ∂ρ(P2,Q)
∂Q

. (2.6)

2.2.1. Linear stability
The criterion for linear stability follows from taking δz ≡ z2 − z1 → 0 in (2.6)

L ≡ −dQ
dz

· ∂ ln ρ(P,Q)
∂Q

> 0, ∀z. (2.7)

The function L may alternatively be written as

L = −d ln ρ
dz

+ ∂ ln ρ(P,Q)
∂ ln P

d ln P
dz

, (2.8)

from which L > 0 is readily interpreted as the condition for the density of a fluid parcel
displaced upwards (downwards) infinitesimally while conserving Q to be greater (less)
than the density of the background fluid in the new position of the parcel.

2.2.2. Nonlinear stability
We can use (2.6) to write the criterion for nonlinear stability as

−δz
∫ z2

z1

dz
dQ
dz

· ∂ρ(P2,Q)
∂Q

> 0, ∀ z1, z2. (2.9)

If (2.9) is satisfied, then the buoyancy force is always in the opposite direction to δz. In
many cases of interest (including the examples listed above), the components Qi of Q can
each be chosen such that an increase in Qi at fixed pressure causes expansion

∂ ln ρ(P,Q)
∂Qi

< 0, ∀ i,P. (2.10)

In the case of Qi = s, for example, (2.10) holds for any fluid that expands under heating at
fixed pressure. We shall assume in what follows that (2.10) holds. In that case, a sufficient
condition for (2.9) to hold is

dQi

dz
> 0, ∀ i, z. (2.11)

Importantly, (2.7) and (2.11) are equivalent if the vector Q has only one component
(and (2.10) holds). A fluid of this kind cannot exist in a metastable equilibrium, because
it is always nonlinearly stable if linearly stable. The archetypical example is ordinary
hydrodynamics, for which the only component of Q is s, and therefore an equilibrium is
nonlinearly stable to convection if it satisfies the Schwarzschild criterion (Schwarzschild
1906)

ds
dz
> 0, ∀ z. (2.12)
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2.2.3. Metastability
For fluids for which Q has more than one component, (2.11) guarantees nonlinear

stability, but is not necessary for the weaker condition of linear stability: if dQi/dz < 0
for some i, other components of Q can compensate so that the linear-stability criterion
(2.7) remains satisfied. In such cases, the equilibrium may be nonlinearly unstable despite
being linearly stable, i.e. it may be metastable. In such cases, the condition for metastability
may be deduced by recasting (2.5) as the upwards force per unit mass of moved fluid,
F · ẑ/ρ(P2,Q1)V2 = (eR − 1)g, where

R ≡ ln
ρ(P2,Q2)

ρ(P2,Q1)
= −

∫ z2

z1

dzL +
∫ z2

z1

dz
d ln P

dz
[κ(P,Q)− κ(P,Q1)], (2.13)

and

κ(P,Q) ≡ ∂ ln ρ(P,Q)
∂ ln P

, (2.14)

is the dimensionless compressibility. To obtain the second equality in (2.13), we have
used the fundamental theorem of calculus, i.e. we have differentiated R with respect
to z2 and integrated the result from z1 to z2. Equation (2.13) separates the integrated linear
buoyancy response (the first integral on the second line) with the nonlinear response (the
second integral), revealing the latter to be determined by the path-integrated difference
in κ between the moving parcel and its surroundings.2 If the displaced fluid is more
compressible than the fluid through which it moves, i.e. κ(P,Q1) > κ(P,Q), then the
second integral on the right-hand side of (2.13) has the same sign as δz, so its contribution
to the buoyancy force is destabilising. If the stabilising effect of the integral involving L
is sufficiently small, then the second integral dominates in (2.13) for δz larger than some
critical value, δzc. Such an equilibrium is metastable.

2.3. Direction and size of displacement required for nonlinear instability
Because metastability requires more compressible fluid to be moved through less
compressible fluid [see (2.13)], equilibria can be metastable only to perturbations in the
direction in which the compressibility of the background fluid decreases.3 This direction
is given by the sign of the compressibility scale height

Hκ ≡ −
(
∂ ln κ
∂Q

· dQ
dz

)−1

. (2.15)

We can estimate the local value of δzc in the limit of L → 0 by balancing the sizes of
the two integrals in (2.13) to find that

δzc 
 HPHκL
κ

, (2.16)

where we have defined the pressure scale height HP ≡ |d ln P/dz|−1, neglected variation
in L on the scale δzc and used the fact that −κH−1

κ is the coefficient of δz in the small-δz

2Note that the term in (2.13) that involves the compressibility of the surroundings cancels between the nonlinear
response and the integral of (2.8); the nonlinear response may therefore be viewed as a correcting for the fact that the
term involving L uses the ‘wrong’ compressibility (that of the background, rather than that of the moving parcel) to
determine the density change.

3The exception is when the compressibility has a local extremum. In that case, the equilibrium may be unstable to
both upwards and downwards perturbations (corresponding to a local maximum of the compressibility) or to neither (a
local minimum). We provide explicit examples of both cases in § 2.6.
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Metastability of stratified MHD equilibria and their relaxation 9

expansion of the term in square brackets in (2.13). According to (2.16), δzc becomes
arbitrarily small compared with any stratification scale height as L → 0. Nonetheless,
we note that, because metastability of stratified equilibria is a nonlinear effect, it is not
captured by Boussinesq-like equations that employ linear approximations of equilibrium
gradients.

2.4. Explosive instability
The equation of motion of a small fluid parcel displaced by a distance δz ∼ δzc that is
much smaller than any scale height H of the stratification is

d2δz
dt2

=
(

−δz + δz2

δzc

)
L. (2.17)

It follows from (2.17) that, for 0 < δzc � δz � H (the case of δzc < 0 is analogous), the
motion of a fluid parcel is explosive, viz.,

δz ∝ 1
(C − t)2

, (2.18)

where the constant C is determined by initial conditions. Explosive growth of δz persists
until either δz ∼ H, whereupon (2.17) is no longer valid, the rising fluid element is
shredded by Kelvin–Helmholtz instability or its speed approaches that of sound and thus
(2.5) no longer applies.

2.5. Case of 2D MHD
In the remainder of this paper (with the exception of Appendix B, where we consider moist
hydrodynamics), we focus on the case of an equilibrium supported against gravity both
by thermal pressure p and by the magnetic pressure associated with a straight magnetic
field with spatially dependent strength B. Thus, P = p + B2/2. We restrict attention to 2D
dynamics in the plane perpendicular to the magnetic field (i.e. to 2D interchanges of flux
tubes). Then the specific magnetic flux

χ = B
ρ
, (2.19)

is conserved in a Lagrangian sense. For symmetry with this definition of χ , we take
advantage of the fact that any monotonically increasing function of specific entropy
constitutes a good choice for the conserved quantity s, and thus let

s = p1/γ

ρ
, (2.20)

where γ is the adiabatic index. To avoid confusion with the true specific entropy, which is
proportional to exp(s/Cv) with Cv the specific heat capacity, we hereafter refer to s as the
‘entropy function’ (akin to potential temperature in atmospheric science, see Appendix B).
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10 D.N. Hosking, D. Wasserman and S.C. Cowley

Thus, Q = (s, χ) and
P(ρ,Q) = ργ sγ + ρ2χ 2/2. (2.21)

With these choices, (2.7) yields the linear-stability condition

L = c2
s

c2

d ln s
dz

+ v2
A

c2

d lnχ
dz

> 0, (2.22)

where cs ≡ √
γ p/ρ is the sound speed, vA ≡ B/

√
ρ the Alfvén speed and c = √

c2
s + v2

A is
the velocity of compressive waves [(2.22) is sometimes called the modified Schwarzschild
criterion]. The compressibility κ (2.14) is

κ(P, s, χ) = 1 + β

2 + γβ
, (2.23)

where β ≡ 2p/B2 is the plasma beta (the ratio of thermal to magnetic pressures) which is
determined from P, s and χ via

1
β

(
1 + 1

β

)2/γ−1

= 1
2

(χ
s

)2
P2/γ−1. (2.24)

Equation (2.23) reveals that κ increases monotonically with β for γ < 2, from
κ = 1/2 at β = 0 to κ → 1/γ as β → ∞. It follows that the nonlinear buoyancy response
in (2.13) is destabilising when fluid with large β moves through ambient fluid with smaller
β. According to (2.24), the β of a flux tube with given s and χ depends on pressure
and therefore is not constant during its motion.4 At any given pressure, however, β is
a monotonically increasing function of the ratio s/χ . Therefore, an equilibrium that is
sufficiently close to marginal linear stability is always nonlinearly unstable in the direction
in which s/χ decreases [the same conclusion can be obtained from (2.15) or by expanding
(2.5) to quadratic order in δz directly, see Appendix C].

2.6. Examples of metastable equilibria
Explicit examples of metastable equilibria may be obtained as follows. First, we change
variables from height z to the total mass supported at height z

m =
∫ ∞

z
ρ(z′) dz′, (2.25)

so that the equilibrium condition becomes P = mg, which may be expressed as

ργ sγ + 1
2
ρ2χ 2 = mg, (2.26)

or, using (2.24), as
1
β

(
1 + 1

β

)2/γ−1

= 1
2

(χ
s

)2
(mg)2/γ−1. (2.27)

Throughout this work, we shall find it convenient to use the supported mass m as a proxy
for height because the mass of a flux tube is preserved as it moves, while its cross-sectional
area is not (note that m decreases with increasing z).

4According to (2.24), β increases when a flux tube with fixed s and χ rises while in total-pressure balance with its
surroundings. For this reason, an equilibrium with β(z) = const. is metastable to upwards perturbations if it is sufficiently
close to marginal linear stability.
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Metastability of stratified MHD equilibria and their relaxation 11

We seek an equilibrium that is close to marginal linear stability [so that the second
integral in (2.13) stands a chance of dominating the first]. We therefore demand that

L = ε

HP
, (2.28)

where L is given by (2.22), HP is the total-pressure scale height [d ln P/dz]−1 = m/ρ and
ε � 1 is a small number. Equation (2.28) constitutes a differential equation involving s,
χ and their gradients in m – to solve it, we specify a relationship between s, χ and m that
defines the particular equilibrium under consideration. We choose to specify as a function
of m the ratio s/χ , which controls the compressibility of the fluid (§ 2.5). We therefore
recast (2.28) [with L given by (2.22)] as

d ln s
dm

= 2
γβ + 2

d
dm

ln
(

s
χ

)
− ε

m
, (2.29)

which we integrate numerically for s as a function of m. We determine the dependence of
all other quantities on m (or z) via their definitions and (2.25) and (2.27).

Some example cases are visualised in figure 3, where we show s, χ , s/χ and β as
functions of z (lower row of panels) together with the force (2.5) per unit mass on a small
parcel of fluid moved from height z1 to z2 as a function of z1 and z2 (upper two rows of
panels). Figure 3a shows the case of

s
χ

= (mtotg)1/γ−1/2

(
3

m
mtot

+ 0.3
)
, (2.30)

for which s/χ increases with m. The most compressible material is therefore at the bottom
of the atmosphere and the equilibrium is unstable to upwards displacements (towards
larger z). This is the equilibrium whose relaxation is visualised in figures 1 and 2. Figure 3b
shows the case of

s
χ

= (mtotg)1/γ−1/2

(
3

m
mtot

+ 0.3
)−1

, (2.31)

for which s/χ decreases with m, so produces an equilibrium unstable to downward
displacements (towards smaller z). Figure 3c shows the case of

s
χ

= (mtotg)1/γ−1/2

[
3 exp

(
−(m/mtot − 0.2)2

0.12

)
+ 0.3

]
, (2.32)

for which s/χ has a maximum at m = 0.2mtot; the equilibrium is therefore unstable to both
upwards and downwards displacements in the vicinity of the maximum. Finally, figure 3d
shows the case of

s
χ

= (mtotg)1/γ−1/2

[
3
(

1 − exp
(

−(m/mtot − 0.2)2

0.12

))
+ 0.3

]
, (2.33)

for which s/χ has a minimum at m = 0.2mtot. The most compressible fluid is therefore
situated at the top and bottom of the atmosphere, so it is unstable to both downwards and
upwards displacements.

In figures 1–3 and in the rest of the paper, we choose units of mass and length such
that ρ = 1 and m = mtot = 1 at the bottom of the atmosphere (z = 0), so the total-pressure
scale height HP = 1 there. We choose units of time such that g = 1; it follows that the time
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12 D.N. Hosking, D. Wasserman and S.C. Cowley

(b)(a) (d )(c)

FIGURE 3. Top row: the upward force (2.5) per unit mass on a small fluid parcel moved in
pressure balance and without diffusion from height z1 to z2 for each of the profiles described in
§ 2.6. Values of ε0 in (2.34) are indicated on each panel. Middle row: the same as the top row, but
with ε0 = 0 (marginal linear stability in the bulk). Bottom row: profiles of the entropy function
s = p1/γ /ρ, specific magnetic flux χ = B/ρ, their ratio and the plasma β (2.27) as a function
of height z (these profiles correspond to the top row specifically, but the profiles that correspond
to the middle row look essentially the same because the differences in ε0 are very small).
Panel (a) corresponds to (2.30), (b) to (2.31), (c) to (2.32) and (d) to (2.33).

taken for a compressive wave to traverse a total-pressure scale height HP/c ∼ √
HP/g is 1

at the bottom of the atmosphere. We limit the total height of the atmospheres to zmax = 3.5
in these units, where ρ � 10−2 in each of the four cases described above. We stabilise the
equilibria near z = 0 and z = zmax by choosing

ε = ε0 + tanh
(

z − zu

Δu

)
− tanh

(
z − zl

Δl

)
+ 2, (2.34)

in (2.28), withΔl = Δu = 0.25, zl = 0.25, zu = 3.25. This ensures that artificial boundary
effects do not impact our numerical or theoretical analyses. We choose ε0 = 10−2 for the
simulations visualised in figures 1 and 2.

The top row of panels in figure 3 correspond to equilibria with small positive values
of ε0; these are linearly stable, and exhibit the various sorts of metastability described
above. Unless stated otherwise, we shall in the rest of the paper focus attention on the
case of marginal linear stability, i.e. ε0 = 0 in (2.34). This is because we expect nonlinear
instability to be triggered for equilibria close to marginal linear instability in practice. The
middle row of figure 3 corresponds to the ε0 = 0 case.
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Metastability of stratified MHD equilibria and their relaxation 13

3. Available potential energy

In this section, we calculate the energy that can be liberated from a metastable MHD
equilibrium by 2D rearrangement of flux tubes. Because the gravitational potential energy
depends only on z, we shall assume a priori that the state with minimum energy is 1D: all
quantities depend only on z (or, equivalently, on m). It will turn out that this assumption
can, and often does, fail, but the 2D minimum-energy states will be extractable from the
solution to the 1D minimisation.

The total potential energy per unit horizontal length of a 1D state (not necessarily in
equilibrium) is

Etot =
∫ ∞

0
dz
(

p
γ − 1

+ B2

2
+ ρgz

)
=
∫ mtot

0
dm

[
E(P, s, χ)+ mg − P

ρ(P, s, χ)

]
, (3.1)

where ρ(P, s, χ) is determined implicitly from the definition of total pressure,
P = ργ sγ + ρ2χ 2/2. In the second equality of (3.1) we have integrated by parts and
introduced the specific enthalpy

E ≡ 1
ρ

(
p

γ − 1
+ B2

2
+ P

)
= γ

γ − 1
ργ−1sγ + ρχ 2. (3.2)

It is readily verified that (
∂E
∂P

)
s,χ

= 1
ρ
, (3.3)

whence

Etot =
∫ mtot

0
dm

{
E(mg, s, χ)+ 1

2
P2

ρ2c2

(
δP
mg

)2

+ O
[(

δP
mg

)3
]}

, (3.4)

where δP ≡ P − mg. Evidently, Etot is minimal with respect to P when P = mg. It follows
that, when looking for the minimum-energy state, we can restrict attention to those states
with P = mg, i.e. those in static equilibrium at all m. Equation (3.4) then reduces to

Etot =
∫ mtot

0
dm E(mg, s, χ). (3.5)

Following Lorenz (1955), we discretise the integral (3.5) by ‘slicing’ the atmosphere
into thin layers of equal mass �m that we label by the index i. We consider the 1D
equilibria formed by rearranging the slices while conserving the entropy and flux in each
slice. Each possible rearrangement is a permutation map i → j = σ(i), under which the
slice that initially supports mass mi now supports mass mj. The energy of the rearranged
equilibrium is

Etot 
 �m
N∑

i=0

E(mσ(i)g, si, χi), (3.6)

where N = mtot/�m, and si, χi are, respectively, the entropy function and specific
magnetic flux of slice i. We seek the permutation σ that gives the smallest possible value
of Etot, which we denote Emin.

Because the energy associated with assigning slice i to support a mass of mj only
depends on i and j and not on the assignments of other slices, minimising (3.6) over
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14 D.N. Hosking, D. Wasserman and S.C. Cowley

permutations σ is a combinatorial optimisation problem known as linear sum assignment
(LSA) (see, e.g. Burkard, Dell’Amico & Martello 2012). The LSA problem is canonically
described as one of minimising the total cost associated with assigning a number of
‘agents’ to the same number of ‘tasks’ – in our case, the ‘agents’ are the slices of
atmosphere with given s and χ , while their ‘tasks’ are to occupy discrete positions in
the atmosphere corresponding to each possible value of the discretised supported mass.
The matrix of costs associated with assigning agent i to task j is E(mjg, si, χi).

For economy of notation, we hereafter denote the cost matrix E(mjg, si, χi) by E(mj,mi):
this is the energy cost associated with assigning the slice initially at mi to mj (in a
minor abuse of notation, we use the same symbol, E , for both functions). Despite our
discretisation in m, E(mj,mi) remains a continuous function of its arguments and we shall
frequently be required to integrate or take derivatives with respect to one or the other
in what follows. We shall, therefore, introduce the continuous variable μ to denote the
supported mass of a slice in the initial state, and denote the continuous form of E(mj,mi)

by E(m, μ) ≡ E(mg, s(μ), χ(μ)). Similarly, we shall write ρ(m, μ) as a shorthand for
ρ(mg, s(μ), χ(μ)). In this notation, (3.3) becomes

∂E(m, μ)
∂m

= g
ρ(m, μ)

. (3.7)

3.1. Estimating the available energy
Before proceeding to solve the LSA problem, which can only be achieved numerically in
most cases, let us try to estimate the outcome analytically: What is the typical available
potential energy of a metastable atmosphere? This turns out to be a small fraction of the
total potential energy, a fact we that we utilise in § 5 to predict the relaxation of destabilised
equilibria.

The change in potential energy δE that results from moving a slice of atmosphere
upwards from supported mass ma to new supported mass mb, shuffling downwards the
slices that it passes on the way, is

δE
�m

= E(mb,ma)− E(ma,ma)+
a−1∑
i=b

[E(mi+1,mi)− E(mi,mi)]



∫ mb

ma

dm
[

g
ρ(m,ma)

− g
ρ(m,m)

]

= −g
∫ za

zb

dz
[
ρ(m(z),m(z))
ρ(m(z),ma)

− 1
]
, (3.8)

where m(za) = ma and m(zb) = mb. We have used (3.7) in moving from the first to the
second line of (3.8). The integrand that appears in the last line of (3.8) is straightforwardly
recognised as the net buoyancy force (2.5) per unit mass of fluid, so, sensibly, δE is
just the work done by this force on the moving slice.5 Evidently, the energy that can be
liberated by this process is maximal when the ratio that appears inside the integrand in
the last line of (3.8) – i.e., of the density of the ambient fluid to the density of the moving
slice – is maximal. We can evaluate this ratio using (2.13), which yields, in the most
optimistic case of (i) marginal linear stability, i.e. L = 0, (ii) κ = 1/γ inside the slice

5Work is done in moving the slice through its series of adjacent equilibria because interchanging two slices in
practice involves the fluid in each of them passing through non-equilibrium states.
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Metastability of stratified MHD equilibria and their relaxation 15

FIGURE 4. The fraction (3.10) of energy liberated when a slice of fluid with mass�m is moved
from the bottom of an atmosphere at marginal linear stability to a new position where the
supported mass is mb, under the most optimistic assumptions about the compressibility of the
slice and that of the fluid through which it moves.

(maximally compressible large-β fluid) and (iii) κ = 1/2 for the ambient fluid (minimally
compressible small-β fluid)

ρ(m,ma)

ρ(m,m)
=
(

m
ma

)1/γ−1/2

. (3.9)

Substituting this into (3.8), choosing ma = mtot (the slice originates from the bottom of the
atmosphere) and evaluating integrals, we find that

δE
E0

= 3
4
�m
mtot

[
γ

γ − 1

((
mb

mtot

)1−1/γ

− 1

)
− 2

((
mb

mtot

)1/2

− 1

)]
, (3.10)

where E0 is the initial total energy of the atmosphere (assuming that it is mostly populated
with small-β fluid, as is consistent with assumption (iii) above).

We plot (3.10) in figure 4 for the case of γ = 5/3. We observe that the fraction of
energy liberated per mass fraction of fluid moved decreases sharply as a function of
mb/mtot (even though its limiting value of 3/8 as mb/mtot → 0 is finite). This is significant
as, because fluid parcels exclude each other (i.e. different slices cannot all be assigned
to the same supported mass), the vast majority of slices that are interchanged in a global
rearrangement experience an order-unity change in supported mass. Such reassignments
are far less profitable that ones that take a slice all the way to the top of the atmosphere
(i.e. mb/mtot → 0). For example, figure 4 shows that the fraction of energy liberated per
mass fraction of fluid moved is approximately 10−2 for mb = mtot/2. The reason is that
an order-unity change in pressure only results in a small change in density, owing to the
smallness of the exponent 1/γ − 1/2 = 0.1 that appears on the right-hand side of (3.9). A
more detailed calculation (see Appendix D) reveals that 10−2 is indeed a good estimate for
the fractional available energy: the maximum fractional available energy of a (marginally)
stable atmosphere consisting of small-β fluid above a layer of large-β fluid is 1.75 %.

The above estimates correspond to the most optimistic assumptions: we shall find that
the fractional available energies of the equilibria described in § 2.6 and represented in
figure 3 are less than 1 % (by roughly an order of magnitude), because (i) these equilibria
have finite β, and thus do not have the extremal values of the fluid compressibility
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16 D.N. Hosking, D. Wasserman and S.C. Cowley

considered here; and (ii) the stable buffer regions contribute to the potential energy of
the equilibrium (and prevent the relaxing fluid from accessing large pressure differences)
but do not participate in the reassignment.

3.2. The Hungarian algorithm
The discrete energy-minimisation problem (3.6) can be solved without recourse to
numerical optimisation only in the limits β → ∞ and β → 0, i.e. the cases where
only one of thermal or magnetic pressure support the atmosphere against gravity. For
β → ∞, E → γ s(mg)1−1/γ /(γ − 1), which increases monotonically with both m and s.
The arrangement with least total energy is therefore the one for which the slice with largest
s has smallest m, the slice with the next largest s has the next smallest m, and so on. It
follows that the profile with the smallest energy is the unique rearrangement for which
s is a monotonically increasing function of height. Indeed, we already know this state to
be nonlinearly stable by (2.12). A similar conclusion is obtained for β → 0, for which
E → 2(mg)1/2χ and so the nonlinearly stable atmosphere is the one with χ increasing
monotonically with height. Analogous simple constructions for the minimum-energy
configuration do not exist in the finite-β case: the optimal solution that balances the
competing imperatives of ‘entropy should increase upwards’ and ‘flux should increase
upwards’ is non-trivial.

Solution of the LSA problem in general relies on the observation that the modified cost
matrix Ẽ(mj,mi), where

Ẽ(mj,mi) = E(mj,mi)− a(mj)− b(mi), (3.11)

has the same optimal assignment of agents to tasks as does the original cost matrix
E(mj,mi). This is intuitive: if the cost of assigning a given agent (slice) to each task
(position) decreases by the same amount, their optimal assignment will not change
(although the total cost of the solution will decrease). Likewise, if a particular task
becomes more expensive by the same amount for all agents, the optimal choice of agent
for that task will remain the same. Ẽ is called the ‘normal form’ of the cost matrix E if it
satisfies the following properties (Burkard et al. 2012):

(i) Ẽ(mj,mi) ≥ 0,
(ii) There exists at least one bijection σ such that Ẽ(mσ(i),mi) = 0, ∀ i.

A proof that an Ẽ(mj,mi) with these properties can always be found with suitable choices
of a(mj) and b(mi) is provided by the Hungarian algorithm (Kuhn 1955; Munkres 1957),
which consists of a series of row and column operations on the cost matrix that are
guaranteed to reduce it to normal form in polynomial (in N) time. The utility of the normal
form Ẽ(mj,mi) is that each of the bijections σ constitutes an optimal assignment.6

3.3. Energy minimisation: numerical results and interpretation
In this section, we present the outcomes of energy minimisation using the Hungarian
algorithm (§ 3.2) for each of the equilibria described in § 2.6 and represented in figure 3.

6Typically, the optimal assignment is unique. This is true for each of the equilibria introduced in § 2.6. One can
construct counter-examples, however: the optimal assignment is non-unique when multiple slices have the same values
of s and χ , for example.
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Metastability of stratified MHD equilibria and their relaxation 17

3.3.1. Metastable upwards, (2.30)
We first consider the equilibrium defined by (2.30), which is nonlinearly unstable to

upward displacements (figure 3a). The solution of the LSA problem is visualised in
figure 5, which compares the initial and minimum-energy assignments of the slices. In
the minimum-energy assignment, material initially from the bottom of the metastable part
of the atmosphere (i.e. z � zl; see (2.34)) is reassigned to the top z � zu, as is intuitive.
The order in which the slices that are re-assigned are stacked also reverses. This happens
because, as the material moves to smaller m, its β increases (2.27), and therefore the
contribution of s to the linear-stability criterion becomes more important relative to χ . As
a consequence, the stacking order reverses so that s increases upwards.

A striking feature of the minimum-energy state is that slices that were adjacent at the
bottom of the atmosphere do not remain adjacent in the minimum-energy state. Instead,
slices from the bottom become foliated with those at the top. The scale of the foliation is set
by�m, and therefore is arbitrarily small as�m → 0. This is illustrated by figure 6, which
shows, for three different values of �m, the normal-form cost matrix Ẽ(mj,mi) [defined
by (3.11)], with its zeros (which indicate the optimal assignment j = σ(i)) marked with
white circles. Because the scale of foliation depends on �m, the optimal assignment of
slices does not converge as�m → 0, although it does converge in a coarse-grained sense:
the proportion of slices assigned to any small finite range of m that originated from any
similarly small given range of μ converges as �m → 0 (provided that Ẽ converges as
�m → 0).7

Foliation occurs when the material properties of the fluid vary with m at a different rate
in the part of the atmosphere from which a slice originates than in the part to which it is
reassigned. We demonstrate this fact by considering the motions of two slices from the
bottom of the atmosphere to the top, each displacing downwards the slices through which
they pass (as in § 3.1). Let the first slice have initial assignment ma and new assignment mb.
Because the new assignment is optimal, the total energy has a local minimum as a function
of displacement of this slice when its density in its new location, ρ(mb,ma), is equal to
the density ρ(mb,mb) of the slices that surround it there (neutral buoyancy); this makes
the integrand in the second line of (3.13) zero at m = mb.8 Now let us consider a second
slice of fluid that initially neighbours the first, i.e. that originates from supported mass
ma +�m. This slice reaches neutral buoyancy at a different supported mass mb + δm. If
the density of the background equilibrium changes more slowly with supported mass at mb
than at ma, then δm > �m. Setting the density of the second slice, ρ(mb + δm,ma +�m),
equal to that of the ambient fluid at supported mass mb + δm, i.e. ρ(mb + δm,mb + δm)
(because we are concerned with the motion of only two slices of infinitesimal thickness,
we neglect the fact that the reassignment of the first slice might have changed the identity

7In the continuous limit, these proportions can be determined from the gradient of the locus of points for which
Ẽ = 0. For example, denoting this locus, i.e. the curve to which the white circles in figure 6 converge as �m → 0, by
mopt(μ), then, provided mopt(μ) is single valued (as is the case in figure 6), the proportion of slices assigned to the
vicinity of m2 that originally had supported mass m1 is |dmopt/dμ| evaluated at m1 (by the conservation of mass). In
the absence of foliation, |dmopt/dμ|−1 = 1, but, where there is foliation, it must be the case that |dmopt/dμ| > 1, so
mopt(μ) steepens. Both cases may be observed in figure 6. The generalisation to the case where mopt is multi-valued is
somewhat more complex, but it remains true in that case that the fractional assignments are determined by gradients of
the optimal-solution curve (see Appendix I).

8Intuitively, if the densities were different, the new equilibrium would be Rayleigh–Taylor unstable either at the
upper or lower surface of the slice.
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18 D.N. Hosking, D. Wasserman and S.C. Cowley

FIGURE 5. Visualisation of the assignment of 1D slices that minimises the total energy, (3.6),
with �m = 5 × 10−4mtot, for the upwards-unstable profile defined by (2.30). Panels on the
left show the initial profiles of s and χ as functions of height z, while panels on the right
show the minimum-energy assignment. The slices are coloured by their height z in the initial
state to aid comparison. Blue slices from 0.8 < z < 1.0 are moved to 2.1 < z < 3.1, reversing
order and foliating with red slices originally from 2.7 < z < 3.1. Each slice has vertical extent
�z = �m/ρ with ρ given by (2.26).

of the fluid at mb), we discover that

δm
�m

= ∂ρ(mb, μ)

∂μ

∣∣∣∣
μ=ma

/
∂ρ(mb, μ)

∂μ

∣∣∣∣
μ=mb

. (3.12)
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FIGURE 6. The normal form of the cost matrix Ẽ(m, μ) [see (3.11) for its definition] for the
unstable-upwards profile defined by (2.30), for three different choices of the discretisation scale
�m. White dots show the optimal assignment.

Thus, the adjacency of the slices if not preserved (δm �= �m) if the rate of change with
supported mass of the density that a slice would have if moved to mb is different for slices
originating at ma than at mb.

Although (3.12) reveals the physical reason for foliation, it fails if the fraction on the
right-hand side is small (δm � �m is not allowed for the discrete problem because slices
exclude each other). It also does not apply in the case where a substantial mass of fluid is
reassigned, in which case the background equilibrium through which the first slice moves
is different from that through which the last slice does. A general treatment of such cases
is as follows. Let us suppose that we are somehow given all the optimal assignments σ(i),
except those to some small range of m, i.e. those with mσ(i) = mb + δmσ(i), and seek the
condition under which the optimal choice of the remaining assignments will be a foliated
state. The contribution to the total energy of the slices that remain to be assigned is

δE = �m
∑

i

E(mb + δmσ(i),mi)

= �m
∑

i

[
E(mb,mi)+ δmσ(i)g

ρ(mb,mi)
+ O(δm2

σ(i))

]
, (3.13)

where sums are over all indices i of the slices that remain to be assigned, and we have
used (3.7) to obtain the second equality. The first term inside the square bracket in the
second line of (3.13) is independent of the assignment σ . The second term takes the form
of the differential supported mass δmσ(i) multiplied by a quantity that does not depend
on σ(i), viz., 1/ρ(mb,mi). This yields a local stacking rule: δE is minimised when the
slice with largest ρ(mb,mi) is assigned to the largest supported mass, the next largest
ρ(mb,mi) is assigned to the next largest supported mass, and so on. This is physically
intuitive: if more dense slices were situated above less dense ones, the equilibrium would
be Rayleigh–Taylor unstable. We deduce that in order for slices from different initial
locations to become foliated in the final state they must have

ρ(mb,mi′)− ρ(mb,mi) = O(�m). (3.14)

As �m → 0, slices can be foliated in the vicinity of some m only if they have the same
density at that m.

A foliated minimum-energy state may be considered a 1D representation of a
minimum-energy state that is actually 2D, as follows. Because the scale of foliation is
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(d )(c)(b)(a)

FIGURE 7. 2D minimum-energy states. Panel (a) shows the 1D stacking with minimum energy
in the x − z-plane. Panel (b) shows a discrete approximation to the 2D ground state, obtained by
arranging vertical slices sequentially into fixed vertical bins of fixed extent�z, while preserving
the P, s and χ of each slice. Each slice occupies the same area as before (because its mass
and density each remain constant) but now the slices are arranged horizontally within the bin,
with left to right corresponding to increasing height in panel (a). Panel (c) shows the state in
panel (b) but sorted horizontally, which does not change the energy and removes the imprint of
the foliation. Panel (d) shows the expected equivalent of Panel (c) at very large resolution, but
is obtained differently, by taking the small-thermodynamic-temperature limit of Lynden-Bell
statistical mechanics (§ 5.2).

set by �m, we can reconfigure the foliated state (figure 7a) into a 2D state (figure 7b) by
rearranging fluid parcels locally in z, i.e. over a small vertical distance δz ∼ �m/ρ, and
then sorting globally in x (with P, s and χ fixed for each parcel) to remove small-scale
variation (figure 7c,d). Because the foliated state is a stable equilibrium with respect
to local rearrangements in z, the force acting on each fluid parcel in the new state will
be proportional to δz, and therefore vanishes as �m → 0. Thus, the 2D state is also an
equilibrium state with the same energy as the foliated one.9 In § 4, we shall show with
direct numerical simulations that minimum-energy 2D states are the result of the nonlinear
relaxation of a destabilised metastable state in certain regimes.

To conclude our discussion of minimum-energy states of equilibria defined by (2.30), we
present in figure 8 a comparison of energy-minimising assignments for different values of
the parameter ε0, which controls the distance from marginal stability [see (2.34)]. First,
we note that ε0 = 0, i.e. marginal linear stability, is not a special point as far as the
minimum-energy assignments are concerned: the assignments with ε0 = 0.0075 (linearly
stable), ε0 = 0.0 (marginal) and ε0 = −0.015 (linearly unstable) are qualitatively similar,
although, in the unstable cases of ε0 = −0.015 and ε0 = −0.075, foliation occurs over a
much wider range of supported masses (and material from three different initial locations
are foliated together near the top of the atmosphere).

Figure 9 shows the ratio of the available energy Eavail = E0 − Emin to the original
potential energy E0 as a function of εc − ε0, where εc 
 1.7 × 10−2 is the largest value

9More formally, the difference in energy between the two states under the operation described is E2D − E1D =∫
dzdx ρgδz. Because δz = O(�m) as�m → 0, we would have that E2D − E1D = O(�m) if there existed a finite density

difference between neighbouring slices. However, if the difference in density between neighbouring slices is O(�m) [as
required by (3.14)], then δz is the only rapidly varying function of x and z in the integral and therefore can be replaced by
its coarse-grained average. This average is zero, because there is no net displacement of fluid parcels in each horizontal
band. Thus E2D − E1D = O(�m2), so the difference in energy per fluid parcel vanishes.
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FIGURE 8. The energy-minimising assignments of slices from initial supported mass μ to new
supported mass m for the initial profile (2.30) with different values of the parameter ε0, which
controls linear stability via (2.34).

FIGURE 9. The available energy Eavail = E0 − Emin as a fraction of the initial potential energy
E0, plotted as a function of εc − ε0, where εc 
 1.7 × 10−2 is the largest value of ε0 in (2.34)
for which the initial state is metastable. The inset shows the fraction of fluid that is assigned to a
smaller supported mass than its initial one under optimal reassignment. Red lines correspond to
ε0 = 0.

of ε0 for which the atmosphere has a restacking with smaller energy. We see that Eavail/E0
is small: it is around 10−3 for ε0 = 0, which is the value that corresponds to figures 5
and 6. This is despite the fact that the minimum-energy assignment involves significant
rearrangement of the atmosphere (around 10 % by mass of the atmosphere is reassigned
upwards for ε0 = 0, see inset to figure 9). As explained in § 3.1, the reason for the smallness
of Eavail/E0 is the fact that fluid slices exclude each other and so only very few of them can
experience a significant change in total pressure as a result of reassignment.

We observe from figure 9 that

Eavail

E0
∝ (εc − ε0)

2 as εc − ε0 → 0; (3.15)
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this scaling is readily interpreted as a result of the fact that both (i) the typical amount
of energy liberated when a slice is reassigned from the bottom of the atmosphere to
the top, and (ii) the number of slices that are reassigned in this way, are proportional
to εc − ε0 when the latter is small [see inset to figure 9; s, χ and, therefore, the
buoyancy force on a displaced fluid element, (2.5), depend linearly on ε0, by (2.29)]. This
argument being independent of the particular profile under consideration, we expect a
quadratic dependence of Eavail/E0 on εc − ε0 for any metastable profile equilibrium with ε0
sufficiently close to εc. We shall find in § 3.3.2 that a quadratic scaling is indeed reproduced
for the profile represented by (2.31).

3.3.2. Metastable downwards, (2.31)
We now turn to the second example case introduced in § 2, (2.31), which describes

an initial state that is metastable to downwards displacements. The 1D minimum-energy
state associated with this profile [with ε0 = 0 in (2.34)] is shown figure 10, which is the
analogue for (2.31) of figure 5. The minimum-energy assignment is similar qualitatively to
the one examined in § 3.3.1: in this case, material from the top of the atmosphere moves to
the bottom, reverses stacking order, and becomes foliated with the material already there
(in fact, material from three different initial heights becomes foliated).

Figure 12 shows the dependence of the optimal assignment on the value of ε0 in (2.34).
A qualitatively new feature appears in the cases of ε0 = −0.025 and ε0 = −0.069: for
these unstable equilibria, there exists a range of the initial supported mass coordinate (in
the vicinity of μ 
 0.25 for the former case and μ 
 0.4 for the latter) for which slices
that are neighbouring in the initial state are alternately assigned to two different final
locations. Like foliation, this phenomenon can be interpreted as a consequence of our
seeking a 1D optimisation when, in fact, the true optimal assignment is higher-dimensional
in the continuous limit�m → 0. In this case, the optimal assignment involves splitting the
fluid at given height in a horizontal sense, and reassigning it to multiple new locations. In
Appendix E, we derive a necessary condition for this kind of one-to-many assignment and
prove that two is, in fact, the largest possible value of ‘many’.

3.3.3. Bi-directional metastability, (2.32)
We visualise in figure 13 the optimal assignment for the profile defined by (2.32), which

has a local maximum in its profile of s/χ at z 
 1.75 (see figure 3c) and therefore the fluid
is metastable both to upward and downward displacements there. It is intuitive, therefore,
that the minimum-energy state should be obtained by reassignment of slices from the
vicinity of z 
 1.75 to both the top and the bottom of the region that is at marginal linear
stability. This is indeed the case in figure 13 (with foliation between moved and ambient
fluid).

Figure 14 shows the optimal assignments for different values of ε0. The available energy
associated with this profile is a fraction 6 × 10−4 of the initial total energy for ε0 = 0,
which is comparable to the equilibria considered in §§ 3.3.1 and 3.3.2.

3.3.4. Overturning metastability, (2.33)
In figure 15, we visualise the optimal assignment for the profile defined by (2.33), which,

in contrast to (2.32), has a local minimum in its profile of s/χ at z 
 1.75 (see figure 3d).
The fluid at the top of the atmosphere is therefore nonlinearly unstable to downwards
motions, while the fluid at the bottom is nonlinearly unstable to upwards motions –
we expect therefore that the minimum-energy state will be reached by an ‘overturning’
of the atmosphere. This is roughly what we observe in figure 15, although the precise
optimal assignment is remarkably complex (see figure 16 for a visualisation of the optimal
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FIGURE 10. Visualisation of the minimum-energy assignment for the equilibrium defined by
(2.31), with ε0 = 0 in (2.34). Details are the same as for figure 5.

assignments for different values of ε0). The available energy associated with this profile at
ε0 = 0 is 2 × 10−3 of the initial total, which is somewhat more than that of the equilibria
considered in §§ 3.3.1–3.3.3.

4. Relaxation without diffusion

In the remainder of this paper, we consider the problem of predicting the state to which
a metastable equilibrium relaxes when destabilised. We shall focus on the case where
relaxation is complete, i.e. the destabilisation of the initial equilibrium is sufficiently
violent to liberate the system from its metastable equilibrium completely. We assume that
the system thereafter explores its configuration space freely, only subject to the constraints
imposed by conservation laws. We shall assess with numerical simulations whether this is
indeed a good assumption in §§ 4.2 and 6.
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FIGURE 11. Minimum-energy assignments for the profile (2.31). We observe that the optimal
assignment is one to two over certain ranges of m1 in the cases with ε0 < 0.

FIGURE 12. Fractional available energy as a function of εc − ε0 for the profile (2.31), where
εc = 1.2 × 10−2 is the largest value of ε0 in (2.34) for which the equilibrium is metastable.

The relevant conservation laws are those of total energy and, to the extent that non-ideal
processes (i.e. thermal conduction and resistive and viscous heating; see Appendix A for a
statement of the MHD equations including these effects) can be neglected, of s and χ for
each fluid element. We shall assume in what follows that viscous heating is negligible
because the kinetic energy that develops during relaxation is limited by the available
energy of the initial equilibrium, which is small compared with the internal energy (§ 3.1).
It follows that the ultimate deposition of kinetic energy as heat does not change the internal
energy by very much (even locally). On the other hand, diffusion of s and χ by thermal
conduction and resistivity in a well-mixed state may change their values significantly, since
s and χ can vary by an order-unity fraction between fluid elements. Two qualitatively
different types of relaxation may therefore be distinguished: the one in which s and χ do
not diffuse during relaxation and the one in which they do. In this section, we consider the
former case, which is realised when turbulent mixing is suppressed by viscosity. We shall
argue that relaxation is then to the minimum-energy state calculated in § 3. We address the
case of fully turbulent relaxation in § 5.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0022377824001521
Downloaded from https://www.cambridge.org/core. IP address: 18.191.62.117, on 23 Feb 2025 at 04:15:48, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0022377824001521
https://www.cambridge.org/core


Metastability of stratified MHD equilibria and their relaxation 25

FIGURE 13. Visualisation of the minimum-energy assignment for the equilibrium defined by
(2.32), with ε0 = 0 in (2.34). Details are the same as for figure 5.

4.1. Conditions for diffusion to be absent
In order for diffusion of s and χ to be negligible during the whole period of relaxation,
the flow generated during relaxation must decay before it is able to mix s and χ to
scales l such that their diffusion time scales (l2/K and l2/η, respectively, where K and
η are the thermal and magnetic diffusivities) become comparable to the flow’s decay
time scale. The latter is H2/ν (ν is the kinematic viscosity) independently of whether
the flow is laminar or turbulent, because 2D turbulence does not cascade energy to
smaller scales. A simple regime in which diffusion may be negligible is the one in which
the flow is laminar. This requires a Reynolds number Re ≡ UH/ν � 1, where U is the
characteristic velocity developed during relaxation and H the stratification height, which
we take to be the characteristic outer scale of the flow (this being necessary for complete
relaxation). By (3.8), δρ ∼ ρEavail/E0, so the net gravitational force on a fluid element is
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FIGURE 14. Minimum-energy assignments for the profile (2.32) for different values of
ε0 in (2.34).

gδρ ∼ ρc2Eavail/HE0, where c is the characteristic speed of compressive waves (assumed
constant here for simplicity). Balancing this with the viscous force ρνU/H2 to estimate
U ∼ Hc2Eavail/νE0, we find that relaxation is laminar if

ν � Hc

√
Eavail

E0
. (4.1)

If (4.1) is satisfied, the flow turns over at most once before it decays, so s and χ are not
mixed to smaller scales. They are therefore well conserved provided that

Prt, Prm � 1, (4.2)

where Prt ≡ ν/K and Prm ≡ ν/η are the thermal and magnetic Prandtl numbers,
respectively.

For Re � 1, the outer-scale flow has velocity U ∼ (Eavail/E0)
1/2c and is turbulent. It

turns over Re times before decaying (in two dimensions), so s and χ are mixed to the scale
l ∼ H exp(−Re). Diffusion at this scale can be neglected if its time scale is longer than
the decay time of the turbulence, i.e. if

ln Prt, ln Prm � Re ∼ cH
ν

√
Eavail

E0
. (4.3)

In addition to mixing by the flow at scale H, Rayleigh–Taylor instability at interfaces
of fluid with different densities may generate small-scale vortices that mix the fluid (this
effect was evident in the t = 70 panel of figure 2). The fastest-growing Rayleigh–Taylor
mode, which develops at scale LRT, is limited by viscosity: its growth rate is
γRT ∼ (gLRTδρ/ρ)

1/2 ∼ ν/L2
RT, whence LRT ∼ Re−2/3H and γRT ∼ Re1/3U/H. Taking the

nonlinear turnover rate of the developed vortex to be equal to γRT, this mode turns over
Re4/3 times before the outer-scale turbulence decays (at which point we assume that no
Rayleigh–Taylor-unstable interfaces remain). An argument similar to the one that led to
(4.1) indicates that the Rayleigh–Taylor vortices will not establish diffusion-scale structure
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FIGURE 15. Visualisation of the minimum-energy assignment for the equilibrium defined by
(2.33), with ε0 = 0 in (2.34). Details are the same as for figure 5.

in s and χ provided that

ln Prt, ln Prm � Re4/3 ∼
(

cH
ν

)4/3 (Eavail

E0

)2/3

. (4.4)

Equation (4.4) is a stricter criterion than (4.3); because of their faster turnover rate than
the flow at scale H, the Rayleigh–Taylor-generated vortices are more effective at mixing.

If (4.4) is satisfied [or if (4.1) and (4.2) are, for the case of Re � 1], the relaxation flow
decays before s and χ diffuse via thermal conduction or ohmic heating. Provided that
the initial destabilisation was sufficiently thorough (so that the system does not become
trapped in a new metastable state), we expect the final static state of the system to be the
one with smallest potential energy subject to fluid-element-wise conservation of s and χ .
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FIGURE 16. Minimum-energy assignments for the profile (2.33) for different values of
ε0 in (2.34).

Because the amount of heat per unit mass generated by viscosity is U2 ∼ c2Eavail/E0 � c2,
the fractional change in s of each fluid element due to viscous heating during relaxation is
small. Thus, the final state reached by the system ought to be, to first approximation, the
states of minimum energy calculated in § 3. In the next section, we verify with numerical
simulations that this is indeed the case.

4.2. Numerical results
Figure 17 visualises the relaxation of the equilibrium defined by (2.30) after the application
of an impulsive force that accelerates the fluid to a velocity

u = u0ẑ sin
(

2πx
Lx

)
exp

(
−(z − z0)

2

�z2

)
, (4.5)

where Lx = 2 is the size of the simulation domain in the x direction, u0 = 0.1, z0 = 1.0
and �z = 0.5 (see § 2.6 for an explanation of our system of units). This corresponds to
an initial kinetic energy Ekin,0 
 0.3Eavail, where the available energy Eavail ∼ 10−3E0. The
kinematic viscosity is 1.6 × 10−3 in these units, so the Reynolds number of the flow at
the initial time is Re ∼ u0Lx/ν ∼ 102. The magnetic and thermal Prandtl numbers are
Prm = 400 and Prt = 670, respectively. We provide further details of the numerical set-up
in Appendix A.

Although Re ∼ 100 > 1, figure 17 shows that Re is insufficiently large for turbulence
to develop, either at the outer scale or driven by Rayleigh–Taylor instability (which does
nonetheless lead to the development of structure at scales smaller than Lx ∼ H). Thus,
relaxation takes place without significant diffusion of s and χ because the Prandtl numbers
are large (4.2). We observe that the upwards plume generated by the initial impulse forms
a long-lived 2D state (upper panels of figure 17), which is indeed consistent with the
minimum-energy state obtained in § 3.3.1 (see lower panels of figure 17).

In order to assess the sensitivity of the final state to the initial perturbation, we visualise
in figure 18 the late-time state developed by simulations identical to the one shown in
figure 17, but with different values of the initial kinetic energy. Specifically, we choose
u0 = 0.05 (centre panel) and u0 = 0.025 (left panel), so that Ekin,0 
 0.1Eavail and Ekin,0 

0.02Eavail, respectively. We observe that there is some sensitivity to the amplitude of the
initial perturbation: somewhat more material is displaced upwards at Ekin,0 
 0.3Eavail than
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FIGURE 17. The relaxation of the equilibrium defined by (2.30) at Re ∼ 102. The initial velocity
field is given by (4.5). Upper panels show the evolution of ln(s/χ) in x–z space. Lower panels
show the same quantity but sorted horizontally at each z, with contours of the theoretical
minimum-energy state (figure 7d) overlaid.

Ekin,0 
 0.02Eavail. This weak, but measurable, dependence of the final state on initial
conditions is despite the fact that the equilibrium is initially at marginal linear stability,
so there is no potential barrier to be overcome in order to trigger instability. However,
partial relaxation stabilises the atmosphere (see Appendix D), so that, while the first
magnetic-flux tube to move upwards experiences no potential barrier, later ones do.

In Appendix F, we present analogous simulations of viscous relaxation for the
equilibrium defined by (2.31) (i.e. metastable to downwards perturbations). The results
are qualitatively similar to those presented in this section.

5. Statistical theory of relaxation at large Reynolds number

In this section, we consider relaxation for which the Reynolds number is sufficiently
large that inequality (4.4) no longer holds. In this case, turbulent mixing generates
sufficiently fine-scale structure in s and χ to enable diffusion. Consequently, the
equilibrium reached once the velocity field has decayed cannot be obtained by an ideal
rearrangement of the initial state and so will, in general, differ from the minimum-energy
states discussed in § 3.

Given that diffusion is to occur, the key question is ‘which fluid parcels are brought into
contact by the turbulent flow?’ If we could identify in advance which fluid parcels were
to diffuse with which others and thus become locally homogenised, then we could predict
their new values of the ideal Lagrangian invariants s and χ from the conservation of net
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FIGURE 18. The distribution of ln(s/χ) at t = 300 for simulations analogous to the one
visualised in figure 17 but for three different values of u0. As in figure 17, upper panels visualise
the state of the simulation, while lower panels are sorted horizontally and overlaid with the 2D
minimum-energy state (figure 7d).

magnetic flux and enthalpy during diffusion. The relaxed state would then be the one with
minimum energy subject to ideal rearrangements of this post-diffusion state.

Motivated by the chaotic nature of turbulent mixing, we shall treat this problem
probabilistically, i.e. with statistical mechanics. We assume that the time scale for thorough
mixing is much shorter than that for the onset of diffusion, so that these processes
can be treated separately. Specifically, we assume that, before diffusion acts, turbulent
mixing causes the system to explore all possible 2D distributions of s and χ (microstates)
consistent with its potential energy.10 We seek the probability-distribution function (the
macrostate) for fluid at a given spatial position to have originated from a different given
position. We obtain it by maximising the number of microstates for which it gives correct

10For simplicity, we take the potential energy to be constant and equal to the total initial energy of the system (where
we make comparison with numerical simulations in § 6, this includes the kinetic energy of the perturbation).
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(c)(b)(a)

FIGURE 19. At Re � 1, turbulence mixes the advected scalars s and χ [(a); this is a subsection
of the state visualised in the t = 70 panel of figure 23]. Panel (b) is a copy of (a) but with
the fluid discretised into parcels of equal mass. The 2D non-equilibrium states obtainable by
shuffling these parcels while maintaining horizontal pressure balance constitute microstates in
our theory. As explained in the main text, there exists a bijection between such 2D states and 1D
static equilibria with the same energy (c). We may therefore take microstates to be 1D equilibria.

coarse-grained statistics, i.e. by maximising mixing entropy. Finally, we shall determine
the diffused states by taking moments of this distribution, as we explain in § 5.3.

5.1. Equivalence of 1D and 2D microstates
Even through the relaxing system explores 2D non-equilibrium microstates, maximising
the number of them that are consistent with a given macrostate (i.e. the multiplicity of
the macrostate) is formally equivalent to doing so for the equilibria obtainable by 1D
rearrangements (similar to those we used to find minimum-energy states in § 3). This is
because, for every 2D non-equilibrium state in horizontal pressure balance, there exists a
distinct 1D equilibrium state with the same total energy and mass of fluid with each value
of s and χ , as we now demonstrate.

We define the set of 2D microstates as follows. We partition the initial equilibrium
into horizontal slices of fixed width �z, which we further subdivide into parcels of equal
mass �m. The number of parcels in each horizontal slice is not fixed, and parcels may
‘spill’ over into adjacent slices if the total mass in the slice is not an integer multiple
of�m, although the fraction of parcels that do vanishes as�m → 0. We consider labelling
each parcel by an index that increases along each slice from left to right, starting from
the lowest slice and then moving upwards. Then, the full set of microstates is the set of
possible permutations of these indices, i.e. the set of 1D shuffles of parcels with fixed s
and χ , assembled in 2D space as described (see figure 19a,b).

A given permutation of parcel indices is not a complete description of the microstate, as
the pressure P in each parcel remains to be specified. As noted above, the 2D microstates
are not equilibria: horizontal density variations induce baroclinic torques. On the other
hand, we do not expect significant horizontal variation in pressure: because Eavail/E0 � 1,
the flow that develops during relaxation is subsonic, i.e. U/c � 1. Fluctuations δP of the
total pressure P about its horizontal mean P0 are therefore small, δP/P0 ∼ U2/c2 � 1. We
can evaluate P0(z) by integrating the z-component of the momentum equation (2.1) over x
and from the given z to z = ∞, neglecting inertial terms (which correspond to the pressure
fluctuations). This yields P0 = mg, where m is the total mass of fluid above height z per
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unit horizontal length, given by

m = 1
Lx

∫ Lx

0
dx
∫ ∞

z
dz′ρ(x, z′), (5.1)

where Lx is the horizontal extent of the system.
To leading order in �z, (5.1) evaluated at a given parcel is the total mass of parcels

that have greater indices. Consequently, if we were to rearrange the parcels to be stacked
vertically in order of their indices (preserving the P, s and χ from the 2D state), P0 is the
pressure they would have in equilibrium. Restacking in this way produces no change in
the total energy as �z,�m → 0, so the total energy of both states can be evaluated using
(3.4). The leading-order term in δP in the integrand is ∼ c2δP2/P2

0 ∼ (U2/c2)U2 � U2,
so the contribution of δP to the energy of the state can be neglected. Thus, there exists a
correspondence between 2D non-equilibrium (but horizontally pressure-balanced) states
and 1D equilibria: for every 2D state, we can find a 1D equilibrium state with the same
energy, by the process described above (visualised in figure 19c). Thus, in what follows,
we consider microstates to be 1D equilibrium states, with energy given by (3.6).

5.2. Lynden-Bell statistical mechanics of MHD atmospheres
As explained in § 5.1, we may construct our statistical mechanics on the space of 1D
equilibria, this being fully equivalent to doing so on the space of 2D non-equilibria in
horizontal pressure balance. We follow the formulation of Lynden-Bell’s (1967) statistical
mechanics of distinguishable particles with an exclusion principle – originally derived for
collisionless stellar systems and plasma – by Chavanis (2003).

We introduce P(m, μ) dμ as the probability of finding the material with initial
supported mass in the range [μ,μ+ dμ] to have a supported mass of m in the final state.
We obtain P(m, μ) by maximising the number of microstates with which it is consistent
after coarse graining. This corresponds to maximising the mixing entropy (Robert &
Sommeria 1991)

S = −
∫

dm
∫

dμP(m, μ) lnP(m, μ). (5.2)

We maximise S subject to the constraints of fixed total probability (i.e. the normalisation
of P) ∫

dμP(m, μ) = 1, ∀ m; (5.3)

fixed potential energy Epot

∫
dm

∫
dμE(m, μ)P(m, μ) = Epot; (5.4)

and fixed mass of fluid with each value of μ

∫
dmP(m, μ) = 1, ∀ μ. (5.5)
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FIGURE 20. Convergence of P(m, μ) ((5.7)) to the solution of the LSA problem (black circles;
see § 3.2) as βTEavail → ∞ for the case of the unstable-upwards profile (2.30) with all integrals
discretised at scale �m = 0.01. Contours of the normal from of the cost matrix Ẽij visualised in
figure 6 are plotted in white.

This constrained maximisation of S is equivalent to unconstrained maximisation of

−
∫

dm
∫

dμP(m, μ) lnP(m, μ)− βT

∫
dmλ(m)

[∫
dμP(m, μ)− 1

]

− βT

[∫
dm

∫
dμ E(m, μ)P(m, μ)− Epot

]
− βT

∫
dμψ(μ)

[∫
dmP(m, μ)− 1

]
,

(5.6)

over the probability P(m, μ) and the Lagrange multipliers βT , λ(m) and ψ(μ). The
solution is

P(m, μ) = e−βT [E(m,μ)−ψ(μ)−λ(m)], (5.7)

where the Lagrange multipliers βT (the thermodynamic beta, to be identified with the
inverse of the statistical mechanical temperature), ψ(μ) and λ(m) are determined from the
constraints (5.3)–(5.5).11

In Appendix H, we prove that, as βT → ∞, P(m, μ) becomes increasingly sharply
peaked around the solution to the LSA problem of § 3 (see figure 20). Thus,
the minimum-energy states are the βT → ∞ limit of our statistical mechanics.
Mathematically, this happens because the exponent of (5.7) has the form of a modified
cost matrix (see (3.11)) multiplied by βT ; as βT → ∞, P(m, μ) vanishes except in the
vicinity of the zeros of the normal form of the cost matrix (see § 3.2), which represent the
optimal assignment.

The algorithm we use to evaluate P(m, μ) numerically for given Epot is analogous to the
one proposed by Ewart, Nastac & Schekochihin (2023). A brief summary is as follows.

11Let us make explicit the analogy between these formulae and their equivalents in the Lynden-Bell theory of
collisionless stellar systems and plasma. In those contexts, P(m, μ) is replaced by P(x, v, η), where position x and
velocity v are the phase space coordinates (analogous to m) and η is the phase-space density, which, analogously to
μ, is conserved under rearrangements of phase space (Liouville’s theorem). The energy density E(m, μ) is replaced by
the energy associated with η particles occupying the (x, v) coordinates of phase space, η[v2/2 +Φ(x)] (or appropriate
generalisations), where Φ is potential energy. Finally, on the right-hand side of the constraint (5.5), 1 is replaced by a
function of η, sometimes called the ‘waterbag content’, which gives the total volume of phase space with density η. The
equivalent object is a constant in our formalism because the mass of fluid in the range [μ,μ+ dμ] is dμ, independently
of μ. In Appendix G we present an alternative formulation of our statistical mechanics, with μ replaced by s and χ ,
which is also preserved under rearrangement. In that formulation, a function M(s, χ) appears on the right-hand side of
the equation analogous to (5.5); this is the total mass of fluid with given s and χ .
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First, we choose a trial value of βT and, with suitable discretisation for m and μ, calculate

P(m, μ) = e−βT [E(m,μ)−ψ(μ)]∫
dμ′ e−βT [E(m,μ′)−ψ(μ′)]

, (5.8)

where we obtain ψ(μ) from the iterative formula

e−βTψn+1(μ) =
∫

dm
e−βTE(m,μ)∫

dμ′ e−βT [E(m,μ′)−ψn(μ
′)]
. (5.9)

Equation (5.9) is the result of integrating (5.8) over m and using (5.5). Equation (5.8)
satisfies the constraints (5.5) and (5.3), but does not necessarily correspond to the correct
energy Epot; in this case, we increment βT and repeat the procedure described until the
desired energy is obtained.

5.3. Diffusion
The function P(m, μ) gives the fractional abundances of parcels from supported mass μ
at new supported mass m in the ‘most mixed’ state accessible by ideal rearrangements.
We shall use these abundances to determine the result of diffusion: when sufficiently
small scales are developed by mixing, diffusion homogenises nearby fluid parcels. Thus,
diffused states may be obtained by taking suitable moments of P(m, μ).

The standard method for deriving predictions from Lynden-Bell probability distribution
functions is to argue that, due to the presumed stochastic nature of the underlying
microstate, physically measurable quantities correspond to expectation values. In our case,
these are

〈s〉 ≡
∫

dμs(μ)P(m, μ), (5.10)

〈χ〉 ≡
∫

dμχ(μ)P(m, μ). (5.11)

Unlike in the traditional contexts, however, expectation values – in particular, (5.10) –
are unsuitable as a model of the state that develops after diffusion acts. This is because
diffusive processes do not preserve the mean value of s; instead, thermal conduction and
ohmic heating increase thermal entropy.12 It is readily verified that energy is not conserved
under a collapse of the distributions of s and χ onto their expectation values∫

dmE(mg, 〈s〉, 〈χ〉) �= Epot, (5.12)

because E(m, μ) is nonlinear in s and χ . In the terminology of Chavanis (2003), energy
is a ‘fragile integral’ – its value is different depending on whether it is computed using

12The relevant analogue of (5.10) and (5.11) for the collisionless-relaxation problem, i.e. 〈η〉 = ∫
dη ηP(x, v, η),

does constitute a plausible prediction for the particle-distribution function in the presence of small collision frequency
(collisions act as diffusion in velocity space, smoothing the stochastic variation in the local value of η to its mean). This
is because collisions preserve the contribution of each patch of phase space to the total energy, momentum and number of
particles, as these quantities are each linear in η. In the language of Chavanis (2003), total energy, momentum and number
of particles are ‘robust integrals’, being the same for both the coarse- and fine-grained distributions of η (although, see
the discussion in § 7.2).
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the coarse- or fine-grained distributions of s and χ . The difference between the left- and
right-hand sides of (5.12) is typically much greater than the available energy of the original
equilibrium – around ten times greater in the case of the unstable-upwards profile defined
by (2.30).

Equation (5.10) being unsuitable, we instead determine the entropy function after
diffusion, s̄, from the conservation of energy, i.e. from

E(mg, s̄, χ̄) =
∫

dμE(mg, s(μ), χ(μ))P(m, μ), (5.13)

with the diffused magnetic flux χ̄ given by

χ̄ = 〈χ〉; (5.14)

(the diffusion of straight magnetic-field lines does conserve magnetic flux). We plot s̄ and
χ̄ against z (with density ρ(m, s̄, χ̄)) with a solid cyan line in figure 21. For comparison,
we plot 〈s〉 and 〈χ〉 against z (with density ρ(m, 〈s〉, 〈χ〉)) with a gold dashed line – these
profiles are appreciably different, and we will find in § 6 that the former is indeed a better
predictor of numerical simulations.

5.4. Secondary relaxation
Equations (5.13) and (5.14) need not, in general, represent the final state reached by
relaxation, because the turbulent mixing flow remains present even after diffusion. This
flow can cause further reorganisation if the post-diffusion state of the system has more than
one accessible microstate, i.e. if it is not a nonlinearly stable minimum-energy state.13

Remarkably, this often turns out to be the case: diffusion [in the sense of (5.13) and
(5.14)] of the state predicted by Lynden-Bell statistical mechanics tends to produce new
states that are unstable to further (ideal) dynamics. This phenomenon has no analogue in
the relaxation of collisionless stellar systems and plasma, for which the coarse-grained
probability-distribution function is always a state of minimum energy with respect to
rearrangements of phase space. That it is possible for MHD atmospheres is consequence
of the fact that diffusion produces changes in buoyancy. A well-known example of this
is the phenomenon of ‘buoyancy reversal’ in the terrestrial atmosphere: the nonlinear
dependence of density on the advected Lagrangian invariants (in that context, the mixing
ratio of water and potential temperature; see Appendix B) means that a buoyant parcel of
fluid that rises and mixes with denser ambient fluid can become denser than the ambient
fluid, and sink as a result (see, e.g. Stevens 2005).

The 1D equilibrium states given by (5.13) and (5.14) may be linearly or nonlinearly
unstable (metastable). Examples of each case are illustrated in figure 22. Panel (a) plots
the force (2.5) per unit mass on a small parcel of fluid displaced from height z1 to z2 for
the post-diffusion state of the metastable-upwards equilibrium (2.30). This state is linearly
unstable between z 
 1.4 and z 
 2.3, and also close to z = 3. Panel (b) is analogous, but
for a slightly larger energy of E = E0 + 0.3Eavail in (5.4) (this is the initial energy of the
numerical simulation to be presented in figures 23 and 24 in § 6.1). In this case, the new
profile is linearly stable, but is unstable nonlinearly (metastable), and turns out to have
states with lower energy (as can be confirmed by solving its LSA problem). Likewise,
the post-diffusion states corresponding to the ‘bi-directional’ ((2.32)) and ‘overturning’
((2.33)) profiles are not minimum-energy states. On the other hand, it turns out that

13Because we assume that the energy of the flow is small, we neglect the possibility of it exciting the system into
states with greater potential energy.
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(d)(c)

(b)(a)

FIGURE 21. The predictions of the Lynden-Bell statistical mechanics (§ 5.2) for each of the
profiles described in § 2.6. Panel (a) corresponds to (2.30), (b) to (2.31), (c) to (2.32) and (d) to
(2.33). In each case, the black dashed line corresponds to the initial profile, the gold dashed line
to 〈s〉 or 〈χ〉 [see (5.10) and (5.11)] and the cyan solid line to the predictions s̄ and χ̄ for the result
of diffusion [see (5.13) and (5.14)]. Other coloured lines correspond to iterations of the statistical
mechanical calculation, as described in § 5.4.

diffusion does yield a minimum-energy state in the case of the unstable-downwards profile
(2.31).

As noted above, in cases where the new state given by (5.13) and (5.14) has more than
one accessible microstate with the same energy, continued turbulent mixing can reshuffle
fluid parcels and produce further diffusion until a minimum-energy state is reached.
A simple model of this process is to apply the procedure described in §§ 5.2 and 5.3
iteratively. This corresponds to the diffused system exploring the full space of states that
are energetically accessible under ideal arrangements before diffusing again. We show in
figure 21 the profiles of s̄ and χ̄ at the second, third and fourth iterations, plotted in pink,
green and purple, respectively. The procedure terminates (i.e. reaches a minimum-energy
state) after two iterations in the unstable-upwards (2.30) and ‘overturning’ (2.32) cases
[see panels (a) and (d)], and after four iterations in the unstable-‘bi-directional’ case
(2.33). [Note that, in the ‘overturning’ case, we find at the fourth iteration that the state
is sufficiently close to the ground state to become sensitive to the discretisation that we
employ to compute the integrals in (5.11) and (5.13): see the jagged structure of the purple
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FIGURE 22. The force (2.5) per unit mass of a small fluid parcel moved in pressure balance and
without diffusion from height z1 to z2 for: left panel, the state that corresponds to the cyan lines
in figure 21a; and, right panel, the analogue of this profile for E = E0 + 0.3Eavail. The left panel
exhibits linear instability, the right panel nonlinear instability (metastability).

line in figure 21c. At the fifth iteration, βT becomes so large as to preclude accurate
computation of the relevant integrals, so we terminate the process at the fourth iteration.]

The difference in the profiles of s̄ and χ̄ between the first and last stages of the iterative
procedure turn out to be slight. Therefore, if, as in reality, secondary relaxations are
incomplete or diffusion occurs concurrently with them, the final state reached ought not
to be very different. We shall see in § 6 that accounting for these diffusive rearrangements
is, in practice, a precision overkill – greater discrepancies between numerical experiment
and the theoretical prediction arise which appear to be a result of the tendency of relaxing
profiles to become ‘stuck’ in other metastable states. Nonetheless, it is interesting to note
that, on a qualitative level, the chief outcome of the iterative procedure is the formation
of plateaus (corresponding to thorough mixing and diffusion in regions where the first
relaxed state is close to marginal linear stability). In the case of the unstable-upwards
profile, for example, we see from figure 21a that, between the first and second iterations,
material at z � 1.75 moves upwards to settle in the range 1.75 � z � 2.75, producing a
flatter region between 2.5 � z � 3.0 and in the vicinity of z 
 2. Similar plateaus are
observed in panels (c) and (d), with panel (c) resembling a staircase. The intriguing
possibility of modelling the formation of staircases (which are observed in myriad
diffusing systems in geo- and astro-physical contexts) statistical mechanically is a topic
to which we shall return in future work (see § 7.2).

6. Numerical simulations of relaxation at large Reynolds number

In this section, we present a comparison of the theoretical predictions obtained in § 5.3
with the results of numerical simulations with Re � 1. The numerical set-up is the same
as in § 4.2, but with the kinematic viscosity ν smaller by a factor of 400, such that the
Reynolds number based on the initial velocity field is u0Lx/ν ∼ 105.

6.1. Metastable upwards, (2.30)
We first consider the case of the unstable-upwards profile defined by (2.30).
Figure 23 visualises the distribution of s/χ (the advected scalar that controls the fluid
compressibility – see § 2) during the relaxation that follows perturbation by a velocity field
given by (4.5) with u0 = 0.1 and z0 = 1.0 (this corresponds to an initial kinetic energy
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FIGURE 23. Numerical simulation of the relaxation of the equilibrium defined by (2.30) at
Re ∼ 105. The quantity plotted is ln(s/χ). The initial velocity field is given by (4.5) with
u0 = 0.1, z0 = 1.0 and �z = 0.5, which corresponds to Ekin,0 
 0.3Eavail. A movie version of
this figure is available at https://doi.org/10.1017/S0022377824001521.

Ekin,0 
 0.3Eavail). We observe that a substantial plume of material rises until reaching
the stable region at the top of the simulation domain, where it overturns and develops
Rayleigh–Taylor instabilities (upper left panel). Under advection by the increasingly
chaotic flow, small-scale structures are developed (upper middle and right panels). These
structures diffuse, ultimately leading to a one-dimensional but non-homogeneous state
with no fine-scale structure (lower three panels).

Figure 24 compares the horizontally averaged instantaneous profiles of s and χ
developed in the simulation with both 〈s〉 and 〈χ〉 [as defined in (5.10) and (5.11)] and s̄ and
χ̄ [as defined in (5.13) and (5.14)]. The quantities are computed from P(m, μ) calculated
with Epot = E0 + Ekin,0 in (5.4).14

14The Mach number of the simulation, Ma ≡ u0/

√
v2

A + c2
s ∼ 0.1 is small, so that the compressible part of the

initial velocity field rapidly propagates away as compressive waves. The energy associated with these waves (i.e. the
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FIGURE 24. Horizontally averaged profiles of s and χ plotted at intervals of 1 code time unit,
between t = 0 (blue) to t = 600 (red), for the simulation visualised in figure 23. Also plotted
are the profiles that correspond to expectation values of P(m, μ) (gold dashed line; which we
claim is not a suitable model of diffusion), from (5.13) and (5.14) (cyan dashed line; these model
energy- and flux-conserving diffusion), and after iterating the statistical mechanical prediction
from the profile based on the cyan dashed line (pink dashed line). For reference, we also plot the
minimum-energy state: this is as shown in figure 5.

We make the following observations. First, the late-time profile of s is almost
everywhere larger than 〈s〉 ((5.10); gold dashed line in figure 24). This validates the
reasoning we used to reject (5.10) as a predictor of the final state – evidently, dissipation
causes the entropy of the fluid to grow. Secondly, s̄ and χ̄ computed from (5.13) and (5.14)
(cyan dashed line in figure 24) constitute a very reasonable prediction of the relaxed state.
The chief discrepancies are in the range 2.5 � z � 3.0, where s̄ and χ̄ are, respectively,
somewhat smaller and larger than in the late-time profiles developed by the simulation.
We interpret this as a consequence of the system not ‘exploring’ the full surface of
constant energy in configuration space, owing to the fluid that rises from the bottom
of the equilibrium becoming trapped in a metastable state at the top. In support of this
interpretation, we note that, in the range 0.9 � z � 1.5, the cyan lines somewhat over- and
under-predict the simulation result, respectively, indicating that ‘too much’ material rose
in the initial plume (and became stuck).

A second discrepancy between the cyan line and the simulation result is that the latter
exhibits a clear plateau in the range 1.5 � z � 2.3. On the other hand, the cyan line
is nonlinearly unstable [see figure 3(b) for its force diagram] – the dashed pink line in
figure 24 shows the result of taking it as the initial state for a secondary relaxation (see
§ 5.4). The pink line features a plateau over roughly the same range of z as the one that

initial energy of the non-solenoidal part of u) is, we assume, irrelevant to the otherwise quasi-incompressible dynamics,
so we exclude it from the energy we use for Epot.
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FIGURE 25. As in figure 24, but for a simulation initialised with u0 = 0.05 in (4.5)
(Ekin,0 
 0.1Eavail).

forms in the simulation, although the predicted plateau has slightly larger s (smaller χ ).
This might be interpreted as a consequence of the fact that the large-s fluid that would have
risen upwards under the secondary relaxation to form the plateau was, in the simulation,
already displaced to the top of the atmosphere. As a consequence, the plateau forms with
somewhat smaller s than it would otherwise have had.

Figures 25 and 26 are analogous to figure 24 but for simulations with u0 = 0.05 (Ekin,0 

0.1Eavail) and u0 = 0.025 (Ekin,0 
 0.02Eavail), respectively. In these cases, the quantitative
agreement between simulation and theory is less good than in figure 24: with a smaller
initial impulse, relaxation is incomplete. Figure 27, shows that, at peak, between 50 %
and 60 % of the available kinetic plus potential energy is in the form of kinetic energy
for all three simulations, showing that the liberation of available potential energy during
relaxation is fairly efficient.

6.2. Metastable downwards, (2.31)
We now report the results of analogous simulations to those in § 6.2, but for the
unstable-downwards profile (2.31) and with z0 = 2.25 in (4.5).

Figure 28 visualises the evolution in x–z space for u0 = 0.14 (Ekin,0 
 0.2Eavail),
following the tracer s/χ . Similarly to figure 23, we observe that a descending plume
reaches the stable buffer region at the bottom of the simulation domain, develops
small-scale structure due to Rayleigh–Taylor instability and advection by chaotic motions,
and ultimately diffuses. The evolution of the horizontally averaged profiles is displayed in
figures 29–31 for the cases of u0 = 0.14 (Ekin,0 
 0.2Eavail), u0 = 0.1 (Ekin,0 
 0.1Eavail),
and u0 = 0.05 (Ekin,0 
 0.03Eavail), respectively. Again, we observe reasonable agreement
between the statistical mechanical prediction and the late-time limit of the simulations,
although the predictions do somewhat under-predict s and over-predict χ for z � 1.5.
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FIGURE 26. As in figure 24, but for a simulation initialised with u0 = 0.025 in (4.5)
(Ekin,0 
 0.02Eavail).

FIGURE 27. Evolution of the kinetic energy as a fraction of the total available energy, which
is the kinetic energy plus the available potential energy of the initial state, for the simulations
visualised in figures 24–26.

Again, the reason appears to be partial relaxation: the degree of inaccuracy is greater
in the simulations with smaller initial velocity fields. We also note that the theory fails
to predict the plateau that forms in the vicinity of z 
 0.5 (no secondary relaxation is
possible from the diffused state that corresponds to the cyan line, as it is nonlinearly
stable, see § 5.4). Nonetheless, the theoretical predictions agree reasonably well in this
region with all three simulation profiles, the flatness notwithstanding. Finally, we show the
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FIGURE 28. Numerical simulation of the relaxation of the equilibrium defined by (2.31) at
Re ∼ 105. The quantity plotted is ln(s/χ). The initial velocity field is given by (4.5) with
u0 = 0.14, z0 = 2.25 and �z = 0.5; this corresponds to an initial kinetic energy 
 0.2 times
the available potential energy. A movie version of this figure is available at https://doi.org/10.
1017/S0022377824001521.

evolution of the kinetic energy as a fraction of the total available energy in figure 32. As
in figure 27, the relaxation is fairly efficient at liberating available potential energy. Large
initial perturbations are not required to do so: over a factor 
 30 difference in the initial
kinetic energy, the peak ratio of kinetic energy to available energy varies only between
around 30 % and 45 %.

7. Conclusion
7.1. Summary

In this work, we have demonstrated that MHD equilibria with straight magnetic-field
lines can be metastable to 2D interchange-type motions in the plane perpendicular to the
magnetic field (§ 2). This phenomenon occurs because fluid with large plasma β is more
compressible than fluid with small β. As a result, when displaced upwards (for example)
by a large distance and thus exposed to a large change in pressure, the density of large-β
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FIGURE 29. Horizontally averaged profiles of s and χ plotted at intervals of 1 code time unit,
between t = 0 (blue) to t = 600 (red), for the simulation visualised in figure 28. Also plotted are
the profiles obtained by taking expectation values of P(m, μ) (gold dashed line) and from (5.13)
and (5.14) (cyan dashed line).

FIGURE 30. As in figure 29, but for a simulation initialised with u0 = 0.1 in (4.5), which
corresponds to Ekin,0 
 0.1Eavail.
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FIGURE 31. As in figure 29, but for a simulation initialised with u0 = 0.05 in (4.5), which
corresponds to Ekin,0 
 0.03Eavail.

FIGURE 32. Evolution of the kinetic energy as a fraction of the total available energy, which
is the kinetic energy plus the available potential energy of the initial state, for the simulations
visualised in figures 29–31, as well as for one with u0 = 0.025 in (4.5).

fluid can be less than that of the ambient fluid at the new location, even if this would not
be the case for sufficiently local (i.e. linear) displacements.

The existence of metastability in 2D is particularly interesting because ideal (i.e.
dissipationless) relaxation in 2D constitutes rearrangement of flux tubes subject to the
Lagrangian invariance of entropy and magnetic flux. This enables the use of combinatorial
and statistical techniques that are unavailable for the 3D problem (although see § 7.2). We
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have determined the minimum-energy state consistent with 2D rearrangements by solving
a LSA problem in four different illustrative cases (§ 3). We find that the available potential
energy is generally small, a result that can be traced back to the fact that fluid parcels
exclude each other, so that the mass of fluid that can experience a significant change in
pressure is limited (§ 3.1). An interesting finding is that the minimum-energy states are
two dimensional, despite the initial profiles being one dimensional (§ 3.3.1). We show
that the relaxed state that develops in numerical simulations at small Reynolds number
approximates this 2D minimum-energy state (§ 4), as the potential energy liberated during
relaxation is dissipated by viscosity (changing the entropy of the fluid only slightly, owing
to the small energy scales involved).

The two-dimensionality of the minimum-energy states may be interpreted as a
consequence of the fact that the 1D states with least potential energy are, in general,
Rayleigh–Taylor unstable. Provided that it is not suppressed by viscosity, this instability
(and the potential energy liberated during relaxation) drives a turbulent flow that generates
small-scale structure, enabling diffusion to act and violate the fluid-element-wise
conservation of entropy and magnetic flux (§ 5). We have proposed that such cases
can be modelled theoretically by postulating (non-rigorously, but, apparently, usefully)
a separation of time scales between the one on which the flow is mixed (i.e. the ideal
dynamical time scale) and the one on which the advected invariants diffuse. We suggest
that the final state of the former relaxation is the equilibrium state that maximises the
Boltzmann mixing entropy subject to fixed energy (§ 5.2). This is analogous to the
Lynden-Bell theory of ‘violent relaxation’ of collisionless stellar systems and plasma,
and to the RSM theory of 2D vortex turbulence. The generalisation of these theories to
more than one conserved quantity (thermal entropy and magnetic flux) turns out to be
uncomplicated because the theory can be recast as a maximisation of the mixing entropy
associated with rearrangements of 1D slices (§ 5.1).

We take the latter, diffusive part of the relaxation to be a homogenisation of the
stochastic small-scale structure present in a statistical-mechanical microstate. We obtain a
prediction for the post-diffusion state by collapsing the statistical mechanical probability
function onto a value determined by the local conservation of enthalpy and magnetic
flux (§ 5.3). Because the enthalpy density is a nonlinear function of the ideal Lagrangian
invariants of the fluid, the states that one derives in this manner are not necessarily
(or, indeed, usually) stable to ideal dynamics (§ 5.4). We propose that a natural scheme
for dealing with this, which is consistent with the philosophy of time scale separation
between ideal and non-ideal effects, is to iterate the procedure described above for the
new profiles – i.e., to seek the mixing-entropy-maximising ideal rearrangement and then
allow diffusion to act upon it – and to continue iterating until a stable profile is reached.
The difference between the profiles predicted at the first and final iterations is not typically
very large; the qualitative outcome of the subsequent iterations is to produce plateaus in
the profiles of s and χ – see § 7.2 for further discussion.

We compare the theoretical predictions described above with the results of 2D numerical
simulations at large Reynolds number in § 6. Provided that the equilibrium is perturbed
sufficiently strongly to generate thorough mixing, we find remarkably good agreement
between the late-time state of the numerical simulations and the predictions of our
statistical mechanical theory. We also observe in the simulations the formation of
well-mixed plateaus whose properties are consistent with the idea that they are formed
by further mixing of diffused fluid. For weak initial perturbations, the agreement between
the late-time states of the numerical simulations and our theory is less good. We interpret
this as a consequence of the metastability phenomenon itself – when the relaxing system
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becomes ‘stuck’ in a new metastable state, it cannot explore the full constant-energy
surface in its configuration space.

7.2. Discussion
Our study suggests a number of questions for future investigation. One concerns the
role of metastability in driven systems. The present study has been motivated by the
fact that, unlike equilibria that are very unstable linearly, equilibria that are strongly
metastable (in the sense of having a large amount of available energy) are realisable in real
physical systems by an evolution of the potential-energy landscape that preserves the local
minimum within which the system resides. It would be illuminating to understand whether,
and under what conditions, the development of a metastable state actually happens in a
dynamically evolving system, such as one driven towards convective instability by external
heating (and/or cooling). If metastable states do develop, do they relax periodically
via sporadic eruptions? How frequent are those eruptions? And are the corresponding
relaxations ‘complete’, in the sense of taking the system far from the linear-stability limit,
or does the state of the system always remain close to this limit? Such questions are
particularly pertinent in light of the observation that edge-localised modes in tokamaks
– which are believed to be manifestations of metastable dynamics in driven systems
(see the Introduction and Cowley & Artun 1997; Hurricane et al. 1997; Wilson & Cowley
2004; Cowley et al. 2015; Ham et al. 2018) – are observed to leave the plasma much below
the threshold for linear instability post-eruption (see, e.g. Kirk et al. 2004, 2006).

A natural question is whether the methods employed within this work can be adapted to
a fully 3D dynamics. In 3D, B/ρ is not an ideal invariant: the magnetic flux through any
material surface is conserved, but the density of the fluid in that surface can change due to
motions perpendicular to the surface as well as parallel to it. Thus, relaxation in 3D is not
simply a rearrangement of fluid parcels with associated invariants. Non-ideal processes
too are significantly more complex in the 3D problem than the simple diffusion of scalar
quantities – with magnetic field now a vector, magnetic topology imposes constraints
(some, but not all, of which can be broken by magnetic reconnection in the subsequent
relaxation Taylor 1974, 1986; Zhou et al. 2019; Bhat, Zhou & Loureiro 2021; Hosking &
Schekochihin 2021). Nonetheless, we note that the Hungarian algorithm (§ 3.2) could still
be employed to calculate a rigorous lower bound on the available energy of an equilibrium
with initially straight magnetic field: the smallest potential energy that the field can have
under 2D interchanges of field lines evidently constitutes such a bound. Furthermore, it
seems plausible that the final state of 3D relaxation would, in fact, be 2D: bent field lines
would tend to reconnect and straighten out under magnetic tension. Speculatively, if the
development of such a final state were to constitute an effective series of interchanges, the
statistical methods developed in this paper might well be applied usefully.

Another intriguing question for future work is whether combinatorial and statistical
theories of relaxation can predict the nonlinear saturation of double-diffusive instabilities,
for example, the fingering instability that occurs if a quantity whose stratification is
stabilising is diffusive, so that its stabilisation is not felt on sufficiently small scales (see,
for example, Hughes & Brummell 2021, and references therein). Such systems saturate
with staircase distributions of their compositional properties: thermohaline staircases in
the ocean, which exhibit steps in their temperature and salinity profiles, are a prominent
example. These staircases are apparently extremely stable – measurements of thermohaline
staircases have revealed structure that persists over ∼ 100 km and for a time scale of years
(see Merryfield 2000 for a review). Metastability to diffusive modes has been mooted
as a possible explanation for the staircases (Merryfield 2000). Although diffusion is not
naturally incorporated into the LSA problem of finding minimum-energy states (§ 3),
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one could imagine incorporating different rates of diffusion into the iterative model for
post-diffusive relaxation described in §§ 5.3 and 5.4. Whether such a scheme would
reproduce staircases, or offer qualitative insights into the mechanisms by which they
form, remains to be seen. Some cautious optimism can be derived from results like those
shown in figure 21c, which constitutes a theoretical prediction of a staircase-like structure
(although not as a result of double-diffusive instability).

In closing, let us consider whether the results of this work might be valuable for ‘violent
relaxation’ in other contexts. A straightforward yet useful result is that the statistical
mechanical theory can work well in predicting relaxed states, provided the system is
perturbed sufficiently strongly for it to become well mixed. A second result is that the
theory appears to work well in systems that possess more than one invariant. Ewart et al.
(2023) have speculated about the possibility of predicting the relaxation of a collisionless
magnetised plasma by enforcing the conservation of two invariants: the phase-space
density η and the magnetic moment μb = mv2

⊥/2B (here, m is the mass of a particle,
and v⊥ is the magnitude of the velocity of the particle in the direction perpendicular to
the magnetic field B). It is interesting to note that, under such a scheme, the energy E
associated with a volume element of phase space is a nonlinear function of conserved
quantities, viz., E = η(mv2

‖/2 + μbB). It follows that such a theory would need to address
questions similar to the ones we considered in § 5.3, about how one extracts predictions
from the Lynden-Bell probability distribution: the distribution function corresponding to
its expectation values will, in general, not have the correct energy. We suggest that the fix
might be, as in this work, to acknowledge that diffusion (in this case, particle collisions)
does not conserve η and μb, but, rather, η and E , and, therefore, to evaluate the distribution
function according to a scheme analogous to (5.13) and (5.14). Whether or not the resulting
distribution functions are unstable (as for the profiles that develop due to diffusion in
our study), and, if so, the prediction of their further evolution, would, we suggest, be an
interesting topic for future exploration.

Supplementary movies

Supplementary movies are available at https://doi.org/10.1017/S0022377824001521.
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Appendix A. Details of the numerical simulations

The numerical simulations presented in this work were conducted with the
finite-difference MHD code Pencil (Pencil Code Collaboration et al. 2021). The code uses
sixth-order finite differences and a third-order-accurate time-stepping scheme to solve the
equations of 2D MHD with a constant gravitational field, i.e.

∂ρ

∂t
+ u · ∇ρ = −ρ∇ · u, (A1)

ρ

(
∂u
∂t

+ u · ∇u
)

= −∇
(

p + B2

2

)
− ρgẑ + ρν

(
∇2u + 1

3
∇(∇ · u)

)
, (A2)

∂p
∂t

+ u · ∇p = −γ p∇ · u + (γ − 1)
[
ρν

(
2eijeij − 2

3
(∇ · u)2

)

+ η|∇ × (Bŷ)|2 + ρK∇2

(
p
ρ

)]
, (A3)

where

eij = 1
2

(
∂ui

∂xj
+ ∂uj

∂xi

)
, (A4)

is the rate-of-strain tensor, and

∂B
∂t

+ u · ∇B = −B∇ · u + η∇2B. (A5)

In all simulations, we use reflecting boundary conditions (i.e. anti-symmetry for the
component of velocity field in the direction normal to the boundary (uz) and symmetry
for the component in the other direction (ux)) at the boundaries in z, while enforcing
anti-symmetry relative to the value on the boundary (i.e. vanishing second derivative)
for B, p and ρ. For the simulations reported in § 1, we simulate directly only the region
with 0 ≤ x ≤ 1 and 0 ≤ z ≤ 3.5, with reflecting boundary conditions in the x direction
(and symmetric boundary conditions for B, p and ρ) – we construct the visualisations
in figures 1 and 2 by reflecting the simulation domain in the line x = 0. For all other
simulations, we employ periodic boundary conditions in the x direction (and simulate
the full range −1 ≤ x ≤ 1). The resolutions of the simulations are 1166 × 4080 for those
reported in § 1, 1166 × 2040 for those reported in § 4.2, and 2332 × 4080 for those
reported in § 6.

In all simulations, we choose the adiabatic index γ = 5/3, magnetic diffusivity
η = 4 × 10−6 and thermal diffusivity K = 6 × 10−6. This means that η/K = 2/3 = γ − 1,
which is the critical ratio for stability to double-diffusive instabilities at any ν (Hughes
1985). The kinematic viscosity is ν = 4 × 10−6 for the simulations in §§ 1 and 6 and
ν = 1.6 × 10−3 for the simulations in § 4.2. The details of the equilibrium states in which
we initialise the simulations are explained in § 2.6.

Appendix B. Comparison with moist hydrodynamics

In this appendix, we apply the general formalism of § 2.2 to moist hydrodynamics,
thus elucidating the analogy between metastability in 2D MHD and in the terrestrial
atmosphere. The appendix is mostly a review of standard results, but derived economically
via the linear- and nonlinear-stability criteria (2.7) and (2.13).
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B.1. Overview
Moist hydrodynamics is the fluid dynamics of a mixture of dry air, water vapour and
liquid water in local thermodynamic equilibrium. In this appendix, we restrict attention
to the case where the liquid water is suspended in the air, as in clouds and fog, and does
not precipitate out. As for 2D MHD (see (2.19) and (2.20)), moist hydrodynamics has two
quantities that are conserved in a Lagrangian sense in the absence of diffusion. These are
the specific entropy S and the water mixing ratio w, which is the ratio of the mass of water
(both liquid and vapour) to the mass of dry air. As with our use of the ‘entropy function’
s in the main text (see (2.20)), it is more convenient to work with a quantity derived from
S – in this case, potential temperature, θ – than with S directly. The vector of conserved
quantities (2.4) for moist hydrodynamics is therefore Q = (θ,w).

In the following sections, we consider the linear and nonlinear stability of unsaturated
air (composed of dry air and water vapour) and saturated air (in which water is in both
vapour and liquid states) in turn. For unsaturated air, we review the definition of specific
entropy S in § B.2.1, use it to derive a formula for potential temperature θ in § B.2.2 and
apply the general formula (2.7) to determine the criterion for linear stability in § B.2.3.
We show in § B.2.4 that the compressibility κ of unsaturated air increases with w because
the specific heat capacity of water vapour is greater than that of dry air. However, because
w � 1 in the atmosphere, differences in compressibility are always small, meaning that
metastability does not occur with only unsaturated air in practice.

On the other hand, when a parcel of unsaturated air rises and cools sufficiently for
vapour to condense (at the so-called lifting condensation level), the newly saturated parcel
becomes significantly more compressible than its dry-air surroundings. This is because
further decrease in pressure leads to additional cooling and condensation, which releases
latent heat and re-warms the parcel somewhat, leading to additional expansion. As a result,
the density of the saturated parcel decreases more in response to a change in pressure than
the density of the surrounding dry air does. Furthermore, because the specific latent heat
of condensation of water is much greater than the typical thermal energy per unit mass of
air, differences in compressibility between saturated and unsaturated air can be significant
even for w � 1. In the Earth’s atmosphere, cumulonimbus clouds form as the result of
nonlinear instability arising from this effect (see, e.g. Rogers & Yau 1996). We calculate
the compressibility of saturated air in § B.3.3, after introducing its specific entropy and the
liquid-water potential temperature in §§ B.3.1 and B.3.2, respectively. We determine the
linear-stability criterion for an atmosphere containing saturated air in § B.3.4.

B.2. Case of unsaturated air
B.2.1. Specific entropy of unsaturated air

In what follows, we use the subscripts d, v, l and w to refer to dry air, water vapour,
liquid water (in § B.3 only) and total water, respectively. For the cases of dry air and water
vapour, we have from the first law of thermodynamics applied to an ideal gas that

dSi = ci

Mi

dT
T

− R
Mi

dpi

pi
=⇒ Si = S0i + 1

Mi

(
ci ln

T
T0

− R ln
pi

P0

)
, (B1)

where i ∈ {d, v} is the species index, Si specific entropy, pi partial pressure, ci molar heat
capacity at constant pressure, Mi molar mass, R the universal gas constant and S0i the
specific entropy in the reference state that has temperature and partial pressure equal to T0
and P0, respectively. With mi the mass of species i in a mixture, the specific entropy Sunsat
of a mixture of dry air and water vapour satisfies

(md + mv)Sunsat = mdSd + mvSv =⇒ (1 + w)Sunsat = Sd + wSv, (B2)
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where the water content w ≡ mw/md is equal to mv/md because all water is in the
vapour state. Substituting (B1) into (B2), using piV = niRT =⇒ pv/pd = w/ε where
ε ≡ Md/Mv and pd + pv = P, we obtain an expression for Sunsat = Sunsat(P,T,w):

Md(1 + w)Sunsat = Md(S0d + wS0v)+
(

cd + w
ε

cv
)

ln
T
T0

− R
(

1 + w
ε

)
ln

P
P0

+ R
(

1 + w
ε

)
ln
(

1 + w
ε

)
− R

w
ε

ln
w
ε
. (B3)

B.2.2. Potential temperature
It is conventional in studies of convection to work not with the entropy directly but rather

potential temperature θ , which may be defined as

ln
θ

T0
≡ 1

cd + wcv/ε

[
Md(1 + w)Sunsat − Md(S0d + wS0v)

−R
(

1 + w
ε

)
ln
(

1 + w
ε

)
+ R

w
ε

ln
w
ε

]
(B4)

= ln
T
T0

−
[

1 − 1
Γ (w)

]
ln

P
P0
, (B5)

so that

θ = T
(

P
P0

)1/Γ (w)−1

, (B6)

where the adiabatic index is

Γ (w) ≡ cd + cvw/ε
cd − R + (cv − R)w/ε

. (B7)

The potential temperature θ is the temperature of a fluid parcel moved at fixed entropy and
water-mixing ratio to the reference pressure P0. We see from its definition (B4) that θ is
conserved under isentropic displacements that preserve the composition w.

B.2.3. Linear stability of unsaturated air
The linear-stability criterion (2.7) reads

L ≡ −dQ
dz

· ∂ ln ρ(P,Q)
∂Q

> 0, ∀ z. (B8)

We therefore require ρ = ρ(P, θ,w). It is straightforward to show from the ideal gas law
that

P = ρ
RT
Md

1 + w/ε
1 + w

=⇒ ρ = MdP0

Rθ

(
P
P0

)1/Γ (w) 1 + w
1 + w/ε

. (B9)

The partial derivatives in (B8) are then

(
∂ ln ρ
∂θ

)
w,P

= −1
θ
,

(
∂ ln ρ
∂w

)
θ,P

= −Γ ′

Γ 2
ln
(

P
P0

)
+ 1

1 + w
− 1
ε + w

, (B10a,b)
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where Γ ′ = dΓ/dw < 0. The criterion for linear stability becomes [cf. (2.22)]

L = 1
θ

dθ
dz

+
[
Γ ′

Γ 2
ln
(

P
P0

)
+ 1 − ε

(1 + w)(ε + w)

]
dw
dz

(B11)

= d ln T
dz

+
[

1
Γ (w)

− 1
]

d ln P
dz

+ 1 − ε

(1 + w)(ε + w)
dw
dz

> 0, ∀z. (B12)

The first two terms become the negative of the gradient of the potential temperature if w is
constant in z; in that case, the system is stable if dθ/dz > 0. The third term represents the
contribution from moisture content: we see that the presence of water vapour is stabilising
when w increases with height; this is because the molar mass of water is less than that of
dry air (ε < 1).

B.2.4. Metastability of unsaturated air
By (B9), the compressibility of unsaturated air is (cf. (2.23))

κ ≡ ∂ ln ρ(P, θ,w)
∂ ln P

= 1
Γ (w)

. (B13)

The adiabatic index Γ (w) is a decreasing function of w because the specific heat capacity
of water vapour is greater than that of dry air. Therefore, air with greater water mixing ratio
w is more compressible, and so unsaturated air can be metastable when (i) the atmosphere
is sufficiently close to marginal linear stability and (ii) wetter air moves through dryer
air. However, because w in the atmosphere is typically smaller than 1 %, differences in
κ between different parcels of unsaturated air are small. Metastability in the atmosphere
occurs in practice because of the release of latent heat during condensation, as we now
describe.

B.3. Case of saturated air
B.3.1. Specific entropy of saturated air

Once the partial pressure of water vapour pv becomes equal to the saturation vapour
pressure psat (a known function of T stated explicitly in § B.3.5), the vapour condenses to
form liquid water. The moist air is then composed of dry air, vapour and suspended liquid
water. Its specific entropy Ssat satisfies

(md + mw)Ssat = mdSd + mvSv + mlSl =⇒ (1 + w)Ssat = Sd + (w − wv)Sl + wvSv,
(B14)

where we define wv ≡ mv/md. In the saturated state, pv = psat, so P = pd + psat. Thus,
from piV = niRT , we have that

wv = εpsat

pd
= εpsat

P − psat
. (B15)

Using these expressions, we can write Sd and Sv, given by (B1), in terms of P, T and w.
The remaining specific entropy Sl can be determined by summing the parts that correspond
to isobaric heating of vapour from T0 to T , isothermal compression from P0 to psat, and
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finally condensation with a latent heat per mole of L(T). Thus,

Sl = S0v + 1
Mw

[
cv ln

(
T
T0

)
− R ln

psat

P0
− L

T

]
. (B16)

Substituting the three contributions into (B14), we obtain

(1 + w)MdSsat = Md(S0d + wS0v)+
(

cd + w
ε

cv
)

ln
T
T0

− R
(

1 + w
ε

)
ln

P
P0

+ R
(

1 + w
ε

)
ln
(

1 + wv

ε

)
− R

w
ε

ln
wv

ε
− L
εT
(w − wv). (B17)

This constitutes an expression for Ssat as a function of P, T and w. The functions psat(T)
and L(T) are given by (B29) and (B30), respectively.

B.3.2. Liquid-water potential temperature
Analogously to (B4), one can define a conserved quantity known as ‘liquid-water

potential temperature’ by

ln
θl

T0
≡ 1

cd + wcv/ε

[
Md(1 + w)Sunsat − Md(S0d + wS0v)

−R
(

1 + w
ε

)
ln
(

1 + w
ε

)
+ R

w
ε

ln
w
ε

]
(B18)

= ln
T
T0

−
[

1 − 1
Γ (w)

]
ln

P
P0

+ 1
cd + wcv/ε

[
R
(

1 + w
ε

)
ln
(

1 + wv/ε

1 + w/ε

)

− R
w
ε

ln
wv

w
− L
εT
(w − wv)

]
. (B19)

Liquid-water potential temperature is the potential temperature that a parcel of air would
have if all the water in it were vaporised (wv = w). Because the latent heat of condensation
of water is large, i.e. L/εRT ∼ 40 � 1 (see footnote 15 for characteristic sizes of these
quantities), the term involving L in (B19) is typically much larger than the other terms in
the second set of square brackets. Neglecting those terms, (B19) becomes

θl = T
(

P
P0

)1/Γ (w)−1

exp
(

− L
εcdT

(w − wv)

)
. (B20)

B.3.3. Change in compressibility on saturation
The compressibility κ of moist air may be determined by inverting (B19) for

T = T(P, θl,w), substituting the result into

P = ρ
RT
Md

1 + wv/ε

1 + w
, (B21)

and then taking the derivative of ρ with respect to P at fixed θl and w. The result of doing
so numerically is shown in figure 33 for a number of different values of w, with L(T)
and psat(T) given by (B30) and (B29) in § B.3.5, respectively.15 We observe that there

15We take R = 8.31 J mol−1 K−1, Md = 0.0290 kg mol−1, ε = 0.622, cd = 29.2 J mol−1 K−1, cv =
33.7 J mol−1 K−1, cl = 75.5 J mol−1 K−1, Tc = 283 K, Lc = 44 600 J mol−1 and psat(Tc) = 1230 Pa. These are
equivalent to the values quoted by Stansifer et al. (2017).
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FIGURE 33. Solid lines show the compressibility κ of moist air as a function of total pressure
P at fixed θl = 293K and different mixing ratios w, calculated numerically from (B15), (B19)
and (B21). Pressure is measured in units of P0 = Patm = 101.325kPa. Dashed horizontal lines
show the prediction (B24) for the maximum value of κ (small discrepancies with the maxima of
the solid curves are due to approximations made in deriving (B24), specifically, the neglect of
terms involving w that are not multiplied by the large ratio L/RT). The temperatures of saturation
Tsat (obtained numerically) are, in order of decreasing w, 291 K, 283 K, 276K, 270 K and 263 K
(temperatures smaller than that of the triple point of water, 
273 K, correspond to a supercooled
liquid state – we neglect any effect of ice formation).

is a significant increase in compressibility when the pressure reaches the critical value
at which condensation occurs (pv = psat). The height at which this happens for a rising
air parcel is known as the level of lifting condensation (which can be at ground level
if w is sufficiently large, as can be the case in tropical regions on Earth). The increase
in compressibility that results from saturation means that as the parcel continues to rise,
its density decreases relative to that of the surrounding air (provided that the latter is
sufficiently close to marginal linear stability). Above the height at which they become
equal, known as the level of free convection, the rising air parcel experiences an upwards
force and is therefore unstable. The towering cloud formation that forms because of the
resulting updraught is known as cumulonimbus (see, e.g. Rogers & Yau 1996).

The change in compressibility at saturation can be calculated analytically as follows.
Due to the temperature dependencies of L(T) [see (B30)] and wv through psat(T)
[see (B15)], we cannot invert (B20) analytically for T = T(P, θl,w), unlike the case for
θ in § B.3.4. We therefore restrict attention to the point of saturation, which occurs at
pressure Psat(θl,w) (note that Psat is not the same as psat: the former is the total pressure of
the air at saturation while the latter is the partial pressure of the water vapour specifically).
With Tsat ≡ T(Psat, θl,w), we have, to first order in δP ≡ P − Psat,

θl =
[

Tsat + ∂T(P, θl,w)
∂P

∣∣∣∣
P=Psat

δP

](
Ps

P0

)1/Γ−1 [
1 +

(
1
Γ

− 1
)
δP
Psat

]

×
[

1 + L2w
εcdRT3

sat

∂T(P, θl,w)
∂P

∣∣∣∣
P=Psat

δP − wL
εcdT

δP
Psat

]
. (B22)
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It follows that
∂T(P, θl,w)

∂P

∣∣∣∣
P=Psat

= 1/Γ − 1 − Lw/εcdTsat

1 + L2w/εcdRT2
sat

. (B23)

Substituting (B23) into (B21), we have

κ(Psat, θl,w) ≡ ∂ ln ρ(P, θl,w)
∂ ln P

∣∣∣∣
P=Psat

= 1
Γ

+ w
ε

L
cdTsat

(1 − 1/Γ )L/RTsat − 1
1 + L2w/εcdRT2

sat
, (B24)

where we have neglected the contribution to κ of the wv in (B21). To leading order in w,
the change in compressibility at saturation is

�κ ≡ κ(Psat, θl,w)− 1/Γ (w) 
 w
ε

L2

RcvT2
sat

∼ 103w. (B25)

Thus, �κ ∼ 0.1 [which is the largest possible difference in κ in MHD, see (2.23)] can
be achieved even with a water-mixing ratio of ∼ 10−4 (we recall from (3.9) that the
fractional difference in density between a fluid parcel moved from pressure P1 to P2 and
its surroundings at P2 is ∼ �κ/κ at marginal linear stability). For w much larger than this,
the leading-order approximation (B25) is inaccurate and one must use (B24) instead.

B.3.4. Linear stability of saturated air
We note that the linear-stability criterion (B12) is modified if the air is saturated. It is

straightforward to show from (2.8) that the criterion becomes

L = d ln T
dz

+ [κ(P(z), θl(z),w(z))− 1]
d ln P

dz
> 0, (B26)

provided that wv and w can be neglected when compared with 1 in (B21). The
compressibility κ must be evaluated numerically as explained in § B.3.3.

B.3.5. Saturation pressure and latent heat of condensation of water vapour
For completeness, we note that the saturation pressure of water vapour psat(T) can be

obtained from the Clausius–Clapeyron equation

d ln psat

d ln T
= L

RT
. (B27)

The latent heat of condensation L(T) can be determined by considering a reversible cycle
in which vapour on the coexistence curve is heated isobarically from reference temperature
Tc to T , compressed isothermally from psat(Tc) to psat(T), condensed to the liquid phase,
cooled isobarically from T to Tc, allowed to expand isothermally from psat(T) to psat(Tc)

and then finally evaporated, thus returning to the initial state. For the total entropy change
to be zero, we must have

L
T

= Lc

Tc
− R ln

psat(T)
psat(Tc)

+ (cv − cl) ln
T
Tc
. (B28)

Substituting this into (B27) and integrating, we find that

R ln
psat(T)
psat(Tc)

= Lc

Tc

(
1 − Tc

T

)
+ (cv − cl)

(
ln

T
Tc

− 1 + Tc

T

)
, (B29)
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while by eliminating psat between (B28) and (B29), we have

L = Lc + (cv − cl)(T − Tc). (B30)

Appendix C. Stability analysis to quadratic order

In this appendix, we present an expansion of the buoyancy force on a displaced fluid
element, (2.5), for an equilibrium close to marginal linear stability, to quadratic order in
the displacement. We show that the results are consistent with the conclusions of § 2.5.

We take the typical scales of variation of s, χ , P and ρ in z to be the same, denoted H,
but we take the two terms that appear in the scalar product in (2.5) to have opposite signs
and mostly cancel, so that the equilibrium is close to marginal linear stability, i.e.

L ∼ ε
ρ

H
> 0, (C1)

where 0 < ε � 1. Expanding (2.5) in δz = z2 − z1 yields

F
gV2

= −Lδz + N δz2 + O(δz3), (C2)

where

N = −dL
dz

+ dP
dz

(
ds
dz
∂2ρ

∂P∂s
+ dχ

dz
∂2ρ

∂P∂χ

)

= dP
dz

(
ds
dz
∂2ρ

∂P∂s
+ dχ

dz
∂2ρ

∂P∂χ

)
+ O(ε), (C3)

where we have used that dL/dz ∼ ερ/H2 by (C1).
Unless both s and χ increase with height [in which case (C1) demands that their

gradients each be small], N ∼ ρ/H2 and does not generally vanish at marginal stability.
The equilibrium is therefore stable to linear perturbations with δz � L/N ∼ εH but
unstable to nonlinear ones with εH � δz � H [the latter condition ensuring that the
O(δz3) terms in (C2) are negligible]. Replacing partial derivatives by their expressions
in 2D MHD, (C3) becomes

N = −ρgc2
s

c4
(2 − γ )

d ln s
dz

+ O(ε), (C4)

which implies that N < 0 for a stabilising entropy gradient d ln s/dz > 0 (and
d lnχ/dz < 0), and therefore the atmosphere is metastable to downwards displacements
(provided γ < 2). Conversely, the atmosphere is metastable to upwards displacements if
it has a destabilising entropy gradient but stabilising gradient of magnetic flux. These are
the same conclusions as would be obtained by determining the direction of metastable
displacements as the ones in the direction that the ratio s/χ decreases, as should be the
case according to the argument in § 2.5.

Appendix D. Available energy of a two-phase atmosphere

In this appendix, we consider the simple case of a ‘two-phase’ atmosphere in which a
mass ms of fluid with χ = 0 (β = ∞) is situated initially below a mass mχ of fluid with
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s = 0 (β = 0), for which the available energy can be determined analytically. This case is
of pedagogical value as it illustrates why the available energy is always a small fraction of
the total.

According to (2.13), the large-β fluid experiences a destabilising force when displaced
upwards into the small-β fluid (indeed, the destabilising force is the greatest possible,
as the difference in compressibility is maximal). Intuitively, therefore, we expect the
minimum-energy state to be obtainable by re-stacking the atmosphere such that the large-β
fluid sits above the small-β fluid. We consider the most optimistic case from the
perspective of available energy – that of an atmosphere initially at marginal linear stability,
i.e. L = 0 – which means that, by (2.7), s and χ are piecewise-constant functions of m

s =
{

0, m < mχ ,

s0, mχ < m < mt,
χ =

{
χ0, m < mχ ,

0, mχ < m < mt,
(D1a,b)

where mt = ms + mχ is the total mass of the atmosphere. The interface of the two phases
at m = mχ is stable provided the density of the fluid above it is smaller than the density of
the fluid below – the case of marginal linear stability is the one where the fluid density is
continuous at the interface. By (2.26), this implies that

s0

χ0
= 1√

2
(mχg)1/γ−1/2. (D2)

The change in energy �E when the entire mass ms of large-β fluid is moved from the
bottom to the top may then be shown straightforwardly to satisfy

�E
Eχ

= C(r2−1/γ − (1 + r)2−1/γ + 1)+ (1 + r)3/2 − 1 − r3/2, (D3)

where r = ms/mχ , C = 3γ 2/4(γ − 1)(2γ − 1) and

Eχ = 2
3
(2m3

χg)1/2χc, (D4)

is the total energy of the small-β fluid at the top of the atmosphere, which is related to the
total energy of the atmosphere E0 via

E0

Eχ
= 1 + C[(1 + r)2−1/γ − 1]. (D5)

In the limit of r → 0, (D3) and (D5) give

�E
Eχ

= �E
E0

= −3r
8

= −3ms

8mt
. (D6)

Thus, the fractional energy change of a small-β atmosphere at marginal linear stability
when a small parcel of large-β fluid rises through it is proportional to the mass fraction
of the fluid moved, with a proportionality factor of order unity. However, returns in the
fractional energy change diminish rapidly as the amount of mass moved increases. In
figure 34(a), we visualise�E normalised by E0 (black line) and Eχ (blue line) as a function
of the mass fraction ms/mt of large-β fluid in the atmosphere. We observe that, despite
its order-unity initial gradient of −3/8, �E/E0 shallows rapidly, reaching a minimum of
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(b)(a)

FIGURE 34. (a) The available energy of the ‘two-phase’ atmosphere considered in Appendix D,
as a function of the mass ms of fluid with β = ∞. The black line normalises the available energy
by the total initial potential energy, the blue line by the initial potential energy of the fluid with
β = 0 only. (b) The energy liberated per unit mass of moving fluid when a slice moves from
its initial position to a new location where the supported mass is m′. The main plot shows the
case of ms/mt = 0.37, which corresponds to the largest possible available energy (minimum of
the blue line in (a)); the inset shows the case of ms/mt = 0.37, which corresponds to the largest
possible fractional available energy [minimum of the black line in (a)].

−1.8 % where the large-β fluid has a mass fraction of 22 %. If the mass fraction of the
large-β is greater than this, the fractional energy liberated in moving the large-β fluid is
smaller, and, for a mass fraction of greater than 65 %, moving the large-β fluid incurs an
energetic cost.

To elucidate the reason for the diminishing return, we consider the rearrangement as a
sequence of displacements of parcels of the large-β fluid from just below the interface to
new positions at the top of the atmosphere. Figure 34b shows, for a sequence of parcel
displacements represented by lines coloured from purple (the first parcel to move) to red
(the last parcel to move), the energy δE that is liberated when a mass δm of the large-β
fluid is moved from the (evolving) position of the interface to a new, smaller, supported
mass m′ (end points of the particle motions are shown as filled circles). The decrease in
the magnitude of δE/δm for subsequent parcels is seen to occur because fluid parcels obey
an exclusion principle – two slices cannot have the same supported mass. This means that
a parcel of fluid that has already risen from the bottom to the top of the atmosphere will
prevent the next parcel from rising to the same height, thus limiting the difference in total
pressure that this parcel experiences over its motion, and so reducing the work done on the
parcel by the buoyancy force (recall that for an atmosphere at marginal linear stability, the
latter is proportional to the ratio of pressures at the initial and final positions).

A second effect visible in figure 34b is that the motion of the first fluid parcel stabilises
the atmosphere somewhat, because it moves the interface between the large- and small-β
fluid downwards, where the total pressure is greater (the constants s0 and χ0 were chosen
such that the large- and small-β fluids had the same density at P = mχg; at larger pressure,
the more compressible, large-β fluid underneath the interface is denser). The buoyancy
force on a rising parcel is downwards (restoring) until it passes the point of neutral
buoyancy at the original position of the interface. If the work required to overcome the
restoring force is greater than the energy liberated when the parcel moves to the greatest
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height permitted by the exclusion principle, then the reassignment incurs a net energetic
cost. This situation occurs for ms � 0.37mt: for ms larger than this, �E/Eχ rises with ms
(figure 34a), becoming positive for ms � 0.65mt. �E/E0 reaches a minimum at smaller
ms/mt because the small increase in available energy is outweighed by the energetic cost
incurred by increasing the total mass of the atmosphere.

Appendix E. A necessary condition for ‘one-to-many’ optimal assignment

We can deduce a necessary condition for the one-to-many optimal assignment described
in § 3.3.2 in a similar manner to the one in which we deduced the equal-density condition
(3.14) for ‘many-to-one’ assignments in § 3.3.1. Let us suppose that we are given the
optimal assignment of all slices apart from those with initial supported mass mi =
ma + δmi. Their contribution to the total energy of the atmosphere is

δE = �m
∑

i

E(mσ(i),ma + δmi)

= �m
∑

i

[
E(mσ(i),ma)+ δmi

∂E
∂μ
(mσ(i),ma)+ O(δm2

i )

]
, (E1)

where
∂E
∂μ

= 1
γ − 1

ργ−1 dsγ

dμ
+ 1

2
ρ

dχ 2

dμ
. (E2)

Thus, a necessary (but not sufficient) condition for the optimal assignment to be
one-to-two is that ∂E/∂μ must be equal (up to a difference proportional to �m) when
evaluated (with s = s(μ) and χ = χ(μ)) at each of the two different supported masses
mσ(i) to which slices in the vicinity of ma are to be assigned. If this is not the case for any
δmi in the given range, then (E1) is minimised to leading order in δm by assigning the
slice with largest initial supported mass to the new supported mass for which ∂E/∂μ is
smallest, and so on – this will always be a one-to-one assignment, as ∂E/∂μ is continuous
in mσ(i) for fixed ma.

Denoting the density of slice i at the two values of mσ(i) by ρ and ρ ′, the condition for a
one-to-two mapping is (cf. equation (3.14))

1
γ − 1

(ρ ′γ−1 − ργ−1)
dsγ

dm
+ 1

2
(ρ ′ − ρ)

dχ 2

dm
= O(�m). (E3)

From this expression, we see that, for any given ρ, there can be at most one solution
for ρ ′ in addition to the trivial ρ ′ = ρ. The existence of a second solution requires that
gradients of s and χ with m have opposite signs in the initial profile. Thus, while an
optimal assignment may in general be one-to-two, as in figure 11, it cannot be one-to-X
with X > 2.

Appendix F. Viscous relaxation in the case of downwards metastability, (2.31)

Figures 35 and 36 are analogues of figures 17 and 18 for the equilibrium defined
by (2.31). The dimensionless numbers Re, Prm and Prt are the same as in § 4.2, but
z0 = 2.25 in (4.5). In figure 36, We again compare u0 = 0.1, u0 = 0.05 and u0 = 0.025; in
this case, this corresponds to Ekin,0 
 0.1Eavail, Ekin,0 
 0.03Eavail and Ekin,0 
 0.01Eavail,
respectively. Again, we observe the formation of a long-lived 2D state (subject to slow
diffusion) that is consistent with the minimum-energy state obtained in § 3.3.2 (see lower
panels of figures 35 and 36), with the quality of agreement between theory and simulation
being better at Ekin,0 
 0.1Eavail than Ekin,0 
 0.01Eavail.
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FIGURE 35. As for figure 17, but for the equilibrium defined by (2.31).

Appendix G. Alternative formulation of the Lynden-Bell statistical mechanics

For completeness, we note in this appendix how Lynden-Bell statistical mechanics may
be formulated for the joint probability-distribution function for s and χ , rather than for
μ as in § 5.2. In that case, we define P(m, s, χ) ds dχ to be the probability that a fluid
element at supported mass m has specific entropy and flux in the ranges s to s + ds and χ
to χ + dχ , respectively. We obtain P(m, s, χ) by maximising the number of microstates
with which it is consistent, after coarse graining. This corresponds to maximising the
mixing entropy (Robert & Sommeria 1991)

S = −
∫

ds
∫

dχ
∫

dmP(m, s, χ) lnP(m, s, χ). (G1)

Maximisation of S is subject to the constraints of fixed total probability (i.e. the
normalisation of P) ∫

ds
∫

dχP(m, s, χ) = 1, (G2)

fixed potential energy Epot

∫
dm

∫
ds
∫

dχE(mg, s, χ)P(m, s, χ) = Epot, (G3)
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FIGURE 36. As for figure 18, but for the equilibrium defined by (2.31).

and, for all s and χ , a fixed mass of fluid M(s, χ)dsdχ having both a value of s in the range
s to s + ds and a value of χ in the range χ to χ + dχ∫

dmP(m, s, χ) = M(s, χ). (G4)

The equivalence of the above constraints to the corresponding ones in § 5.2 [(5.3), (5.4)
and (5.5)] is readily demonstrated by substituting

P(m, s, χ) =
∫

dμP(m, μ)δ(s − s(μ))δ(χ − χ(μ)), (G5)

and evaluating integrals over s and χ . Substitution of (G5) into the expression (G1) for the
thermodynamic entropy S yields

S = −
∫

dμ
∫

dmP(m, μ) ln
∫

dμ′P(m, μ′)δ(s(μ)− s(μ′))δ(χ(μ)− χ(μ′)). (G6)

This reduces to (5.2) provided that each value of μ has a different pair of values of s and
χ : in that case, both delta functions on the second line are simultaneously non-zero only
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when μ′ = μ. P(m, μ) can then be brought outside of the μ′ integral, leaving (up to an
additive constant that, after application of (5.5), does not depend on P(m, μ))

S = −
∫

dμ
∫

dmP(m, μ) lnP(m, μ), (G7)

which is (5.2).
The solution of the constrained maximisation is (cf. (5.7))

P(m, s, χ) = e−βT [E(mg,s,χ)−ψ(s,χ)]∫
ds′
∫

dχ ′ e−βT [E(m,s′,χ ′)−ψ(s′,χ ′)]
, (G8)

where the Lagrange multipliers βT and ψ(s, χ) are determined by (5.4) and (5.5),
respectively, for given E and M(s, χ).

Appendix H. The minimum-energy state of § 3 as the βT → ∞ limit of Lynden-Bell
statistical mechanics

On physical grounds, we expect that the βT → ∞ limit of (5.7), i.e. the limit of zero
statistical mechanical temperature, corresponds to the smallest energy permitted by the
system, i.e. the result of solving the LSA problem (§ 3). In this appendix, we verify that
the solution to the LSA problem is indeed recoverable from (5.7) in the βT → ∞ limit.

H.1. Discrete problem: non-degenerate case
Because the LSA problem is discrete, it is strictly the βT → ∞ limit of (5.3), (5.4),
(5.5) and (5.7) only after they are discretised over a small but finite scale �m (we
consider reversing the order of the �m → 0 and βT → ∞ limits in § H.3). We adopt
the economical notation Pij ≡ P(mj,mi), Eij ≡ E(mj, si, χi) = E(mj,mi) and ψi ≡ ψ(mi).
Converting integrals to sums, (5.3), (5.5) (5.4) and (5.8) become

�m
∑

i

Pij = 1, (H1)

�m
∑

j

Pij = 1, (H2)

�m2
∑

ij

EijPij = Epot, (H3)

and

Pij = 1
�m

e−βT (Eij−ψi)∑
k

e−βT (Ekj−ψk)
, (H4)

respectively. We define Ẽij = Eij − aj − bi and ψ̃i = ψi − bi, whence

Pij = 1
�m

e−βT (Ẽij−ψ̃i)∑
k

e−βT (Ẽkj−ψ̃k)
. (H5)

The advantage to introducing the ‘tilded’ variables in (H5) is that we may always choose
the functions bi and aj to be such that Ẽij is the normal form of the cost matrix Eij
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(see (3.11)). As explained in § 3.2, this means that Ẽij ≥ 0 and has at least one zero in each
row and column, or, equivalently, there exists at least one bijection σ such that Ẽiσ(i) = 0
for all i (j = σ(i) constitutes an optimal assignment for the LSA problem).

In the simplest case, Ẽij has exactly one zero in each row and column. We expect this
to be the generic case, and, indeed, this is true for all the profiles examined in § 3.3.
These zeros define the unique optimal assignment j = σ(i) – taking ψ̃i = 0 [the natural
choice, as with only one zero in each row and column, the ‘exclusion principle’ is obeyed
automatically and the constraint (H2) becomes superfluous] then implies that

Pij →
{

1/�m if Ẽij = 0,
0 otherwise.

(H6)

Thus, in the βT → ∞ limit, the system is certain to found in the state given by the optimal
assignment σ for the LSA problem. Equation (H6) straightforwardly satisfies (H2) – the
sum picking out the single value of j for which Pij �= 0 for any given i – which justifies
formally our setting ψ̃i = 0. Substituting (H6) into (H3) yields

E = �m
∑

i

Eiσ(i) = Emin. (H7)

H.2. Discrete problem: degenerate case

In principle, Ẽij may have more than one zero in each row and column: these may either be
part of other optimal assignments or not be part of any optimal assignment. In such cases,
(H6) becomes

Pij → 1
�m

aijFi∑
k

akjFk

as βT → ∞, (H8)

where aij = 1 if Ẽij = 0 and aij = 0 otherwise, and Fi = eβT ψ̃i is the quantity sometimes
known as ‘fugacity’ [in writing (H8), we assumed that ψ̃i < 0; we were free to do so
because taking ψ̃i → ψ̃i + C for all i with C a constant leaves (H5) unchanged]. The values
of Fi are determined by (H2), which requires that

∑
j

aijFi∑
k

akjFk

= 1, ∀ i, (H9)

an equation that may be solved iteratively for Fi, and hence Pij. The possible outcomes
of such a procedure are constrained by the Birkhoff–von Neumann theorem, which states
that any doubly stochastic matrix – one whose rows and columns all sum to unity – can be
expressed as a sum of permutation matrices with positive weights that also sum to unity.
From (H1) and (H2), Pij is a doubly stochastic matrix, so that

Pij = 1
�m

∑
k

θkS
(k)
ij , θk > 0,

∑
k

θk = 1, (H10)

where S(k)ij are permutation matrices. In the βT → ∞ limit, Pij ∝ aij (H8), so {S(k)ij } is the
maximal set of permutations that vanish wherever Ẽij > 0, which we recognise as the
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optimal assignments of the LSA problem: with σ (k) the kth optimal assignment, S(k)ij is
the matrix representation of σ (k), i.e. S(k)ij = δjσ (k)(i). It follows that Pij = 0 for any ij that is
not part of an optimal assignment, even if Ẽij = 0, and that

Epot = �m
∑

ijk

EijθkS
(k)
ij = �m

∑
k

θk

∑
i

Eiσ (k)(i) = Emin. (H11)

H.3. Continuous problem
We have so far determined that the discretised probability-density function Pij reproduces
the solution of the LSA problem (or some weighted combination of its solutions if they
are not unique) as βT → ∞ at fixed �m. This is not, however, the large-βT limit of the
continuous system (5.4), (5.5) and (5.7): discretising the integrals is valid only if �m is
small compared with the scale of variation of the continuous probability density P(m, μ),
which shrinks to zero as βT → ∞. Nonetheless, the βT → ∞ limit of the continuous
Lynden-Bell equations is equal to the �m → 0 limit of the coarse-grained solution of the
LSA problem, provided it is unique, as follows.

Let Ẽ(m, μ) be the continuous limit of Ẽij obtained by taking �m → 0. As βT → ∞, it
is clear that

P(m, μ) ∝ e−βT Ẽ(m,μ), (H12)

becomes increasingly localised to the curve in (m, μ) space on which Ẽ(m, μ) = 0. The
same is true for the coarse-grained discrete solution Pij of the LSA problem, which we
define by

〈P〉 ≡ 1
2n

∫ m+n�m

m−n�m
dm′

∫ μ+n�m

μ−n�m
dμ′∑

ij

Pijδ(μ− mi)δ(m − mj), (H13)

with n a constant satisfying 1 � n � N. As βT → ∞, both P(m, μ) and P tend to a
delta distribution centred on the optimal-solution curve. The most general form such a
distribution can take is

A(m, μ)δ(F(m, μ)), (H14)

where F vanishes along the optimal-solution curve and, without loss of generality, can
be taken to have |∇F| = 1 there (F contributes no further degrees of freedom in the
expression (H14)). However, as we show in Appendix I, the function A(m, μ) is uniquely
determined by the conditions (H1) and (H2), which must be satisfied by both 〈P〉 and P. It
follows that their large-βT limits are the same. A practical consequence of this is that one
may determine the horizontal composition of 2D minimum-energy ground states from the
βT → ∞ limit of P(m, μ) (as in figure 7).

Appendix I. Uniqueness of doubly stochastic delta distributions

In this appendix, we show that the delta distribution

P(x, y) = A(x, y)δ(F(x, y)), (I1)

where A > 0, and F(x, y) = 0 on a piecewise-once-differentiable curve C, is unique under
the conditions that

(i) C intersects every horizontal and vertical line in the unit square at least once;
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(ii) C does not admit any cycles formed by traversing horizontal and vertical lines (in
the context of (H13), this corresponds to uniqueness of the optimal assignment);

(iii) P(x, y) satisfies the integral constraints
∫ 1

0
dxP(x, y) = 1, (I2)

and ∫ 1

0
dyP(x, y) = 1. (I3)

Without loss of generality, we can take |∇F| = 1; any other choice amounts to a
redefinition of A. Then, (I2) and (I3) become

∑
i

A(xi( y), x)
|tx(xi( y), y)| = 1,

∑
i

A(x, yi(x))
|ty(x, yi(x))| = 1, (I4)

respectively, where yi(x) is the y-coordinate of the ith intersection of C with the vertical
line through (x,0), xi( y) is the x-coordinate of the ith intersection of C with the horizontal
line through (0, y), and

(tx, ty) =
(
∂F
∂y
,−∂F

∂x

)
, (I5)

is the unit tangent vector to C.
For each point on C, (I4) each provide an equation relating A at that point to the value

of A at each other point on C with the same x or y coordinate. In turn, (I4) provide one
additional equation for each such point of intersection, relating A evaluated there to A
evaluated at other points on C with the same x or y-coordinate, and so on for the points
with which those points share an x or y coordinate. There are three possible outcomes for
this proliferation of coupled equations: (a) a stage of the process is reached when all new
equations only involve a single point on C, and so the proliferation is arrested when n + 1
independent (prior to the specification of the tangent vectors) linear equations couple the
values of A at n different points; (b) proliferation of equations ceases, but the n points on
C form one or more cycles of the sort envisioned in (ii) and are therefore coupled by fewer
than n + 1 equations; (c) proliferation of equations never ceases – in this case, infinitely
many points are coupled, some of them arbitrarily close to each other (infinite cycle). By
condition (ii), we restrict attention to case (a). Then, the first n of the n + 1 independent
linear equations can be solved for the values of A at each of the n points, so the function
A(x, y) is indeed unique given conditions (i)–(iii), as claimed. The final equation gives a
constraint on the tangent vectors, which must be satisfied in order for a delta distribution
(I1) satisfying conditions (i)–(iii) to exist.

For clarity, we illustrate the procedure described above for the example curve C shown
in figure 37.

I.1. Case where vertical and horizontal lines intersect C once only – red point in
figure 37

In this case, (I4) become

A
|ty| = 1,

A
|tx| = 1 =⇒ A = |tx| = |ty| = 1√

2
, (I6)
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FIGURE 37. Visualisation of the construction of the delta distribution (I1) for the curve C by
solving (I4). Coloured dashed lines indicate the relevant vertical and horizontal lines used in
the evaluation of (I4). For ease of comparison between different parts of C, the grey lines mark
certain points at which C has discontinuities.

from which it follows that
dy
dx

= ±1 (I7)

must be satisfied at the point in question. As claimed, we find the unique value of A and a
condition on the tangent vector.

I.2. Case where one vertical line intersects C twice – yellow points in figure 37
With subscripts indicating evaluation at points according to the labelling scheme in
figure 37, (I4) yield

A1

|ty1| = 1,
A2

|ty2| = 1,
A1

|tx1| + A2

|tx2| = 1, (I8a–c)

from which it follows that

A1 = |ty2|, A2 = |ty2|,
∣∣∣∣dy
dx

∣∣∣∣
1
+
∣∣∣∣dy
dx

∣∣∣∣
2
= 1. (I9a–c)

As claimed, we find the unique values of A1 and A2 and a condition on the tangent vector
at the relevant points.

I.3. Case where one horizontal line intersects C twice – pink points in figure 37
In this case, (I4) yield

A1

|tx1| = 1,
A2

|tx2| = 1,
A1

|ty1| + A2

|ty2| = 1, (I10a–c)

from which it follows that

A1 = |tx2|, A2 = |tx2|,
∣∣∣∣dy
dx

∣∣∣∣
−1

1
+
∣∣∣∣dy
dx

∣∣∣∣
−1

2
= 1. (I11a–c)
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Again, we find the unique values of A1 and A2 and a condition on the tangent vector at the
relevant points.

I.4. Case where both one vertical and one horizontal line intersects C – blue points in
figure 37

In this case, three points are coupled by (I4), which yield

A2

|tx2| = 1,
A3

|ty3| = 1,
A1

|tx1| + A3

|tx3| = 1,
A1

|ty1| + A2

|ty2| = 1, (I12a–d)

from which it follows that the values of Ai are

A1 =
(

1 − |tx2|
|ty2|

)
|ty1|, A2 = |tx2|, A3 = |ty3|, (I13a–c)

and the condition on C is

∣∣∣∣dy
dx

∣∣∣∣
3
=
∣∣∣∣dy
dx

∣∣∣∣
1

[∣∣∣∣dy
dx

∣∣∣∣
−1

1
+
∣∣∣∣dy
dx

∣∣∣∣
−1

2
− 1

]
. (I14)

I.5. Case in which C has a simple cycle – green points in figure 37
To illustrate how uniqueness fails if condition (ii) is not satisfied, we consider as a final
example the case where four points form a cycle along horizontal and vertical lines.
Equations (I4) yield

A1

|ty1| + A2

|ty2| = 1,
A1

|tx1| + A3

|tx3| = 1,
A3

|ty3| + A4

|ty4| = 1,
A2

|tx2| + A4

|tx4| = 1. (I15a–d)

These equations can be reduced to the matrix equation

⎛
⎜⎜⎜⎝

1
|ty1| − |tx2|

|ty2||tx4|

− |tx3|
|ty3||tx1|

1
|ty4|

⎞
⎟⎟⎟⎠
(

A1

A4

)
=

⎛
⎜⎜⎜⎝

1 − |tx2|
|ty2|

1 − |tx3|
|ty3|

⎞
⎟⎟⎟⎠ , (I16)

which has unique solutions for A1 and A4 unless the determinant of the matrix is zero,
which requires ∣∣∣∣dy

dx

∣∣∣∣
1

∣∣∣∣dy
dx

∣∣∣∣
4
=
∣∣∣∣dy
dx

∣∣∣∣
2

∣∣∣∣dy
dx

∣∣∣∣
3
. (I17)

In this case, the Ai are not determined uniquely. It is straightforwardly verified that (I17)
is precisely the condition for the four points separated by an infinitesimal distance along C
from the green ones to also be on a cycle of horizontal and vertical lines. Thus, it appears
that condition (ii) is actually too strong a condition to guarantee uniqueness of (I1): cycles
are permissible if they only exist in a set of measure zero in x and y. It follows that cases
where the optimal solution to the assignment problem is non-unique on a set of measure
zero only do not violate the conclusion of § H.3.
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