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Abstract. We examine multiple ergodic averages of commuting transformations with
polynomial iterates in which the polynomials may be pairwise dependent. In particular, we
show that such averages are controlled by the Gowers–Host–Kra seminorms whenever the
system satisfies some mild ergodicity assumptions. Combining this result with the general
criteria for joint ergodicity established in our earlier work, we determine a necessary and
sufficient condition under which such averages are jointly ergodic, in the sense that they
converge in the mean to the product of integrals, or weakly jointly ergodic, in that they
converge to the product of conditional expectations. As a corollary, we deduce a special
case of a conjecture by Donoso, Koutsogiannis, and Sun in a stronger form.
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1. Introduction
1.1. Main results. An important question in ergodic theory is to examine the limiting
behavior of multiple ergodic averages of the form

1
N

N∑
n=1

T
p1(n)

1 f1 · · · T
p�(n)
� f�. (1)

Here and throughout the paper, we consider a system (X, X , μ, T1, . . . , T�) that is invert-
ible commuting measure-preserving transformations T1, . . . , T� acting on a Lebesgue
probability space (X, X , μ), polynomials p1, . . . , p� ∈ Z[n] that need not be distinct
but are always assumed to have zero constant terms, and functions f1, . . . , f� ∈ L∞(μ).
The motivation for studying the limiting behavior of (1) comes from the proof of the
multidimensional polynomial Szemerédi theorem [3], in which the averages from equation
(1) are the central object of investigation.

It has been proved by Walsh [19] that the averages from equation (1) converge in L2(μ);
however, little is known about the nature of the limit except in several special cases. In this
paper, we examine the following question.

Question 1. When are the polynomials p1, . . . , p� ∈ Z[n]
(i) jointly ergodic for the system (X, X , μ, T1, . . . , T�), in the sense that

lim
N→∞

∥∥∥∥ 1
N

N∑
n=1

T
p1(n)

1 f1 · · · T
p�(n)

� f� −
∫

f1 dμ · · ·
∫

f� dμ

∥∥∥∥
L2(μ)

= 0 (2)

for all f1, . . . , f� ∈ L∞(μ)?
(ii) weakly jointly ergodic for the system, in the sense that

lim
N→∞

∥∥∥∥ 1
N

N∑
n=1

T
p1(n)

1 f1 · · · T
p�(n)
� f� − E(f1|I(T1)) · · · E(f�|I(T�))

∥∥∥∥
L2(μ)

= 0

(3)

for all f1, . . . , f� ∈ L∞(μ)?
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The first step in deriving the identities of equations (2) and (3) is usually to establish
control over the L2(μ) limit of equation (1) by one of the Gowers–Host–Kra seminorms
constructed in [13], leading to the following question.

Question 2. When are the polynomials p1, . . . , p� ∈ Z[n] good for seminorm control for
the system (X, X , μ, T1, . . . , T�), in the sense that there exists s ∈ N such that

lim
N→∞

∥∥∥∥ 1
N

N∑
n=1

T
p1(n)

1 f1 · · · T
p�(n)

� f�

∥∥∥∥
L2(μ)

= 0 (4)

holds for all functions f1, . . . , f� ∈ L∞(μ) whenever |||fj |||s,Tj
= 0 for some j ∈

{1, . . . , �}?
Question 1(i) was originally posed by Bergelson and was motivated by a result of

Berend and Bergelson [1] that covered the case of linear polynomials. It was investigated
thoroughly by Donoso, Koutsogiannis, and Sun [7], as well as in a subsequent work of
the three authors and Ferré-Moragues [6], in which they identified a set of sufficient (but
not necessary) conditions under which Questions 1(i) and 2 can be answered affirmatively
for general polynomials. Their conditions turned out to also be necessary when all the
polynomials are equal.

In [11], we have addressed Questions 1 and 2 under the assumption that the polynomials
p1, . . . , p� are pairwise independent, without any extra assumption on the system.
Specifically, we have showed that for every family of pairwise independent polynomials
p1, . . . , p� ∈ Z[n], there exists s ∈ N such that the identity in equation (4) holds for all
systems and all L∞(μ) functions under the stated seminorm assumptions. We then gave a
necessary and sufficient spectral condition under which the identities in equations (2) and
(3) hold.

In this paper, we drop the assumption of pairwise independence. We are thus interested
in answering Questions 1 and 2 for averages from equation (1) in which some of the
polynomial sequences p1, . . . , p� may be pairwise dependent or even identical. An
example of this is the average

1
N

N∑
n=1

T n2

1 f1 · T n2

2 f2 · T n2+n
3 f3. (5)

The pairwise dependence of the polynomials n2, n2, n2 + n means that, contrary to the
results in [11], we cannot establish the seminorm control described in Question 2 for
all systems. Rather, we need to identify a special property of the system that makes the
seminorm control possible. The needed property turns out to be the following.

Definition. (Good and very good ergodicity property) Let � ∈ N and p1, . . . , p� ∈ Z[n].
We say that the system (X, X , μ, T1, . . . , T�) has the good ergodicity property for
the polynomials p1, . . . , p� (sometimes we also say that the polynomials p1, . . . , p�

have the good ergodicity property for the system (X, X , μ, T1, . . . , T�), or the tuple
(T

pj (n)

j )j=1,...,� has the good ergodicity property), if whenever pi/ci = pj/cj for some

i �= j and non-zero ci , cj ∈ Z with gcd(ci , cj ) = 1, then I(T
ci

i T
−cj

j ) = I(Ti) ∩ I(Tj )
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(we assume throughout that all the equalities and inclusions of σ -algebras hold up to null
sets with respect to a given measure on the system), that is, a function cannot be invariant
under T

ci

i T
−cj

j except in the trivial case when it is simultaneously invariant under Ti

and Tj . If T
ci

i T
−cj

j is ergodic for all the aforementioned indices i, j and values ci , cj ,
then we say that the system has the very good ergodicity property for the polynomials
p1, . . . , p�.

Remark. As we work under the standing assumption that the polynomials have zero
constant terms, the equality pi/ci = pj/cj holds for some non-zero ci , cj ∈ Z precisely
when the polynomials pi , pj are linearly dependent.

For instance, the system (X, X , μ, T1, T2, T3) has the good ergodicity property for the
families n2, n2, n2 + n or 2n2, 2n2, n2 + n if and only if the only functions invariant under
T1T

−1
2 are those invariant under T1 and T2, and it has the very good ergodicity property if

T1T
−1
2 is ergodic, that is, only constant functions are invariant under T1T

−1
2 .

We first address Question 2 for systems with the good ergodicity property.

THEOREM 1.1. (Seminorm control) Let D, � ∈ N and p1, . . . , p� ∈ Z[n] be polynomials
of degrees at most D with the good ergodicity property for (X, X , μ, T1, . . . , T�). Then
there exists s ∈ N, depending only on D, �, such that for all f1, . . . , f� ∈ L∞(μ), we
have

lim
N→∞

∥∥∥∥ 1
N

N∑
n=1

T
p1(n)

1 f1 · · · T
p�(n)
� f�

∥∥∥∥
L2(μ)

= 0

whenever |||fj |||s,Tj
= 0 for some j ∈ {1, . . . , �}.

Subsequently, we use Theorem 1.1 and results from [11] to address Question 1. All the
concepts appearing in the results below will be defined precisely in §2.

THEOREM 1.2. (Weak joint ergodicity) The polynomials p1, . . . , p� ∈ Z[n] are weakly
jointly ergodic for the system (X, X , μ, T1, . . . , T�) if and only if the following two
conditions hold:
(i) the system has the good ergodicity property for the polynomials;

(ii) for all non-ergodic eigenfunctions χj ∈ E(Tj ), j ∈ {1, . . . , �}, we have

lim
N→∞

∥∥∥∥ 1
N

N∑
n=1

T
p1(n)

1 χ1 · · · T
p�(n)
� χ� − E(χ1|I(T1)) · · · E(χ�|I(T�))

∥∥∥∥
L2(μ)

= 0.

(6)

Remark. Using terminology from [9, 11], condition (ii) equivalently states that the
polynomials p1, . . . , p� are good for equidistribution for the system (X, μ, T1, . . . , T�).

If additionally the transformations T1, . . . , T� are ergodic, we get the following result.
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COROLLARY 1.3. (Joint ergodicity) The polynomials p1, . . . , p� ∈ Z[n] are jointly
ergodic for the system (X, X , μ, T1, . . . , T�) if and only if the following two conditions
hold:
(i) all the transformations T1, . . . , T� are ergodic and the system has the very good

ergodicity property for the polynomials;
(ii) for eigenvalues αj ∈ Spec(Tj ), j ∈ {1, . . . , �}, we have

lim
N→∞

1
N

N∑
n=1

e(α1p1(n) + · · · + α�p�(n)) = 0 (7)

unless α1 = · · · = α� = 0.

Theorem 1.1 and Corollary 1.3 extend Theorems 2.8 and 2.14 in [11] that cover the case
of pairwise independent polynomials.

Theorem 1.2 and Corollary 1.3 can be put in the context of the following conjecture
by Donoso, Koutsogiannis, and Sun (the version presented below is a special case of
[7, Conjecture 1.5]) that was motivated by previous results of Berend and Bergelson [1]. In
the statement that follows, we say that a sequence of commuting transformations (Tn)n∈N
on a probability space (X, X , μ) is ergodic for μ if

lim
N→∞

∥∥∥∥ 1
N

N∑
n=1

Tnf −
∫

f dμ

∥∥∥∥
L2(μ)

= 0

for every f ∈ L∞(μ).

Conjecture 1. The polynomials p1, . . . , p� ∈ Z[n] are jointly ergodic for the system
(X, X , μ, T1, . . . , T�) if only if the following two conditions are satisfied:

(i) for all distinct i, j ∈ {1, . . . , �}, the sequence (T
pi(n)
i T

−pj (n)

j )n∈N is ergodic for μ;

(ii) the sequence (T
p1(n)

1 × · · · × T
p�(n)
� )n∈N is ergodic for μ × · · · × μ.

Conjecture 1 thus lists conditions that have to be checked to verify the joint ergodicity
of a family of polynomials for a system.

COROLLARY 1.4. Conjecture 1 holds.

In fact, our Theorem 1.2 is stronger than Corollary 1.4 in a number of ways. First,
Theorem 1.2 gives a criterion for weak joint ergodicity, not just for joint ergodicity,
meaning that the transformations T1, . . . , T� need not be ergodic for us to be able
to say anything meaningful. Second, our good ergodicity property lists strictly fewer
conditions to check to verify joint ergodicity than the condition (i) in Conjecture 1. For
instance, for the average from equation (5), the condition (i) in Conjecture 1 requires us
to check the ergodicity of the three sequences ((T1T

−1
2 )n

2
)n∈N, (T n2

1 T
−(n2+n)
3 )n∈N, and

(T n2

2 T
−(n2+n)
3 )n∈N. By contrast, the good ergodicity property of equation (5) holds if

and only if I(T1T
−1
2 ) = I(T1) ∩ I(T2), which is in any way a necessary condition for

((T1T
−1

2 )n
2
)n∈N to be ergodic.
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Finally, we remark that the original version of Conjecture 1 from [7] is stated for more
general tuples

(T
p11(n)

1 · · · T
p1�(n)

� , . . . , T
p�1(n)

1 · · · T
p��(n)

� ), (8)

a simple example of which would be the tuple

(T n2

1 T n2+n
2 , T n2

3 T n2+n
4 ).

It is possible that an extension of our method would establish an analog of Theorem 1.1
for such averages. However, in addition to the fact that new problems arise, the technical
complexity of some of our arguments in this paper is already formidable, and it would
likely grow significantly if we wanted to tackle the more complicated averages from
equation (8). We have therefore refrained from seeking an extension of Theorem 1.1 to
averages of tuples as in equation (8), sticking instead to the simpler and arguably more
natural averages from equation (1).

1.2. Extensions to other averaging schemes. Our arguments can be modified to cover
multivariate polynomials and averages over arbitrary Følner sequences. (A sequence
(IN)N∈N of finite subsets of Z

D is called Følner, if limN→∞ |(IN + h)�IN |/|IN | = 0
for every h ∈ Z

D .) While these modifications do not require any new ideas, they force us
to introduce even more complicated notation and deal with straightforward but tedious
technicalities. For this reason, we omit their proofs. We start with a generalization of
Theorem 1.1.

THEOREM 1.5. Let D, K , � ∈ N be integers, (IN)N∈N be a Følner sequence on Z
K , and

p1, . . . , p� ∈ Z[n] be polynomials of degree at most D. Suppose that p1, . . . , p� have
the good ergodicity property for a system (X, X , μ, T1, . . . , T�). Then there exists s ∈ N,
depending only on D, K , �, such that for all 1-bounded functions f1, . . . , f� ∈ L∞(μ),
we have

lim
N→∞

∥∥∥∥ 1
|IN |

∑
n∈IN

T
p1(n)

1 f1 · · · T
p�(n)

� f�

∥∥∥∥
L2(μ)

= 0

whenever |||fj |||s,Tj
= 0 for some j ∈ {1, . . . , �}.

Theorem 1.5 and [11, Theorem 2.7] give the following generalization of Theorem 1.2.

THEOREM 1.6. Let K , � ∈ N be integers and (IN)N∈N be a Følner sequence on
Z

K . The polynomials p1, . . . , p� ∈ Z[n] are weakly jointly ergodic for the system
(X, X , μ, T1, . . . , T�) along (IN)N∈N, in the sense that

lim
N→∞

∥∥∥∥ 1
|IN |

∑
n∈IN

T
p1(n)

1 f1 · · · T
p�(n)

� f� − E(f1|I(T1)) · · · E(f�|I(T�))

∥∥∥∥
L2(μ)

= 0

for all f1, . . . , f� ∈ L∞(μ), if and only if the following two conditions hold:
(i) the system has the good ergodicity property for the polynomials;
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(ii) for all non-ergodic eigenfunctions χj ∈ E(Tj ), j ∈ {1, . . . , �}, we have

lim
N→∞

∥∥∥∥ 1
|IN |

∑
n∈IN

T
p1(n)

1 χ1 · · · T
p�(n)

� χ� − E(χ1|I(T1)) · · · E(χ�|I(T�))

∥∥∥∥
L2(μ)

=0.

1.3. Outline of the article. We begin by recalling in §2 basic notions and results from
ergodic theory, especially those related to the families of Gowers–Host–Kra and box
seminorms, dual functions, as well as non-ergodic eigenfunctions. Next, we state in §3
preliminary technical lemmas that are used to prove our main results, most of which are
variations of results from [6, 9, 11]. Having stated all preliminary definitions and lemmas,
we discuss at length in §4 two baby cases of Theorem 1.1 that illustrate some of our
techniques and point out the necessity of the good ergodicity property. We then proceed
in §5 to discuss the formalism and the general strategy for handling longer families. In
§6, we give more details of various maneuvers outlined in §5. These moves take the form
of several highly technical propositions that play a crucial part in the inductive proof of
Theorem 1.1. By presenting relevant examples, we also show various obstructions that
need to be overcome to prove Theorem 1.1 in full generality. Section 7 is entirely devoted
to the proof of Theorem 1.1: it contains an intricate induction scheme used for the proof
and proofs of various intermediate results that together amount to Theorem 1.1. Lastly, in
§8, we derive Theorem 1.2 and Corollaries 1.3 and 1.4.

Some of the techniques used in this paper were inspired by our earlier work in
[11] where we dealt with pairwise independent polynomials p1, . . . , p�. The lack of
pairwise independence introduces serious additional complications. Consequently, we are
forced to keep track of more information about the averages from equation (1) than
in [11], particularly concerning the properties of the functions present therein and the
coefficients of the polynomial iterates. The methods developed in this paper therefore
differ in a number of places from the techniques employed in [11], and the argument
from [11] is most emphatically not a special case of the argument presented in the current
paper.

The need to have a better grip on the averages necessitates more extensive formalism
than that in [11], making our argument rather hard to digest on a first reading. To
compensate for this, we have included numerous examples that illustrate the main new
obstacles and ideas in the proofs. The reader is invited to first go over these examples
before delving into the details of the proofs.

2. Ergodic background and definitions
In this section, we present various notions from ergodic theory together with some basic
results.

2.1. Basic notation. We start with explaining basic notation used throughout the paper.
The letters C, R, Z, N, andN0 stand for the set of complex numbers, real numbers, inte-

gers, positive integers, and non-negative integers. With T, we denote the one-dimensional
torus, and we often identify it with R/Z or with [0, 1). We let [N] := {1, . . . , N} for any
N ∈ N. With Z[n], we denote the collection of polynomials with integer coefficients.
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For an element t ∈ R, we let e(t) := e2πit .
If a : Ns → C is a bounded sequence for some s ∈ N and A is a non-empty finite subset

of Ns , we let

E
n∈A

a(n) := 1
|A|

∑
n∈A

a(n).

We commonly use the letter � to denote the number of transformations in our system
or the number of functions in an average while the letter s usually stands for the degree
of ergodic seminorms. We normally write tuples of length � in bold, e.g. b ∈ Z

�, and we
underline tuples of length s (or s + 1, or s − 1) that are typically used for averaging, e.g.
h ∈ Z

s . For a vector b = (b1, . . . , b�) ∈ Z
� and a system (X, X , μ, T1, . . . , T�), we let

T b := T
b1
1 · · · T

b�

� ,

and we denote the σ -algebra of T b invariant functions by I(T b). For j ∈ [�], we set ej to
be the unit vector in Z

� in the jth direction, and we let e0 = 0, so that T ej = Tj for j ∈ [�]
and T e0 is the identity transformation.

We often write ε ∈ {0, 1}s for a vector of 0s and 1s of length s. For ε ∈ {0, 1}s and
h, h′ ∈ Z

s , we set:
• ε · h := ε1h1 + · · · + εshs ;
• |h| := |h1| + · · · + |hs |;
• hε := (h

ε1
1 , . . . , h

εs
s ), where h0

j := hj and h1
j := h′

j for j = 1, . . . , s.
We let Cz := z be the complex conjugate of z ∈ C.
For a tuple η ∈ N

�
0 and I ⊂ [�], we define the restriction η|I := (ηi)i∈I .

2.2. Ergodic seminorms. We review some basic facts about two families of ergodic
seminorms: the Gowers–Host–Kra seminorms and the box seminorms.

2.2.1. Gowers–Host–Kra seminorms. Given a system (X, X , μ, T ), we will use the
family of ergodic seminorms ||| · |||s,T , also known as Gowers–Host–Kra seminorms, which
were originally introduced in [13] for ergodic systems. A detailed exposition of their
basic properties can be found in [14, Ch. 8]. These seminorms are inductively defined for
f ∈ L∞(μ) as follows (for convenience, we also define ||| · |||0, which is not a seminorm):

|||f |||0,T :=
∫

f dμ,

and for s ∈ N0, we let

|||f |||2s+1

s+1,T := lim
H→∞ E

h∈[H ]
|||	T ;hf |||2s

s,T ,

where

	T ;hf := f · T hf , h ∈ Z,

is the multiplicative derivative of f with respect to T. The limit can be shown to exist by
successive applications of the mean ergodic theorem, and for f ∈ L∞(μ) and s ∈ N0,
we have |||f |||s,T ≤ |||f |||s+1,T (see [13] or [14, Ch. 8]). It follows immediately from the
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definition that

|||f |||1,T = ‖E(f |I(T ))‖L2(μ),

where I(T ) := {f ∈ L2(μ) : Tf = f }. We also have

|||f |||2s

s,T = lim
H1→∞ · · · lim

Hs→∞ E
h1∈[H1]

· · · E
hs∈[Hs ]

∫
	s,T ;hf dμ, (9)

where for h = (h1, . . . , hs) ∈ Z
s , we let

	s,T ;hf := 	T ;h1 · · · 	T ;hs f =
∏

ε∈{0,1}s
C|ε|T ε·hf

be the multiplicative derivative of f of degree s with respect to T.
It can be shown that we can take any s′ ≤ s of the iterative limits to be simultaneous

limits (that is average over [H ]s
′

and let H → ∞) without changing the value of the limit
in equation (9). This was originally proved in [13] using the main structural result of [13]; a
more ‘elementary’ proof can be deduced from [4, Lemma 1.12] once the convergence of the
uniform Cesàro averages is known (and yet another proof can be found in [12, Lemma 1]).
For s′ := s, this gives the identity

|||f |||2s

s,T = lim
H→∞ E

h∈[H ]s

∫
	s,T ;hf dμ. (10)

Moreover, for 1 ≤ s′ ≤ s, we have

|||f |||2s

s,T = lim
H→∞ E

h∈[H ]s−s′
|||	s−s′,T ;hf |||2s′

s′ . (11)

It has been established in [13] for ergodic systems and in [14, Ch. 8, Theorem 14]
for general systems that the seminorms are intimately connected with a certain family
of factors of the system. Specifically, for every s ∈ N, there exists a factor Zs(T ) ⊆ X ,
known as the Host–Kra factor of degree s, with the property that

|||f |||s,T = 0 if and only if f is orthogonal to Zs−1(T ).

Equivalently, ||| · |||s,T defines a norm on the space L2(Zs−1(T )) (for a proof, see
[14, Theorem 15, Ch. 9]).

2.2.2. Box seminorms. More generally, we use analogs of equation (10) defined with
regards to several commuting transformations. These seminorms originally appeared in
the work of Host [12]; their finitary versions are often called box seminorms, and we
sometimes employ this terminology. Let (X, X , μ, T1, . . . , T�) be a system. For each
f ∈ L∞(μ), h ∈ Z, and b ∈ Z

�, we define

	b;hf := f · T bhf

and for h ∈ Z
s and b1, . . . , bs ∈ Z

�, we let

	b1,...,bs ;hf := 	b1;h1 · · · 	bs ;hs
f =

∏
ε∈{0,1}s

C|ε|T b1ε1h1+···+bs εshs f .
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We let

|||f |||∅ :=
∫

f dμ

and

|||f |||2s+1

b1,...,bs+1
:= lim

H→∞ E
h∈[H ]

|||	bs+1;hf |||2s

b1,...,bs
. (12)

In particular, if b1 = · · · = bs := b, then 	b1,...,bs ;h = 	s,T b;h and ||| · |||b1,...,bs
=

||| · |||s,T b . We remark that these seminorms were defined in a slightly different way in
[12] and the above identities were established in [12, §2.3].

Iterating equation (12), we get the identity

|||f |||2s+1

b1,...,bs
= lim

H1→∞ · · · lim
Hs→∞ E

h1∈[H1]
· · · E

hs∈[Hs ]

∫
	b1;h1 · · · 	bs ;hs

f dμ, (13)

which extends equation (9). In a complete analogy with the remarks made for the
Gowers–Host–Kra seminorms, we have the following: using [12, Lemma 1] (which
implies the convergence of the uniform Cesàro averages over h ∈ Z

s of
∫

	b1,...,bs ;hf dμ)
and [4, Lemma 1.12], we get that we can take any s′ ≤ s of the iterative limits to be
simultaneous limits (that is, average over [H ]s

′
and let H → ∞) without changing the

value of the limit in equation (13). Taking s′ = s gives the identity

|||f |||2s

b1,...,bs
= lim

H→∞ E
h∈[H ]s

∫
	b1,...,bs ;hf dμ. (14)

More generally, for any 1 ≤ s′ ≤ s and f ∈ L∞(μ), we get the identity

|||f |||2s

b1,...,bs
= lim

H→∞ E
h∈[H ]s−s′

|||	bs′+1,...,bs ;hf |||2s′
b1,...,bs′ , (15)

which generalizes equation (11).
As a consequence of the identity in equation (14), we observe that for any permutation

σ : [s] → [s], we have

|||f |||b1,...,bs
= |||f |||bσ(1),...,bσ(s)

,

that is, the order of taking the vectors b1, . . . , bs does not matter.
As an example of a box seminorm that is not a Gowers–Host–Kra seminorm, consider

s = 2 and the vectors e1 = (1, 0), e2 = (0, 1), in which case

|||f |||4e1,e2
= lim

H→∞ E
h1,h2∈[H ]2

∫
f · T

h1
1 f · T

h2
2 f · T

h1
1 T

h2
2 f dμ.

More generally, for s = 2 and a = (a1, a2), b = (b1, b2), we have

|||f |||4a,b

= lim
H→∞ E

h1,h2∈[H ]2

∫
f · T

a1h1
1 T

a2h1
2 f · T

b1h2
1 T

b2h2
2 f · T

a1h1+b1h2
1 T

a2h1+b2h2
2 f dμ.

If the vector a repeats s times, we abbreviate it as a×s , e.g.

|||f |||a×2,b×3,c = |||f |||a,a,b,b,b,c.
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Box seminorms satisfy the following Gowers–Cauchy–Schwarz inequality [12,
Proposition 2]:

lim sup
H→∞

∣∣∣∣ E
h∈[H ]s

∫ ∏
ε∈{0,1}s

C|ε|T b1ε1h1+···+bs εshs fε dμ

∣∣∣∣ ≤
∏

ε∈{0,1}s
|||fε |||b1,...,bs

. (16)

(One can replace the limsup with a limit since it is known to exist.)
We frequently bound one seminorm in terms of another. An inductive application

of equation (12), or alternatively a simple application of the Gowers–Cauchy–Schwarz
inequality in equation (16), yields the following monotonicity property:

|||f |||b1,...,bs
≤ |||f |||b1,...,bs ,bs+1 , (17)

a special case of which is the aforementioned bound |||f |||s,T ≤ |||f |||s+1,T for any
f ∈ L∞(μ) and system (X, X , μ, T ).

In many of our arguments, we have to deal simultaneously both with a collection
of transformations and their powers. The relevant box seminorms are compared in the
following lemma.

LEMMA 2.1. [11, Lemma 3.1] Let �, s ∈ N, (X, X , μ, T1, . . . , T�) be a system,
f ∈ L∞(μ) be a function, b1, . . . , bs ∈ Z

� be vectors, and r1, . . . , rs ∈ Z be non-zero.
Then

|||f |||b1,...,bs
≤ |||f |||r1b1,...,rsbs

,

and if s ≥ 2, we additionally get the bound

|||f |||r1b1,...,rsbs
≤ (r1 · · · rs)

1/2s |||f |||b1,...,bs
.

The following lemma allows us to compare box seminorms depending on the invariant
σ -algebras of the transformations involved.

LEMMA 2.2. Let �, s ∈ N, (X, X , μ, T1, . . . , T�) be a system of commuting transforma-
tions, and b1, . . . , bs , c1, . . . , cs ∈ Z

� be vectors with the property that I(T bi ) ⊆ I(T ci )

for each i ∈ [s]. Then |||f |||b1,...,bs
≤ |||f |||c1,...,cs for each f ∈ L∞(μ).

Proof. We prove this by induction on s. For s = 1, we simply have

|||f |||b1 = ‖E(f |I(T b1))‖L2(μ) ≤ ‖E(f |I(T c1))‖L2(μ) = |||f |||c1 ,

where we use the fact that ‖E(f |A)‖L2(μ) ≤ ‖E(f |B)‖L2(μ) whenever A ⊆ B. For s > 1,
we use the induction formula for seminorms and the result for s = 1 to deduce that

|||f |||2s

b1,...,bs
= lim

H→∞ E
h∈[H ]s−1

|||	b1,...,bs−1;hf |||2s−1

bs

≤ lim
H→∞ E

h∈[H ]s−1
|||	b1,...,bs−1;hf |||2s−1

cs
= |||f |||2s

b1,...,bs−1,cs
.

The claim follows by iterating this procedure s − 1 more times.
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2.3. Dual functions and sequences. Let s ∈ N and {0, 1}s∗ = {0, 1}s \ {0}. For a system
(X, X , μ, T ) and f ∈ L∞(μ), we define

Ds,T (f ) := lim
M→∞ E

m∈[M]s

∏
ε∈{0,1}s∗

C|ε|T ε·mf

(the limit exists in L2(μ) by [13]). We call Ds,T (f ) the dual function of f of level s with
respect to T. The name comes because of the identity

|||f |||2s

s,T =
∫

f · Ds,T (f ) dμ, (18)

a consequence of which is that the span of dual functions of degree s is dense in
L1(Zs−1(T )).

Let (X, X , μ, T1, . . . , T�) be a system. Using the identities in equations (15) and (18),
we get

|||f |||2s+s′

b1,...,bs ,b×s′
s+1

= lim
H→∞ E

h∈[H ]s

∫
	b1,...,bs ;hf · D

s′,T bs+1 (	b1,...,bs ;hf ) dμ,

the special case of which is

|||f |||2s+1

b1,...,bs+1
= lim

H→∞ E
h∈[H ]s

∫
	b1,...,bs ;hf · E(	b1,...,bs ;hf |I(T bs+1)) dμ.

For s ∈ N, we denote

Ds := {(T n
j Ds′,Tj

f )n∈Z : f ∈ L∞(μ), j ∈ [�], 1 ≤ s′ ≤ s}
to be the set of sequences of 1-bounded functions coming from dual functions of degree
up to s for the transformations T1, . . . , T�, and moreover we define D := ⋃

s∈N Ds .
The utility of dual functions comes from the following approximation result.

PROPOSITION 2.3. (Dual decomposition [8, Proposition 3.4]) Let (X, X , μ, T ) be a
system, f ∈ L∞(μ), s ∈ N, and ε > 0. Then we can decompose f = f1 + f2 + f3, where

(i) (Structured component) f1 = ∑
k ckDs,T (gk) is a linear combination of finitely

many dual functions of level s with respect to T;
(ii) (Small component) |||f2|||L1(μ) ≤ ε;

(iii) (Uniform component) |||f3|||s,T = 0.

Proposition 2.3 will be used as follows. Suppose that the L2(μ) limit of the average
En∈[N] T

p1(n)

1 f1 · · · T
p�(n)

� f� vanishes whenever |||f�|||s,T�
= 0. If

lim sup
N→∞

∥∥∥ E
n∈[N]

T
p1(n)

1 f1 · · · T
p�(n)
� f�

∥∥∥
L2(μ)

> 0

for some functions f1, . . . , f� ∈ L∞(μ), then we decompose f� as in Proposition 2.3 for
sufficiently small ε > 0 so that

lim sup
N→∞

∥∥∥∥ E
n∈[N]

∏
j∈[�−1]

T
pj (n)

j fj ·
∑

k

ckT
p�(n)

� Ds,T�
(gk)

∥∥∥∥
L2(μ)

> 0
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for some (finite) linear combinations of dual functions. Applying the triangle inequality
and the pigeonhole principle, we deduce that there exists k for which

lim sup
N→∞

∥∥∥∥ E
n∈[N]

∏
j∈[�−1]

T
pj (n)

j fj · D(p�(n))

∥∥∥∥
L2(μ)

> 0,

where D(n)(x) := T n
� Ds,T�

gk(x) for n ∈ N and x ∈ X. This way, we essentially replace
the term T

p�(n)
� f� in the original average by the more structured piece D(p�(n)).

2.4. Eigenfunctions and criterion for weak joint ergodicity. Following [10], we define
the notion of eigenfunctions that appears in the statement of Theorem 1.2.

Definition. Let (X, X , μ, T ) be a system, χ ∈ L∞(μ), and λ ∈ L∞(μ) be a T-invariant
function. We say that χ ∈ L∞(μ) is a non-ergodic eigenfunction with eigenvalue λ if
(i) |χ(x)| has value 0 or 1 for μ-almost every x ∈ X and λ(x) = 0 whenever χ(x) = 0;

(ii) T χ = λ χ , μ-almost everywhere (a.e.).

We denote the set of non-ergodic eigenfunctions with respect to T by E(T ). For
ergodic systems, a non-ergodic eigenfunction is either the zero function or a classi-
cal unit modulus eigenfunction. For general systems, each function χ ∈ E(T ) satisfies
χ(T x) = 1E(x) e(φ(x)) χ(x) for some T-invariant set E ∈ X and measurable T-invariant
function φ : X → T.

Definition. (Weak joint ergodicity) We say that a collection of sequences a1, . . . , a� :
N → Z is weakly jointly ergodic for the system (X, X , μ, T1, . . . , T�), if

lim
N→∞

∥∥∥∥ 1
N

N∑
n=1

T
a1(n)

1 f1 · · · T
a�(n)
� f� − E(f1|I(T1)) · · · E(f�|I(T�))

∥∥∥∥
L2(μ)

= 0

for all f1, . . . , f� ∈ L∞(μ).

The notion of non-ergodic eigenfunction is important for us because of the following
criterion for weak joint ergodicity from [11].

THEOREM 2.4. (Criterion for weak joint ergodicity [11, Theorem 2.5]) The col-
lection of sequences a1, . . . , a� : N → Z is weakly jointly ergodic for the system
(X, X , μ, T1, . . . , T�), if and only if the following two properties hold:
(i) there exists s ∈ N such that for every m ∈ [�], we have

lim
N→∞

∥∥∥ E
n∈[N]

T
a1(n)
1 f1 · · · T

a�(n)
� f�

∥∥∥
L2(μ)

= 0

for all f1, . . . , f� ∈ L∞(μ) with fj ∈ E(Tj ) for j ∈ {m + 1, . . . , �}, whenever
|||fm|||s,Tm = 0;

(ii) for all non-ergodic eigenfunctions χj ∈ E(Tj ), j ∈ [�], we have

lim
N→∞ E

n∈[N]
T

a1(n)
1 χ1 · · · T

a�(n)
� χ� = E(χ1|I(T1)) · · · E(χ�|I(T�)) (19)

in L2(μ).
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When T1, . . . , T� are ergodic, the condition in equation (19) can be restated as follows:

lim
N→∞ E

n∈[N]
e(α1a1(n) + · · · + α�a�(n)) = 0

for all αj ∈ Spec(Tj ), j ∈ [�], not all zero. Here,

Spec(T ) := {α ∈ T : T χ = e(α)χ for some χ ∈ E(T )}.
We will apply Theorem 2.4 in the proof of Theorem 1.2. The first condition will be

satisfied thanks to the stronger result proved in Theorem 1.1.

3. Preliminary results
In this section, we gather auxiliary results needed in the proof of Theorem 1.1. We start
with the following simple lemma from [11, Lemma 5.2], which allows us to pass from
averages of sequences ah−h′ to averages of sequences ah.

LEMMA 3.1. Let (ah)h∈Ns be a sequence of non-negative real numbers. Then

E
h,h′∈[H ]s

ah−h′ ≤ E
h∈[H ]s

ah

for every H ∈ N.

Subsequently, we state a result that allows us to replace a function fm in the original
average by a more structured averaged term f̃m that encodes the information about the
original average. This idea originates in the finitary works on the polynomial Szemerédi
theorem by Peluse and Prendiville [15–17], and it has been successfully applied in the
ergodic theoretic setting in [5, 9, 11]. The version below differs from earlier formulations
because we additionally show that if the to-be-replaced function fm is measurable with
respect to some sub-σ -algebra A, then the same can be assumed about the function that
replaces it. In our applications, A will always be either the full σ -algebra X or the invariant
sub-σ -algebra of some measure-preserving transformation.

LEMMA 3.2. (Introducing averaged functions) Let a1, . . . , a� : N → Z be sequences,
(X, X , μ, T1, . . . , T�) be a system, and 1-bounded functions f1, . . . , f� ∈ L∞(μ) be
such that

lim sup
N→∞

∥∥∥ E
n∈[N]

T
a1(n)
1 f1 · · · T

a�(n)
� f�

∥∥∥
L2(μ)

≥ δ

for some δ > 0. Let m ∈ [�]. Suppose moreover that fm is A-measurable for some
sub-σ -algebra A ⊆ X . Then there exist Nk → ∞ and gk ∈ L∞(μ), with ‖gk‖L∞(μ) ≤ 1,
k ∈ N, such that for

f̃m := lim
k→∞ E

n∈[Nk]
T −am(n)

m gk ·
∏

j∈[�],j �=m

T −am(n)
m T

aj (n)

j f j ,

where the limit is a weak limit, we have

lim sup
k→∞

∥∥∥∥ E
n∈[Nk]

T am(n)
m E(f̃m|A) ·

∏
j∈[�],j �=m

T
aj (n)

j fj

∥∥∥∥
L2(μ)

≥ δ4.
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Proof. Let {Ñk}k∈N be an increasing sequence of integers for which∥∥∥ E
n∈[Ñk]

T
a1(n)
1 f1 · · · T

a�(n)
� f�

∥∥∥
L2(μ)

≥ δ. (20)

We set

g̃N := E
n∈[N]

T
a1(n)
1 f1 · · · T

a�(n)
� f�

for every N ∈ N. The weak compactness of L2(μ) implies that there exists a subsequence
(Nk)k∈N of (Ñk)k∈N for which the sequence

Fk := E
n∈[Nk]

T −am(n)
m gk ·

∏
j∈[�],j �=m

T −am(n)
m T

aj (n)

j f j ,

where gk := g̃
Ñk

, k ∈ N, converges weakly to a 1-bounded function f̃m.
We observe from equation (20) that

δ2 ≤
∫

gk · E
n∈[Nk]

T
a1(n)
1 f 1 · · · T

a�(n)
� f � dμ

=
∫

fm · E
n∈[Nk]

T −am(n)
m gk ·

∏
j∈[�],j �=m

T −am(n)
m T

aj (n)

j f j dμ.

Taking k → ∞, using the A-measurability of the 1-bounded function fm, and applying
the Cauchy–Schwarz inequality, we get

δ2 ≤
∫

fm · f̃m dμ =
∫

fm · E(f̃m|A) dμ ≤ ‖E(f̃m|A)‖L2(μ).

Hence,

δ4 ≤ ‖E(f̃m|A)‖2
L2(μ)

=
∫

E(f̃m|A) · f̃ m dμ

= lim
k→∞

∫
E(f̃m|A) · E

n∈[Nk]
T −am(n)

m gk ·
∏

j∈[�],j �=m

T −am(n)
m T

aj (n)

j fj dμ

= lim
k→∞

∫
gk · E

n∈[Nk]
T am(n)

m E(f̃m|A) ·
∏

j∈[�],j �=m

T
aj (n)

j fj dμ.

An application of the Cauchy–Schwarz inequality gives the result.

We now present two different versions of the dual-difference interchange result that we
use in our smoothing argument. While the second version in the proposition below has
already been used in [11], the first one is novel since the extra information that it provides
has not been required in earlier arguments.

PROPOSITION 3.3. (Dual-difference interchange) Let (X, X , μ, T1, . . . , T�) be a system,
s, s′ ∈ N, b1, . . . , bs+1, c ∈ Z

� be vectors, (fn,k)n,k∈N ⊆ L∞(μ) be 1-bounded, and f ∈
L∞(μ) be defined by

f := lim
k→∞ E

n∈[Nk]
fn,k ,
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for some Nk → ∞, where the average is assumed to converge weakly.
(i) If

|||E(f |I(T c))|||b1,...,bs+1 > 0, (21)

then there exist 1-bounded functions uh,h′ , invariant under both T bs+1 and T c, for
which the inequality

lim inf
H→∞ E

h,h′∈[H ]s
lim sup
k→∞

E
n∈[Nk]

∫
	b1,...,bs ;h−h′fn,k · uh,h′ dμ > 0

holds.
(ii) If

|||f |||b1,...,bs ,b×s′
s+1

> 0,

then

lim inf
H→∞ E

h,h′∈[H ]s
lim sup
k→∞

E
n∈[Nk]

∫
	b1,...,bs ;h−h′fn,k ·

2s∏
j=1

Dj ,h,h′ dμ > 0

for some 1-bounded dual functions Dj ,h,h′ of T of level s′.

For the proof of Proposition 3.3, we need the following version of the Gowers–Cauchy–
Schwarz inequality from [11].

LEMMA 3.4. (Twisted Gowers–Cauchy–Schwarz inequality) Let (X, X , μ, T1, . . . , T�)

be a system, s ∈ N, b1, . . . , bs ∈ Z
� be vectors, and the functions (fε)ε∈{0,1}s , (uh)h∈Ns ⊆

L∞(μ) be 1-bounded. Then for every H ∈ N, we have∣∣∣∣ E
h∈[H ]s

∫ ∏
ε∈{0,1}s

T b1ε1h1+···+bs εshs fε · uh dμ

∣∣∣∣
2s

≤ E
h,h′∈[H ]s

∫
	b1,...,bs ;h−h′f1 · T −(b1h

′
1+···+bsh

′
s )

( ∏
ε∈{0,1}s

C|ε|uhε

)
dμ.

We also record two simple observations.

LEMMA 3.5. Let (X, X , μ, T1, . . . , T�) be a system, a, b ∈ Z
� be vectors, and

f ∈ L∞(μ) be a function. Then the following two properties hold.
(i) If f is invariant under T aT −b, then |||f |||s,T a = |||f |||s,T b for any s ∈ N.

(ii) If f is invariant under T a, then so is the function E(f |I(T b)).

Proof. For part (i), we notice that

|||f |||s,T a = lim
H→∞ E

h∈[H ]s

∫ ∏
ε∈{0,1}s

C|ε|T a(ε·h)f dμ

= lim
H→∞ E

h∈[H ]s

∫ ∏
ε∈{0,1}s

C|ε|T b(ε·h)f dμ = |||f |||s,T b .
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For part (ii), we use the fact that T a, T b commute and the T a-invariance of f to observe
that T aT hbf = T hbT af = T hbf . From this and the mean ergodic theorem, it follows
that

T a
E(f |I(T b)) = lim

H→∞ E
h∈[H ]

T aT hbf = lim
H→∞ E

h∈[H ]
T hbf = E(f |I(T b)),

and so E(f |I(T b)) is invariant under T a.

Proof of Proposition 3.3. Part (ii) follows from [11, Proposition 5.7], and so we only prove
(i). Letting uh := E(	b1,...,bs ;hE(f |I(T c))|I(T bs+1)), we deduce from equation (21) that

lim
H→∞ E

h∈[H ]s

∫
	b1,...,bs ;hE(f |I(T c)) · uh dμ > 0.

The T c-invariance of E(f |I(T c)) implies the T c-invariance of 	b1,...,bs ;hE(f |I(T c)), so
the functions uh are invariant under T c by Lemma 3.5 (their T bs+1 -invariance is trivial).
Using the T c-invariance of uh and the properties of conditional expectations, we deduce
that

lim
H→∞ E

h∈[H ]s

∫
	b1,...,bs ;hE(f |I(T c)) · uh dμ

= lim
H→∞ E

h∈[H ]s

∫ ∏
ε∈{0,1}s\{1}

C|ε|T b1ε1h1+···+bs εshsE(f |I(T c))

T b1h1+···+bshs f · E(uh|I(T c)) dμ.

For ε ∈ {0, 1}s \ {1}, we let fε := C|ε|
E(f |I(T c)). We deduce from the previous

identity and the fact f = limk→∞ En∈[Nk] fn,k , where convergence is in the weak sense,
that

lim
H→∞ lim

k→∞ E
n∈[Nk]

E
h∈[H ]s

∫ ∏
ε∈{0,1}s\{1}

T b1ε1h1+···+bs εshs fε

× T b1h1+···+bshs fn,k · uh dμ > 0.

For fixed k, n, H ∈ N, we apply Lemma 3.4 with f1 := fn,k , obtaining

lim inf
H→∞ lim sup

k→∞
E

n∈[Nk]
E

h,h′∈[H ]s

∫
	b1,...,bs ;h−h′fn,k · uh,h′ dμ > 0,

where

uh,h′ := T −(b1h
′
1+···+bsh

′
s )

( ∏
ε∈{0,1}s

C|ε|uhε

)
.

The functions uh,h′ are both T bs+1 and T c invariant given that each (uh)h∈Ns is and the
transformations T1, . . . , T� commute. The result follows from the fact that the limsup of a
sum is at most the sum of the limsups.

The proposition below enables a transition between qualitative and soft quantita-
tive results. Its proof uses rather abstract functional analytic arguments and the mean
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convergence result of Walsh [19]. If we instead use the mean convergence result of
Zorin-Kranich [20] we can also get a variant that deals with averages over an arbitrary
Følner sequence on Z

D .

PROPOSITION 3.6. (Soft quantitative control [11, Proposition A.1]) Let m, �, s ∈ N with
m ∈ [�], p1, . . . , p� ∈ Z[n] be polynomials, and (X, X , μ, T1, . . . , T�) be a system. Let
Y1, . . . , Y� ⊆ X be sub-σ -algebras. Suppose that for all fj ∈ L∞(Yj , μ), j ∈ [�], the
seminorm |||fm|||s controls the average

E
n∈[N]

T
p1(n)

1 f1 · · · T
p�(n)
� f� (22)

in that equation (22) converges to 0 in L2(μ) whenever |||fm|||s = 0. Then for every ε > 0,
there exists δ > 0 such that if fj ∈ L∞(Yj , μ), j ∈ [�] are 1-bounded and |||fm|||s ≤ δ,
then

lim
N→∞

∥∥∥ E
n∈[N]

T
p1(n)

1 f1 · · · T
p�(n)
� f�

∥∥∥
L2(μ)

≤ ε.

Finally, we need the following polynomial ergodic theorem (PET) result that gives
box seminorm control for averages with extra terms involving dual functions. It extends
[6, Theorem 2.5] that did not involve dual functions. We remark that these arguments are
proved by combining a complicated variant of Bergelson’s original PET technique [2] with
concatenation results of Tao and Ziegler [18].

PROPOSITION 3.7. (Box seminorm control [11, Proposition B.1]) Let d , �, D, L ∈ N,
η ∈ [�]�, and p1, . . . , p�, q1, . . . , qL ∈ Z[n] be polynomials of degrees at most D.
Let p0 = 0 and pj (n) = ∑D

i=0 ajin
i for j ∈ [�]. Suppose that deg p� = D and

d�j := deg(p�eη�
− pj eηj

) > 0 for every j = 0, . . . , � − 1. Then there exist s ∈ N,
depending only on d , D, �, L, η, and non-zero vectors

b1, . . . , bs ∈ {a�d�j
eη�

− ajd�j
eηj

: j = 0, . . . , � − 1}, (23)

with the following property: for every system (X, X , μ, T1, . . . , T�), functions
f1, . . . , f� ∈ L∞(μ), and sequences of functions D1, . . . , DL ∈ Dd , we have

lim
N→∞

∥∥∥∥ E
n∈[N]

∏
j∈[�]

T
pj (n)
ηj

fj ·
∏

j∈[L]

Dj (qj (n))

∥∥∥∥
L2(μ)

= 0

whenever |||f�|||b1,...,bs
= 0.

Due to the monotonicity property of box seminorms in equation (17), we may (and will)
always assume that s ≥ 2 in Proposition 3.7 (this is necessary to apply Lemma 2.1 in some
of our arguments in §7).

4. Two motivating examples
In this section, we prove Theorem 1.1 for the family n2, n2, n2 + n and sketch the changes
needed to handle the family n2, n2, 2n2 + n. These two cases illustrate some (but not all)
key ideas needed in the proof of Theorem 1.1 in a simple setting. Additional complications
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arise for more general families and the ideas needed to overcome them will be illustrated
with examples given in subsequent sections.

Example 1. (Seminorm control for a monic family of length 3) Our goal is to prove the
following result.

PROPOSITION 4.1. (Seminorm control for n2, n2, n2 + n) There exists s ∈ N such that for
every system (X, X , μ, T1, T2, T3) satisfying I(T1T

−1
2 ) = I(T1) ∩ I(T2) and all functions

f1, f2, f3 ∈ L∞(μ), the average

E
n∈[N]

T n2

1 f1 · T n2

2 f2 · T n2+n
3 f3 (24)

converges to 0 in L2(μ) whenever |||f3|||s,T3 = 0.

We subsequently show in Corollary 4.5 that the same conclusion holds if we assume
|||fi |||s,Ti

= 0 for i = 1, 2, instead.
By Proposition 3.7, there exist vectors b1, . . . , bs+1 ∈ {e3, e3 − e1, e3 − e2} such that

lim
N→∞ E

n∈[N]
T n2

1 f1 · T n2

2 f2 · T n2+n
3 f3 = 0 (25)

whenever |||f3|||b1,...,bs+1 = 0. The goal is to inductively replace all the vectors
b1, . . . , bs+1 in the seminorm different from e3 by e×s′

3 for some s′ ∈ N, which is achieved
in the following proposition.

PROPOSITION 4.2. (Box seminorm smoothing) Let b1, . . . , bs+1 ∈ {e3, e3 − e1, e3 − e2}
and (X, X , μ, T1, T2, T3) be a system satisfying I(T1T

−1
2 ) = I(T1) ∩ I(T2). Suppose that

equation (25) holds for all functions f1, f2, f3 ∈ L∞(μ) whenever |||f3|||b1,...,bs+1 = 0.
Then there exists s′ ∈ N, depending only on s, such that equation (25) holds whenever
|||f3|||b1,...,bs ,e×s′

3
= 0.

Proposition 4.1 follows from Proposition 3.7 and an iterative application of
Proposition 4.2.

Passing from a control by |||f3|||b1,...,bs+1 in Proposition 4.2 to a control by
|||f3|||b1,...,bs ,e×s′

�

follows a two-step ping-pong strategy similar to the one used in [11].

Using the control by |||f3|||b1,...,bs+1 , we first pass to an auxiliary control by some seminorm
|||fi |||b1,...,bs ,e×s1

i

for some i = 1, 2 and s1 ∈ N, and then we use this auxiliary control to go

back and control the average from equation (42) by |||f3|||b1,...,bs ,e×s′
�

for some s′ ∈ N. We

call the two steps outlined above ping and pong.
The assumption I(T1T

−1
2 ) = I(T1) ∩ I(T2) is crucial for the following special case

that will be invoked in the proof of the general case of Proposition 4.1.

PROPOSITION 4.3. There exists s ∈ N such that for every system (X, X , μ, T1, T2)

satisfying I(T1T
−1
2 ) = I(T1) ∩ I(T2) and all functions f1, f2, f3 ∈ L∞(μ), the average

E
n∈[N]

T n2

1 f1 · T n2

2 f2 · T n2+n
2 f3 (26)

converges to 0 in L2(μ) whenever one of |||f1|||s,T1 , |||f2|||s,T2 , |||f3|||s,T2 is 0.
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Proof. We prove that |||f3|||s,T2 = 0 implies

lim
N→∞ E

n∈[N]
T n2

1 f1 · T n2

2 f2 · T n2+n
2 f3 = 0 (27)

for some s ∈ N; the other cases follow similarly. By Proposition 3.7, the equality in
equation (27) holds under the assumption that |||f3|||e×s1

2 ,(e2−e1)
×s2

= 0 for some s1, s2 ∈ N0

(which are absolute in that they do not depend on the system or the functions). The
assumption I(T1T

−1
2 ) = I(T1) ∩ I(T2) implies that I(T1T

−1
2 ) ⊆ I(T2). Together with

Lemma 2.2, this gives

|||f3|||e×s1
2 ,(e2−e1)

×s2
≤ |||f3|||e×(s1+s2)

2
= |||f3|||s1+s2,T2 ,

and so equation (27) holds whenever |||f3|||s,T2 = 0 for s = s1 + s2.

Proposition 4.3 is invoked in the ping step of the proof of Proposition 4.2; in the pong
step, we invoke the result below.

PROPOSITION 4.4. Let d , L ∈ N. Then there exists s ∈ N depending only on d and L
such that for all systems (X, X , μ, T1, T2, T3), functions f1, f3 ∈ L∞(μ), and sequences
D1, . . . , DL ∈ Dd , the average

E
n∈[N]

T n2

1 f1 ·
L∏

j=1

Dj (n
2) · T n2+n

3 f3 (28)

converges to 0 in L2(μ) whenever |||f3|||s,T3 = 0.

Proposition 4.4 follows from [11, Proposition 8.4] since the two non-dual terms in
equation (28) involve the pairwise independent polynomials n2 and n2 + n.

Having stated all the needed auxiliary results, we are finally in the position to prove
Proposition 4.2.

Proof of Proposition 4.2. Suppose that (25) fails. Then |||f3|||b1,...,bs+1 > 0. If bs+1 = e3,
then |||f3|||b1,...,bs ,e3 > 0, so we assume without loss of generality that bs+1 = e3 − e2, the
case bs+1 = e3 − e1 being identical.

Step 1 (ping): Obtaining auxiliary control by a seminorm of f2.
By Proposition 3.2 (applied with A = X ), we replace f3 by f̃3 so that

lim
N→∞

∥∥∥ E
n∈[N]

T n2

1 f1 · T n2

2 f2 · T n2+n
3 f̃3

∥∥∥
L2(μ)

> 0.

We set fj ,h,h′ := 	b1,...,bs ;h−h′fj for j ∈ [3] and apply Proposition 3.3(i) (with c = 0) to
conclude that

lim inf
H→∞ E

h,h′∈[H ]s
lim

N→∞ ‖ E
n∈[N]

T n2

1 f1,h,h′ · T n2

2 f2,h,h′ · T n2+n
3 uh,h′ ‖L2(μ) > 0

for some 1-bounded functions uh,h′ invariant under T3T
−1

2 . The invariance property
implies that

T n2+n
3 uh,h′ = T n2+n

2 uh,h′ ,
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and hence

lim inf
H→∞ E

h,h′∈[H ]s
lim

N→∞

∥∥∥ E
n∈[N]

T n2

1 f1,h,h′ · T n2

2 f2,h,h′ · T n2+n
2 uh,h′

∥∥∥
L2(μ)

> 0.

Consequently, there exist a set B ⊆ N
2s of positive lower density and ε > 0 such that

lim
N→∞

∥∥∥ E
n∈[N]

T n2

1 f1,h,h′ · T n2

2 f2,h,h′ · T n2+n
2 uh,h′

∥∥∥
L2(μ)

> ε (29)

for all (h, h′) ∈ B. Each of the averages in equation (29) takes the form of equation (26);
we therefore apply Propositions 4.3 and 3.6 to obtain s1 ∈ N (independent of the system or
the functions) and δ > 0 (which depends only on ε and the system but not the functions)
such that

|||f2,h,h′ |||s1,T2 > δ

for all (h, h′) ∈ B. Hence,

lim inf
H→∞ E

h,h′∈[H ]s
|||	b1,...,bs ;h−h′f2|||s1,T2 > 0. (30)

Together with Lemma 3.1, the inductive formula for seminorms in equation (15), and
Hölder inequality, the inequality in equation (30) implies that

|||f2|||b1,...,bs ,e×s1
2

> 0.

We deduce from this that the seminorm |||f2|||b1,...,bs ,e×s1
2

controls the average (24).
This seminorm control is not particularly useful as an independent result since the

vectors b1, . . . , bs may not involve the transformation T2 in any way. However, it is of
great importance as an intermediate result applied in the next step of our argument.

Step 2 (pong): Obtaining control by a seminorm of f3.
Using our assumption that equation (25) fails, we now replace f2 by f̃2 and deduce from

Proposition 3.2 (applied again with A = X ) that

lim
N→∞

∥∥∥ E
n∈[N]

T n2

1 f1 · T n2

2 f̃2 · T n2+n
2 f3

∥∥∥
L2(μ)

> 0.

From Proposition 3.3 (with c = 0), it follows that

lim inf
H→∞ E

h,h′∈[H ]s
lim

N→∞

∥∥∥ E
n∈[N]

T n2

1 f1,h,h′ · Dh,h′(n2) · T n2+n
3 f3,h,h′

∥∥∥
L2(μ)

> 0,

where Dh,h′ is a product of 2s elements of Ds1 . Once again, there exists a set B ′ ⊆ N
2s of

positive lower density and ε > 0 such that∥∥∥ E
n∈[N]

T n2

1 f1,h,h′ · Dh,h′(n2) · T n2+n
3 f3,h,h′

∥∥∥
L2(μ)

> ε (31)

for (h, h′) ∈ B ′. Each average indexed in equation (31) is of the form

E
n∈[N]

T n2

1 g1 ·
2s∏

j=1

Dj (n
2) · T n2+n

3 g3 (32)
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for D1, . . . , D2s ∈ Ds1 . By Proposition 4.4, the averages from equation (32) are controlled
by |||g3|||s′,T3 for some s′ ∈ N depending only on s, and so Proposition 3.6 gives δ > 0 such
that

|||f3,h,h′ |||s′,T3 > δ

for all (h, h′) ∈ B ′. (Specifically, we invoke Proposition 3.6 for averages of the
form En∈[N] T n2

1 g1 · ∏2s

j=1 T n2

2 g′
j · T n2+n

3 g3, where g′
j is Zs1(T2)-measurable for each

j ∈ [2s]. One can show that an average like this is qualitatively controlled by |||g3|||s′,T3

by approximating functions g′
1, . . . , g′

2s by linear combinations of dual functions using
Proposition 2.3 and then applying Proposition 3.7.) Hence,

lim inf
H→∞ E

h,h′∈[H ]s
|||	b1,...,bs ;h−h′f3|||s′,T3 > 0.

Together with Lemma 3.1, the Hölder inequality, and the inductive formula in equation (15)
for the seminorms, this implies that |||f3|||b1,...,bs ,e×s′

3
> 0, which is what we claim.

Finally, we show how we can use Proposition 4.1 to obtain control of the average from
equation (24) by seminorms of other terms.

COROLLARY 4.5. There exists s ∈ N such that for every system (X, X , μ, T1, T2, T3)

satisfying I(T1T
−1

2 ) = I(T1) ∩ I(T2) and all functions f1, f2, f3 ∈ L∞(μ), the average
from equation (24) converges to 0 in L2(μ) whenever one of |||f1|||s,T1 , |||f2|||s,T2 , |||f3|||s,T3

is 0.

Proof. The statement that for some absolute s ∈ N, the identity |||f3|||s,T3 = 0 implies the
vanishing of the L2(μ) limit of equation (24) follows from Propositions 3.7 and 4.1, so the
content of Corollary 4.5 is to show control by other terms. Suppose that

lim
N→∞ E

n∈[N]
T n2

1 f1 · T n2

2 f2 · T n2+n
3 f3 �= 0.

We then apply Proposition 2.3 and the pigeonhole principle to find a 1-bounded dual
function Ds,T3g such that

lim
N→∞ E

n∈[N]
T n2

1 f1 · T n2

2 f2 · D(n2 + n),

where D(n) := T n
3 Ds,T3g. By Proposition 3.7, we have |||f2|||e×s′

2 ,(e2−e1)×s′ > 0 for some

absolute s′ ∈ N. The ergodicity assumption of T1T
−1
2 and Lemma 2.2 imply that

|||f2|||e×2s′
2

> 0, and an analogous argument gives |||f1|||e×2s′
1

> 0.

The argument in Example 1 is relatively clean because the leading coefficients of the
polynomials are all 1. When this is not the case, minor modifications are required as
explained in the next example.

Example 2. (Seminorm control for a non-monic family of length 3) Consider the average

E
n∈[N]

T n2

1 f1 · T n2

2 f2 · T 2n2+n
3 f3. (33)
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By Proposition 3.7, this average is controlled by |||f3|||b1,...,bs+1 for some s ∈ N

and b1, . . . , bs+1 ∈ {2e3, 2e3 − e2}, and we want to pass toward the control by
|||f3|||b1,...,bs ,e×s′

3
. Suppose that the L2(μ) limit of equation (33) does not vanish, and

suppose moreover that bs+1 = 2e3 − e2. Arguing as in the proof of Proposition 4.2, we
arrive at the inequality

lim inf
H→∞ E

h,h′∈[H ]s
lim

N→∞

∥∥∥ E
n∈[N]

T n2

1 f1,h,h′ · T n2

2 f2,h,h′ · T 2n2+n
3 uh,h′

∥∥∥
L2(μ)

> 0,

where fj ,h,h′ := 	b1,...,bs ;h−h′fj for j ∈ [2] and the functions uh,h′ are T2T
−2
3 invariant.

We can no longer apply the invariance property in the same way as before since the
polynomial 2n2 + n is not divisible by 2. Instead, we first split N into the odd and even
part and then apply the triangle inequality to deduce that

E
r∈{0,1}

lim sup
H→∞

E
h,h′∈[H ]s

lim
N→∞

∥∥∥ E
n∈[N]

T
(2n+r)2

1 f1,h,h′ · T (2n+r)2

2 f2,h,h′ · T
2(2n+r)2+(2n+r)
3 uh,h′

∥∥∥
L2(μ)

> 0.

Only then can we apply the T2T
−2
3 invariance of uh,h′ to obtain the identity

T
2(2n+r)2+(2n+r)
3 uh,h′ = T

4n2+(4r+1)n
2 T 2r2+r

3 uh,h′ .

It follows that for some r0 ∈ {0, 1}, we have

lim sup
H→∞

E
h,h′∈[H ]s

lim
N→∞

∥∥∥ E
n∈[N]

T
4n2+4r0n
1 f ′

1,h,h′ · T
4n2+4r0n
2 f ′

2,h,h′ · T
4n2+(4r0+1)n
2 u′

h,h′
∥∥∥

L2(μ)
> 0

upon setting f ′
j ,h,h′ := T

r2
0

j fj ,h,h′ for j ∈ [2] and u′
h,h′ := T

2r2
0 +r0

3 uh,h′ . The rest of the
argument proceeds analogously except that we invoke an analog of Proposition 4.3 for
the tuple (T

4n2+4r0n
1 , T

4n2+4r0n
2 , T

4n2+(4r0+1)n
2 ). The important part about this new tuple is

that the first two polynomials are again pairwise dependent while the last one is pairwise
independent with any of the first two, and that the new tuple retains the good ergodicity
property.

5. Formalism and general strategy for longer families
We move on towards deriving Theorem 1.1 for longer families. To prove it for averages

E
n∈[N]

∏
j∈[�]

T
pj (n)

j fj , (34)

we need to analyze more complicated averages of the form

E
n∈[N]

∏
j∈[�]

T
ρj (n)

ηj
fj ·

∏
j∈[L]

Dj (qj (n)) (35)

that appear at the intermediate steps of the proof of Theorem 1.1, much like averages from
equations (26) and (28) show up at the intermediate steps of the proof of Proposition 4.1,
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a special case of Theorem 1.1 for the family n2, n2, n2 + n. In equations (34) and (35),
p1, . . . , p�, ρ1, . . . , ρ�, q1, . . . , qL are (not necessarily distinct) polynomials with inte-
ger coefficients and zero constant terms, (X, X , μ, T1, . . . , T�) is a system, f1, . . . , f� ∈
L∞(μ) are 1-bounded functions, and D1, . . . , DL ∈ D are sequences of functions. Since
Dj (qj (n)) has the form T

qj (n)
πj

gj for some πj ∈ [�] and gj ∈ L∞(μ), the averages from
equation (35) converge in L2(μ) by [19]. The same comment applies for all limits involving
dual sequences that appear in the rest of the paper.

The purpose of this section is to introduce a formalism that helps us to meaningfully
discuss averages from equation (35). This will be done in §5.1. Subsequently, we give in
§5.2 an overview of the strategy used to prove Theorem 1.1. The details of various moves
discussed in §5.2 will be presented in §6.

While discussing various examples in this and the next sections, we often say informally
that for j ∈ [�], the average from equation (35) is controlled by a Tηj

-seminorm of fj

(or that we have seminorm control of equation (35) by a Tηj
-seminorm of fj ) if for

all d , L ∈ N, there exists s ∈ N such that if the Tηj
-seminorm of fj vanishes, then the

L2(μ) limit of equation (35) is 0 for all sequences D1, . . . , DL ∈ Dd and all functions
f1, . . . , f� ∈ L∞(μ) satisfying some explicitly stated invariance properties. We also say
informally that we have seminorm control over the average from equation (35) if we have
seminorm control by a Tηj

-seminorm of fj for every j ∈ [�].

5.1. The formalism behind the induction scheme. We start by introducing a handy
formalism used for the induction scheme in the proof of Theorem 1.1. We often associate
the average from equation (35) with the tuple (T

ρj (n)
ηj

)j∈[�]. This tuple does not contain
any information about the polynomials q1, . . . , qL, but this is not necessary. These terms
play no role in our inductive argument and can be easily disposed of using Proposition 3.7.
The only thing they do influence is the degree s of the seminorm with which we end up
controlling the average from equation (35).

Definition. (Indexing data) For an average from equation (35) or the associated tuple
(T

ρj (n)
ηj

)j∈[�], we let � be its length, d := maxj∈[�] deg ρj be its degree, and η be its
indexing tuple. For j ∈ [�], we set dj := deg ρj . We let K1 be the maximum number
of pairwise independent polynomials within the family ρ1, . . . , ρ� (we set K1 := 1 if
� = 1 or every two polynomials are pairwise dependent). We partition [�] = ⋃

t∈[K1] It ,
where j1, j2 belong to the same It if and only if ρj1 , ρj2 are linearly dependent. Thus,
I1, . . . , IK1 partitions [�] into index sets corresponding to families of pairwise dependent
polynomials. Furthermore, we define

L := {j ∈ [�] : deg ρj = d}
to be the set of indices corresponding to polynomials of maximum degree, and we
rearrange I1, . . . , IK1 so that L = ⋃

t∈[K2] It for some K2 ≤ K1. We also let K3 := |L|
be the number of maximum degree polynomials, and we notice that K2 ≤ K3 ≤ �.

Sometimes, we denote L = L(ρ1, . . . , ρ�), It = It (ρ1, . . . , ρ�), and Ki = Ki

(ρ1, . . . , ρ�) to emphasize the dependence on a specific family of polynomials.
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Example 3. Consider the tuple

(T n2

1 , T n2

2 , T n2+n
3 , T 2n2+2n

4 , T n2+2n
3 , T n

6 , T n2+3n
2 ). (36)

It has length 7, degree 2, indexing tuple η = (1, 2, 3, 4, 3, 6, 2), K1 = 5
(corresponding to five pairwise independent polynomials n2, n2 + n, n2 + 2n, n2 +
3n, n), K2 = 4 (corresponding to four quadratic pairwise independent polynomials
n2, n2 + n, n2 + 2n, n2 + 3n), K3 = 6 (corresponding to six quadratic polynomi-
als appearing in equation (36)), L = {1, 2, 3, 4, 5, 7}, and partition I1 = {1, 2},
I2 = {3, 4}, I3 = {5}, I4 = {7}, I5 = {6}.

The rationale behind introducing the partition I1, . . . , IK1 and the indexing tuple
η is as follows. As part of our assumptions, we know that T

βi

i T
−βj

j is ergodic
whenever the polynomials ρi , ρj are dependent, bi , bj are their leading coefficients, and
βi := bi/ gcd(bi , bj ), βj := bj / gcd(bi , bj ). Introducing the partition I1, . . . , IK1

allows us to keep track of pairs (i, j) for which we have these ergodicity properties. The
reason for introducing the indexing tuple η is that in our induction procedure, we gradually
replace a transformation Tηm in the tuple (T

ρj (n)
ηj

)j∈[�] by a different transformation Tηi
,

and so η keeps track of these substitutions.

Definition. (Good ergodicity property along η) Let η ∈ [�]� be an indexing tuple and
b1, . . . , b� be the leading coefficients of the polynomials ρ1, . . . , ρ�. We say that
the system (X, X , μ, T1, . . . , T�) has the good ergodicity property along η for the
polynomials ρ1, . . . , ρ� if for every distinct ηj1 , ηj2 belonging to the same It with
t ∈ [K1], we have

I(T
βj1
ηj1

T
−βj2
ηj2

) = I(Tηj1
) ∩ I(Tηj2

), (37)

where βj := bj / gcd(bj1 , bj2) for j = j1, j2. In other words, the only functions invariant

under T
βj1
ηj1

T
−βj2
ηj2

are those simultaneously invariant under Tηj1
and Tηj2

. In particular, hav-
ing the good ergodicity property corresponds to having the good ergodicity property for the
polynomials p1, . . . , p� along the identity indexing tuple η0 := (1, . . . , �). We similarly
say that the tuple (T

ρj (n)
ηj

)j∈[�] has the good ergodicity property if (X, X , μ, T1, . . . , T�)

has the good ergodicity property along η for ρ1, . . . , ρ�.
What this definition captures is that every time we encounter in our tuple two

transformations Tηj1
, Tηj2

whose indices ηj1 , ηj2 lie in the same set It , the identity in
equation (37) is satisfied. For instance, the tuple in equation (36) has the good ergodicity
property along η precisely when

I(T1T
−1

2 ) = I(T1) ∩ I(T2) and I(T3T
−2
4 ) = I(T3) ∩ I(T4).

The first identity corresponds to comparing the pairs (j1, j2) = (1, 2), (1, 7) correspond-
ing to the occurrences of transformations T1 and T2 from the cell I1 (T1 occurs at the
index 1 and T2 occurs at the indices 2 and 7). The second identity comes from comparing
the pairs (j1, j2) = (3, 4), (4, 5) corresponding to the transformations T3, T4 from the cell
I2 (T3 occurs at the indices 3 and 5 whereas T4 occurs at the index 4).
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The guiding principle behind our arguments is that we derive seminorm control of the
average from equation (35) by inductively applying seminorm control of an average that is
‘simpler’ than the original average in an appropriate sense. For instance, in Proposition 4.2
and Corollary 4.5, we obtained seminorm control for the tuple (T n2

1 , T n2

2 , T n2+n
3 ) from

Example 1 by invoking seminorm control for the following tuples:

• (T n2

1 , T n2

2 , T n2+n
2 ) in the ping step of the smoothing argument in Proposition 4.2;

• (T n2

1 , ∗, T n2+n
3 ) in the pong step of the smoothing argument in Proposition 4.2 (the

asterisk is introduced purely for convenience; it denotes the term replaced by a product
of dual functions);

• (T n2

1 , T n2

2 , ∗) in Corollary 4.5.
The relative complexity of a tuple or an average is captured by the following notion.

Definition. (Type) The type of (T
ρj (n)

ηj
)j∈[�] is the tuple w = (w1, . . . , wK2), where

wt := |{j ∈ L : ηj ∈ It }| = |{j ∈ [�] : deg ρj = d , ηj ∈ It }|

counts the number of times the transformations (Tj )j∈It
appear in (T

ρj (n)
ηj

)j∈[�] with

a polynomial iterate of maximum degree. (We note here that the type of (T
ρj (n)

ηj
)j∈[�]

depends not just on η and the polynomials ρ1, . . . , ρ�, but also on the ordering of the sets
I1, . . . , IK1 . We do not record this dependence explicitly, instead fixing some ordering of
I1, . . . , IK1 a priori.) We note that |w| := w1 + · · · + wK2 = K3. We say that the type
w is basic if it has the form w = (K3, 0, . . . , 0).

For instance, the tuple in equation (36) has type (3, 3, 0, 0): this is because T1, T2

corresponding to I1 occur thrice, as do the transformations T3, T4 corresponding to I2,
while the transformations T5, T7 corresponding to I3 and I4 do not occur at all. We do not
care about the occurrence of T6 since it has a linear iterate.

It is instructive to see what happens when the polynomials ρ1, . . . , ρ� are pairwise
independent. In that case, It = {jt } for every t ∈ [�] and wt counts the number of times
the transformation Tjt appears among (Tηj

)j∈L, or equivalently the number of times
that Tjt attains a polynomial iterate of maximal degree. So for pairwise independence
polynomials, this notion of type recovers the concept of type from [11, §8.2] (up to
permuting I1, . . . , IK1 ).

For the set of tuples in N
K2
0 of length K3, we say w′ < w if there exists κ ∈ [K2 − 1]

such that for all t ∈ [κ], we have w′
t = wt , and either w′

κ+1 = 0 < wκ+1 or w′
κ+1 >

wκ+1 > 0. For instance, we have the following chain of type inequalities:

(4, 0, 0) < (3, 0, 1) < (3, 1, 0) < (2, 0, 2) < (2, 2, 0)

< (2, 1, 1) < (1, 0, 3) < (1, 2, 1) < (1, 1, 2).

The first, third, fifth, sixth, and eighth inequalities follow from the condition w′
κ+1 >

wκ+1 > 0 while the second, fourth, and seventh inequalities are consequences of the
condition w′

κ+1 = 0 < wκ+1. This is a rather atypical ordering, but it turns out to

determine well which of the tuples (T
ρj (n)

ηj
)j∈[�], (T

ρ′
j (n)

η′
j

)j∈[�] is ‘simpler’ than the other.
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The motivation for this particular choice of ordering is that in the arguments to come, we

will be passing from a tuple (T
ρj (n)

ηj
)j∈[�] of type w to another tuple (T

ρ′
j (n)

η′
j

)j∈[�] of type

w′ < w in two ways. In one of them, the type w′ will meet the condition w′
κ+1 > wκ+1 > 0

while in the other one, it will satisfy the condition w′
κ+1 = 0 < wκ+1. Arguing this way,

we arrive in finitely many steps at a tuple of a basic type w = (K3, 0, . . . , 0), which
constitutes the base case of our induction. This transition will be explained in greater detail
at the end of §5.2 and illustrated in Example 10.

LEMMA 5.1. For fixed K2, K3 ∈ N, let A := {w ∈ N
K2
0 : w1 + · · · + wK2 = K3}. Then

< defines a strict partial order on A.

Proof. It is clear that < is asymmetric and irreflexive, so it remains to show that it is
transitive. Suppose that w′′ < w′, w′ < w, and let κ1, κ2 ∈ [K2 − 1] be indices such that
w′′

t = w′
t for all t ∈ [κ2] but not for t = κ2 + 1 and w′

t = wt for all t ∈ [κ1] but not for
t = κ1 + 1. If κ2 < κ1, then either w′′

κ2+1 = 0 < w′
κ2+1 = wκ2+1 or w′′

κ2+1 > w′
κ2+1 =

wκ2+1 > 0, and so w′′ < w. Otherwise κ2 ≥ κ1, in which case either w′′
κ2+1 = w′

κ2+1 =
0 < wκ2+1 or w′′

κ2+1 ≥ w′
κ2+1 > wκ2+1 > 0, implying w′′ < w again.

5.2. The general strategy. In this section, we outline how to obtain a seminorm control
of a given tuple using seminorm control for tuples of lower type or shorter length.

Definition. (Controllable and uncontrollable tuples) Let tw := max{t : wt > 0} be the
last non-zero index of w. We call a tuple (T

ρj (n)
ηj

)j∈[�] of a non-basic type w (or the
corresponding average) controllable, if there exists an index m ∈ [�] such that
• ηm ∈ Itw ;
• for every other i ∈ [�] with ηi = ηm, we have ρi �= ρm.
If m satisfies the aforementioned assumption, we say that it satisfies the controllability
condition; in this case, Proposition 3.7 guarantees that the average from equation (35) is
controlled by |||fm|||b1,...,bs

for non-zero vectors b1, . . . , bs . If no such index m exists, we

call the tuple (T
ρj (n)

ηj
)j∈[�] uncontrollable.

The previous notions of controllability are supposed to capture whether Proposition 3.7
is applicable to the relevant tuples in our setting.

Example 4. (Controllable versus uncontrollable tuples) Consider the following two tuples:

(T n2

1 , T n2

2 , T n2

3 , T n2

4 , T n2+n
5 , T n2+n

1 , T n2+2n
5 , T n2+2n

5 ), (38)

(T n2

1 , T n2

2 , T n2

3 , T n2

4 , T n2+n
1 , T n2+n

1 , T n2+2n
5 , T n2+2n

5 ). (39)

Defining the partitions I1 = {1, 2, 3, 4}, I2 = {5, 6}, I3 = {7, 8} corresponding to the
independent polynomials n2, n2 + n, n2 + 2n. respectively, the first tuple has type (5, 3, 0)

while the second one has type (6, 2, 0), and for both tuples, we have tw = 2. The first one
is controllable because for the index m = 5, the only values i �= m such that ηi = 5 are
i = 7, 8 corresponding to the polynomial n2 + 2n, which is distinct from n2 + n.
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By contrast, the tuple in equation (39) does not possess an index satisfying the
controllability condition: the only indices m ∈ [8] with ηm ∈ I2 are m = 7, 8, and we have
both η7 = η8 and ρ7(n) = n2 + 2n = ρ8(n). Hence, this tuple is uncontrollable.

Our strategy for proving seminorm control will work rather differently for controllable
and uncontrollable tuples. Suppose first that the average from equation (35) with tuple
(T

ρj (n)
ηj

)j∈[�] of a non-basic type is controllable, and that an index m satisfies the
controllability condition. Then Proposition 3.7 guarantees that the average from equation
(35) is controlled by |||fm|||b1,...,bs+1 for some vectors b1, . . . , bs+1 from equation (23),
and the controllability implies that these vectors are indeed non-zero. We want to show
that this average is also controlled by |||fm|||b1,...,bs ,e×s′

ηm
for some s′ ∈ N via a seminorm

smoothing argument that generalizes Proposition 4.2. We then iterate this result s more
times to get control by a Tηm -seminorm of fm. The seminorm smoothing argument follows
a ping-pong strategy much like in the proof of Proposition 4.2. We first show that control
by |||fm|||b1,...,bs+1 implies control by |||fi |||b1,...,bs ,e×s1

ηi

for some s1 ∈ N and i �= m, and then

we use this auxiliary result to obtain control by |||fm|||b1,...,bs ,e×s′
ηm

.
The main idea behind the ping step of the seminorm smoothing argument is to show that

a seminorm control of the average from equation (35) can be deduced from a seminorm
control of a family of averages of the form

lim
N→∞ E

n∈[N]

∏
j∈[�]

T
ρ′

j (n)

η′
j

f ′
j ·

∏
j∈[L′]

D′
j (q

′
j (n)) (40)

for some polynomials ρ′
1, . . . , ρ′

�, q ′
1, . . . , q ′

L′ ∈ Z[n], 1-bounded functions f ′
1, . . . , f ′

� ∈
L∞(μ), and sequences of functions D′

1, . . . , D′
L′ ∈ D. Moreover, the indexing tuple

η′ ∈ [�]� is obtained from η by changing ηm into ηi for some i �= m, that is, the passage
from equation (35) to equation (40) goes by replacing Tηm at index m with Tηi

. Importantly,
the new average from equation (40) satisfies several key properties:
(i) it has a lower type than the original average, so that we can argue by induction;

(ii) the new average retains the good ergodicity property of the original average;
(iii) the functions f ′

j in the new average satisfy some invariance properties;
(iv) as long as the aforementioned invariance properties are satisfied, the new average

from equation (40) is controlled by the seminorm |||f ′
j |||s,Tη′

j

for each j ∈ [�] and

some s ∈ N.
Proposition 6.1 explains the exact way in which we pass from averages from equation
(35) to those from equation (40) so that the property (i) is satisfied, and Proposition 6.4
establishes the property (ii). Proposition 6.5 then ensures that the functions f ′

j in equation
(40) satisfy needed invariance properties.

We note though that the new average from equation (40) need not be controllable. For
instance, if we take the average corresponding to the tuple from equation (38), then in the
ping step, we replace T n2+n

5 by the same iterate of one of T1, T2, T3, T4. The new average is

then uncontrollable, as is the tuple from equation (39), corresponding to replacing T n2+n
5
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by T n2+n
1 . Hence, controllability may not be preserved while performing the procedure

outlined above.
In the pong step of the smoothing argument for equation (35), we deal with averages of

the form

E
n∈[N]

∏
j∈[�],
j �=i

T
ρj (n)

ηj
f ′′

j ·
∏

j∈[L′′]
D′′

j (q ′′
j (n)). (41)

Crucially, each function f ′′
j is invariant under some composition of Tηj

and Tj . This allows
us to replace (some iterate of) Tηj

in equation (41) by (some iterate of) Tj , a procedure that
we call flipping, and show that an average from equation (41) essentially equals an average
of the form

E
n∈[N]

∏
j∈[�],
j �=i

T
ρ′′′

j (n)

j f ′′′
j ·

∏
j∈[L′′]

D′′
j (q ′′′

j (n)) (42)

of length � − 1. The details of how flipping is performed are presented in Proposition 6.6.
An inductive application of a suitable modification of Theorem 1.1 then gives a control
of equation (42) by a Tj -seminorm of f ′′′

j for each j �= i, and the invariance property of
f ′′

j translates it into a control of equation (41) by a Tηj
-seminorm of f ′′

j for each j �= i. A
straightforward argument analogous to one at the end of the proof of Proposition 4.2 gives
a control of equation (35) by a Tηm -seminorm of fm.

If the average from equation (35) is uncontrollable, then we proceed rather differently.
The previous strategy breaks right at the start since there is no index m satisfying the
controllability condition. Consequently, whichever index m with ηm ∈ Itw we take, we
cannot employ Proposition 3.7 to bound the seminorm by |||fm|||b1,...,bs+1 for non-zero
vectors b1, . . . , bs+1. What we use instead is the inductive assumption that the functions
fj at indices j with ηj ∈ Itw are invariant under a composition of (some power of) Tηj

and
(some power of) T −1

j . Using this invariance property, we perform flipping once more to
replace the original average from equation (35) by a new average

lim
N→∞ E

n∈[N]

∏
j∈[�]

T
ρ′′′′

j (n)

η′′′′
j

f ′′′′
j ·

∏
j∈[L]

Dj (q
′′′′
j (n)), (43)

where η′′′′
j = j whenever ηj ∈ Itw ; the details are provided in Corollary 6.7. This new

average has the good ergodicity property and is controllable. Importantly, it has a lower
type, which is established in Proposition 6.8. We can then obtain seminorm control
of equation (35) by inductively invoking the seminorm control of equation (43). The
seminorm control of equation (43) is proved in turn by the smoothing argument for
controllable averages described above.

Thus, whether the tuple (T
ρj (n)

ηj
)j∈[�] of a non-basic type is controllable or not, the

idea is to control it by a Gowers–Host–Kra seminorm by invoking seminorm control for
tuples of lower type or smaller length that naturally appear when examining (T

ρj (n)
ηj

)j∈[�].

If the tuple (T
ρj (n)

ηj
)j∈[�] of type w is controllable, we will invoke seminorm control

for tuples of type w′ satisfying w′
t = wt for t ∈ [κ] and w′

κ+1 > wκ+1 > 0 for some
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κ ∈ [K2 − 1] in the ping step of the smoothing argument. Specifically, the new type w′
is obtained from w by the type operation defined in equation (45). In the pong step of
the smoothing argument, we will use seminorm control for tuples of length � − 1. If the
tuple (T

ρj (n)
ηj

)j∈[�] is uncontrollable, we will invoke seminorm control for tuples of type w′
satisfying w′

t = wt for t ∈ [κ] and w′
κ+1 = 0 < wκ+1 for some κ ∈ [K2 − 1]; the details

are given in Proposition 6.8(v). The way in which we apply seminorm control for tuples of
lower type motivates the choice of our somewhat weird ordering on types.

Reducing to tuples of lower type this way and noting that the tuples of length � can
have at most (� + 1)� distinct types, we arrive after finitely many steps at tuples of basic
type w = (K3, 0, . . . , 0), that is, those in which all the transformations come from the
same class I1. Tuples of basic type will serve as the basis for our induction procedure.
For instance, the tuple (T n2

1 , T n2

2 , T n2+n
2 ) from Example 1 has basic type (3, 0) because

it only involves the transformations T1, T2 whose indices belong to the set I1 = {1, 2}
(corresponding to the polynomial n2); however, the type (2, 1) of (T n2

1 , T n2

2 , T n2+n
3 ) is not

basic because this tuple involves both the transformations T1, T2 and the transformation T3

with an index from the set I2 = {3} (corresponding to the polynomial n2 + n).

6. Further maneuvers and obstructions for longer families
Having presented the general strategy for proving Theorem 1.1 for longer families, we
move on to discuss in detail the specific maneuvers outlined in §5.2. In this section, we state
and prove various partial results that give substance to the moves discussed in §5.2. We
also discuss a number of obstructions that appear in the process and have to be overcome
before we can give a complete proof of Theorem 1.1. All of the above are illustrated with
examples that will hopefully make the abstract statements in this and the next section more
comprehensible to the reader. We then move on in §7 to prove Theorem 1.1.

The plan for this section is as follows. In §6.1, we discuss how to obtain a tuple of
lower type in the ping step of the seminorm smoothing argument for controllable tuples.
Section 6.2 exhibits the necessity of assuming that the functions appearing in the averages
from equation (40) have some invariance properties. In particular, we show by examples
how these properties are essentially used to tackle tuples of basic type and to perform
the pong step of the seminorm smoothing argument for controllable tuples. We also give
details of the flipping procedure that relies on these invariance properties. Subsequently, we
discuss in §6.3 how flipping can be used to reduce an uncontrollable tuple to a controllable
tuple of a lower type. Finally, we combine the details of the aforementioned moves in §6.4
and show how we can reach a tuple of a basic type in a finite number of steps.

6.1. Reducing controllable tuples to tuples of lower type in the ping step. As explained
in §5.2, in the ping part of the smoothing argument, we will replace the original tuple

(T
ρj (n)

ηj
)j∈[�] by a new tuple (T

ρ′
j (n)

η′
j

)j∈[�]. The new indexing tuple η′ will be defined via

the operation

(τmiη)j :=
{

ηj , j �= m,

ηi , j = m,
(44)
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for some distinct values m, i ∈ L. This indexing tuple corresponds to replacing the term

T
ρm(n)

ηm in (T
ρj (n)

ηj
)j∈[�] by T

ρ′
i (n)

ηi
, and all the other terms T

ρj (n)
ηj

by T
ρ′

j (n)

ηj
. The new tuple

(T
ρ′

j (n)

η′
j

)j∈[�] has to be chosen carefully: it must preserve the good ergodicity property

and allow for seminorm control. Lastly, it must have a lower type. For this reason, we let
Supp(w) := {t ∈ [K2] : wt > 0}, and if there exist distinct integers t1, t2 ∈ Supp(w), we
define the type operation σt1t2w by the formula

(σt1t2w)t :=

⎧⎪⎪⎨
⎪⎪⎩

wt , t �= t1, t2,

wt1 − 1, t = t1,

wt2 + 1, t = t2.

. (45)

For instance, σ32(3, 2, 2) = (3, 3, 1). As a consequence of our ordering on types, we have
σt1t2w < w whenever t2 < t1 (the assumption wt2 > 0 is crucial here), so in particular
(3, 3, 1) < (3, 2, 2).

Proposition 6.1, which we are about to state now, specifies how these tuples of lower
type are picked, what form they take, and what properties they enjoy. It will be used in our
smoothing argument in Proposition 7.5 in that the tuple of lower type for which we invoke
the induction hypothesis in the ping step is constructed in Proposition 6.1.

PROPOSITION 6.1. (Type reduction for controllable tuples) Let � ∈ N, η ∈ [�]� be
an indexing tuple and ρ1, . . . , ρ� ∈ Z[n] be polynomials with leading coefficients
b1, . . . , b�. Let also (X, X , μ, T1, . . . , T�) be a system and (T

ρj (n)
ηj

)j∈[�] be a tuple

of a non-basic type w whose last non-zero index is tw. Suppose that (T
ρj (n)

ηj
)j∈[�] is

controllable. Then there exists λ ∈ N such that for every r ∈ {0, . . . , λ − 1}, there exist
an index t ′w ∈ Supp(w) distinct from tw, an index i ∈ [�] with ηi ∈ It ′w , and a tuple

(T
ρ′

j (n)

η′
j

)j∈[�] satisfying the following properties.

(i) The type w′ of the tuple (T
ρ′

j (n)

η′
j

)j∈[�] satisfies w′ = σtwt ′ww < w.

(ii) The indexing tuple η′ is given by η′ := τmiη for some m ∈ [�] satisfying the
controllability condition (recall that τmi is defined in equation (44)).

(iii) The polynomials ρ′
1, . . . , ρ′

� have integer coefficients and zero constant terms, and
they take the form

ρ′
j (n) :=

⎧⎪⎨
⎪⎩

ρj (λn + r) − ρj (r), j �= m,

bi

bm

(ρj (λn + r) − ρj (r)), j = m.

We remark that when the leading coefficients of ρ1, . . . , ρ� are 1, then ρ′
j = ρj for

every j ∈ [�], so the property (iii) becomes trivial.

Proof. Let tw be the last non-zero index of the type w of (T
ρj (n)

ηj
)j∈[�]. By the control-

lability of the tuple, there exists m ∈ [�] with ηm ∈ Itw such that ηm′ = ηm implies that
ρm′ and ρm are distinct. Let t ′w ∈ Supp(w) be an index different from tw (it exists since the
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type w is non-basic) and i ∈ [�] be an index with ηi ∈ It ′w . We define η′ := τmiη, meaning
that we replace Tηm by Tηi

and keep the other transformations the same.
We let λ ∈ N be the smallest number for which (λ/bm)ρm ∈ Z[n] (equivalently, λ is the

smallest number such that bm divides the coefficients of the polynomials ρm(λn + r) −
ρm(r) for r ∈ Z). We also fix an arbitrary r ∈ {0, . . . , λ − 1}. We then define the new
polynomials ρ′

1, . . . , ρ′
� by the formula

ρ′
j (n) :=

⎧⎪⎨
⎪⎩

ρj (λn + r) − ρj (r), j �= m,

bi

bm

(ρj (λn + r) − ρj (r)), j = m.

The new polynomials are in Z[n] by the choice of λ, and it is not hard to check that they

have zero constant terms. Lastly, the new tuple (T
ρ′

j (n)

η′
j

)j∈[�] has the type w′ = σtwt ′ww,

which is strictly smaller than w by the assumption that t ′w < tw (which follows from
t ′w �= tw and the assumption that tw is the last non-zero index).

Example 5. (Examples of type reduction) We show how Proposition 6.1 has been
implicitly applied to the two tuples from §4.

(i) The tuple (T n2

1 , T n2

2 , T n2+n
3 ) discussed at length in §4 has type (2, 1) corresponding

to the partition I1 = {1, 2}, I2 = {3}, and its good ergodicity property means that
I(T1T

−1
2 ) = I(T1) ∩ I(T2), that is, the only T1T

−1
2 -invariant functions are those

invariant simultaneously under T1 and T2. In the proof of Proposition 4.2, we
applied the type reduction once (with the operation τ32) to obtain the new tuple
(T n2

1 , T n2

2 , T n2+n
2 ) with indexing tuple (1, 2, 2) and basic type (3, 0).

(ii) The tuple (T n2

1 , T n2

2 , T 2n2+n
3 ) presented at the end of §4 also has type (2, 1) corre-

sponding to the partition I1 = {1, 2}, I2 = {3}, and its good ergodicity property also
states that I(T1T

−1
2 ) = I(T1) ∩ I(T2). In the ping step of the smoothing argument,

we obtained (upon taking r0 = 1) the new tuple (T 4n2+4n
1 , T 4n2+4

2 , T 4n2+5n
2 ) by

performing the operation τ32. This new tuple also has the indexing tuple (1, 2, 2)

and basic type (3, 0), and its ergodicity property is the same as for the original tuple.

Definition. (Descendants) Let p1, . . . , p� ∈ Z[n] be polynomials with leading coef-
ficients a1, . . . , a� and η ∈ [�]� be an indexing tuple. We say that the polynomi-
als ρ1, . . . , ρ� are descendants of p1, . . . , p� along η, if there exists λ ∈ N and
r ∈ {0, . . . , λ − 1} such that ρj (n) = aηj

/aj (pj (λn + r) − pj (r)). If this is the case, we

also say the tuple (T
ρj (n)

ηj
)j∈[�] is a descendant of the tuple (T

pj (n)

j )j∈[�].

Descendancy enjoys the following transitivity property.

LEMMA 6.2. (Descendancy is transitive) Suppose that the polynomials ρ1, . . . , ρ� ∈ Z[n]
are descendants of p1, . . . , p� ∈ Z[n] along η, and let ρ′

j (n) := aη′
j
/aηj

(ρj (λ
′n + r ′) −

ρj (r
′)) for all j ∈ [�], where η′ ∈ [�]�, λ′ ∈ N, r ′ ∈ {0, . . . , λ − 1} and a1, . . . , a� are

the leading coefficients of p1, . . . , p�. Then ρ′
1, . . . , ρ′

� are descendants of p1, . . . , p�

along η′.
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Proof. Let λ ∈ N and r ∈ {0, . . . , λ − 1} be such that ρj (n) = aηj
/aj (pj (λn + r) −

pj (r)). Then a direct computation gives that

ρ′
j (n) =

aη′
j

aj

(pj (λλ′n + λr ′ + r) − pj (λr ′ + r)),

giving the claim.

In particular, we get the following corollary of interest to us that follows from a
straightforward combination of Proposition 6.1 and Lemma 6.2.

COROLLARY 6.3. (Type reduction preserves descendancy) Let � ∈ N, η ∈ [�]� be an
indexing tuple, p1, . . . , p�, ρ1, . . . , ρ� ∈Z[n] be polynomials, and (X, X , μ, T1, . . . , T�)

be a system. Suppose that (T
ρj (n)

ηj
)j∈[�] is a tuple of a non-basic type w that is a

descendant of (T
pj (n)

j )j∈[�]. Then the tuple (T
ρ′

j (n)

η′
j

)j∈[�] constructed from (T
ρj (n)

ηj
)j∈[�]

in Proposition 6.1 is also a descendant of (T
pj (n)

j )j∈[�].

Proof. Suppose that ρ1, . . . , ρ� are descendants of p1, . . . , p� along η by assumption.
Letting aj , bj be the leading coefficients of pj , ρj , respectively, and ρ′

j be as defined in
Proposition 6.1, we have bj = aηj

(λ′)dj for some λ ∈ Z, where dj := deg pj = deg ρj =
deg ρ′

j . Thus,

ρ′
j (n) = ρj (λn + r) − ρj (r) =

aη′
j

aηj

(ρj (λn + r) − ρj (r))

for j �= m and

ρ′
j (n) = bi

bm

(ρj (λn + r) − ρj (r))

= aηi

aηm

(ρj (λn + r) − ρj (r)) = aη′
m

aηm

(ρj (λn + r) − ρj (r))

for j = m, where we use η′
m = ηi and η′

j = ηj for j �= m. Hence, the polynomials
ρ′

1, . . . , ρ′
� satisfy the condition of Lemma 6.2, implying the claim.

Descendant tuples enjoy the following important properties.

PROPOSITION 6.4. (Properties of descendants) Let � ∈ N, η ∈ [�]� be an indexing tuple,
p1, . . . , p�, ρ1, . . . , ρ� ∈ Z[n] be polynomials, and (X, X , μ, T1, . . . , T�) be a system.
Suppose that (T

pj (n)

j )j∈[�] has the good ergodicity property and (T
ρj (n)

ηj
)j∈[�] is its

descendant. Then the following hold.
(i) We have

L(ρ1, . . . , ρ�) = L(p1, . . . , p�),

Ki(ρ1, . . . , ρ�) = Ki(p1, . . . , p�), i ∈ [3],

It (ρ1, . . . , ρ�) = It (p1, . . . , p�), t ∈ [K1].

(ii) The tuple (T
ρj (n)

ηj
)j∈[�] has the good ergodicity property.
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Property (i) ensures that when passing to descendants, we do not need to redefine the
partition I1, . . . , IK1 . Property (ii) is crucial because it shows that descendants retain the
essential ergodicity properties of the original tuple.

Proof. Part (i) follows from the fact that for every j ∈ [�], the polynomials pj and ρj

have the same degree, and that pj1 , pj2 are linearly dependent if and only if ρj1 , ρj2 are.
We therefore move on to proving part (ii). Let bj be the leading coefficient of ρj , aj be the
leading coefficient of pj , and dj := deg pj = deg ρj for every j ∈ [�]. To check that the

tuple (T
ρj (n)

ηj
)j∈[�] has the good ergodicity property, we need to show that if ηj1 , ηj2 are

distinct elements of the same set It , then

I(T
βj1
ηj1

T
−βj2
ηj2

) = I(Tηj1
) ∩ I(Tηj2

), (46)

where

βj := bj / gcd(bj1 , bj2)

for j = j1, j2. By construction, bj = aηj
λdj for some λ ∈ N, and so

βj = aηj
/ gcd(aηj1

, aηj2
) =: αηj

(47)

for j = j1, j2. The assumption ηj1 , ηj2 ∈ It for some fixed t implies that pηj1
, pηj2

are
linearly dependent, and additionally pηj1

/αηj1
= pηj2

/αηj2
. Since αηj1

, αηj2
are coprime,

the good ergodicity property of (T
pj (n)

j )j∈[�] implies that

I(T
αηj1
ηj1

T
−αηj2
ηj2

) = I(Tηj1
) ∩ I(Tηj2

).

The equality in equation (46) follows from this and the identification in equation (47).

Example 6. (Type reduction for non-monic polynomials) We present one more example
to show how Proposition 6.1 is applied iteratively for more complicated tuples, and how
properties listed in Proposition 6.4 are retained when passing to lower-type descendant
tuples. Consider the tuple

(T n2

1 , T 3n2

2 , T 2n2

3 , T 2n2+n
4 , T n2+n

5 , T n2+n
6 , T n

7 ), (48)

and assume that it has the good ergodicity property, that is,

I(T1T
−3
2 ) = I(T1) ∩ I(T2), I(T1T

−2
3 ) = I(T1) ∩ I(T3),

I(T 3
2 T −2

3 ) = I(T2) ∩ I(T3), I(T5T
−1
6 ) = I(T5) ∩ I(T6).

This tuple has length 7, degree 2, K1 = 5, K2 = 4, K3 = 6, and L = {1, 2, 3, 4, 5, 6}. If
we define the partition I1 = {1, 2, 3}, I2 = {5, 6}, I3 = {4}, I4 = {7}, then the tuple has
type w0 = (3, 2, 1); we recall that the term T n

7 plays no part in the type consideration
since the polynomial ρ07(n) = n has a lower degree. (Perhaps a more natural way to
define the partition would be to have I1 = {1, 2, 3}, I2 = {4}, I3 = {5, 6}, I4 = {7}.
However, then the tuple would have type (3, 1, 2), and reducing to the tuple of basic
type by iteratively applying Proposition 6.1 would take more steps. This shows that
choosing the partition strategically can save on the number of iterations of Proposition 6.1
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needed to reach a tuple of basic type.) The tuple in equation (48) has the basic indexing
tuple η0 = (1, 2, 3, 4, 5, 6, 7). The tuple is controllable, and 4 satisfies the controllability
condition, so in the first step, we replace T4 (this corresponds to us wanting to first get a
T4-seminorm control over the tuple in equation (48)). We are then provided with an index
i0 ∈ I1 ∪ I2 (say, i0 = 1), and we get the new indexing tuple

η1 := τm0i0η0 = τ41η0 = (1, 2, 3, 1, 5, 6, 7).

The leading coefficient 2 of 2n2 + n does not divide the linear coefficient, and the smallest
λ0 ∈ N such that 2 divides the coefficients of λ0(2n2 + n) is λ0 = 2. In performing the
ping step of the seminorm smoothing argument for the tuple in equation (48), we will
want to apply the T1T

−2
4 invariance of some function u to replace T 2n2+n

4 u by T
q(n)

1 u′
for some q ∈ Z[n] and a function u′ related in some way to u. We cannot do this directly
since 1

2 (2n2 + n) /∈ Z[n], but we can do this ‘piecewise’ by splitting N into arithmetic
progressions (2N + r)r=0,1 and considering the two cases separately (see the sketch of the
seminorm smoothing argument for n2, n2, 2n2 + n at the end of §4 to see how this was
done for that family). We therefore replace the original polynomials ρ01, . . . , ρ07 by new
polynomials

ρ1j (n) :=
{

ρ0j (2n + r0) − ρ0j (r0), j �= 4,
1
2 (ρ04(2n + r0) − ρ04(r0)), j = 4,

for some r0 ∈ {0, 1} (the choice of r0 is not ours). Assuming that r0 = 1, we obtain the
new tuple

(T 4n2+4n
1 , T 12n2+12n

2 , T 8n2+8n
3 , T 4n2+5n

1 , T 4n2+6n
5 , T 4n2+6n

6 , T 2n
7 ). (49)

The type of the new tuple is w1 = σ31w0 = (4, 2, 0) since we now have four transforma-
tions with indices coming from I1 and two transformations coming from I2. This type is
lower than the original type w0, and so we have successfully obtained a tuple of lower type.
The new tuple is controllable, with m = 5, 6 both satisfying the controllability condition.

Although we replaced the polynomials ρ01, . . . , ρ07 by new ones, we note that for any
j1, j2 ∈ [7], the polynomials ρ1j1 , ρ1j2 are pairwise dependent if and only if ρ0j1 , ρ0j2

are, and not only that: if they are pairwise dependent, then ρ1j1/c1 = ρ1j2/c2 if and only
if ρ0j1/c1 = ρ0j2/c2 for any non-zero integers c1, c2. Moreover, if η1j1 = η1j2 , then the
leading coefficients of ρ1j1 and ρ1j2 are identical. These two observations ensure that the
ergodicity conditions on T1T

−3
2 , T1T

−2
3 , T 3

2 T −2
3 , T5T

−1
6 , which constitute the assumption

that the original tuple in equation (48) has the good ergodicity property, carry on to the
new tuple in equation (49), implying that it also enjoys the good ergodicity property.
This exemplifies the claim from Proposition 6.4 that descendants of tuples with the good
ergodicity property inherit the property.

The type w1 is not basic, and so we continue the procedure. This time, we pick some
m1 ∈ I2, say m1 = 5 (it satisfies the controllability condition, as does 6, the other possible
choice). We are then handed an index i1 ∈ I1 (say, i1 = 3), so that

η2 := τm1i1η1 = τ53η1 = (1, 2, 3, 1, 3, 6, 7).
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The leading coefficient 4 of 4n2 + 6n does not divide the linear term, and so we replace
the polynomials ρ11, . . . , ρ17 by new polynomials of the form

ρ2j (n) :=
{

ρ1j (2n + r1) − ρ1j (r1), j �= 5,
8
4 (ρ15(2n + r1) − ρ15(r1)), j = 5,

for some r1 ∈ {0, 1} (we pass from n to 2n + r1 because 2 is the smallest natural number
λ1 such that the leading coefficient 4 of ρ15 divides the coefficients of λ1ρ15). Hence, the
new tuple takes the form (upon assuming r1 = 0)

(T 16n2+8n
1 , T 48n2+24n

2 , T 32n2+16n
3 , T 16n2+10n

1 , T 32n2+24n
3 , T 16n2+12n

6 , T 4n
7 ). (50)

The tuple in equation (50) still has the good ergodicity property; this is once again a
consequence of two facts:
• for any j1, j2 ∈ [7] and non-zero c1, c2 ∈ Z, we have ρ2j1/c1 = ρ2j2/c2 if and only if

ρ0j1/c1 = ρ0j2/c2;
• for any j1, j2 ∈ [7], if η2j1 = η2j2 , then ρ2j1 , ρ2j2 have identical leading coefficients.
We remark though that to ensure the ergodicity property of equation (50), we no longer
need the original assumption I(T5T

−1
6 ) = I(T5) ∩ I(T6) because the transformation T5 is

not present.
The new tuple in equation (50) has type w2 = σ21w1 = (5, 1, 0), which is still not basic,

and so we continue the procedure one more time. The only index left in I2 is 6, and it
satisfies the controllability assumption, so we replace T6 this time. We are given an index
i2 ∈ I1 (say, i2 = 1), so that

η3 := τm2i2η1 = (1, 2, 3, 1, 3, 1, 7).

Since the leading coefficient 16 of ρ21 does not divide the coefficients of the polynomial
ρ26(n) = 16n2 + 12n, and the smallest λ2 ∈ N for which 16 divides the coefficients of
λ2ρ26(n) = λ2(16n2 + 12n) is λ2 = 4, we define the new polynomials to be

ρ3j (n) :=

⎧⎪⎨
⎪⎩

ρ2j (4n + r2) − ρ2j (r2), j �= 6,

16
16

(ρ26(4n + r2) − ρ26(r2)), j = 6,

for some r2 ∈ {0, 1, 2, 3}. Assuming, say, r2 = 3, we get the new tuple

(T 256n2+416n
1 , T 768n2+1248n

2 , T 512n2+832n
3 , T 256n2+424n

1 , T 512n2+864n
3 , T 256n2+432n

1 , T 16n
7 ).

This tuple has the basic type w2 = σ21w2 = (6, 0, 0), and so the procedure halts. A similar
argument as before shows also that it enjoys the good ergodicity property.

Lastly, we observe that η3|I1 = η3|{1,2,3} is constant, that is, while performing the type
reduction procedure, we did not replace the transformations at indices from I1. This is a
special case of property (vi) from Proposition 6.8, which will play an important role in the
proof of Proposition 7.2, a seminorm control argument for tuples of basic type.

6.2. The role of invariance properties. Proposition 6.1 ensures that the lower type tuples
to which we pass in the ping step of the smoothing argument have the good ergodicity
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property. However, this is not enough. For more complicated tuples, we also need to
assume that the functions appearing in the associated average have some invariance
properties, otherwise the induction breaks. The example that we present now displays the
necessity of this extra information. We sketch how—reducing the original tuple to tuples of
shorter length or lower type—we eventually arrive at averages for which we cannot obtain
seminorm control unless the functions appearing in the averages satisfy certain invariance
properties. We emphasize that our goal in this example is not to give a complete proof
of seminorm control, but rather to point out the necessity of the invariance assumptions.
Therefore, we assume without proof when convenient that we have seminorm control over
certain tuples of lower type or shorter length.

Example 7. (The necessity of invariance properties) Consider the average

E
n∈[N]

T n2

1 f1 · T n2

2 f2 · T n2+n
3 f3 · T n2+n

4 f4. (51)

It has length 4, degree 2, and type w = (2, 2), corresponding to the partition
I1 = {1, 2}, I2 = {3, 4}. Suppose that equation (51) has the good ergodicity property,
that is,

I(T1T
−1

2 ) = I(T1) ∩ I(T2) and I(T3T
−1
4 ) = I(T3) ∩ I(T4).

We illustrate the steps that need to be taken to show that this average is controlled by
|||f4|||s,T4 for some s ∈ N.

By Proposition 3.7, the average from equation (51) is controlled by the seminorm
|||f4|||b1,...,bs+1 for some vectors

b1, . . . , bs+1 ∈ {e4, e4 − e3, e4 − e2, e4 − e1}.
We want to replace the vector bs+1 by (multiple copies of) e4. Iterating this procedure
gives a control of equation (51) by a T4-seminorm of f4.

If bs+1 = e4, there is nothing to check. If bs+1 = e4 − e3, then this is the consequence
of the good ergodicity property of the average and Lemma 2.2. So the only cases to
check are when bs+1 equals e4 − e2 or e4 − e1. Without loss of generality, we assume
that bs+1 = e4 − e2.

Suppose that the limit of equation (51) is non-zero. Arguing as in the proof of
Proposition 4.1, we deduce that

lim inf
H→∞ E

h,h′∈[H ]s
lim

N→∞

∥∥∥ E
n∈[N]

T n2

1 f1,h,h′ · T n2

2 f2,h,h′ · T n2+n
3 f3,h,h′ · T n2+n

4 uh,h′
∥∥∥

L2(μ)
>0

for some T4T
−1
2 -invariant functions uh,h′ as well as functions fj ,h,h′ := 	b1,...,bs ;h−h′fj

for j ∈ [4]. The invariance property of the functions uh,h′ implies that

lim inf
H→∞ E

h,h′∈[H ]s
lim

N→∞

∥∥∥ E
n∈[N]

T n2

1 f1,h,h′ · T n2

2 f2,h,h′ · T n2+n
3 f3,h,h′ · T n2+n

2 uh,h′
∥∥∥

L2(μ)
> 0.

(52)
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Each of the averages inside the liminf above is of the form

E
n∈[N]

T n2

1 g1 · T n2

2 g2 · T n2+n
3 g3 · T n2+n

2 g4 (53)

for 1-bounded functions g1, g2, g3, g4 ∈ L∞(μ) of which g4 is T4T
−1
2 invariant. The

averages from equation (53) are controllable, with 3 satisfying the controllability condition,
and they have type (3, 1), which is lower than the type (2, 2) of the original average
from equation (51). Assuming inductively that we have the seminorm control of averages
from equation (53) by a T3-seminorm of f3 (while we only use this particular control,
our inductive assumption will guarantee that we control averages from equation (53) by a
relevant seminorm of other functions, too), we can deduce from equation (52) (like in the
proof of Proposition 4.2) that

|||f3|||b1,...,bs ,e×s1
3

> 0

for some s1 ∈ N, and similarly for other terms. This completes the ping step. For the pong
step, this auxiliary control and Proposition 3.3 imply that

lim inf
H→∞ E

h,h′∈[H ]s
lim

N→∞

∥∥∥∥ E
n∈[N]

T n2

1 f1,h,h′ · T n2

2 f2,h,h′

×
2s∏

j=1

Dj (n
2 + n) · T n2+n

4 f4,h,h′

∥∥∥∥
L2(μ)

> 0 (54)

for some Dj ∈ Ds1 . Each average in equation (54) takes the form

E
n∈[N]

T n2

1 g1 · T n2

2 g2 ·
2s∏

j=1

Dj (n
2 + n) · T n2+n

4 g4. (55)

Assuming inductively that averages of the form in equation (55) are controlled by a
T4-seminorm of the last term, we get the desired claim |||f4|||b1,...,bs ,e×s′

4
> 0 for some

s′ ∈ N using an argument similar to one in the proof of Proposition 4.2.
We have showed how a seminorm control of the original average from equation (51) by a

T4-seminorm of f4 follows from the seminorm control of the averages from equations (53)
and (55). We have not proved, however, that these auxiliary averages are indeed controlled
by Gowers–Host–Kra seminorms, assuming instead that this follows by induction. It turns
out that obtaining a seminorm control of the averages from equation (53) involves an
interesting twist in that the argument makes essential use of the assumption that the
function g4 is T4T

−1
2 -invariant. We sketch the steps taken in the seminorm smoothing

argument for this average under the extra invariance assumption to show where this
invariance property comes up and why it is necessary.

In proving the seminorm control of equation (53), we first prove that the average is
controlled by a T3-seminorm of g3 since T3 is the only transformation with index in I2.
Arguing as above (using Proposition 3.7 for equation (53), assuming that the L2(μ) limit
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of equation (53) is non-zero and mimicking the proof of Proposition 4.2), we deduce that

lim inf
H→∞ E

h,h′∈[H ]s
lim

N→∞

∥∥∥ E
n∈[N]

T n2

1 g1,h,h′ · T n2

2 g2,h,h′ · T n2+n
3 uh,h′ · T n2+n

2 g4,h,h′
∥∥∥

L2(μ)
> 0

for 1-bounded functions uh,h′ that are all invariant either under T3T
−1

1 or under T3T
−1

2 .

Then we use the relevant invariance property to replace each T n2+n
3 uh,h′ by T n2+n

1 uh,h′

or T n2+n
2 uh,h′ . Hence, in the ping step of the seminorm smoothing argument for equation

(53), we need to invoke seminorm control of averages of the form

E
n∈[N]

T n2

1 g′
1 · T n2

2 g′
2 · T n2+n

1 g′
3 · T n2+n

2 g′
4

and E
n∈[N]

T n2

1 g′
1 · T n2

2 g′
2 · T n2+n

2 g′
3 · T n2+n

2 g′
4, (56)

where g′
4 is T4T

−1
2 -invariant while g′

3 is invariant under T3T
−1
1 and T3T

−1
2 respectively.

Both of them have basic type.
We show that for arbitrary g′

1, g′
2, g′

3, g′
4, without the aforementioned invariance

assumptions, we would not be able to control the average from equation (56) by
Gowers–Host–Kra seminorms; specifically, we could not control it by a T2-seminorm of
g′

4. Conversely, this is achievable if g′
3, g′

4 are invariant under T3T
−1
2 , T4T

−1
2 , respectively.

Assuming for simplicity that g′
1 = g′

2 := 1, we have that the second average equals

E
n∈[N]

T n2

1 g′
1 · T n2

2 g′
2 · T n2+n

2 g′
3 · T n2+n

2 g′
4 = E

n∈[N]
T n2+n

2 (g′
3 · g′

4),

and so without any additional assumptions, the average from equation (56) is in general
not controlled by a T2-seminorm of g′

3 or a T2-seminorm of g′
4. However, the invariance

assumptions on g′
3, g′

4 give us

E
n∈[N]

T n2+n
2 (g′

3 · g′
4) = E

n∈[N]
T n2+n

3 g′
3 · T n2+n

4 g′
4, (57)

and by Proposition 3.7, these averages can be controlled by |||g′
4|||e×s

4 ,(e4−e3)×s for some

s ∈ N. Then the assumption I(T4T
−1
3 ) ⊆ I(T4) and Lemma 2.2 give |||g′

4|||e×s
4 ,(e4−e3)×s ≤

|||g′
4|||2s,T4 , and so a T4-seminorm of g′

4 does control the average from equation (57). Using
the invariance property once again, this time along with Lemma 3.5, we get |||g′

4|||s′,T4 =
|||g′

4|||s′,T2 , so a T2-seminorm of g′
4 controls equation (57) and hence equation (56).

To get control over equation (56) by a T2-seminorm of g′
4 without any simplify-

ing assumptions on g′
1, g′

2, we have to run a more complicated argument. Combining
Proposition 3.7, the ergodic condition on T1T

−1
2 and Lemma 2.2, we first obtain control of

equation (56) by a T1-seminorm of g′
1 and a T2-seminorm of g′

2. Assuming that the L2(μ)

limit of the average from equation (56) is positive, we use this newly established control,
decompose g′

1 using Proposition 2.3, and apply the pigeonhole principle to show that the
average

E
n∈[N]

D(n2) · T n2

2 g′
2 · T n2+n

2 g′
3 · T n2+n

2 g′
4 (58)
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has a non-vanishing limit. The invariance properties of g′
3 and g′

4 imply that the average
from equation (58) equals

E
n∈[N]

D(n2) · T n2

2 g′
2 · T n2+n

3 g′
3 · T n2+n

4 g′
4, (59)

for which a seminorm control by a T4-seminorm of g′
4 follows by inductively invoking

seminorm control for averages of length 3. The invariance property of g′
4 implies once

again that |||g′
4|||s′,T4 = |||g′

4|||s′,T2 for any s′ ∈ N. It follows that a T2-seminorm of g′
4

controls equation (59), and hence also equations (58) and (56).
The invariance properties also come up in the pong step of the smoothing argument for

equation (53). In this part, we encounter averages of the form

E
n∈[N]

L∏
j=1

Dj (n
2) · T n2

2 g′′
2 · T n2+n

3 g′′
3 · T n2+n

2 g′′
4 . (60)

Moreover, the function g′′
4 is T4T

−1
2 -invariant because it is essentially a multiplicative

derivative of g′
4. By a similar reason as before, such averages could not be controlled by

Gowers–Host–Kra seminorms for arbitrary g′′
2 , g′′

3 , g′′
4 without the invariance assumption.

However, thanks to the invariance assumption, the average from equation (60) equals

lim
N→∞ E

n∈[N]

L∏
j=1

Dj (n
2) · T n2

2 g′′
2 · T n2+n

3 g′′
3 · T n2+n

4 g′′
4 , (61)

which is controlled by |||g′′
4 |||s′,T4 for some s′ ∈ N. (We can assume this inductively, or

we can prove that a T4-seminorm of g′′
4 controls equation (61) in essentially the same

way as we argued in Proposition 4.2.) Using the invariance property of g′′
4 again together

with Lemma 3.5, we deduce that |||g′′
4 |||s′,T4 = |||g′′

4 |||s′,T2 , and so a T2-seminorm of g′′
4

does control equation (60). An argument similar to the one at the end of the proof of
Proposition 4.2 implies that a T2-seminorm of g4 controls equation (53).

The example above shows that it is crucial to keep track of the invariance properties
of the functions appearing in our averages; these invariance properties turn out to be
indispensable for applying Proposition 3.7 to averages of basic type, while obtaining
seminorm control in the pong step of the argument, or—as we see later on—for handling
uncontrollable averages. Using the invariance property to replace an average like equations
(58) and (60) for which we cannot have seminorm control by an average like equations (59)
and (61), respectively, which is controlled by Gowers–Host–Kra seminorms, exemplifies
the flipping technique that will be presented in detail in Proposition 6.6.

Recalling how we have performed the ping and pong steps in Examples 1, 2, and 7, we
observe that in the ping step, we pass from the average

E
n∈[N]

∏
j∈[�]

T
ρj (n)

ηj
fj ·

∏
j∈[L]

Dj (qj (n)) (62)
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to averages

E
n∈[N]

∏
j∈[�],
j �=m

T
ρ′

j (n)

ηj
fj ,h,h′ · T ρ′

m(n)
ηi

uh,h′ ·
∏

j∈[L′]
D′

j (q
′
j (n)), (63)

where fj ,h,h′ := 	b1,...,bs ;h−h′fj for some vectors b1, . . . , bs ∈ Z
�. In particular, the func-

tions fj ,h,h′ are invariant under whatever transformations the functions fj are invariant.
Moreover, the functions uh,h′ are invariant under T

am
ηm T

−ai
ηi

, where am and ai are the leading
coefficients of ρm and ρi , but they also retain whatever invariance property fm has. Thus,
by passing from equation (62) to equation (63), we do not lose any invariance properties
of the original functions, but rather gain new ones.

Similarly, in the pong step, we pass to averages

E
n∈[N]

∏
j∈[�],
j �=i

T
ρj (n)

ηj
fj ,h,h′ ·

∏
j∈[L′′]

D′′
j (q ′′

j (n)),

and the functions fj ,h,h′ retain whatever invariance properties fj have.
Thus, the functions (f1, . . . , f�) get replaced by

(f1,h,h′ , . . . , fm−1,h,h′ , uh,h′ , fm+1,h,h′ , . . . , f�,h,h′) (64)

in the ping step and

(f1,h,h′ , . . . , fi−1,h,h′ , 1, fi+1,h,h′ , . . . , f�,h,h′) (65)

in the pong step. We now formalize the idea that these new families of functions retain the
original invariance properties and gain new ones.

Definition. (Good invariance property) Let γ ∈ N. We say that the tuple of func-
tions (f1, . . . , f�) has the γ -invariance property along η with respect to polynomials
p1, . . . , p� with leading coefficients a1, . . . , a� if for every j ∈ [�], the function fj is

invariant under (T
aηj
ηj

T
−aj

j )γ . Let I be a (possibly infinite) indexing set. We say that
a collection (fi1, . . . , fi�)i∈I has the good invariance property along η with respect
to polynomials p1, . . . , p� if there exists γ ∈ N such that (fi1, . . . , fi�)i∈I has the
γ -invariance property along η with respect to p1, . . . , p� for every i ∈ I .

If η = (1, . . . , �) is the identity tuple, there is nothing to check and any collection
of functions has the 1-invariance property with respect to any polynomial family. The
property only becomes non-trivial when η is not the identity tuple.

In our arguments, we will ensure that the functions fj in the average

E
n∈[N]

∏
j∈[�]

T
ρj (n)

ηj
fj ·

∏
j∈[L]

Dj (qj (n)),

obtained by a sequence of reductions from the original average En∈[N]
∏

j∈[�] T
pj (n)

j ,
have the good invariance property with respect to the original polynomials p1, . . . , p�,
that is, there exists γ ∈ N such that for every j ∈ [�], the function fj is invariant under

(T
aηj
ηj

T
−aj

j )γ , where aj is the leading coefficient of the polynomial pj . The need to keep
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track of the invariance property with respect to the original polynomials is explained in
Example 8 below. Before we state this example, however, we prove that the invariance
properties get preserved when passing from the tuple of functions (f1, . . . , f�) to the
tuples in equations (64) and (65).

PROPOSITION 6.5. (Propagation of invariance properties) Let �, s ∈ N, η ∈ [�]� be an
indexing tuple, η′ := τmiη for distinct m, i ∈ [�] be another indexing tuple, p1, . . . , p� ∈
Z[n] be polynomials with leading coefficients a1, . . . , a�, (X, X , μ, T1, . . . , T�) be a
system, and b1, . . . , bs ∈ Z

� be vectors. Suppose that for some γ ∈ N, the functions
(f1, . . . , f�) have the γ -invariance property along η with respect to the polynomials
p1, . . . , p�. Consider the functions (f ′

1,h, . . . , f ′
�,h)h∈Zs , where f ′

j ,h := 	b1,...,bs ;hfj

for j �= m, and f ′
m,h is a function invariant under both S1 := (T

aηm
ηm T

−am
m )γ1 and

S2 := (T
aηi
ηi

T
−aηm
ηm )γ2 for some γ1, γ2 ∈ N independent of h. Then (f ′

1,h, . . . , f ′
�,h)h∈Zs

has the good invariance property along η′ with respect to p1, . . . , p�.

Proof of Proposition 6.5. For j �= m, the functions fj are invariant under (T
aηj
ηj

T
−aj

j )γ

for some non-zero γ ∈ Z independent of h ∈ Z
s , and so are their translations

C|ε|T ε1h1b1+···+εshsbs fj .

The identity η′
j = ηj , which holds for j �= m, and the fact that f ′

j ,h is a product of

(T
aηj
ηj

T
−aj

j )γ -invariant functions, imply that f ′
j ,h is itself invariant under (T

aη′
j

η′
j

T
−aj

j )γ .

For j = m, the functions f ′
j ,h are invariant under

S
γ2
1 S

γ1
2 = (T

aηm
ηm T −am

m T
aηi
ηi

T
−aηm
ηm )γ1γ2 = (T

aηi
ηi

T −am
m )γ1γ2 = (T

aη′
m

η′
m

T −am
m )γ1γ2

by noting η′
m = ηi and combining the two invariance properties that these functions enjoy.

Letting γ ′ := lcm(γ , γ1γ2), it follows that for every h ∈ Z
s , the collection (f ′

1,h, . . . , f ′
�,h)

has the γ ′-invariance property along η′ with respect to p1, . . . , p�.

To get desirable seminorm control over the intermediate tuples encountered in
Proposition 6.1, it is not sufficient to keep track of the most immediate invariance
properties. This is illustrated by the example below.

Example 8. (The necessity of composed invariance properties) Consider the average

E
n∈[N]

T n2

1 f1 · T n2

2 f2 · T n2+n
3 f3 · T n2+n

4 f4 · T n2+2n
5 f5 · T n2+2n

6 f6. (66)

It has length 6, degree 2, and type (2, 2, 2) corresponding to the partition

I1 = {1, 2}, I2 = {3, 4}, I3 = {5, 6}.
We assume that it has the good ergodicity property, that is,

I(T1T
−1
2 )=I(T1) ∩ I(T2), I(T3T

−1
4 )=I(T3) ∩ I(T4), I(T5T

−1
6 )=I(T5) ∩ I(T6).

Suppose we want to perform the seminorm smoothing argument to obtain a control of the
associated average by the T6-seminorm of f6. We iteratively pass to averages of lower type
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as in Proposition 6.1 (all of which turn out to be controllable), and we show that to get
seminorm control for the average of basic type at which we arrive, we need to keep track
of not just the latest invariance properties that the functions in the intermediate averages
enjoy, but of all the invariance properties that the functions in earlier intermediate averages
enjoyed.

Step 1: Reducing to an average of basic type.
In the ping part of the seminorm smoothing argument for equation (66), we replace T6

in the original average from equation (66) by some Ti with i ∈ [4] = I1 ∪ I2, arriving at,
say, averages

E
n∈[N]

T n2

1 f11 · T n2

2 f12 · T n2+n
3 f13 · T n2+n

4 f14 · T n2+2n
5 f15 · T n2+2n

4 f16. (67)

The new tuple in equation (67) has type (2, 3, 1) and is controllable, with the index 5
satisfying the controllability condition. The functions inside take the form

f1j :=
{

	b11,...,b1s1 ;h−h′fj , j �= 6,

u1,h,h′ , j = 6,

where the functions u1,h,h′ are T6T
−1
4 -invariant.

To obtain seminorm control of the average from equation (67), we need to perform the
seminorm smoothing argument for this tuple. We aim to control it first by a T5-seminorm
of f15 since 5 satisfies the controllability condition and is the only index left in I3. As
guided by Proposition 6.1, in the ping step of the smoothing argument, we replace T5 in
equation (67) by some Ti with i ∈ [4]. When i = 1, for instance, we end up with averages

E
n∈[N]

T n2

1 f21 · T n2

2 f22 · T n2+n
3 f23 · T n2+n

4 f24 · T n2+2n
1 f25 · T n2+2n

4 f26 (68)

of type (3, 3, 0). The functions in equation (68) take the form

f2j :=
{

	b21,...,b2s2 ;h−h′f1j , j �= 5,

u2,h,h′ , j = 5,

where u2,h,h′ are T5T
−1
1 -invariant. We note by Proposition 6.5 that the functions f26 retain

the T6T
−1
4 -invariance of f16.

The indices 3, 4, 6 in the average from equation (68) all satisfy the controllability
condition, so if we want to get seminorm control of this average, we should first control
it by a relevant seminorm of one of the functions f23, f24, f26. Suppose that we choose
to obtain a seminorm control of the tuple in equation (68) with respect to f26 first. Then
we would replace T4 at index 6 by Ti for any i ∈ [2] = I1 in the ping step, getting, say,
averages

E
n∈[N]

T n2

1 f31 · T n2

2 f32 · T n2+n
3 f33 · T n2+n

4 f34 · T n2+2n
1 f35 · T n2+2n

1 f36 (69)
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of type (4, 2, 0). The functions in equation (69) take the form

f3j :=
{

	b31,...,b3s3 ;h−h′f2j , j �= 6,

u3,h,h′ , j = 6.

The function f35, being a multiplicative derivative of a T5T
−1
1 -invariant function, is itself

invariant under T5T
−1
1 . The function f36 is invariant not only under T4T

−1
1 , but also under

T6T
−1
4 thanks to Proposition 6.5. It is crucial that f36 retains the T6T

−1
4 -invariance of f26,

and we shall return to this point shortly.
The average from equation (69) is controllable, and so to arrive at an average of a

basic type, we need to perform this procedure two more times. Both the indices 3 and
4 satisfy the controllability condition, so we want to get seminorm control in terms of
one of f33, f34—say we choose f34. To obtain control of the tuple in equation (69) by a
T4-seminorm of f34, we replace T4 by Ti for any i ∈ [2] = I1 in the ping step, arriving at,
say, averages

E
n∈[N]

T n2

1 f41 · T n2

2 f42 · T n2+n
3 f43 · T n2+n

2 f44 · T n2+2n
1 f45 · T n2+2n

1 f46 (70)

of type (5, 1, 0) if i = 2. The functions in equation (70) take the form

f4j :=
{

	b41,...,b4s4 ;h−h′f3j , j �= 4,

u4,h,h′ , j = 4.

The function f45 retains the T5T
−1
1 -invariance of f35 while f46, like f36, is invariant under

T4T
−1
1 and T6T

−1
4 . Moreover, the function f44 is T4T

−1
1 -invariant.

Finally, the only index in the average from equation (70) satisfying the controllability
condition is 3, so if we want to obtain control of the tuple in equation (70), we first want to
get this in terms of a T3-seminorm of f43. Applying Proposition 6.1, we end up replacing
T3 by, say, T2, getting averages

E
n∈[N]

T n2

1 f51 · T n2

2 f52 · T n2+n
2 f53 · T n2+n

2 f54 · T n2+2n
1 f55 · T n2+2n

1 f56. (71)

The functions in equation (71) take the form

f5j :=
{

	b51,...,b5s5 ;h−h′f4j , j �= 3,

u5,h,h′ , j = 3,

in particular, the functions f54, f55, f56 retain the invariance properties of f44, f45, f46

and f53 is T3T
−1
2 -invariant.

Step 2: Handling an average of basic type.
The average from equation (71) has basic type (6, 0, 0), and so we want to control it

by appropriate seminorms using Proposition 3.7. We show that without the assumption
that f56 is invariant under both T4T

−1
1 and T6T

−1
4 , we cannot control this average by a

T1-seminorm of f56, and conversely that this goal can be achieved with both of these
assumptions.
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We first note that Proposition 3.7, the ergodicity condition I(T1T
−1
2 ) = I(T1) ∩ I(T2),

and Lemma 2.2 allow us to control it by a T1-seminorm of f51 and by a T2-seminorm of
f52. (At the same time, Proposition 3.7, our ergodicity assumptions, and Lemma 2.2 alone
cannot be used to control equation (71) by T2-seminorms of f53 or f54 or by T1-seminorms
of f55 or f56. Without additional information about the invariance properties of the
functions, Proposition 3.7, our ergodicity assumptions, and Lemma 2.2 could only give
control of equation (71) by a T2-seminorms of f53f54 and by a T1-seminorm of f55f56,
which is insufficient for our purposes.) Suppose that the L2(μ) limit of equation (71)
is positive. Decomposing f51 using Proposition 2.3 and then applying the pigeonhole
principle, we deduce the existence of D ∈ D such that

lim
N→∞

∥∥∥ E
n∈[N]

D(n2) · T n2

2 f52 · T n2+n
2 f53 · T n2+n

2 f54 · T n2+2n
1 f55 · T n2+2n

1 f56

∥∥∥
L2(μ)

> 0.

(72)

We now want to obtain a seminorm control of the average in equation (72) by inductively
invoking seminorm control for some average of length 5. To this end, we attempt to
proceed like in Example 7. That is, we use the invariance of f53, f54, f55, f56 under
T3T

−1
2 , T4T

−1
2 , T5T

−1
1 , T4T

−1
1 , respectively, to conclude that the average in equation (72)

equals

lim
N→∞ E

n∈[N]
D(n2) · T n2

2 f52 · T n2+n
3 f53 · T n2+n

4 f54 · T n2+2n
5 f55 · T n2+2n

4 f56. (73)

However, without any extra information, we could not control the average from equation
(73) using a T2-seminorm of f55 or T1-seminorm of f56. Suppose for simplicity that D is
a constant sequence and f52 = f53 = f54 = 1. Then equation (73) reduces to

lim
N→∞ E

n∈[N]
T n2+2n

5 f55 · T n2+2n
4 f56. (74)

We know nothing about the composition T5T
−1
4 , and so without additional input, we

cannot control equation (74) by a Gowers–Host–Kra seminorm.
This is the moment when we have to use the additional T6T

−1
4 -invariance of f56. Since

T4f56 = T6f56, we can replace T4 in equation (74) by T6. Then Proposition 3.7 gives us
control over equation (74) by |||f56|||e×s

6 ,(e6−e5)×s for some s ∈ N. The ergodicity condition

on T6T
−1
5 and the T6T

−1
1 -invariance of f56 then give |||f56|||e×s

6 ,(e6−e5)×s ≤ |||f56|||2s,T6 =
|||f56|||2s,T1 , and so this latter seminorm controls equation (72), and hence also equation
(71).

If we want to control equation (72) by a T1-seminorm of f56 without the simplifying
assumptions on D and f52, f53, f54, we proceed similarly. (There is no special reason why
we would want to control equation (72) by a seminorm of f56 instead of other functions.
We just aim to illustrate that using the extra T6T

−1
4 -invariance of f56, this can be done.)

Using the T6T
−1
4 -invariance of f56, we rewrite equation (73) as

lim
N→∞ E

n∈[N]
D(n2) · T n2

2 f52 · T n2+n
3 f53 · T n2+n

4 f54 · T n2+2n
5 f55 · T n2+2n

6 f56. (75)
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Then we inductively apply the fact that we have seminorm control for averages of length
5 of the form in equation (75) to control this average, and hence also equation (71), by a
T6-seminorm of f56. Subsequently, the T6T

−1
1 -invariance of f56 (resulting from its T6T

−1
4 -

and T4T
−1
1 -invariance) and Lemma 3.5 give control of equation (71) by a T1-seminorm

of f56.
We note that the argument above would not work if we only used the ‘new’ property of

f56 of being invariant under T4T
−1
1 rather than the ‘combined’ property of being invariant

under T6T
−1
1 . The important point that this example shows is that it is not enough to keep

track of the new invariance properties that we obtain at each stage of the ping argument and
forget the old ones. Rather, we need to keep track of the invariance property with respect
to a composition of the original and the most recent transformations, which in our example
are T6 and T1.

Examples 7 and 8 reveal that to obtain seminorm control of a controllable average of
basic type and in the pong step of the seminorm smoothing argument, we need to substitute
the transformations Tj for Tηj

to arrive at an average for which we have seminorm control.
The following proposition allows us to do just that.

PROPOSITION 6.6. (Flipping) Let γ , �, L ∈ N, (X, X , μ, T1, . . . , T�) be a system,
η ∈ [�]� be an indexing tuple, A ⊂ [�] be a subset of indices, and p1, . . . , p�,
ρ1, . . . , ρ�, q1, . . . , qL ∈ Z[n] be polynomials. Suppose that:

(i) the tuple (T
ρj (n)

ηj
)j∈[�] is a descendant of (T

pj (n)

j )j∈[�];
(ii) f1, . . . , f� ∈ L∞(μ) are 1-bounded functions having the γ -invariance property

along η with respect to p1, . . . , p�.
Then there exist 1-bounded functions f ′

1, . . . , f ′
�, polynomials ρ′

1, . . . , ρ′
�, q ′

1, . . . ,
q ′
L ∈ Z[n], and an indexing tuple η′ with the following properties:
(i) the tuple η′ takes the form

η′
j =

{
j , j ∈ A,

ηj , j /∈ A;

(ii) (T
ρ′

j (n)

η′
j

)j∈[�] is a descendant of (T
pj (n)

j )j∈[�];

(iii) f ′
1, . . . , f ′

� ∈ L∞(μ) are 1-bounded and have the γ -invariance property along η′
with respect to p1, . . . , p�; moreover, for every s ≥ 2 and j ∈ [�], they satisfy
the bound |||f ′

j |||s,Tη′
j

≤ C|||fj |||s,Tηj
for some C > 0 depending only on γ and the

leading coefficients of p1, . . . , p�; lastly, f ′
j = 1 whenever fj = 1;

(iv) we have the inequality

lim
N→∞

∥∥∥∥ E
n∈[N]

∏
j∈[�]

T
ρj (n)

ηj
fj ·

∏
j∈[L]

Dj (qj (n))

∥∥∥∥
L2(μ)

(76)

≤ lim
N→∞

∥∥∥∥ E
n∈[N]

∏
j∈[�]

T
ρ′

j (n)

η′
j

f ′
j ·

∏
j∈[L]

Dj (q
′
j (n))

∥∥∥∥
L2(μ)

.

https://doi.org/10.1017/etds.2022.117 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2022.117


4120 N. Frantzikinakis and B. Kuca

We note that if the leading coefficients of p1, . . . , p� are all 1, and the good
invariance property takes the form of fj being invariant under Tηj

T −1
j for all j ∈ [�],

then Proposition 6.6 is straightforward, and in fact for every N ∈ N, we have

E
n∈[N]

∏
j∈[�]

T
ρj (n)

ηj
fj

∏
j∈[L]

Dj (qj (n)) = E
n∈[N]

∏
j∈[�]

T
ρj (n)

η′
j

fj

∏
j∈[L]

Dj (qj (n))

and |||fj |||s,Tηj
= |||fj |||s,Tη′

j

for all j ∈ [�], s ∈ N. The need for the more complicated

statement of Proposition 6.6 comes from tedious but uninspiring technicalities that appear
when the polynomials p1, . . . , p� have leading coefficients distinct from 1.

We have used the flipping technique twice in Example 7: in equation (57) and when
passing from equation (60) to equation (61) to obtain a seminorm control on the former
using the seminorm control on the latter. We also used it in Example 8 to get seminorm
control of equation (71). We will also use it shortly to handle uncontrollable tuples.

Proof of Proposition 6.6. For each j ∈ [�], let aj be the leading coefficient of pj and

γj ∈ N be the smallest natural number such that fj is invariant under (T
aηj
ηj

T
−aj

j )γj (in
particular, γj = 1 if ηj = j ). Let γ ∈ N be the smallest natural number such that aηj

γj

divides the coefficients of γρj for every j ∈ A. We then define

f ′
j := T

ρj (r)
ηj

fj , q ′
j (n) := qj (γ n + r), ρ′

j (n) :=
aη′

j

aηj

(ρj (γ n + r) − ρj (r))

for some r ∈ {0, . . . , λ − 1} to be chosen later, and we observe that ρ ′
j ∈ Z[n] for every

j ∈ [�]. By definition of η′ and the γ -invariance of f1, . . . , f� along η, the functions
f ′

1, . . . , f ′
� are γ -invariant along η′. Moreover, if fj = 1, then so is f ′

j . Lastly, they satisfy
the bound |||f ′

j |||s,Tη′
j

�aηj
γ |||fj |||s,Tηj

for every s ≥ 2 and j ∈ [�]; this is trivial for j /∈ A,

and if j ∈ A, then

|||f ′
j |||s,Tη′

j

= |||f ′
j |||s,Tj

= |||fj |||s,Tj
≤ |||fj |||s,T

aj γ

j

= |||fj |||
s,T

aηj
γ

ηj

�aηj
γ |||fj |||s,Tηj

,

where we use the fact that fj is a composition of f ′
j with respect to a measure-preserving

transformation, the invariance property of fj , Lemma 3.5, and both directions of
Lemma 2.1.

We move on to prove the inequality in equation (76). For j /∈ A, where η′
j = ηj , we

simply have T
ρj (γ n+r)

ηj
fj = T

ρ′
j (n)

η′
j

f ′
j . For j ∈ A, the invariance property of fj gives us

the identity

T
ρj (γ n+r)

ηj
fj = (T

aηj
γj

ηj
)
(ρj (γ n+r)−ρj (r))/aηj

γj T
ρj (r)

ηj
fj = T

ρ′
j (n)

η′
j

f ′
j .

Splitting N into (γ · N + r)r∈{0,...,γ−1}, we deduce from the pigeonhole principle that there
exists r ∈ {0, . . . , γ − 1} for which equation (76) holds.

From the construction of the polynomials ρ′
1, . . . , ρ′

�, the assumption that (T
ρj (n)

ηj
)j∈[�]

is a descendant of (T
pj (n)

j )j∈[�] and Lemma 6.2, it follows that (T
ρ′

j (n)

η′
j

)j∈[�] is also a

descendant of (T
pj (n)

j )j∈[�].
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6.3. Handling uncontrollable tuples. We have explained in the previous sections that if
a tuple (T

ρj (n)
ηj

)j∈[�] is controllable, then we control it by a Gowers–Host–Kra seminorm
using a seminorm smoothing argument. If the tuple is uncontrollable, however, we use the
following variant of the flipping technique from Proposition 6.6 to bound the L2(μ) norm
of the associated average by an L2(μ) norm of a controllable average.

COROLLARY 6.7. (Flipping uncontrollable tuples) Let γ , �, L ∈ N, (X, X , μ, T1, . . . , T�)

be a system, η ∈ [�]� be an indexing tuple, and p1, . . . , p�, ρ1, . . . , ρ�, q1, . . . , qL ∈
Z[n] be polynomials. Suppose that

(i) the tuple (T
ρj (n)

ηj
)j∈[�] is uncontrollable of type w with the last non-zero index tw,

and it is a descendant of (T
pj (n)

j )j∈[�];
(ii) f1, . . . , f� ∈ L∞(μ) are 1-bounded functions having the γ -invariance property

along η with respect to p1, . . . , p�.
Then there exist 1-bounded functions f ′

1, . . . , f ′
�, polynomials ρ′

1, . . . , ρ′
�, q ′

1, . . . ,
q ′
L ∈ Z[n], and an indexing tuple η′ with the following properties:
(i) the tuple η′ takes the form

η′
j =

{
j , ηj ∈ Itw ,

ηj , ηj /∈ Itw ;

(ii) (T
ρ′

j (n)

η′
j

)j∈[�] is a descendant of (T
pj (n)

j )j∈[�];

(iii) f ′
1, . . . , f ′

� ∈ L∞(μ) are 1-bounded and have the γ -invariance property along η′
with respect to p1, . . . , p�; moreover, for every s ≥ 2 and j ∈ [�], they satisfy
the bound |||f ′

j |||s,Tη′
j

≤ C|||fj |||s,Tηj
for some C > 0 depending only on γ and the

leading coefficients of p1, . . . , p�; lastly, f ′
j = 1 whenever fj = 1;

(iv) we have the inequality

lim
N→∞

∥∥∥∥ E
n∈[N]

∏
j∈[�]

T
ρj (n)

ηj
fj ·

∏
j∈[L]

Dj (qj (n))

∥∥∥∥
L2(μ)

≤ lim
N→∞

∥∥∥∥ E
n∈[N]

∏
j∈[�]

T
ρ′

j (n)

η′
j

f ′
j ·

∏
j∈[L]

Dj (q
′
j (n))

∥∥∥∥
L2(μ)

.

Corollary 6.7 follows from Proposition 6.6 by taking A = {j ∈ [�] : ηj ∈ Itw }.
We emphasize that Corollary 6.7 by itself does not guarantee that the tuple (T

ρ′
j (n)

η′
j

)j∈[�]

has a lower type than the tuple (T
ρj (n)

ηj
)j∈[�]. However, this will be the case when we

apply it to all the tuples (T
ρj (n)

ηj
)j∈[�] that appear in our inductive procedure. The crucial

ingredient in achieving this type reduction will be the property (iv) in Proposition 6.8
enjoyed by all the tuples showing up in our arguments.

Example 9. Consider the tuple

(T n2

1 , T n2

2 , T n2

3 , T n2

4 , T n2+n
1 , T n2+n

1 , T n2+2n
5 , T n2+2n

5 ) (77)
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from Example 4. It is a descendant of the tuple

(T n2

1 , T n2

2 , T n2

3 , T n2

4 , T n2+n
5 , T n2+n

6 , T n2+2n
7 , T n2+2n

8 ), (78)

obtained by four applications of Proposition 6.1, in which we substitute T5 for T8 at the
index 8, T5 for T7 at the index 7, T1 for T5 at the index 5, and T1 for T6 at the index 6.
Corollary 6.7 gives that if f1, . . . , f8 ∈ L∞(μ) are functions such that f5, f6, f7, f8 are
invariant under T5T

−1
1 , T6T

−1
1 , T7T

−1
5 , T8T

−1
5 , respectively, then we have

lim
N→∞

∥∥∥ E
n∈[N]

T n2

1 f1 ·T n2

2 f2 ·T n2

3 f3 ·T n2

4 f4 ·T n2+n
1 f5 ·T n2+n

1 f6 ·T n2+2n
5 f7 ·T n2+2n

5 f8

∥∥∥
L2(μ)

≤ lim
N→∞

∥∥∥ E
n∈[N]

T n2

1 f1 · T n2

2 f2 · T n2

3 f3 · T n2

4 f4 · T n2+n
1 f5 · T n2+n

1 f6

× T n2+2n
7 f7 · T n2+2n

8 f8

∥∥∥
L2(μ)

(in fact, a closer look guarantees that we get an equality and not just for the L2(μ) limits,
but for each finite average). We moreover obtain the equality of seminorms |||f7|||s,T7 =
|||f7|||s,T5 , |||f8|||s,T8 = |||f8|||s,T5 , and the new tuple

(T n2

1 , T n2

2 , T n2

3 , T n2

4 , T n2+n
1 , T n2+n

1 , T n2+2n
7 , T n2+2n

8 ) (79)

is a descendant of equation (78). Importantly, the new tuple in equation (79) has type
(6, 0, 2), which is lower than the type (6, 2, 0) of equation (77). Applying Corollary 6.7
to equation (77), we have thus successfully replaced it by a tuple of lower type. Lastly,
the new tuple in equation (79) is controllable as the indices 7, 8 satisfy the controllability
condition.

6.4. Recapitulation. We conclude this section with Proposition 6.8, which forms an
inductive framework for the proof of Theorem 1.1 in the next section. Combining
the content of Proposition 6.1 and Corollary 6.7, it shows that—starting with a tuple
(T

pj (n)

j )j∈[�] satisfying the good ergodicity property—we reach a tuple of basic type in
a finite number of steps. For tuples of basic type, seminorm control will follow from
arguments made in Proposition 7.2, and then we will use this fact and induction to go
back and get seminorm control for the original tuple (T

pj (n)

j )j∈[�].

PROPOSITION 6.8. (Inductive framework) Let � ∈ N, p1, . . . , p� ∈ Z[n] be polynomials,
and (X, X , μ, T1, . . . , T�) be a system. Suppose that the tuple (T

pj (n)

j )j∈[�] has the good
ergodicity property. Then there exists r ∈ N (which depends only on p1, . . . , p� but can
be bounded purely in terms of �) and a sequence of tuples

(T
ρ0j (n)

η0j
)j∈[�] → (T

ρ1j (n)
η1j

)j∈[�] → (T
ρ2j (n)

η2j
)j∈[�] → . . . → (T

ρrj (n)
ηrj

)j∈[�]

with types w0, . . . , wr such that (T
ρ0j (n)

η0j
)j∈[�] := (T

pj (n)

j )j∈[�] and for k ∈ {0, . . . ,
r − 1}, the following properties hold.

(i) If the tuple (T
ρkj (n)

ηkj
)j∈[�] is controllable, then the tuple (T

ρ(k+1)j (n)
η(k+1)j

)j∈[�] is chosen
using Proposition 6.1.
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(ii) If the tuple (T
ρkj (n)

ηkj
)j∈[�] is uncontrollable, then the tuple (T

ρ(k+1)j (n)
η(k+1)j

)j∈[�] is
chosen using Corollary 6.7.

(iii) The tuple (T
ρ(k+1)j (n)

η(k+1)j
)j∈[�] is a descendant of (T

pj (n)

j )j∈[�]. In particular, it has the
good ergodicity property.

(iv) For the indexing tuple ηk+1 = (η(k+1)1, . . . , η(k+1)�), if j ∈ It , then either
η(k+1)j = j or η(k+1)j ∈ It ′ for some t ′ < t .

(v) We have wk+1 < wk , that is, the tuple (T
ρ(k+1)j (n)

η(k+1)j
)j∈[�] has a lower type than the

tuple (T
ρkj (n)

ηkj
)j∈[�].

(vi) The tuple (T
ρrj (n)

ηrj
)j∈[�] has basic type and the restriction ηr |I1 is the identity

sequence.

For the rest of the paper, we call a tuple (T
ρj (n)

ηj
)j∈[�] a proper descendant of the tuple

(T
pj (n)

j )j∈[�] if it appears in one of the sequences of tuples constructed from (T
pj (n)

j )j∈[�]

using Proposition 6.8.

Proof. Let k ∈ {0, . . . , r − 1}. Suppose that the tuples (T
ρ0j (n)

η0j
)j∈[�], . . . , (T

ρkj (n)
ηkj

)j∈[�]

are already constructed and satisfy the properties (i)–(v). If the tuple (T
ρkj (n)

ηkj
)j∈[�] has

basic type, we halt. Otherwise, we choose the tuple (T
ρ(k+1)j (n)

η(k+1)j
)j∈[�] using Proposition

6.1 if (T
ρkj (n)

ηkj
)j∈[�] is controllable and using Corollary 6.7 otherwise, so that the

properties (i) and (ii) are satisfied. (We remark that by the property (iv) applied
to the tuple (T

ρkj (n)
ηkj

)j∈[�], we have ηkj = j whenever j ∈ I1, and hence the type

wk = (wk1, . . . , wk�) of (T
ρkj (n)

ηkj
)j∈[�] satisfies wk1¿0. By the assumption that wk is

not basic, we also have wkt > 0 for some t > 1; therefore, we have at least two non-zero
indices in wk and we can act as in Proposition 6.1.) We note from Corollaries 6.3 and 6.7
that the new tuple is a descendant of (T

pj (n)

j )j∈[�], and by Proposition 6.4, it has the good
ergodicity property and hence the property (iii) holds as well. The property (iv) holds by
induction and the way the tuple (T

ρ(k+1)j (n)
η(k+1)j

)j∈[�] is constructed using Proposition 6.1 or
Corollary 6.7.

For the property (v), we first note that if (T
ρkj (n)

ηkj
)j∈[�] is controllable, then the property

(v) holds for (T
ρ(k+1)j (n)

η(k+1)j
)j∈[�] by Proposition 6.1. If (T

ρkj (n)
ηkj

)j∈[�] is uncontrollable, then
we get from Corollary 6.7 that w(k+1)tk = 0 < wktk , where tk := twk

is the last non-zero
index of wk , and we deduce from property (iv) that w(k+1)t = wkt for 1 ≤ t < tk . This
point is important, so we explain it in words. What happens is that when we apply
Corollary 6.7, the index w(k+1)tk goes down to 0 (since all the transformations with indices
from Itk get flipped), but the new transformations appearing in their place have indices
from Itk+1, . . . , IK2 , as given by the property (iv). Hence, wk+1 < wk in this case as
well.

It follows from the property (v) and the fact that there are at most (K3 + 1)K2 possible
types for tuples in N

K2
0 with sum of coordinates K3 that the sequence eventually terminates.

And since, by our construction, it can only terminate on the basic type (K3, 0, . . . , 0),
there exists r < (K3 + 1)K2 ≤ (� + 1)� such that the tuple (T

ρrj (n)
ηrj

)j∈[�] has basic type
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(K3, 0, . . . , 0). The second part of property (vi) for this tuple follows from the property
(iv) by taking t = 1.

Example 10. (Iterative reduction to tuples of lower type) For the tuple in equation (78)
from Example 9, Proposition 6.8 would give, among other options, the following sequence
of tuples:

(T n2

1 , T n2

2 , T n2

3 , T n2

4 , T n2+n
5 , T n2+n

6 , T n2+2n
7 , T n2+2n

8 )

→(T n2

1 , T n2

2 , T n2

3 , T n2

4 , T n2+n
5 , T n2+n

6 , T n2+2n
7 , T n2+2n

5 )

→(T n2

1 , T n2

2 , T n2

3 , T n2

4 , T n2+n
5 , T n2+n

6 , T n2+2n
5 , T n2+2n

5 )

→(T n2

1 , T n2

2 , T n2

3 , T n2

4 , T n2+n
1 , T n2+n

6 , T n2+2n
5 , T n2+2n

5 )

→(T n2

1 , T n2

2 , T n2

3 , T n2

4 , T n2+n
1 , T n2+n

1 , T n2+2n
5 , T n2+2n

5 )

→(T n2

1 , T n2

2 , T n2

3 , T n2

4 , T n2+n
1 , T n2+n

1 , T n2+2n
7 , T n2+2n

8 )

→(T n2

1 , T n2

2 , T n2

3 , T n2

4 , T n2+n
1 , T n2+n

1 , T n2+2n
7 , T n2+2n

2 )

→(T n2

1 , T n2

2 , T n2

3 , T n2

4 , T n2+n
1 , T n2+n

1 , T n2+2n
2 , T n2+2n

2 ).

Their types, starting from the top tuple, are

(4, 2, 2) > (4, 3, 1) > (4, 4, 0) > (5, 3, 0) > (6, 2, 0) > (6, 0, 2) > (7, 0, 1) > (8, 0, 0),

which shows that at each step, the new tuple has a lower type than its predecessor. The
sixth tuple, counting from the top, has been obtained via Corollary 6.7 (since the fifth
tuple is uncontrollable, as explained in Examples 4 and 9), while all the other tuples have
been obtained using Proposition 6.1. Each subsequent tuple is a descendant of the original
tuple, and so each of them has the good ergodicity property thanks to Proposition 6.4.
Lastly, the final tuple has basic type, and moreover for its indexing tuple η, the restriction
η|I1 = η|[4] is an identity because no substitution has taken place at the first four indices.

7. The proof of Theorem 1.1
7.1. Induction scheme. In all statements in this section, we work in the setting of
Proposition 6.8, that is, all the lower type tuples at which we arrive from some original
average are those constructed in Proposition 6.8 and have the properties listed there.

Theorem 1.1 follows by induction from the result below upon setting d = L = 0 and
letting η be the identity tuple.

PROPOSITION 7.1. (Seminorm control restated) Let d , D, �, L ∈ N, η ∈ [�]� and
p1, . . . , p�, q1, . . . , qL ∈ Z[n] be polynomials of degrees at most D. Suppose
that the polynomials p1, . . . , p� have the good ergodicity property for the system
(X, X , μ, T1, . . . , T�). Let (T

ρj (n)
ηj

)j∈[�] be a proper descendant of the tuple (T
pj (n)

j )j∈[�].
Then there exists s ∈ N, depending only on d , D, �, L, such that for all functions
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f1, . . . , f� ∈ L∞(μ) with the good invariance property along η with respect to
p1, . . . , p� and all sequences of functions D1, . . . , DL ∈ Dd , we have

lim
N→∞

∥∥∥∥ E
n∈[N]

∏
j∈[�]

T
ρj (n)

ηj
fj ·

∏
j∈[L]

Dj (qj (n))

∥∥∥∥
L2(μ)

= 0 (80)

whenever |||fj |||s,Tηj
= 0 for some j ∈ [�].

A word of explanation is necessary for the statement of Proposition 7.1. We need both
polynomials p1, . . . , p� and ρ1, . . . , ρ�. The reason is that for our induction to work,
we need the functions f1, . . . , f� to have the good invariance property with respect to the
original family p1, . . . , p� rather than the descendant family ρ1, . . . , ρ�. This is necessary
for a number of reasons: to prove seminorm control for averages of basic types in the proof
of Proposition 7.2; to apply Proposition 6.6 in the pong step of Proposition 7.5; to derive
Proposition 7.1 from Proposition 7.4 for controllable tuples; and to invoke Corollary 6.7 for
uncontrollable tuples in Proposition 7.1. The necessity of keeping track of the invariance
property with regards to the original polynomial family has also been explained in Step 2
of Example 8.

Technically, the value s in Proposition 7.1 depends also on on η, but since the number
of possible tuples η is bounded in terms of �, this dependence can be removed.

We first prove Proposition 7.1 for averages from equation (35) of basic type. This will
serve as the base for induction for Propositions 7.1, 7.4, and 7.5.

PROPOSITION 7.2. (Seminorm control of basic types) Let d , D, �, L ∈ N, η ∈ [�]�

and p1, . . . , p�, q1, . . . , qL ∈ Z[n] be polynomials of degrees at most D. Suppose
that the polynomials p1, . . . , p� have the good ergodicity property for the system
(X, X , μ, T1, . . . , T�). Let (T

ρj (n)
ηj

)j∈[�] be a proper descendant of the tuple (T
pj (n)

j )j∈[�],

and suppose that the type w of (T
ρj (n)

ηj
)j∈[�] is basic. Then there exists s ∈ N, depending

only on d , D, �, L, such that for all 1-bounded functions f1, . . . , f� ∈ L∞(μ) with
the good invariance property along η with respect to p1, . . . , p� and all sequences of
functions D1, . . . , DL ∈ Dd , we have equation (80) whenever |||fj |||s,Tηj

= 0 for some
j ∈ [�].

A special case of Proposition 7.2 has been sketched in Step 2 of Example 8, and we invite
the reader to compare the abstract proof presented below with the argument in Step 2 of
Example 8.

Proof. We induct on the length � of the average. If � = 1, the statement holds by
Proposition 3.7. We therefore assume that � > 1, and we will prove Proposition 7.2 for fixed
� > 1 by invoking Proposition 7.1 for an average of length � − 1. More specifically, we will
show first that there exists an index m satisfying the controllability condition, and that we
can control the average by a Tηm-seminorm of fm. Then we will replace fm by a dual
function using Proposition 2.3 and the pigeonhole principle, flip the other transformations
Tηj

into Tj using Proposition 6.6, and invoke Proposition 7.1 for averages of length � − 1
to obtain seminorm control in terms of other functions.
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Take any m ∈ I1; we assume for simplicity that m = �. Proposition 6.8(vi) implies that
η� = �, and moreover that � satisfies the controllability condition. This fact and Proposition
3.7 imply that the identity in equation (80) holds whenever |||f�|||b1,...,bs

= 0 for some

b1, . . . , bs ∈ {b�e� − bieηi
: i ∈ L ∪ {0} \ {�}}, (81)

where s ∈ N depends only on d , D, �, L, the numbers b�, bi are the coefficients of ρ�, ρi of
degree d�i := deg(ρ�e� − ρieηi

) whenever i �= 0, and for i = 0, we simply set b0eη0 = 0.
Using the monotonicity property of equation (17), we can assume without loss of generality
that s ≥ 2. Since the tuple (T

ρj (n)
ηj

)j∈[�] has a basic type, it follows that the indices
ηi in equation (81) come from the set I1. We have to show that each transformation
T b1 , . . . , T bs is either a non-zero iterate of T� or its invariant functions are invariant under
a bounded power of T�. For k ∈ [s], let bk := b�e� − bieηi

. If i = 0, then T bk is indeed a
non-zero iterate of T�. If i ∈ I1, then ηi = i �= � by the property from Proposition 6.8(vi)
that η|I1 is the identity tuple. Then T bk = T

b�

� T
−bi

i = (T
β�

� T
−βi

i )gcd(b�,bi ) for coprime
integers β�, βi , and the good ergodicity property of ρ1, . . . , ρ� along η (Propositions
6.8(iii)) implies that I(T

β�

� T
−βi

i ) ⊆ I(T�). If i /∈ I1 ∪ {0}, then we split into the cases
ηi �= � and ηi = �. In the former case, we once again use the good ergodicity property of
ρ1, . . . , ρ� along η to conclude that T bk = (T

β�

� T
−βi

i )gcd(b�,bi ) and I(T
β�

� T
−βi

i ) ⊆ I(T�).
In the latter case, the pairwise independence of ρi and ρ� implies that bk is non-zero, and
hence T bk is a non-zero iterate of T�. Rearranging b1, . . . , bs , it follows that

|||f�|||b1,...,bs
= |||f�|||c1e�,...,cs′ e�,bs′+1,...,bs

for some 0 ≤ s′ ≤ s, non-zero integers c1, . . . , cs′ , and transformations T bs′+1 , . . . , T bs

with the property that for every j ∈ {s′ + 1, . . . , s}, there exists b′
j ∈ Z

� and non-zero

cj ∈ Z such that bj = cj b′
j and I(T

b′
j ) ⊆ I(T e� ). By Lemmas 2.1 and 2.2, we have

|||f�|||b1,...,bs
= |||f�|||c1e�,...,cs′ e�,cs′+1b′

s′+1,...,csb′
s
�c1,...,cs |||f�|||s,T�

,

implying that equation (80) holds whenever |||f�|||s,T�
= 0.

We now use the seminorm control at � with Proposition 2.3 and the pigeonhole principle
to deduce that if equation (80) fails, then it also fails when T

ρ�(n)
η�

f� is replaced by a
sequence DL+1(ρ�(n)) with DL+1 ∈ Ds . Letting qL+1 := ρ� for simplicity, it is enough
to show that

lim
N→∞

∥∥∥∥ E
n∈[N]

∏
j∈[�−1]

T
ρj (n)

ηj
fj ·

∏
j∈[L+1]

Dj (qj (n))

∥∥∥∥
L2(μ)

> 0

implies |||fj |||s′,Tηj
> 0 for every j ∈ [� − 1] and some s′ ∈ N depending only on

d , D, �, L. By Proposition 6.6, there exist 1-bounded functions f ′
1, . . . , f ′

�−1 and
polynomials ρ′

1, . . . , ρ′
�−1 with the good ergodicity property for the system such that

lim
N→∞

∥∥∥∥ E
n∈[N]

∏
j∈[�−1]

T
ρ′

j (n)

j f ′
j ·

∏
j∈[L+1]

Dj (qj (n))

∥∥∥∥
L2(μ)

> 0
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and |||f ′
j |||s′,Tj

≤ C|||fj |||s′,Tηj
for all j ∈ [� − 1], s′ ≥ 1, and some constant C > 0 depend-

ing only on γ and the leading coefficients of p1, . . . , p�. Invoking inductively the case
� − 1 of Proposition 7.1, we deduce that |||f ′

j |||s′,Tj
> 0 for some s′ ∈ N depending only on

d , D, �, L, and hence |||fj |||s′,Tηj
> 0. This proves the claim.

We also need the following quantitative version of Proposition 7.1.

PROPOSITION 7.3. (Soft quantitative estimates) Let d , D, γ , �, L ∈ N, η ∈ [�]�, and
p1, . . . , p�, q1, . . . , qL ∈ Z[n] be polynomials of degrees at most D. Suppose
that the polynomials p1, . . . , p� have the good ergodicity property for the system
(X, X , μ, T1, . . . , T�). Let (T

ρj (n)
ηj

)j∈[�] be a proper descendant of the tuple (T
pj (n)

j )j∈[�].
Then there exists s ∈ N, depending only on d , D, �, L, with the following property: for
any ε > 0, there exists δ > 0 such that for all 1-bounded functions f1, . . . , f� ∈ L∞(μ)

that are γ -invariant along η with respect to p1, . . . , p� and all sequences of functions
D1, . . . , DL ∈ Dd , we have

lim
N→∞

∥∥∥∥ E
n∈[N]

∏
j∈[�]

T
ρj (n)

ηj
fj ·

∏
j∈[L]

Dj (qj (n))

∥∥∥∥
L2(μ)

< ε

whenever |||fj |||s,Tηj
< δ for some j ∈ [�].

Proof. We prove Proposition 7.3 for fixed d , D, γ , �, L, η by assuming Proposition 7.1 for
the same parameters.

Let s ∈ N be as in the statement of Proposition 7.1 (so in particular it only depends
on d , D, �, L) and b1, . . . , b� be the leading coefficients of ρ1, . . . , ρ�. Fix π ∈ [�]L.
We first prove the following qualitative claim: for all f1, . . . , f�, g1, . . . , gL ∈ L∞(μ),

where fj is (T
bηj
ηj

T
−bj

j )γ -invariant for each j ∈ [�] and gj is Zd(Tπj
)-measurable for

each j ∈ [L], we have

lim
N→∞

∥∥∥∥ E
n∈[N]

∏
j∈[�]

T
ρj (n)

ηj
fj ·

∏
j∈[L]

T
qj (n)
πj

gj

∥∥∥∥
L2(μ)

= 0 (82)

whenever |||fj |||s,Tηj
= 0 for some j ∈ [�].

Fix f1, . . . , f�, g1, . . . , gL and suppose that equation (82) fails. Using Proposition 2.3
and the pigeonhole principle, we deduce that there exist dual functions g′

1, . . . , g′
L of

Tπ1 , . . . , TπL
of level d such that

lim
N→∞

∥∥∥∥ E
n∈[N]

∏
j∈[�]

T
ρj (n)

ηj
fj ·

∏
j∈[L]

T
qj (n)
πj

g′
j

∥∥∥∥
L2(μ)

> 0.

Setting Dj (n) := T n
πj

g′
j and using Proposition 7.1, we deduce that |||fj |||s,Tηj

> 0 for all
j ∈ [�], and so the claim follows.

We combine the claim above with Proposition 3.6 for

Yj :=
⎧⎨
⎩I((T

bηj
ηj

T
−bj

j )γ ), 1 ≤ j ≤ �,

Zd(Tπj
), � + 1 ≤ j ≤ L,
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deducing the following: for every ε > 0, there exists δπ > 0 such that for all 1-bounded

functions f1, . . . , f�, g1, . . . , gL ∈ L∞(μ) with fj ∈ L∞(I((T
bηj
ηj

T
−bj

j )γ )) for j ∈ [�]
and gj ∈ L∞(Zd(Tπj

)) for j ∈ [L], we have

lim
N→∞

∥∥∥∥ E
n∈[N]

∏
j∈[�]

T
ρj (n)

ηj
fj ·

∏
j∈[L]

T
qj (n)
πj

gj

∥∥∥∥
L2(μ)

< ε

whenever |||fj |||s,Tηj
< δπ for some j ∈ [�].

Proposition 7.3 follows by taking δ := min(δπ : π ∈ [�]L) and recalling that dual func-
tions of Tj of order d are Zd(Tj )-measurable, and hence for every j ∈ [L], the sequence

Dj (qj (n)) has the form Dj (qj (n)) = T
qj (n)
πj

gj for some πj ∈ [�] and a 1-bounded
Zd(Tj )-measurable function gj ∈ L∞(μ).

For controllable tuples, Proposition 7.1 will be deduced from the following result.

PROPOSITION 7.4. (Iterated box seminorm smoothing) Let d , D, �, L ∈ N, η ∈ [�]�,
and p1, . . . , p�, q1, . . . , qL ∈ Z[n] be polynomials of degrees at most D. Suppose
that the polynomials p1, . . . , p� have the good ergodicity property for the system
(X, X , μ, T1, . . . , T�). Let (T

ρj (n)
ηj

)j∈[�] be a proper descendant of the tuple (T
pj (n)

j )j∈[�].

Suppose that (T
ρj (n)

ηj
)j∈[�] of a non-basic type is controllable, and let m be an index sat-

isfying the controllability condition. Then there exist s ∈ N, depending only on d , D, �, L,
such that for all functions f1, . . . , f� ∈ L∞(μ) with the good invariance property along
η with respect to p1, . . . , p� and all sequences of functions D1, . . . , DL ∈ Dd , we obtain
equation (80) whenever |||fm|||s,Tηm

= 0.

Proposition 7.4 is a consequence of Proposition 3.7, followed by an iterated application
of the smoothing result given below.

PROPOSITION 7.5. (Box seminorm smoothing) Let d , D, �, L ∈ N, η ∈ [�]� and
p1, . . . , p�, q1, . . . , qL ∈ Z[n] be polynomials of degrees at most D. Suppose
that the polynomials p1, . . . , p� have the good ergodicity property for the system
(X, X , μ, T1, . . . , T�). Let (T

ρj (n)
ηj

)j∈[�] be a proper descendant of the tuple (T
pj (n)

j )j∈[�].

Suppose that (T
ρj (n)

ηj
)j∈[�] of a non-basic type is controllable, and let m be an index

satisfying the controllability condition. Then for all s ≥ 2 and vectors b1, . . . , bs+1

satisfying equation (23), there exists s′ ∈ N, depending only on d , D, �, L, s, with the
following property: for all functions f1, . . . , f� ∈ L∞(μ) with the good invariance
property along η with respect to p1, . . . , p� and all sequences of functions D1, . . . , DL ∈
Dd , if |||fm|||b1,...,bs+1 = 0 implies equation (80), then equation (80) also holds under the
assumption that |||fm|||b1,...,bs ,e×s′

ηm
= 0.

We explain now the induction scheme whereby we prove Propositions 7.1–7.5. Roughly
speaking, the proofs proceed by the induction on the length � of an average and—for fixed
�—by induction on type, where the base case are averages of basic types. More precisely,
the induction scheme goes as follows.
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(i) For tuples (T
ρj (n)

ηj
)j∈[�] of length � of type w, Proposition 7.3 follows from

Proposition 7.1 as proved before.
(ii) Tuples (T

ρj (n)
ηj

)j∈[�] of length � = 1 have necessarily basic type, and Propositions
7.1 and 7.2 follow easily from Proposition 3.7.

(iii) For tuples (T
ρj (n)

ηj
)j∈[�] of length � > 1 and basic type, Proposition 7.1 is a

consequence of Proposition 7.2.
(iv) For tuples (T

ρj (n)
ηj

)j∈[�] of length � > 1 and non-basic type w, we prove Proposition
7.5 only under the assumption of controllability. This proof goes by inductively
invoking Proposition 7.3 in two cases: for tuples of length � and type w′ < w, and
for tuples of length � − 1. An iterative application of Proposition 7.5 then yields
Proposition 7.4 for tuples of length � and type w.

(v) For controllable tuples (T
ρj (n)

ηj
)j∈[�] of length � > 1 and non-basic type w, we prove

Proposition 7.1 by invoking Proposition 7.4 for tuples of length � and type w followed
by an application of Proposition 7.1 for tuples of length � − 1.

(vi) Lastly, for uncontrollable tuples (T
ρj (n)

ηj
)j∈[�] of length � > 1 and non-basic type w,

we prove Proposition 7.1 by inductively invoking Proposition 7.1 for tuples of length
� and type w′ < w.

The way in which step (vi) is carried out has been illustrated in Example 9, in which
seminorm control for the uncontrollable average from equation (77) is deduced from
seminorm control for the lower-type controllable average from equation (79). The example
below summarizes how steps (iv) and (v) proceed for a controllable average.

Example 11. (Inductive steps for a controllable average) Consider the tuple

(T n2

1 , T n2

2 , T n2+n
3 , T n2+n

2 ) (83)

of type (3, 1), which is a descendant of the tuple

(T n2

1 , T n2

2 , T n2+n
3 , T n2+n

4 ) (84)

from Example 7 of type (2, 2). While proving Proposition 7.5 for equation (83), we invoke
in the ping step Proposition 7.3 for tuples

(T n2

1 , T n2

2 , T n2+n
1 , T n2+n

2 ) and (T n2

1 , T n2

2 , T n2+n
2 , T n2+n

2 ).

They are proper descendants of the original tuple in equation (84), have basic type (4, 0),
and Proposition 7.1 follows for them from Proposition 7.2. In the pong step of the proof of
Proposition 7.5 for equation (83), we inductively invoke Proposition 7.3 for the following
tuples of length 3, obtained by replacing the first and second term respectively by dual
functions:

(∗, T n2

2 , T n2+n
3 , T n2+n

2 ) and (T n2

1 , ∗, T n2+n
3 , T n2+n

2 ).

Finally, once we prove the T3-seminorm control of the third term in equation (83) using
Proposition 7.4, an iterated version of Proposition 7.5, we derive seminorm control of
other terms in equation (83) as follows. Replacing the third term in equation (83) by a
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dual function using the newly established T3-control, Proposition 2.3, and the pigeonhole
principle, we get a tuple

(T n2

1 , T n2

2 , ∗, T n2+n
2 ),

and then we apply Proposition 6.6 to flip the T2 in the last term into T4, obtaining the
tuple

(T n2

1 , T n2

2 , ∗, T 3n2+3n
4 ).

This tuple has length 3, and it is good for seminorm control by Proposition 7.1 applied
inductively to tuples of length 3. Going back, this gives us seminorm control of the other
terms in equation (83).

7.2. Proof of Proposition 7.5. We prove Proposition 7.5 for the tuple (T
ρj (n)

ηj
)j∈[�]

of non-basic type w with the last non-zero index t, which is a proper descendant of
(T

pj (n)

j )j∈[�], by assuming that Proposition 7.1 holds for tuples of length � − 1 as well
as length � and type w′ < w. For simplicity of notation, we assume that m = � satisfies
the controllability condition.

By Proposition 3.7, the vector bs+1 is non-zero and takes the form bs+1 = b�eη�
− bieηi

for some i ∈ {0, . . . , � − 1}, where b�, bi are the coefficients of p�, pi of degree d�i :=
deg(p�eη�

− pieηi
). If i = 0, then b� �= 0 since bs+1 is non-zero. If ηi = η�, then the

controllability condition implies that ρi , ρ� are independent, and so T bs+1 is a non-zero
iterate of Tη�

. In both these cases, the result follows from the bound

|||f�|||b1,...,bs ,ceη�
�|c| |||f�|||b1,...,bs ,eη�

for any c �= 0, which is a consequence of Lemma 2.1.
For the case ηi �= η� and ηi ∈ It , recall first that η� ∈ It by assumption, and the

good ergodicity property of p1, . . . , p� implies that ρ1, . . . , ρ� have the good ergod-
icity property along η. Hence, we have b� = β� gcd(b�, bi), bi = βi gcd(b�, bi) for
coprime integers β�, βi ∈ Z such that I(T β�eη�

−βieηi ) ⊆ I(T�). By Lemmas 2.1 and 2.2,
we have

|||f�|||b1,...,bs+1 � |||f�|||b1,...,bs ,β�eη�
−βieηi

≤ |||f�|||b1,...,bs ,eη�
.

The last remaining case to consider, and the most difficult one, is when ηi ∈ It ′ with
t ′ �= t and b�, bi �= 0. The proof of Proposition 7.5 in this case follows the same two-step
strategy that was explained in Example 1, but we also have to take into account additional
complications explained in Examples 7 and 8. We first obtain the control of equation (35)
by |||fi |||b1,...,bs ,e×s1

ηi

for some s1 ∈ N depending only on d , D, �, L, s. This is accomplished

by using the control by |||f�|||b1,...,bs+1 , given by assumption, for an appropriately defined
function f̃� in place of f�. Subsequently, we repeat the procedure by applying the newly
established control by |||fi |||b1,...,bs ,e×s1

ηi

for a function f̃i in place of fi . This gives us the

claimed result.
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Step 1 (ping): Obtaining control by a seminorm of fi .
Suppose that

lim
N→∞

∥∥∥∥ E
n∈[N]

∏
j∈[�]

T
ρj (n)

ηj
fj ·

∏
j∈[L]

Dj (qj (n))

∥∥∥∥
L2(μ)

> 0. (85)

The good invariance property of f1, . . . , f� implies that f� is invariant under
(T

aη�
η�

T
−a�

� )γ = T c for some non-zero γ > 0 and c := γ (aη�
eη�

− a�e�), where aη�
, a�

are the leading coefficients of pη�
and p�. Combining this with Lemma 3.2, we deduce

that

lim
N→∞

∥∥∥∥ E
n∈[N]

∏
j∈[�−1]

T
ρj (n)

ηj
fj · T ρ�(n)

η�
E(f̃�|I(T c)) ·

∏
j∈[L]

Dj (qj (n))

∥∥∥∥
L2(μ)

> 0

for some function

f̃� := lim
k→∞ E

n∈[Nk]
T −ρ�(n)

η�
gk ·

∏
j∈[�−1]

T −ρ�(n)
η�

T
ρj (n)

ηj
f j ·

∏
j∈[L]

T −ρ�(n)
η�

Dj (qj (n)),

where the limit is a weak limit. Then our assumption gives

|||E(f̃�|I(T c))|||b1,...,bs+1 > 0.

By Proposition 3.3, we get

lim inf
H→∞ E

h,h′∈[H ]s

lim
N→∞

∥∥∥∥ E
n∈[N]

∏
j∈[�−1]

T
ρj (n)

ηj
(	b1,...,bs ;h−h′fj ) · T ρ�(n)

η�
uh,h′ ·

∏
j∈[L]

D′
j ,h,h′(qj (n))

∥∥∥∥
L2(μ)

> 0,

where uh,h′ are 1-bounded and invariant under both T bs+1 and T c, and

D′
j ,h,h′(n) := 	b1,...,bs ;h−h′Dj (n)

is a product of 2s elements of Dd . As a consequence of the T bs+1 -invariance of uh,h′ , we
have

T b�
η�

uh,h′ = T bi
ηi

uh,h′ , (86)

where we use the identity T
b�
η�

= T
bi
ηi

T bs+1 . Let λ ∈ N be the smallest natural number such
that b� divides the coefficients of λρ�. By the triangle inequality,

lim inf
H→∞ E

h,h′∈[H ]s
E

r∈{0,...,λ−1}

lim
N→∞

∥∥∥∥ E
n∈[N]

∏
j∈[�−1]

T
ρj (λn+r)

ηj
(	b1,...,bs ;h−h′fj ) · T ρ�(λn+r)

η�
uh,h′

×
∏

j∈[L]

D′
j ,h,h′(qj (λn + r))

∥∥∥∥
L2(μ)

> 0.
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Using equation (86) and the pigeonhole principle, and setting η′ = τ�iη, we get that for
some r0 ∈ {0, . . . , λ − 1}, we have

lim sup
H→∞

E
h,h′∈[H ]s

lim
N→∞

∥∥∥∥ E
n∈[N]

∏
j∈[�]

T
ρ′

j (n)

η′
j

fj ,h,h′ ·
∏

j∈[L]

D′
j ,h,h′(q ′

j (n))

∥∥∥∥
L2(μ)

> 0, (87)

where

ρ′
j (n) :=

⎧⎪⎨
⎪⎩

ρj (λn + r0) − ρj (r0), j ∈ [� − 1],

bi

b�

(ρ�(λn + r0) − ρ�(r0)), j = �,

fj ,h,h′ :=
{

	b1,...,bs ;h−h′T
ρj (r0)

ηj
fj , j ∈ [� − 1],

T
ρ�(r0)

η�
uh,h′ , j = �,

and q ′
j (n) := qj (λn + r0). We note that the polynomials ρ′

1, . . . , ρ′
� are as in

Proposition 6.1.
It follows from equation (87) that there exists a set B ⊂ N

2s of positive upper density
and ε > 0 such that

lim
N→∞

∥∥∥∥ E
n∈[N]

∏
j∈[�]

T
ρ′

j (n)

η′
j

fj ,h,h′ ·
∏

j∈[L]

D′
j ,h,h′(q ′

j (n))

∥∥∥∥
L2(μ)

≥ ε (88)

for every (h, h′) ∈ B.
By assumption, t is the last non-zero index of w, implying that t ′ < t . Hence, the

new tuple (T
ρ′

j (n)

η′
j

)j∈[�] has type w′ = σtt ′w < w. Furthermore, by Proposition 6.5, the

functions fj ,h,h′ have the good invariance property along η′ with respect to p1, . . . , p�.
We therefore inductively apply Proposition 7.3 for tuples of length � and type w′ to each
average from equation (88). This allows us to conclude that there exist s1 ∈ N, depending
only on d , D, �, L, s, and δ > 0 such that

|||	b1,...,bs ;h−h′fi |||s1,Tηi
≥ δ

for (h, h′) ∈ B. Hence,

lim sup
H→∞

E
h,h′∈[H ]s

|||	b1,...,bs ;h−h′fi |||s1,Tηi
> 0. (89)

Together with Lemma 3.1, the inductive formula for seminorms in equation (15), and
Hölder inequality, the inequality in equation (89) implies that

|||fi |||b1,...,bs ,e×s1
ηi

> 0,

and so the seminorm |||fi |||b1,...,bs ,e×s1
ηi

controls the average from equation (35).

Step 2 (pong): Obtaining control by a seminorm of f�.
To get the claim that |||f�|||b1,...,bs ,e×s′

η�

controls the average for some s′ ∈ N depending

only on d , D, �, L, s, we repeat the procedure once more with fi in place of f�. From
equation (85), it follows that
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lim
N→∞

∥∥∥∥ E
n∈[N]

∏
j∈[�],
j �=i

T
ρj (n)

ηj
fj · T ρi(n)

ηi
f̃i ·

∏
j∈[L]

Dj (qj (n))

∥∥∥∥
L2(μ)

> 0

for some function

f̃i := lim
k→∞ E

n∈[Nk]
T −ρi(n)

ηi
gk ·

∏
j∈[�],
j �=i

T −ρi(n)
ηi

T
ρj (n)

ηj
f j ·

∏
j∈[L]

T −ρi(n)
ηi

Dj (qj (n)),

where the limit is a weak limit. Then the previous result gives

|||f̃i |||b1,...,bs ,e×s1
ηi

> 0.

By Proposition 3.3, we get

lim inf
H→∞ E

h,h′∈[H ]s
lim

N→∞

∥∥∥∥ E
n∈[N]

∏
j∈[�],
j �=i

T
ρj (n)

ηj
(	b1,...,bs ;h−h′fj )

×
∏

j∈[L+1]

Dj ,h,h′(qj (n))

∥∥∥∥
L2(μ)

> 0,

where

Dj ,h,h′(n) :=
⎧⎨
⎩

	b1,...,bs ;h−h′Dj (n), j ∈ [L],

T n
ηi

T −(b1h
′
1+···+bsh

′
s )

∏
ε∈{0,1}s

C|ε|Ds1,Tηi
(	b1,...,bs ;hε f̃i), j = L + 1.

Thus, the sequence of functions Dj ,h,h′ is a product of 2s elements of Dd if j ∈ [L], and
it is a product of 2s elements of Ds1 for j = L + 1. Consequently, there exists ε > 0 and a
set B ′ ⊂ N

2s of positive lower density such that for every (h, h′) ∈ B ′, we have

lim
N→∞

∥∥∥∥ E
n∈[N]

∏
j∈[�],
j �=i

T
ρj (n)

ηj
(	b1,...,bs ;h−h′fj ) ·

∏
j∈[L+1]

Dj ,h,h′(qj (n))

∥∥∥∥
L2(μ)

> ε.

Proposition 6.5 implies that the functions (g1,h,h′ , . . . , g�,h,h′)(h,h′)∈N2s given by

gj ,h,h′ :=
{

	b1,...,bs ;h−h′fj , j �= i,

1, j = i,

have the good invariance property along η with respect to p1, . . . , p�. Proposition 6.6 then
gives polynomials ρ′

1, . . . , ρ′
�, q ′

1, . . . , q ′
L ∈ Z[n], 1-bounded functions g′

1,h,h′ , . . . , g′
�,h,h′

with g′
i,h,h′ := 1 such that

lim
N→∞

∥∥∥∥ E
n∈[N]

∏
j∈[�],
j �=i

T
ρ′

j (n)

j g′
j ,h,h′ ·

∏
j∈[L+1]

Dj ,h,h′(q ′
j (n))

∥∥∥∥
L2(μ)

> ε. (90)
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It also gives a constant C > 0 depending only on γ and the leading coefficients of
p1, . . . , p� such that

|||g′
j ,h,h′ |||s′,Tj

≤ C|||	b1,...,bs ;h−h′fj |||s′,Tηj
(91)

for all j ∈ [�] \ {i}, (h, h′) ∈ B ′, and s′ ≥ 2. Observing that the averages from equation
(90) have length � − 1 and ρ′

1, . . . , ρ′
i−1, ρ′

i+1, . . . , ρ′
� have the good ergodicity property

for the system (X, X , μ, T1, . . . , Ti−1, Ti+1, . . . , T�) (another consequence of Proposi-
tions 6.6 and 6.4), we conclude from equation (91) and Proposition 7.3 that there exist
s′ ∈ N (depending only on d , D, �, L, s) and δ > 0 satisfying

|||	b1,...,bs ;h−h′f�|||s′,Tη�
> δ

for every (h, h′) ∈ B ′. Consequently, we deduce that

lim inf
H→∞ E

h,h′∈[H ]s
|||	b1,...,bs ;h−h′f�|||s′,Tη�

> 0.

It then follows from Lemma 3.1 and the Hölder inequality that |||f�|||b1,...,bs ,e×s′
η�

> 0, as

claimed.

7.3. Proof of Proposition 7.1. We induct on the length � of the average, and for each
fixed �, we further induct on type. In the base case � = 1, Proposition 7.1 follows directly
from Proposition 3.7. We assume therefore that the average has length � > 1 and type w,
and the statement holds for averages of length � − 1 as well as length � and type w′ < w. If
the type w is basic, then Proposition 7.1 follows from Proposition 7.2, so we assume that w
is not basic. We argue differently depending on whether the average is controllable or not.

Case 1: Controllable averages.
If the average is controllable, then Proposition 7.4 gives s ∈ N depending only on

d , D, �, L as well as m ∈ [�] such that equation (80) holds whenever |||fm|||s,Tηm
= 0.

Suppose now that

lim
N→∞

∥∥∥∥ E
n∈[N]

∏
j∈[�]

T
ρj (n)

ηj
fj

∏
j∈[L]

Dj (qj (n))

∥∥∥∥
L2(μ)

> 0.

Applying the fact that |||fm|||s,Tηm
controls this average, Proposition 2.3, and the pigeonhole

principle, we replace fm by a dual function of level s, so that we have

lim
N→∞

∥∥∥∥ E
n∈[N]

∏
j∈[�],
j �=m

T
ρj (n)

ηj
fj · D(ρj (n)) ·

∏
j∈[L]

Dj (qj (n))

∥∥∥∥
L2(μ)

> 0

for some D ∈ Ds . By Proposition 6.6, there exist 1-bounded functions (f ′
j )j∈[�] with

f ′
m = 1 and polynomials ρ′

1, . . . , ρ′
�, q ′

1, . . . , q ′
L ∈ Z[n] such that

lim
N→∞

∥∥∥∥ E
n∈[N]

∏
j∈[�],
j �=m

T
ρ′

j (n)

j f ′
j · D(ρj (n)) ·

∏
j∈[L]

Dj (q
′
j (n))

∥∥∥∥
L2(μ)

> 0.
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Provided s ≥ 2 (which we can assume without loss of generality), Proposition 6.6 also
implies that |||f ′

j |||s,Tj
≤ C|||fj |||s,Tηj

for a constant C > 0 depending only on the leading
coefficients of p1, . . . , p� and the number γ for which f1, . . . , f� have the γ -invariance
property along η. Moreover, the fact that ρ′

1, . . . , ρ′
� are descendants of p1, . . . , p� and

Proposition 6.4 imply that (T
ρ′

j (n)

j )j∈[�],j �=m has the good ergodicity property. By the case
� − 1 of Proposition 7.1, we deduce that |||f ′

j |||s,Tj
> 0 for j �= m, and hence |||fj |||s,Tηj

> 0
for j �= m.

Case 2: Uncontrollable averages.
If the average is uncontrollable, then we apply Proposition 6.8 to deduce the existence

of polynomials q ′
1, . . . , q ′

L ∈ Z[n], a tuple (T
ρ′

j (n)

η′
j

)j∈[�] of type w′ < w that is a proper

descendant of (T
pj (n)

j )j∈[�], as well as functions f ′
1, . . . , f ′

� ∈ L∞(μ) satisfying

lim
N→∞

∥∥∥∥ E
n∈[N]

∏
j∈[�]

T
ρj (n)

ηj
fj

∏
j∈[L]

Dj (qj (n))

∥∥∥∥
L2(μ)

≤ lim
N→∞

∥∥∥∥ E
n∈[N]

∏
j∈[�]

T
ρ′

j (n)

η′
j

f ′
j

∏
j∈[L]

Dj (q
′
j (n))

∥∥∥∥
L2(μ)

and |||f ′
j |||s,Tη′

j

≤ C|||fj |||s,Tηj
for every s ≥ 2 and j ∈ [�] as well as some constant C > 0

depending only on γ and the leading coefficients of p1, . . . , p�. Moreover, the functions
f ′

1, . . . , f ′
� have the good invariance property along η′ with respect to p1, . . . , p�. By

the induction hypothesis, there exists s ∈ N such that the second average above vanishes
whenever |||f ′

j |||s,Tη′
j

= 0, and so the first average also vanishes whenever |||fj |||s,Tηj
= 0.

This establishes the seminorm control over the tuple (T
ρj (n)

ηj
)j∈[�].

8. Proofs of joint ergodicity results
In this section, we derive Theorem 1.2 and Corollaries 1.3 and 1.4. We start with two
observations that connect the notions of joint ergodicity and weak joint ergodicity. Their
proofs are straightforward and hence we skip them.

LEMMA 8.1. Let (X, X , μ, T ) be a system. Suppose that there exists a sequence
a : N → Z such that (T a(n))n∈N is ergodic for μ. Then T is ergodic.

LEMMA 8.2. Let a1, . . . , a� : N → Z be sequences and (X, X , μ, T1, . . . , T�) be a
system. The sequences are jointly ergodic for the system if and only if they are weakly
jointly ergodic and the transformations T1, . . . , T� are ergodic.

We continue with the proof of Theorem 1.2.

Proof of Theorem 1.2. Suppose first that the polynomials p1, . . . , p� have the good
ergodicity property for the system (X, X , μ, T1, . . . , T�). By Theorem 1.1, this implies
that p1, . . . , p� are good for the seminorm control for the system (X, X , μ, T1, . . . , T�).
This result, property (ii), and Theorem 2.4 imply that p1, . . . , p� are weakly jointly
ergodic for the system.
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Conversely, suppose that the polynomials are weakly jointly ergodic for the system.
The condition (ii) follows by taking f1, . . . , f� to be non-ergodic eigenfunctions of
respective transformations. To prove condition (i), suppose that pi/ci = pj/cj for some
i �= j and coprime integers ci , cj , and there exists a function f invariant under T

ci

i T
−cj

j

that is not simultaneously invariant under Ti and Tj . The invariance property of f gives
T

ci

i f = T
cj

j f , and the same holds for f . The coprimeness of ci , cj implies that the
polynomial pi/ci = pj/cj has integer coefficients, and so we have

E
n∈[N]

T
pi(n)
i f · T

pj (n)

j f = E
n∈[N]

T
pi(n)
i |f |2 = E

n∈[N]
T

pj (n)

j |f |2,

which by the weak joint ergodicity of p1, . . . , p� converges to E(|f |2|I(Ti)) =
E(|f |2|I(Tj )) in L2(μ). However, the weak joint ergodicity of p1, . . . , p� implies that

lim
N→∞ E

n∈[N]
T

pi(n)
i f · T pj (n)

j f = E(f |I(Ti)) · E(f |I(Tj ))

in L2(μ). Hence, E(|f |2|I(Ti)) = E(f |I(Ti)) · E(f |I(Tj )). The properties of the condi-
tional expectation and the Cauchy–Schwarz inequality imply that∫

‖E(f |I(Ti)) · E(f |I(Tj ))| dμ ≤ ‖E(f |I(Ti))‖L2(μ) · ‖E(f |I(Tj ))‖L2(μ)

≤ ‖f ‖2
L2(μ)

=
∫

|f |2 dμ =
∫

E(|f |2|I(Ti)) dμ.

The two inequalities above become an equality precisely when f = E(f |I(Ti)) =
E(f |I(Tj )) holds μ-a.e., that is, when f is simultaneously invariant under Ti and Tj ,
and so either this is the case, contradicting the assumptions on f, or E(|f |2|I(Ti)) �=
E(f |I(Ti)) · E(f |I(Tj )), contradicting the weak joint ergodicity of p1, . . . , p�.

We now derive Corollary 1.3 from Theorem 1.2.

Proof of Corollary 1.3. By Lemma 8.2, the polynomials p1, . . . , p� are jointly ergodic
for the system (X, X , μ, T1, . . . , T�) if and only if they are weakly jointly ergodic for this
system and the transformations T1, . . . , T� are ergodic. Theorem 1.2 in turn implies that
this is equivalent to the system having the good ergodicity property, the transformations
T1, . . . , T� being ergodic, and equation (6) holding for all eigenfunctions. Since the
transformations are ergodic, all the eigenfunctions χj of Tj satisfy Tjχj = λjχj for a
constant λj , and so the condition of equation (6) reduces to equation (7) upon taking
λj = e(αj ) and realizing that

∫
χj dμ = 0 unless αj = 0. Lastly, the good ergodicity

property and the ergodicity of the transformations T1, . . . , T� jointly imply the very good
ergodicity property.

Finally, we prove Corollary 1.4.

Proof of Corollary 1.4. The forward direction follows from [7, Proposition 5.3], and so
it is enough to deduce the reverse direction. Our goal is to show that the conditions
(i) and (ii) in the statement of Conjecture 1 imply the conditions (i) and (ii) in the
statement of Corollary 1.3. The condition (ii) in Conjecture 1, that is, the ergodicity of
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(T
p1(n)

1 , . . . , T
p�(n)

� )n∈N, implies the condition (ii) in Corollary 1.3 by taking eigenfunc-
tions. By Lemma 8.1, it also implies the ergodicity of T1, . . . , T� because each sequence
(T

pj (n)

j )n∈N is ergodic.
To establish the very good ergodicity property of p1, . . . , p�, suppose that pi/ci =

pj/cj for some relatively prime ci , cj ∈ Z, and f is a non-constant function invariant under
T

ci

i T
−cj

j . Letting q := pi/ci = pj/cj and noting that it has integer coefficients due to the
coprimeness of ci , cj , we observe that

lim
N→∞ E

n∈[N]
T

pi(n)
i T

−pj (n)

j f = lim
N→∞ E

n∈[N]
(T

ci

i T
−cj

j )q(n)f = f �=
∫

f dμ,

contradicting the ergodicity of (T
pi(n)
i T

−pj (n)

j )n∈N.
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