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Abstract 

Glufosinate serves as both a primary herbicide option and a complement to glyphosate and other 

postemergence (POST) herbicides for managing herbicide-resistant weed species. Enhancing 

broadleaf weed control with glufosinate through effective mixtures may mitigate further 

herbicide resistance evolution in soybean and other glufosinate-resistant cropping systems. Two 

field experiments were conducted in 2020 and 2021 across locations in Wisconsin (Arlington, 

Brooklyn, Janesville, and Lancaster) and one location in Illinois (Macomb) to evaluate the 

impact of POST glufosinate mixed with PPO-inhibitors (flumiclorac-pentyl, fluthiacet-methyl, 

fomesafen, and lactofen, WSSA Group 14), bentazon (Group 6), and 2,4-D (Group 4) on 

waterhemp control, soybean phytotoxicity, and yield. The experiments were established in a 

randomized complete block design with four replications. The first experiment focused on 

soybean phytotoxicity 14 days after treatment (DAT) and yield in the absence of weed 

competition. All treatments received a preemergence herbicide, with postemergence herbicide 

applications occurring between the V3-V6 soybean growth stages, depending on the site-year. 

The second experiment evaluated the impact of herbicide treatments on waterhemp control 14 

DAT and on soybean yield. Lactofen, applied alone or with glufosinate, presented the highest 

phytotoxicity to soybean 14 DAT, but this injury did not translate into yield loss. Mixing 

glufosinate with 2,4-D, bentazon, and PPO-inhibitor herbicides did not increase waterhemp 

control, nor did it affect soybean yield compared to when glufosinate was applied solely but may 

be an effective practice to reduce selection pressure for glufosinate-resistant waterhemp. 

 

Nomenclature: glufosinate; 2,4-D; lactofen; fomesafen; fluthiacet-methyl; bentazon; 

flumiclorac-pentyl; waterhemp, Amaranthus tuberculatus (Moq.) Sauer; soybean, Glycine max 

(L.) Merr. 

Keywords: fomesafen, glufosinate, lactofen, PPO-inhibitors, soybean, mixtures, waterhemp  
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INTRODUCTION 

Waterhemp is one of the most common and troublesome weed species in corn and 

soybean production systems across the Midwest United States (Tranel et al. 2011; Van Wychen 

2022, 2023). Waterhemp has evolved resistance to herbicides from seven different sites of action 

(SOA) (Heap 2024). A population from Missouri demonstrated resistance to herbicides from six 

SOAs, limiting effective post-emergence (POST) control options to only glufosinate and 

dicamba (Shergil 2018). Similarly, a comprehensive herbicide resistance screening on over 80 

waterhemp accessions from Wisconsin revealed glufosinate as the only herbicide providing 

complete control (>97% biomass reduction) of all accessions (Faleco et al. 2022). Glufosinate is 

a broad-spectrum, non-selective, light-dependent herbicide with limited translocation that targets 

glutamine synthetase (GS) and is primarily effective on annual weed species (Dayan et al. 2019; 

Steckel et al. 1997). However, its performance can vary in the field due to factors such as low 

humidity and temperature, time of day, and weed size (Coetzer et al. 2001; Kumaratilake and 

Preston, 2005; Martinson et al. 2005; Tharp et al. 1999). Glufosinate-resistant crops were rarely 

adopted before glyphosate-resistant weeds became widespread in glyphosate-based systems, 

even though both technologies were commercialized around the same time, and delayed adoption 

was likely due to glufosinate’s historically lower efficacy and consistency compared to 

glyphosate, as well as the limited availability of glufosinate-resistant soybean cultivars until 

2020 (Takano and Dayan, 2020). However, with the rising prevalence of multiple-herbicide-

resistant weeds, glufosinate’s role in weed management is now expanding (Takano and Dayan, 

2020; USGS, 2018). Currently six instances of glufosinate resistance have been reported, with 

one of the six weeds being a broadleaf species, Palmer amaranth (Amaranthus palmeri) (Heap 

2024). Glufosinate should be used strategically to postpone further resistance evolution and to 

preserve it as a tool for effective broadleaf control.  

Compelling evidence indicates that the rapid cell death in glufosinate-treated plants is 

mainly due to reactive oxygen species (ROS), which, when produced in large quantities under 

light, cause severe lipid peroxidation of cell membranes leading to rapid phytotoxicity (Takano 

et al. 2019; Takano et al. 2020a). Herbicides that target protoporphyrinogen oxidase (PPO) lead 

to an accumulation of protoporphyrin IX, a compound that also produces ROS when exposed to 

light (Dayan et al. 2019). Combinations of glufosinate and PPO-inhibitor herbicides may be 

more advantageous in terms of weed control, when compared to individual applications of these 
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herbicides, because of the simultaneous inhibition of GS and PPO, leading to elevated 

accumulation of protoporphyrin IX and the concomitant accumulation of ROS (Takano et al 

2020a). Mixtures may also alleviate environmental effects on glufosinate performance (Takano 

et al. 2020b). Takano et al. (2020b) reported a synergistic effect in controlling Palmer amaranth 

and kochia (Bassia scoparia) when a half rate of glufosinate (280 g ha
-1

) was mixed with an 

extremely low dose of saflufenacil (1 g ha 
-1

). However, the utility of this mixture for POST 

weed control is limited because it caused >60% injury to both susceptible and glufosinate-

resistant soybean and did not increase control of PPO-inhibitor resistant waterhemp. The strong 

synergistic effect initially observed on Palmer amaranth varied based on weed species treated, 

herbicide dosages, and PPO-inhibitors tested (Takano et al. 2020b). For example, when 

flumioxazin, pyraflufen, lactofen, or fomesafen were mixed with glufosinate and applied to 

kochia, the synergistic effect was less than what was observed with saflufenacil (Takano et al. 

2020b). The elevated soybean injury observed following POST applications of glufosinate + 

saflufenacil mixtures may portend increased soybean injury with mixtures of glufosinate with 

other PPO-inhibitor herbicides (Belfry et al. 2016; Takano et al. 2020b) and slow the 

development of canopy formation (Priess et al. 2020). This may discourage use of  PPO-inhibitor 

chemistry when it may otherwise be a valuable part of an herbicide-resistance mitigation 

strategy. 

Another potential glufosinate mix partner is 2,4-D (WSSA Group 4). Craigmyle et al. 

(2013) indicated that addition of 2,4-D to either or both POST applications of glufosinate 

provided better waterhemp control compared to two POST applications of glufosinate alone. 

Furthermore, Joseph et al. (2018) reported an increased spectrum in control of sicklepod (Senna 

obtusifolia [L.] H.S. Irwin & Barneby), pitted morningglory (Ipomoea lacunosa L.), and Palmer 

amaranth when glufosinate was mixed with either 2,4-D or dicamba, compared to herbicides 

being applied alone. Lanclos et al. (2002) reported a synergistic effect for control of spreading 

dayflower (Commelina diffusa, Burm.f.) when glufosinate was mixed with propanil (WSSA 

Group 5, photosystem II-inhibitor), which also leads to accumulation of ROS. In contrast, acetyl 

CoA carboxylase inhibitors and glyphosate have not always increased glufosinate control of 

some grass and broadleaf weed species (Besançon et al. 2018; Burke et al. 2005), warranting 

further investigation of the most effective partners with glufosinate to improve POST weed 

control in soybean.  
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The proportion of herbicide-resistant weeds in the field will rapidly increase with 

repeated use of the same herbicide SOA (Beckie 2006). The strategic use of both pre-emergence 

(PRE) and POST herbicide mixtures containing multiple effective SOAs is crucial to delaying 

herbicide resistance, preserving the effectiveness of new herbicide-resistant crops, and ensuring 

the long-term economic sustainability of agriculture (Norsworthy et al. 2012). The combination 

of glufosinate with PPO-inhibitors and other alternative herbicide SOAs (i.e., Group 4 or 6) is 

one research area that requires additional studies to understand their interactions and effect on 

weed control and crop injury (Takano et al. 2020b). Our objectives were to measure the efficacy 

of glufosinate applied alone and mixed with other active ingredients on 1) waterhemp control 

and 2) soybean injury and yield. 

 

MATERIALS AND METHODS 

Two separate field experiments were conducted in Illinois and Wisconsin to investigate 

glufosinate combinations with various herbicides on soybean phytotoxicity and yield (hereafter 

referred to as “crop response study”), and waterhemp control (hereafter referred to as 

"waterhemp response study"). The crop response study was conducted in 2020 and 2021 at 

Macomb (40.4900 -90.6888, Illinois), and in 2020 and 2021 at Arlington Agricultural Research 

Station (43.3034, -89.3455, Wisconsin) and Rock County Research farm in Janesville 

(Janesville, 42.7262, -89.0235, Wisconsin) in fields with known history of low weed infestation 

and no waterhemp presence (Ryan P. DeWerff and Mark L. Bernards personal observations). 

The waterhemp response study was conducted in 2021 at Macomb (40.4795, -90.7208), IL, and 

in 2020 and 2021 at Lancaster Agricultural Research Station (Lancaster, 42.8313, -90.7880) and 

O’Brien Family Farm near Brooklyn (Brooklyn, 42.8768, -89.3980), WI, in fields naturally 

infested with waterhemp. Experiments were established in a randomized complete block design 

(RCBD) with four replications, using experimental units that measured 3 m wide by 9.1 m long 

with 4 soybean rows planted 76 cm apart. Both studies included a PRE-herbicide nontreated 

control (receiving only POST herbicides), while only the waterhemp response study contained a 

complete nontreated control (no PRE or POST herbicides). In contrast, the whole crop response 

study was maintained weed-free throughout the season. A more effective pre-emergence (PRE) 

herbicide combination, flumioxazin + pyroxasulfone (Fierce; 70.4 & 89.3 g ai ha
-1

, respectively), 

was applied at soybean planting for the crop response study to aid in weed-free maintenance 
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during the growing season, such that any measured effects on soybean development and yield 

resulted solely from the effect of a POST herbicide treatments. In the waterhemp response study, 

a PRE application of flumioxazin alone (Valor; 112 g ai ha
-1

) was made to all treatments at 

soybean planting, except for the nontreated control. The POST herbicide treatments were 

identical across both studies (Table 1). POST herbicide treatments were applied using a CO2-

pressurized backpack sprayer, equipped with TeeJet ® AIXR11015 spray nozzles on a 2.54 m 

wide spray boom, calibrated to deliver 140 L ha
-1

 of carrier volume. Weather information for the 

soybean growing season at each location is presented in Table 2. Soil characteristics, soybean 

variety and planting dates, and soybean growth and waterhemp density and height at POST 

herbicide application for all experimental locations are displayed in Table 3.  

 

Soybean Phytotoxicity and Soybean Green Cover 

A visual evaluation of soybean phytotoxicity in the crop response study was made 14 

DAT on a scale from 0 to 100%, where 0 represented no injury and 100 represented plant death. 

The most common symptoms observed were necrosis (bronzing) and stunting of soybean 

growth. A digital estimation of soybean canopy development was conducted to estimate soybean 

green cover percentage, also at 14 DAT. Three photographs, each capturing approximately 1.7 m 

of row of both the second and third row, were taken in each plot. A wooden L-shaped pole 

measuring 1.93 m in height was used to support a GoPro Hero 8 Black camera (GoPro Inc., San 

Mateo, CA, USA) above soybean canopy, which was paired with an iPhone 6s (Apple Inc., 

Cupertino, CA, USA) via the GoPro Quik app (GoPro Inc., San Mateo, CA, USA) and used as 

an electronic viewfinder for the camera. Resolution of the images captured with GoPro 8 Hero 

Black camera was 4000 x 3000 pixels (aspect ratio 4:3), with linear distortion setting. The 

images were processed using the Canopeo add-on (Canopeo Software, Oklahoma State 

University, Division of Agricultural Sciences and Natural Resources Soil Physics Program, 

Stillwater, OK; https://canopeoapp.com/) in MATLAB software (MathWorks®, Natick, MA). 

This allowed for the estimation of fractional soybean green cover within each image and served 

as a proxy of herbicide-induced crop injury, where a higher green cover percentage indicated 

lower soybean injury (Arsenijevic et al. 2021; Liang et al. 2012; Paruelo et al. 2000; Patrignani 

and Ochsner 2015).   
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Visual Assessment of Waterhemp Control and Biomass Collection 

In the waterhemp control study a visual estimate of waterhemp control was made 14 

DAT, using a scale ranging from 0 to 100%, where 0 represented no control, and 100 represented 

complete control of all waterhemp. Waterhemp biomass was collected at 14 DAT by harvesting 

all waterhemp plants within two 0.25 m
2
 quadrats in each plot. Harvested plants were dried to a 

constant weight at 60 C, and waterhemp biomass reduction compared to the nontreated control 

was calculated using: 

       
 

 
      

where biomass reduction (R) was estimated by comparing dry biomass of a treated plot (H) to 

the average dry biomass of the nontreated control (C). 

 

Soybean Yield 

At crop maturity, the center two rows of each experimental plot were mechanically 

harvested using a plot combine for both studies. The soybean yield data obtained were adjusted 

to 13% moisture content and are presented in kg ha
-1

. 

 

Statistical Analyses 

All response variables (waterhemp response study: visual assessment of waterhemp 

control [%], waterhemp biomass reduction [%], soybean yield [kg ha
-1

]; crop response study: 

soybean phytotoxicity [%], soybean green cover [%], and soybean yield [kg ha
-1

]) were analyzed 

using R Statistical Software (4.4.1; R Foundation for Statistical Computing, Vienna, Austria). 

Data were pooled across site-years (year and location were treated as random factors). Herbicide 

treatment was the main effect, and replications nested within site-years were treated as random 

effects.  

A generalized linear mixed model with Template Model Builder with beta distribution 

and logit link (glmmTMB package version 1.1.9; Brooks et al., 2017) was fit to soybean injury, 

soybean green cover percentage, visual assessment of waterhemp control, and waterhemp 

biomass reduction. Pearson chi-square test (nortest package, version 1.0-4) and Levene's test 

(car package, version 3.1-2) were used to check normality and homogeneity of variance, 

respectively.  Response variables were logit-transformed to improve normality assumptions 
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(Barnes et al. 2020; Davies et al. 2019; Striegel et al. 2020). The analysis of variance type II 

Wald Chi-square test was performed followed by Tukey’s honest significant difference (HSD) 

test (α = 0.05) and pairwise comparisons using the emmeans package (version 1.10.3). Back 

transformed means are presented for ease of result interpretation.  

A linear mixed model with a normal distribution using the lme4 package (version 1.1-

35.5) was fit to soybean yield data. To better meet the normality and variance homogeneity 

assumptions, response variables were square-root transformed. When ANOVA results indicated 

a significant herbicide effect, means were compared using Tukey’s HSD test (α = 0.05). Means 

were separated when herbicide treatment effect was less than P = 0.05 using Tukey’s HSD test.  

Back-transformed means are presented for ease of interpretation.  

To assess the relationship between soybean visual injury and soybean green cover 

(Canopeo data), a linear mixed-effects model was used (lme4 package). Soybean visual injury 

was the response variable, soybean green cover was the fixed effect, and replications were nested 

within site-years. The model was fit using maximum likelihood estimation.  Predicted soybean 

visual injury values were calculated based on the fitted model. A simple linear regression was 

conducted and the predicted soybean visual injury was calculated. The goodness-of-fit of the 

models was assessed using the R-squared statistic (piecewiseSEM package), which represents the 

proportion of variance in phytotoxicity that can be explained by the models (marginal and 

conditional R
2
). The relationship between soybean visual injury and soybean green cover was 

calculated according to formula: 

              

where V = visual injury (dependent variable); β0 = intercept; β1 = slope for soybean green cover 

(independent variable); C = green cover; r = random effect of site-year nested within rep; ϵ = 

error term. 

 

RESULTS AND DISCUSSION 

 

Crop Response Study  

Soybean Visible Phytotoxicity and Soybean Green Cover 

The main effect of herbicide treatment was significant for visual soybean phytotoxicity 

and green cover (P<0.05). Greater visible phytotoxicity indicates more severe soybean herbicide 
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injury, while greater green cover suggests less herbicide injury. Herbicide treatments that caused 

the greatest soybean injury (27%) were lactofen and glufosinate + lactofen (Table 4). All PPO-

inhibitor herbicides and PPO-inhibitor + glufosinate mixtures caused greater than 10% injury 

(Table 4). Glufosinate, 2,4-D, and bentazon caused less than 5% soybean injury (Table 4).  

Soybean green cover was reduced 25% by lactofen and glufosinate + lactofen when 

compared with nontreated control (Table 4). Soybean is susceptible to injury from PPO-

inhibitors, particularly under hot and humid conditions following herbicide application (Sarangi 

and Jhala, 2015; Whitaker et al. 2010). This injury could hinder the development of the soybean 

canopy (Nelson and Renner, 2001). Differential soybean tolerance to some of the PPO-inhibitor 

herbicides has been reported as (least injurious to most injurious): fomesafen < acifluorfen < 

lactofen (Harris et al. 1991). The recovery of soybean from injury that delays canopy formation 

depends on factors such as planting date, soybean phenology, maturity group, growth habit, and 

soil moisture availability (Priess et al. 2020). However, even when these herbicides (fomesafen, 

acifluorfen, lactofen) were applied to soybean at several rates between growth stages V1 and V5 

and caused up to 20% of foliar injury, there was no yield loss at the end of the season (Beam et 

al. 2018; Kapusta et al. 1986; Riley and Bradley 2014; Wichert and Talber 1993; Young et al. 

2003).  

 

Relationship Between Soybean Green Cover (Canopeo) and Visible Soybean Injury 

Our analysis revealed a negative correlation between soybean green cover and visual 

injury (Figure 1). This negative correlation is intuitive; as visual injury increases soybean green 

cover decreases, which is reflected by the downward slope of the regression line. The marginal 

R-squared value was 0.51, indicating that soybean green cover alone accounted for 

approximately 51% of the observed variation in soybean visible injury. The remaining 26% of 

the variation (yielding a conditional R-squared value of 0.77) was attributed to differences across 

site-years.  

 

Soybean Yield 

The main effect of herbicide treatment was significant for soybean yield (P<0.05; Table 

4). However, no herbicide treatment was different when compared to the No PRE (nontreated) 

and PRE only treatments. When herbicides are applied within labeled rates early in the season, 
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soybean injury is generally transitory with minimal impact on grain yield (Beam et al. 2018; 

Kapusta et al. 1986; Riley and Bradley 2014; Wichert and Talber 1993; Young et al. 2003). 

However, Priess et al. (2020) found that soybean injured by herbicide application at V2 exhibited 

slower canopy formation. Delaying application of injurious herbicides until near the flowering 

stage or when moisture availability limits canopy growth may have more lasting negative effects 

because grain yield is linked to the canopy present at the onset of reproductive development 

(Edwards and Purcell, 2005). PPO-inhibitor herbicides should be applied early enough to allow 

the crop to reach full canopy closure, which is crucial for end-of-season weed suppression and 

maximizing soybean yield (Arsenijevic et al., 2022; Edwards and Purcell, 2005; Jha and 

Norsworthy, 2009). 

 

Waterhemp Response Study 

Visual Assessment of Waterhemp Control and Dry Biomass – 14 DAT 

The main effect of herbicide treatment was significant for visual assessment of 

waterhemp control and dry biomass reduction (P<0.05; Table 5). All glufosinate mixtures 

provided ≥88% control of waterhemp, equal to glufosinate applied solo (90%).  In addition, 2,4-

D, fomesafen, and lactofen applied solo provided ≥88% control (Table 5). Flumiclorac-pentyl 

(73%) and fluthiacet-methyl (71%) applied solo showed limited activity on waterhemp and were 

similar to the PRE-only flumioxazin treatment (60%). Bentazon applied solo (54%) showed the 

lowest control of waterhemp.  

Waterhemp biomass reduction measurements generally paralleled the visual assessments 

of waterhemp control results (Table 5). Effective control was defined as herbicide treatments 

achieving an efficacy of ≥ 90% (Arneson et al., 2020; Etheridge et al., 2001; Werle et al., 2023). 

Three treatments resulted in 91% waterhemp biomass reduction: glufosinate + fomesafen, 

glufosinate + lactofen, and glufosinate + bentazon. Glufosinate applied alone was the only single 

active ingredient treatment that had ≥90% waterhemp biomass reduction. However, the only 

POST treatment to provide less waterhemp biomass reduction than glufosinate applied solo was 

bentazon applied solo, which provided no biomass reduction (55%; Table 5), similar to the PRE-

only treatment (56%; Table 5).  

Although glufosinate, 2,4-D, fomesafen and lactofen applied solo resulted in high levels 

of waterhemp control in this study, repeated use of single site of action herbicides increases the 
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risk of herbicide resistance evolution (Norsworthy et al. 2012). In bareground trials conducted in 

Wisconsin, Werle et al. (2023) reported that 2,4-D, dicamba, lactofen, and fomesafen applied 

alone provided variable waterhemp control (74-87%). The absence of crop competition in these 

systems likely contributed to the inability of any solo herbicide treatment to achieve the ≥90% 

control threshold for an 'excellent' rating in Extension guidelines (Arneson et al. 2020). These 

results highlight both the inherent limitations of bareground systems (lacking crop-weed 

competition) and the practical need for mixtures to achieve commercially acceptable waterhemp 

control in production fields.  

Takano and Dayan (2020) reported that mixing glufosinate and PPO-inhibitors enhanced 

herbicidal activity, although other reports showed that the degree of enhancement varied 

depending on the weed species, herbicide dosage, and PPO-inhibitor herbicide evaluated 

(Takano et al., 2020b). However, in our experiment, the herbicide combinations did not increase 

waterhemp control compared to glufosinate alone (Table 5). We used labeled rates of both 

glufosinate and the mix partners, which is encouraged to reduce the risk of herbicide-resistance 

evolution (Norsworthy et al. 2012). POST applications of glufosinate mixtures, specifically with 

PPO-inhibitors in XtendFlex® soybean or with 2,4-D in Enlist E3® soybean, may provide an 

effective herbicide resistance management strategy when combined with effective PRE 

herbicides. Furthermore, other glufosinate-resistant platforms such as LibertyLink® GT27 

soybean, confers additional tolerance to glyphosate and isoxaflutole, enabling PRE isoxaflutole 

applications for enhanced waterhemp control (Craigmyle et al., 2013; Hay et al., 2019; Merchant 

et al., 2014; Smith et al., 2019). Annual rotation of  herbicide SOAs and trait technologies 

provides optimal resistance mitigation. 

 

Soybean Yield 

The main effect of herbicide treatment was significant for soybean yield in the 

waterhemp response study (P<0.05; Table 5). All herbicide treatments yielded more than the “No 

PRE” nontreated control (Table 5), with yield increases (yield-protection) of 31-67%. POST-

applied glufosinate mixture treatments yielded 19-28% more than the PRE-only check. Yield in 

plots treated with only bentazon, flumiclorac-pentyl, and fluthiacet-methyl was not greater than 

PRE-only (Table 5), presumably because competition from the surviving waterhemp was similar 

to PRE-only (Table 4). Both weed presence and herbicide injury may influence the soybean 
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yield. When glufosinate and 2,4-D were applied solo, yields were 26 and 23% greater than PRE-

only treatment. However, when lactofen was applied solo, waterhemp control was equivalent to 

glufosinate and 2,4-D, but soybean yields were >18% lower (Table 5). In contrast, glufosinate + 

lactofen, which caused similar injury to lactofen applied solo (Table 4) did not reduce yield and 

provided similar waterhemp control (Table 5).  Fomesafen applied solo, which was less injurious 

to soybean than lactofen in the crop response study (Table 4), did not reduce yields in the 

waterhemp response study compared to glufosinate (Table 5). These data confirm that POST 

herbicide applications are critical to protect yield in soybean, and that both weed control and 

crop safety may affect soybean yield. 

Soybean yield loss from weeds is typically of greater importance than potential injury 

from herbicides (Young et al. 2003), and application of POST herbicides with multiple effective 

SOAs is likely beneficial to delaying the evolution of herbicide resistance (Norsworthy et al., 

2012). Among the PPO-inhibitor + glufosinate mixtures we tested, fomesafen presented an 

acceptable balance of crop safety and effective waterhemp control. Although fomesafen has been 

less injurious than lactofen on soybean, its weed control efficacy has not always exceeded 90%  

(Ellis and Griffin, 2003; Hager et al., 2003; Harris et al., 1991; Higgins et al., 1988; Johnson et 

al., 2002). In our research,  glufosinate + fomesafen provided  93% waterhemp control and 

reduced waterhemp biomass 91%,  while causing less crop injury (Table 4) and protecting yield 

potential (4336 kg ha
-1

 [crop response study], Table 4; 3712 kg ha
-1

 [waterhemp response study], 

Table 5). In addition, fomesafen can provide soil residual control of waterhemp for several 

weeks after its application (Oliveira et al. 2017).  

Soybean growers, particularly those cultivating glufosinate-resistant Enlist E3 varieties, 

may prefer using herbicide mixtures with 2,4-D to reduce crop injury and ensure adequate weed 

control. 2,4-D has long been considered a low-risk herbicide for resistance evolution (Torra et al. 

2024). However, resistance to 2,4-D is increasing in waterhemp populations across the Midwest 

(Bernards et al., 2012; Evans et al., 2019; Faleco et al., 2024; Heap, 2024; Shergill et al., 2018). 

2,4-D resistance in weeds is typically a single-gene trait and confers elevated 2,4-D 

detoxification using cytochrome P450 monooxygenases or glycosyltranferases (Torra et al., 

2024). Weeds metabolize 2,4-D more rapidly at higher temperatures, which may be problematic 

when mixed with glufosinate because glufosinate performs best under high temperature and 

humidity conditions (Coetzer et al. 2001). While PPO-inhibitor resistant waterhemp populations 
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(Heap, 2024) with target-site mutations (Barker et al., 2023; Lillie et al., 2020; Shoup et al., 

2003) may still show some susceptibility to soil-applied PPO-inhibitors, the duration and level of 

control are typically reduced compared to susceptible populations (Lillie et al., 2020). 

Agrichemical and seed companies are developing new soybean stacked traits which will alleviate 

injury caused by PPO-inhibitor herbicides, and new PPO-inhibitor herbicides are being 

developed which are expected to provide improved weed control (Prade, 2022). 

It is crucial to preserve the efficacy of glufosinate, 2,4-D, and PPO-inhibitor herbicides as 

essential tools for effective weed management in soybean, especially given the rise of genetically 

modified crops resistant to multiple herbicides and the increasing prevalence of herbicide-

resistant weed populations (Takano and Dayan, 2020). While resistance to glufosinate has not 

yet become widespread, implementing proactive and diverse management strategies is essential 

to maintaining its long-term effectiveness and mitigating the further evolution of multiple 

herbicide resistance (Takano and Dayan, 2020). One step is by applying them only with effective 

mix partners in diversified PRE-POST herbicide programs. Second is employing practices that 

enhance soybean competitiveness such as early planting, narrow row spacing and well-timed 

termination of cover crops to aid in weed suppression. Third is by integrating diversified 

management approaches, including conservation practices like cover cropping for increased 

weed suppression, crop rotation and diversification, mechanical cultivation where feasible, along 

with innovative technologies such as targeted herbicide application technologies and weed seed 

destruction. This multi-tactic approach could help eliminate viable weed seed return to the soil 

and interrupts the perpetuation of resistant alleles. 

 

PRACTICAL IMPLICATIONS 

Mixing glufosinate with PPO-inhibitor herbicides, 2,4-D, or bentazon is unlikely to cause 

injury that will result in yield loss when applications are made before the V6 soybean growth 

stage. However, caution is recommended when it comes to lactofen, which showed the highest 

potential for soybean injury in this study. Although these mixtures may not consistently enhance 

waterhemp control compared to glufosinate alone, they offer an important benefit for herbicide 

resistance management. By incorporating additional sites of action, such mixtures help reduce 

selection pressure, an important strategy for delaying the evolution of herbicide resistance in 

waterhemp and other challenging weed species. Bentazon, flumiclorac-pentyl, and fluthiacet-
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methyl do not provide commercially acceptable waterhemp control. Fomesafen, lactofen, and 

2,4-D all provided good waterhemp control in solo applications (>88%) and are effective 

partners for glufosinate. 2,4-D caused less soybean injury than any PPO-inhibitor herbicide, and 

mixtures with glufosinate provided effective waterhemp control. Mixing the herbicides evaluated 

in this study with glufosinate may help protect against yield loss from weed competition 

compared to applying those herbicides alone. Our findings also suggest that including 

glufosinate as part of a PRE-POST-herbicide program can improve waterhemp control under the 

conditions evaluated herein. 
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Table 1. Post-emergence herbicide treatments used in both field experiments, along with 

herbicide group numbers, active ingredients, and their application rates. 

Herbicide 
a
 Trade name Manufacturer 

WSSA group 

number 
Application rate 

    g ai ha
-1

 

Glufosinate 
Liberty 280 

SL ® 
BASF 10 657 

2,4-D Enlist One ® Corteva 4 1067 

Bentazon 
Basagran 4L 

® 
BASF 6 897 

Flumiclorac-pentyl  Resource ® Valent 14 60 

Fluthiacet-methyl Cadet ® FMC 14 7.2 

Fomesafen Flexstar ® Syngenta 14 264 

Lactofen Cobra ® Valent 14 219 

Glufosinate + 2,4-D   10 + 4 657 + 1067 

Glufosinate + bentazon   10 + 6 657 + 897 

Glufosinate + 

flumiclorac-pentyl 
  10 + 14 657 + 60 

Glufosinate + fluthiacet-

methyl 
  10 + 14 657 + 7.2 

Glufosinate + fomesafen   10 + 14 657 + 264 

Glufosinate + lactofen   10 + 14 657 + 219 

No PRE (nontreated 

control) 
b
 

    

     
a
 Group 14 (protoporphyrinogen-inhibitor) and 6 (photosystem II-inhibitor) herbicides applied 

solely were combined with a crop oil concentrate as surfactant (Crop Oil; 1% v/v; CHS 

Agronomy Inc.), while mixes with glufosinate excluded COC. Ammonium-sulfate was added to 

all herbicide treatments (2,243 g ha
-1

). 

 
b
 Both studies included a non-treated control (No PRE). However, only the waterhemp response 

study had a true weedy non-treated control (No PRE nor POST herbicide application). In 

contrast, the whole crop response study was maintained weed-free throughout the season. 
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Table 2. Monthly average air temperature and precipitation for experimental sites in 2020 and 2021 growing seasons 
a, b

. 

 Location 

 Arlington Brooklyn Janesville Lancaster Macomb 

 2020 2021 30yr 2020 2021 30yr 2020 2021 30yr 2020 2021 30yr 2020 2021 30yr 

 Air temperature  

 
———————————————————————— C ——————————————————

—————— 

May 12.9 13.5 14 13.6 14.4 14 13.9 14.8 16 11.1 12.8 15 16.1 15.5 17 

June 20.1 21.4 20 21.3 22.5 20 21.3 22.8 21 18.7 20.2 21 23.3 22.7 22 

July 22.2 20.6 23 23.5 21.8 23 24.1 22.1 24 21.3 20.1 23 25.5 23.8 25 

August 14.3 20.9 22 21.4 21.9 22 21.8 22.6 23 18.7 19.0 22 22.7 24.2 24 

September 14.3 16.4 18 15.7 18.1 18 15.7 18.6 19 12.8 14.8 18 18.3 21.8 20 

                

Season 
c
 16.8 18.5 19.4 19.1 19.7 19.4 19.4 20.2 20.6 16.5 17.4 19.8 21.0 21.6 21.6 

                

 Precipitation 

 
———————————————————————— mm —————————————————

——————— 

May 113 66 89 119 60 91 107 74 94 139 72 91 126 185 102 

June 110 96 104 111 133 107 82 55 107 198 43 109 161 134 114 

July 142 38 97 118 76 102 148 53 102 131 121 104 129 43 107 
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August 97 90 102 20 63 104 79 79 104 94 132 107 12 59 109 

September 76 59 91 122 31 94 87 18 97 187 50 94 37 45 99 

                

Season 
c
 538 349 483 490 363 498 503 279 504 749 418 505 465 466 531 

                

a 
Air, soil, and rainfall data collected with WatchDog 2000 Series ground weather stations from Enviro-weather station. 

 

b 
Thirty-yr air temperature and precipitation averages for the period from 1991 to 2021 obtained in R statistical software (version 

4.4.1) using daily Daymet weather data for 1-km grids (Correndo et al. 2021; Thornton et al. 2016; daymetr package). 

 

c 
Cumulative precipitation and average monthly temperature throughout the growing season. 
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Table 3. Information for each experimental location covering soybean variety 
a
 and its planting date, the dates of herbicide application, herbicide 

application dates, soybean growth stages, the height and density of waterhemp, and soil information.  

 Waterhemp response study 
 

Crop response study 

 Brooklyn Lancaster Macomb  Arlington Janesville Macomb 

 2020 2021 2020 2021 2021  2020 2021 2020 2021 2020 2021 

Planting date May 22 
May 

25 
May 20 

May 

17 
June 5  May 1 

May 

12 
May 8 

April 

29 
May 25 May 24 

PRE herbicide 

application 
May 22 

May 

26 
May 20 

May 

19 
June 6  May 1 

May 

12 
May 8 

April 

29 
May 29 May 26 

POST herbicide 

application 

June 24  

(V4) 

June 

30  

(V5) 

July 1 

(V6) 

June 

17 

(V6) 

July 14 

(V4) 
 

June 25 

(V4) 

June 

26  

(V4) 

July 2 

(V4) 

June 

18 

(V4) 

June 29 

(V4) 

July 2 

(V5) 

Waterhemp height  

at POST (range) – 

cm 

2 - 20 2 - 22 7 - 28 4 - 13 2 - 20  

 
Waterhemp density  

at POST (range) – 

m
-2

 

16 - 33 12 - 40 18 - 34 1 - 13 12 - 36  

  

 Soil information 

% sand 40 40 10 10 11  8 4 7 8 3 3 

% silt 41 41 76 76 79  56 71 70 66 76 72 

% clay 19 19 14 18 10  36 25 23 26 21 25 

% organic matter 2 2 2.5 3.1 2.4  2.9 3.3 3.1 4.1 3.4 2.0 

pH 7.1 7.1 6.6 5.3 7.5  6.5 6.4 6.4 6.7 6.8 6.4 

Textural class Loam Loam 
Silt 

loam 

Silt 

loam 

Keomah  

silt loam 

 Silty  

clay 

loam 

Silt 

loam 

Silt 

loam 

Silt 

loam 

Osco silt 

loam 

Osco 

silt  

loam 
a
 Soybean variety: P22T86E in Wisconsin (2020 & 2021); Syngenta S33E3 (2020) and NuTech 35NO3E (2021) in Illinois 
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Table 4. Soybean visible phytotoxicity and green cover (Canopeo) 14 days after treatment, and soybean final yield for 

crop response (weed-free) study. 

    

Herbicide treatment Visible phytotoxicity Green cover  Soybean yield 

    

 ⸺⸺⸺⸺⸺⸺⸺ % ⸺⸺⸺⸺⸺⸺⸺  kg ha
-1

 

PRE only 2 (0.1 – 2.5)      a 78 (70 – 85)    ab  4359 (3501 – 5310)   ab 

Glufosinate 2 (1 – 4)            a 78 (70 – 85)    ab  4576 (3686 – 5560)   a 

2,4-D 2 (1.0 – 3)         a 81 (73 – 87)    a  4532 (3647 – 5513)   ab 

Bentazon 5 (3 – 6)            c 75 (66 – 82)    b  4505 (3623 – 5483)   ab 

Flumiclorac-pentyl 18 (15 – 22)      e 73 (64 – 81)    b  4453 (3576 – 5425)   ab 

Fluthiacet-methyl 14 (11 – 17)      de 76 (67 – 83)    ab  4622 (3728 – 5612)   a 

Fomesafen 13 (10 – 17)      d 75 (66 – 82)    b  4421 (3547 – 5390)   ab 

Lactofen 27 (23 – 32)      f 59 (48 – 69)    c  4376 (3517 – 5329)   ab 

Glufosinate + 2,4-D 3 (2 – 4)            abc 76 (68 – 83)    ab  4479 (3599 – 5453)   ab 

Glufosinate + bentazon 4 (3.0 – 6)         bc 78 (69 – 84)    ab  4430 (3556 – 5400)   ab 

Glufosinate + flumiclorac-pentyl 18 (15 – 22)      e 73 (63 – 80)    b  4455 (3578 – 5428)   ab 

Glufosinate + fluthiacet-methyl 13 (10 – 16)      d 75 (65 – 82)    b  4395 (3524 – 5361)   ab 

Glufosinate + fomesafen 17 (14 – 20)      de 75 (66 – 82)    b  4336 (3471 – 5295)   ab 

Glufosinate + lactofen 27 (23 – 32)      f 60 (49 – 70)    c  4201 (3350 – 5146)     b 

No PRE (nontreated control) 1.5 (1 – 2)         a 79 (70 – 85)    ab  4556 (3669 – 5539)   ab 

     

P-value <0.0001 <0.0001  0.0174 

     

Means with the same letters are not statistically different from each other according to Tukey’s HSD (α = 0.05). 

Information presented in parentheses refers to 95% confidence intervals. 

The data presented in the table are from experimental locations in Wisconsin and Illinois during 2020 and 2021. 
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Table 5. Visible assessment of waterhemp control and waterhemp dry biomass reduction 14 DAT, and soybean final yield for 

waterhemp response study. 

 

Herbicide treatment Waterhemp control Biomass reduction  Soybean yield 

 ⸺⸺⸺⸺⸺⸺⸺⸺⸺⸺⸺    %   ⸺⸺⸺⸺⸺⸺⸺⸺⸺⸺⸺ 
 

 kg ha
-1 

 

PRE only 60 (44 – 74)   bc 56 (41 – 70)  cd  2904 (2325 – 3548)   c 

Glufosinate 90 (81 – 95)   a 90 (81 – 95)  ab  3669 (3013 – 4389)   a 

2,4-D 90 (81 – 95)   a 87 (77 – 93)  ab  3568 (2923 – 4279)   a 

Bentazon 54 (38 – 68)   c 55 (39 – 69)    d  3264 (2647 – 3944)   abc 

Flumiclorac-pentyl 73 (57 – 84)   b 79 (66 – 88)  ab  3343 (2719 – 4031)   abc 

Fluthiacet-methyl 71 (55 – 82)   bc 77 (64 – 87)  bc  3365 (2738 – 4055)   abc 

Fomesafen 88 (77 – 94)   a 87 (78 – 94)  ab  3460 (2826 – 4158)   ab 

Lactofen 90 (81 – 95)   a 87 (77 – 93)  ab  2914 (2335 – 3549)   bc 

Glufosinate + 2,4-D 92 (84 – 96)   a 89 (80 – 94)  ab  3713 (3053 – 4437)   a 

Glufosinate + bentazon 90 (82 – 95)   a 91 (83 – 95)  a  3661 (3007 – 4380)   a 

Glufosinate + flumiclorac-pentyl 88 (78 – 94)   a 79 (81 – 95)  ab  3532 (2890 – 4239)   a 

Glufosinate + fluthiacet-methyl 89 (80 – 95)   a 88 (79 – 94)  ab  3613 (2963 – 4327)   a 

Glufosinate + fomesafen 93 (86 – 97)   a 91 (84 – 95)  a  3712 (3052 – 4436)   a 

Glufosinate + lactofen 93 (85 – 97)   a 91 (84 – 95)  a  3469 (2835 – 4169)   ab 

No PRE (nontreated control) 0 0  2221 (1718 – 2788)   d 

     

P-value <0.0001 <0.0001  <0.0001 

Means with the same letters are not statistically different from each other according to Tukey’s HSD (α = 0.05). 

Information presented in parentheses refers to 95% confidence intervals. 

The data presented in the table are from experimental locations in Wisconsin during 2020 and 2021, and from experimental location in 

Illinois in 2021. 
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Figure 1. Relationship between visual soybean injury and soybean green cover (Canopeo data). R
2

m – site-year as random effect is not 

considered (marginal); R
2

c – site-year as random effect is considered (conditional).  

https://doi.org/10.1017/wet.2025.37 Published online by Cambridge University Press

https://doi.org/10.1017/wet.2025.37

