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ALGEBRAIC EXTENSIONS OF COMMUTATIVE 
REGULAR RINGS 

R. M. RAPHAEL 

Dedicated to the memory of Peter Schulz 

Introduction. In this paper we study algebraic closures for commutative 
semiprime rings. The main interest, however, is with rings which are regular 
in the sense of von Neumann. These play the same role with respect to semi-
prime rings as fields do with respect to integral domains. Two generally 
distinct notions are defined: "algebraic" and "weak-algebraic" extensions. 
Each has the transitivity property and yields a closure which is unique up to 
isomorphism and is "universal". Both coincide in fields. 

The extensions here called "algebraic" were studied independently by 
Enochs [5] and myself. Our results on these extensions proceed from a 
different point of view, and allow us to answer a question posed by Enochs. 
Furthermore, these results are required (and were developed) in order to 
obtain the weak-algebraic closure, which was the original closure sought. The 
motivation for the weak-algebraic extensions is found in the work of Shoda 
[14, p. 134, no. 1]. 

As applications, algebraic closures are obtained for some regular rings which 
arise in the study of rings of continuous functions, and for some group rings. 

Henceforth, all rings are commutative with 1, and all ring homomorphisms 
are 1-preserving. Terminology and notation not otherwise specified are used 
as in Lambek [12]. We also assume familiarity with the properties of regular 
rings, as found in that book. 

Acknowledgements. I wish to express my appreciation to Professor J. Lambek 
for his advice, encouragement, and criticisms. As well, I am indebted to 
W. Burgess, I. Connell, and H. Storrer, for many discussions. 

1. Essential extensions of rings. 

1.1. Let R and 5 be rings, and let R be a subring of S. Then the following 
are easily seen to be equivalent: 
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(1) every non-zero ideal of 5* intersects R in a non-zero ideal; 
(2) every non-zero principal ideal of S intersects R in a non-zero ideal; 
(3) for any s ^ 0 in S there is a t Ç 5 such that st £ R, and st 9^ 0; 
(4) a ring homomorphism with domain 5 is a monomorphism if and only if 

its restriction to R is a monomorphism. 
If this holds we will say that S is an essential extension of R, or that 5 is 

essential over R. An embedding of rings m: R—+S will be essential if S is 
essential over m(R). If R is semiprime, then one checks that 5 is essential 
over R if every non-zero semiprime ideal of S has non-zero intersection with R. 
These extensions have been called "intrinsic" by Faith and Utumi [6] and 
"tight" by Enochs [5]. Our work is closer to that of Storrer [15] whose term 
we use. 

The essential extensions of a field are precisely its overfields. Also any ring 
of quotients of a commutative ring R [12, p. 40, Proposition 6] is essential 
over R. 

1.2. LEMMA (Transitivity). Let R, S, and T be rings, R C S C T, let S be 
an essential extension of R, and let T be an essential extension of S. Then T is 
essential over R. 

Proof. Let I be an ideal of T. lî I ?*• (0), then / C\ S is a non-zero ideal 

of 5. Nowir\R = (ins) r\R^ (o). 
1.3. LEMMA. Let R be a semiprime ring and let S be essential over R. Then S 

is semiprime. 

Proof, (rad S) C\ R = rad R = (0). Therefore rad 5 = (0). 

1.4. Definition [10, p. 3]. A ring is Baer if all of its annihilator ideals are 
direct summands (i.e. are principal ideals generated by idempotents). If R is 
Baer, then it must be semiprime. For if not, there exist an x Ç R and an 
integer n > 1 such that xn = 0, and xn~l ^ 0. Thus x G CTW_1)* = eR say, 
where e is an idempotent of R. But then x = ex, and so 

0 = ex71-1 = (ex)xn~2 = xn-\ 
a contradiction. 

On the other hand, any semiprime rationally complete ring is Baer 
[12, p. 44, Proposition 4], yielding the following result. 

1.5. PROPOSITION. If R is a semiprime ring, then R has an essential Baer 
extension. 

Proof. Embed R into its complete ring of quotients. 

The following is motivated by the non-commutative work of Faith and 
Utumi [6, 2.4]. 

1.6. LEMMA. Let R be a Baer ring and let S be essential over R. Then S\R 
contains no idempotents. 
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Proof. By contradict ion. T a k e e = e2 G 5 \ J R . eS is the annihilator of 
(1 - e)S in S. Therefore (eS H R)[(l - e)S C\ R] = (0) yielding 

eSr\RC[(l ~ e)Sr\R]*, 

the annihilator being taken in the ring R. 
Suppose t h a t x G R and x [ ( l — e)S H R] = 0. Then x ( l — e) = 0, for if 

x ( l — e) ^ 0 then by the essentiality of 5 over R there is a y G 5 such t h a t 
(1 — e)x3> is in (1 — e)S H i? and is different from 0. Bu t x annihilates 
(1 — e)S C\ R, and so x(l — e)xy = 0. Therefore [(1 — e)xy]2 = 0 yielding 
(1 — e)xy = 0 since R is semiprime, a contradiction. T h u s x(l — e) = 0 and 
x = ex £ eSr\R. Therefore [(1 - e)S H R]* = eS H R. B u t R is Baer, and 
so there is an i d e m p o t e n t / in R such t h a t / i ? = [(1 — e)S C\ R]* = eS (^ R. 
Clearly ef = f. Il e ^ ef, then 0 9e e(l — f) and by essentiality there exist 
r e R and te S such tha t 0 ^ r = e ( l - / ) / . 

Now r G eS C\ R = fR; hence r = fr = fe(l - f)t = ef(l - f)t = 0, a 
contradict ion. Therefore e = ef = / G R. 

Recall t h a t a ring R is regular in the sense of von Neumann if for each 
r G R there is a t least one element r' G R such t h a t r = r2/. rf is often called 
a quasi-inverse for r, after the case when R is a field. Clearly, a regular ring 
mus t be semiprime. 

1.7. LEMMA. Let Rbe a semiprime ring and let T be an essential extension of R. 
If S is a between ring of R and T and if S is regular, then S is essential over R. 

Proof. Le t x be a non-zero element of S. For some y G S, x = x2yf and so xy 
is a non-zero idempotent . By essentiality, there exists t G T such tha t xyt G R 
and is non-zero. Bu t xyt = (xy)2t = x[y(xyt)]. Since y (xyt) is in 5 , the proof 
is complete. 

1.8. PROPOSITION [2, p . 183]. A semiprime ring is regular if and only if each 
of its prime ideals is a maximal ideal. 

1.9. LEMMA. Let R be a regular ring and let S be an over-ring of R which is 
semiprime and is integrally dependent on R. Then S is a regular ring. 

Proof. Integral dependence of rings is defined and discussed in [16, p . 259], 
where i t is shown t h a t if 5 is integral over R, and if P is an a rb i t ra ry pr ime 
ideal of 5 , then P is a maximal ideal of 5 if and only if the ideal P P\ R is 
maximal in R. Since by 1.8 all pr ime ideals of R are maximal, the same mus t 
be t rue for those of 5 . Since 5 is also semiprime, 1.8 guarantees t h a t S is regular. 

1.10. COROLLARY. / / R is a regular ring and S is an over-ring of R which is 
both integral and essential over R, then S is regular. 

Let i ^ b e a ring. W e follow [13] in denoting the set of idempotents of R by 
B(R). B(R) is a Boolean ring in which multiplication coincides with t h a t 
of R, b u t addit ion differs in general. 
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1.11. PROPOSITION. Let R be a regular ring, and let S be a regular over-ring 
of R. Then 5 is an essential extension of R if and only if B(S) is a ring of quotients 
ofB(R). 

Proof. Assume that 5 is essential over R, and let e G 5 ( 5 ) . Then there exist 
r G Ry s G 5, r ^ 0, such that r = es. Let r' be a quasi-inverse for r, and let 
/ = rr'. Clearly / ^ 0, and / G B(R). Thus / = rr' = (es)rf = e{esrf) = ef. 
Since ef = f ^ 0, 5 ( 5 ) is a ring of quotients of B(R). 

Assume that B (5) is a ring of quotients of B (R). Let s be a non-zero element 
in 5, s' a quasi-inverse for s. Then as above, ss' 9e 0 and ss' G 5 ( 5 ) . There 
exist f G B(R), e G 5 ( 5 ) , / 9e 0, such t h a t / = ss'tf. Therefore 5 is essential 
over R. 

1.12. LEMMA. 4̂ regular ring is Baer if and only if its Boolean ring of 
idempotents is complete. 

Proof. In a regular ring, principal ideals are direct summands [12, p. 67]; 
thus the annihilators of individual elements are direct summands. Since the 
annihilator of a set is the intersection of the annihilators of its elements, the 
ring will be Baer if and only if any intersection of direct summands is again 
a direct summand, i.e. if and only if the Boolean ring of idempotents is 
complete. 

1.13. COROLLARY. Let R be a regular Baer ring and let 5 be a regular essential 
extension of R. Then S is Baer. 

Proof. By 1.6, B(S) = B(R), a complete Boolean algebra. 

Let R be a ring and let 5 be an over-ring of R. Recall [16, p. 218] that if J is 
an ideal of 5, then the ideal J C\ R is called its contraction to R. An ideal 
of R is contracted (with respect to 5) if it is the contraction of an ideal of 5. 
If I is an ideal of R, then 75 is its extension to 5 and an ideal of 5 is extended 
if it is the extension of an ideal of R. 

1.14. LEMMA. Let Rbe a regular ring and let 5 be an over-ring of R. Then any 
ideal of R is the contraction of an ideal of 5. 

Proof. In a regular ring the zero ideal is the intersection of all the prime 
(= maximal) ideals. Since any factor ring of a regular ring is regular, any 
ideal in a regular ring is the intersection of the maximal ideals containing it. 
Thus it suffices to establish the contraction result for maximal ideals. 

Let M be a maximal ideal in R. Clearly MS is an ideal of 5. Assume that 
MS = 5. Then for suitable mt G M and st G 5, i = 1, 2, . . . , k, 1 = 
rn^i + . . • + rnksk. Thus 5 = 15 = (m±R + . . . + mkR)S. Since R is 
regular, by von Neumann's lemma [12, p. 68], there exists an e G M such 
that m\R + . . . + mkR — eR. Furthermore, e can be taken to be an idem-
potent since principal ideals are generated by (single) idempotents. Thus 
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5 = (eR)S = eRS = eS. Thus 1 = es for some s £ S. Therefore 1 — e = 
(1 — e)l = (1 — e)es = es — es = 0. Thus 1 = e £ M, which contradicts 
the fact that M is a proper ideal of R. 

Thus MS is proper in 5. Now M C MS P i?, a proper ideal in i£. Since M 
is maximal, M = MS P R. 

The following result is of independent interest. 

1.15. PROPOSITION. Let R be regular and let S be a regular Baer ring which is 
essential over R (Q(R) for example). Then (Spec S, / ) is the projective cover 
[9, 2.1] of Spec R} where f is defined by contracting the prime ideals of S to those 
ofR. 

Proof. Since R and 5 are regular, both spaces in question are compact and 
Hausdorff. Furthermore, Spec 5 is extremally disconnected since 5 is Baer. / is 
well known to be continuous and 1.14 shows that it is onto. Thus all that 
remains is to show t h a t / is an * 'irreducible" map, i.e. that if C is a proper 
closed subset of Spec S, then/(C) is proper in Spec R. By the definition of the 
Stone topology, C = {Mi}ieT where {Mi} is the set of all maximal ideals of 5 
containing the ideal J = Hi M t. Since C is proper, J j£ (0). Now /(C) = 
{Mi P C}, the closed set in Specie defined by the ideal J C\ R. Since 5 is 
essential over R, J P R ^ (0). Thus J P R is not contained in all the 
maximal ideals of R and/ (C) is proper. 

1.16. PROPOSITION. Let R be a regular ring and let S be a regular essential 
extension of R. Then all ideals of S are extensions of ideals of R if and only if 
B(R) = B(S). 

Proof. If B{R) = B(S) and x G J (J an arbitrary ideal in 5), then by 
regularity of S, x = xyx for some y G S. Hence x = ex, where e = xy is an 
idempotent in the ideal J. Thus x Ç (J P R)S. Therefore / C (J P R)S. 
The opposite inclusion however is trivial, and so J is the extension of / P R. 

Suppose that B(R) ?£ B (S) but that the ideal generated by e G B (S)\B (R) 
is the extension of an ideal, say A, of R, so that eS = AS. Then as in 1.14, 
we can replace A first by a finitely generated ideal of R and then by a direct 
summand of R, generated by the idempotent / say. Thus eS = fRS = fS. 
This implies that e = / , contradicting the fact that / is in R and e is not. 
Thus e generates an ideal that is not extended with respect to R. 

1.17. Remark. If R is regular and Baer and 5 is a regular essential extension 
of R, we have (by 1.6, 1.14, and 1.16) that all ideals of R are contracted with 
respect to 5 and that all ideals of 5 are extended with respect to R; in fact, 
the operations of contraction and extension define an isomorphism between 
the lattice of ideals of R and the lattice of ideals of S. Thus under these stricter 
conditions, Storrer's result [15, 10.3] on annihilator ideals can be extended 
to all ideals. 
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1.18. PROPOSITION. Let Rbe a regular Baer ring and let S be essential over R. 
Then the minimal prime ideals of S are precisely the ideals which are extensions 
of maximal ideals in R. 

Proof. We wedge S between R and a regular essential extension of R. 
Consider the embeddings R—>S-^Q(S), where Q(S) is the complete ring of 
quotients of S. By 1.2, Q(S) is essential over R, and by 1.3 and [12, p. 42, 
Proposition 1], Q(S) is regular. Let M be a maximal ideal in R. By 1.17, 
MQ(S) is a maximal ideal in Q(S), and it obviously extends M. Suppose 
that x 6 MQ(S) P 5 ; then xQ{S) = eQ(S) C MQ(S) for some idempotent 
e e B(Q(S)) = B(R), since R is Baer. Thus e G MQ(S) P R = M, and so 
x = ex £ MS. Therefore MQ(S) ^ S C MS which implies that MQ(S) P S = 
MSy the second inclusion being trivial. MS is a prime ideal in 5 because it is 
the contraction of a prime ideal of Q(S). Is it minimal? Suppose that P is a 
prime ideal in 5 contained in MS. Then P P R C MS P R = M. But 
P P R is a prime ideal in R, a regular ring, and so it is a maximal ideal and 
P r\R = M. Therefore P = PS D (P P R)S = MS D P . Therefore MS is 
a minimal prime ideal. 

We have shown that an arbitrary maximal ideal M in R extends to a 
minimal prime ideal in S. Now let L be a minimal prime ideal in 5. Then 
L = LS Z) (L P P ) 5 , which is a minimal prime ideal in 5, as was just shown. 
Therefore L = (L P P),S and L is of the claimed form. It is interesting to 
note that 5 has the property that each prime ideal of 5 contains a unique 
minimal prime ideal. 

Recall that a ring is Bézout if its finitely generated ideals are principal. 

1.19. PROPOSITION. Let R be a regular Baer ring and let S be an essential 
extension of R. Then the following are equivalent: 

(1) S is regular; 
(2) 5 is Bézout and all non-zero divisors in S are units. 

Proof. (1) =» (2). This is true by von Neumann's Lemma and [12, p. 33, 
Proposition 3(1)]. 

(2) =» (1). By 1.18, we can write an arbitrary minimal prime ideal of 5 in 
the form MS, where M is a maximal ideal of R. Let N be an ideal of 5 such 
that N D MS. Let Q(S) be the complete ring of quotients of S. Then 
NQ(S) D MSQ(S) = MQÇS). But by 1.17, MQ(S) is a maximal ideal in Q(S), 
since Q(S) is regular. Therefore NQ(S) = Q(S) or NQ(S) = MQ(S). 

Suppose that NQ(S) = Q(S). Then for suitable nt Ç N, qt G Q(S), 
i = 1, 2, . . . , k, we have n±qi + . . . + n^ = 1. Thus 

Q(S) = (n1S+... + n»S)Q(S). 

Since 5 is Bézout, there exists x G S such that xS = niS + . . . + nkS. 
Clearly x G N, and Q(S) = (xS)Q(S) = xQ(S). Thus x is a unit in the 

ring Q(S). Clearly it is not at the same time a zero-divisor in S, and so it must 
be a unit in S. But x € N; thus N = S. 
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Suppose that NQ(S) = MQ(S). Then 

N = N H 5 C NQÇS) r\S = MQ(S) H S = MS 

as in 1.18. Therefore N = MS. 
Thus the minimal prime ideals of S are maximal ideals, and so all prime 

ideals of 5 are maximal. 5 is also semiprime, and hence it is regular by 1.8. 

2. Algebraic extensions. 

2.1. Definition. Let R be a ring and let S be an over-ring of R. We will call 5 
an algebraic extension of R if it is both essential and integral over R. It should 
be noted that the two properties are independent; if F is a field and x is an 
indeterminate, then F(x) is essential but not integral over F. On the other 
hand, the complete Boolean algebra on a two-element set is integral but not 
essential over the copy of the two-element field which it contains. 

2.2. PROPOSITION. Let R be a semiprime ring and let S be an over-ring of R. 
Then S is algebraic over R if and only if for each s £ S, s 9e 0, there exist r* € R, 
i = 0, 1, . . . , n — 1, r0 zA 0 such that sn + rn-is

n~l + . . . + r-^s + r0 = 0. 

Proof. Let 5 be algebraic over R and let s £ S, s 9e 0. Since 5 is integral 
over R, we have 

(1) sn + r . - i ^ - 1 + . . . + ns + r0 = 0 

for some rt G R, i' = 0, 1, . . . , n — 1. If r0 ^ 0, then our proof is complete. 
Suppose that ro = 0. Since S is essential over R, there exists t Ç 5 such that 

st = a Ç R, a 9e 0. If aV* = 0 for i = 0, 1, . . . , n — 1, then multiplication 
of (1) by tn yields: 

0 = f sn + trn-xa71-1 + t2rn_2a
n-2 + . . . + tn~lrxa = an 

which implies that a = 0, a contradiction. Thus there exists a positive integer 
m < n such that amri = 0 for all i < m, and amrm 9e 0. 

Multiplication of (1) by tm yields: 

(2) amsn~m + amrn^sn-m-1 + . . . + amrm+1s + amrm = 0. 

It is easy to see that addition of equations (1) and (2) yields an equation of 
the desired form. 

Conversely, suppose that the condition holds. Clearly 5 is integral over R. 
Let 5 G 5, 5 9e- 0. Then for appropriate rt G R, i = 0, 1, . . . , n — 1, one has 

0 j* n = s(r! + r2s + . . . + rn-lS
n-2 + s'1-1) £ sS C\ R, 

showing that S is essential over R. 

2.3. PROPOSITION. Let R be a regular ring and let S be a regular essential 
extension of R. The following are equivalent: 
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(1) S is an algebraic extension of R; 
(2) all between rings of R and S are regular; 
(3) R[s] is a regular ring, s any element of S; 
(4) R[u] is a regular ring, u any unit of S; 
(5) all units of S are integral over R. 

Proof. Clearly (2) =» (3) => (4). 

(1) =» (2). Since S is essential over R, it is semiprime and so are all the 
between rings of R and S. Moreover, the la t te r are integral over R, since 5 is. 
Now invoke 1.9 to yield (2). 

(4) => (5). Le t u be a un i t in S. R[u] is regular, and so its non-zero divisors 
are uni ts [12, p . 33, Proposit ion 3 (1)]. Therefore u is a un i t in R[u]. T h u s 
there exist rt Ç R, i = 0, 1, . . . , n, such t h a t 1 = u(rnu

n + . . . + riu + fo) = 
rnu

n+l + . . . + riu2 + r0u. Transposi t ion and multiplication of both sides of 
the equation by (u~l)n+l yield 

(w-i)»+i - r0(«-i)» - . . . - r . - i ^ - 1 ) - rn = 0, 

which is an equat ion of integral dependence over R for the element u~l. Bu t 
every uni t is the inverse of a uni t . 

(5) =» (1). I t is pointed ou t [12, p . 36, Exercise 4] t h a t in a commuta t ive 
regular ring the quasi-inverse of an element m a y be chosen to be a uni t . 
(If s' is a quasi-inverse for s, then so is u = s'ss' + 1 — ss', and u~l = 
s + 1 — ss'.) W e shall make use of this result several t imes in this article. 
H s £ S and u is both a quasi-inverse for 5 and a unit , then su = e, an 
idempotent , and s = eu~~l\ i.e., every element of S is the produc t of an 
idempoten t and a uni t . Clearly the idempotents of S are integral over R; thus 
if the uni ts are integral as well, 5 is integral over R. 

2.4. LEMMA. Let R, S, and T be rings, R C S C T. Suppose that S is an 
algebraic extension of R and that T is an algebraic extension of S. Then T is an 
algebraic extension of R. 

Proof. T h e t rans i t iv i ty of essentiali ty was pointed ou t in 1.2. T h e t rans i t iv i ty 
of integral dependence was established in [16]. 

2.5. LEMMA. Let Rbe a semiprime ring. Then R has a Baer algebraic extension. 

Proof. W e know t h a t R can be embedded into Q(R), a Baer ring. Le t T be the 
integral closure of R in Q(R). T h e n T is essential and integral over R, and 
B(T) = B(Q(R)). W e show t h a t T is Baer. Le t t be a zero divisor in T. Since 
Q(R) is Baer, there exists e G B(T) such t h a t eQ(R) = ( 0 * in Q(R). Therefore 
eT = eQ(R) C\ T C ( 0* in T. Now if st = 0, for some s £ T, then 
5 Ç eQ(R) r\ T = eT. Therefore eT = ( 0 * in T. Th i s shows t h a t the 
annihi la tors of elements are direct summands . B u t B(T) is complete, and so 
all annihi lators in T are direct summands , and T is Baer. 

2.6. Definition. Le t R be a ring. Then R is algebraically closed if i t has no 
proper algebraic extensions. In te rms of maps this means t h a t if m: R —» 5 is 
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a monomorphism such that S is algebraic over m(R), then m is onto. For 
example, an algebraically closed field is an algebraically closed ring. 

2.7. PROPOSITION. Let R be a regular ring. Then the following are equivalent: 
(1) R is algebraically closed; 
(2) R is Baer and every monic polynomial equation over R has a root in R; 
(3) R is Baer and all the factor fields of R are algebraically closed. 

Proof. (1) => (2). If R is not Baer, then the embedding given in 2.5 is 
proper and algebraic; hence R is not algebraically closed. 

Now suppose that / (x) is a monic polynomial over R with the property that 
no element of R is a zero of it. One notes in passing that its absolute term must 
be non-zero. We ''adjoin a root". Embed R into R[x], where x is an indeter­
minate, and consider the ideal I = (f(x)). Then I C\ R = (0). For a typical 
element of I is of the form/(x) • g(x), where g(x) is a polynomial in x over R. 
If the highest power of x appearing in / is n, and if the highest non-zero 
coefficient appearing in g is b, as the coefficient of xm say, then/ (x) • g(x) is 
a polynomial with b as the coefficient of xm+n. Since x is an indeterminate, 
such a polynomial is not in R. 

In view of Zorn's lemma, there exists an ideal J, which is maximal in the 
family of ideals of R[x] which contain I and have trivial intersection with R. 
Let p be the projection from R[x] to R[x]/J = 5, say. Thus wre have 

R-+R[x]£s. 

It is clear that 5 is essential over p\R by the choice of J. Also since J contains I, 
it follows that p(x) is integral over the image of R in 5. But p(x) and p(R) 
generate the ring S. Therefore S is integral and essential over p(R), i.e. p\R is 
an algebraic embedding of R into S. Furthermore, the embedding is proper 
since p(x) satisfies the equation/(x) = 0, as does no element of R. Thus we 
have a proper algebraic extension of R, a. ring which is given by assumption 
to be algebraically closed; a contradiction. Therefore all monic polynomials 
over R have zeros in R. 

(2) => (3). This is straightforward. The field R/M will be algebraically 
closed if it has a root for every monic polynomial equation over itself. Take 
such a monic over R/M. Lift each of the coefficients back to one of its pre-
images under the canonical map from R to R/M, but insist that the preimage 
of the first coefficient be the 1 in R. By (2), the resulting monic over R has 
a root in R, say a. Then the image of a under the canonical map above is a 
root for the monic over R/M. Since the question of being Baer is not at issue, 
this part of the proof is complete. 

(3) => (1). Assume (3) and let X: R —>S be an algebraic embedding. Since 
our rings are commutative, X is conformai in the sense of Pierce [13, p. 8, 2.1]. 
In [13, 6.6] it is shown that the category of rings and conformai maps is 
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equivalent to the category of reduced ring spaces and their morphisms. The 
mapping corresponding to X is denoted X° = (X*, X) by Pierce [13]. X* maps 
Spec(B(S)) into Spec(B(R)) by the obvious contraction. Since R is Baer, 
B(R) = B(S) canonically, and so X* is a homeomorphism. 

One claims that X as defined in [13, p. 22] is also a homeomorphism. First 
note that if M is a maximal ideal of B(R), R a regular ring, then B(R)R is a 
maximal ideal of R. This follows by the same argument, now customary, as 
appears in 1.16 (by writing x = ex, et cetera). Thus pointwise X is the field 
embedding given by the following (using some of Pierce's notation): 
X(M, *): R/X-^HR) K MS)->\(R)/\(R) H MS-^ S/MS at the maximal 
ideal M in Spec(B(R)). The first mapping indicated is one-to-one and onto 
and is included simply because we are distinguishing between "extensions" 
and "embeddings". Since S is an algebraic extension of \(R), since the latter 
ring has algebraically closed factor fields (given), and since the property of 
being an algebraic extension is preserved under factoring, therefore the second 
containment map indicated is not proper; i.e., \(M, *) is one-to-one and onto. 
Since this holds at each M in Spec(B (R)), the map X is a homeomorphism. 

Thus X° is both mono and epi in the category of reduced ring spaces and their 
maps. By the equivalence of categories established by Pierce, X is mono and 
epi in the category of rings and conformai maps. Therefore X is epi in the 
(smaller) category of commutative rings and ring homomorphisms. But 
Storrer [15, 3.2 and 6.1] has shown that a mono-epimorphism in this category 
whose domain is a regular ring must be onto. Thus X is not a proper map 
between R and S, and we have shown that R is algebraically closed. 

2.8. COROLLARY. If R is regular and algebraically closed and I is an ideal of R, 
then R/I is algebraically closed if and only if it is Baer. 

Proof. R/I is regular. Its quotient fields lie among those of R, and so they 
are algebraically closed. The result now follows by the equivalence of (1) and 
(3) of 2.7. 

2.9. PROPOSITION. A product of algebraically closed regular rings is also 
algebraically closed. 

Proof. Let R = U Ru where {Ri} ia is a family of algebraically closed 
regular rings. R is regular by common knowledge. Also B(R) ~ U B(Ri), a 
product of complete Boolean algebras. The latter is complete by [12, p. 41, 
Proposition 8]. Thus R is Baer. Now if one must demonstrate a root for a 
monic polynomial, one notes that the polynomial gives a monic over each Rt 

under projection onto the ith component. Thus one can solve locally at each i, 
to arrive at the sought root. 

At this point one could construct an algebraic closure for regular rings 
directly. Instead we turn to the parallel wx>rk of Enochs. It is clear from 
[5, p. 701 and Theorem 2] that algebraically closed rings coincide with the 
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totally integrally closed rings of Enochs. Furthermore, his Theorem 2 trans­
lates into: given a semiprime ring R, there exists an algebraic extension 12(R) 
of R, which is algebraically closed. Furthermore, £l(R) is unique up to 
isomorphism over R, and contains a copy, over R, of every algebraic extension 
of R. We call &(R) the algebraic closure of R. It is clear from 1.10 that the 
algebraic closure of a regular ring is regular. 

2.10. Remark. If one has available the algebraic closure in the regular case, 
one can realize the closure in the semiprime case as the integral closure of the 
ring in the algebraic closure of its complete ring of quotients. 

2.11. PROPOSITION. 12 commutes with finite Cartesian products. 

Proof. In view of [5, Proposition 1], one need only make the straightforward 
verification that finite products preserve the equational condition of 2.2. 

2.12. PROPOSITION. Let R be a semiprime ring and let £l(R) be its algebraic 
closure; then Q,(R) is Baer. 

Proof. If 12 (R) were not Baer, then by 2.5 it would have an algebraic exten­
sion which, being Baer, would be a proper extension. 

In closing his paper Enochs remarks that "it is an open question whether A 
totally integrally closed implies S~1A totally integrally closed for every 
multiplicative set S C A". We now take up this question and show the 
answer to be negative by means of some general considerations which also 
yield related results on rings of quotients. It will not be necessary to look 
beyond regular rings to resolve this question. 

2.13. LEMMA. Let R be a regular ring and let I be an ideal in R. Then 
idempotents can be lifted modulo I; i.e. an element of R/I is an idempotent if and 
only if it is the image under factoring by I, of an idempotent of R. 

Proof. The images of idempotents are again idempotents. Conversely, let 
x = x2 in R/I. Then x2 — x Ç I. By regularity there exists y £ R such 
that x = x2y = xe, where e = e2 = xy. Since x2 — x is in / , so is y(x2 — x) = 
x — e. Thus the idempotent e is mapped onto x in R/I. 

2.14. LEMMA. Let Rbe a regular ring and let B(R) be its ring of idempotents. 
Then: 

(1) if I is any ideal of R, then the ring of idempotents of R/I is isomorphic to 
B(R)/mB(R), ^ 

(2) any ideal of B(R) is extended by an ideal of R. 

Proof. (1) The multiplication in B(R) coincides with that in R, and the 
addition is given in terms of the operations in R hy e®f=e+f— 2ef. 
If h is the projection from R onto R/I, it is easily checked that h\B(R) —•» 
B(R/I) is a ring homomorphism. Furthermore, its kernel is I P\ B(R) and 
2.13 ensures that it is onto. 
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(2) Let / be any ideal in B(R). Let I = {er: e 6 / , r G R}. Then / is an 
ideal of R [13, p. 17, Lemma 1.6]. If er £ I H B(R), then er = e(er) and since 
e is in the ideal / , so is er. 

2.15. LEMMA. Let R be a regular Baer ring with ring of idempotents B(R). 
Then R is completely reducible if and only if B (R) is finite. 

Proof. If R is completely reducible, then it is the Cartesian product of 
finitely many fields and it is obvious that it contains only a finite number of 
idempotents. 

The converse can be established by induction on the order of B(R). If 
\B(R)\ = 2, then R is a field. If \B(R)\ = n> 2, let e € B(R)\{0, 1}. Then 
R^eRX (1 - e)R and \B(eR)\ < n, |5((1 - e)R)\ < n. 

2.16. THEOREM (Dwinger). A Boolean algebra has the property that all of its 
quotient algebras are complete if and only if it is finite. 

Proof. [4, p. 456, Theorem 4.3]. 

2.17. PROPOSITION. / / R is semiprime and rationally complete, then all 
quotient rings are rationally complete if and only if R is completely reducible. 

Proof. Suppose that R is not completely reducible. By 2.15, B(R) is infinite. 
By 2.16, there exists an ideal J in B(R) such that B(R)/J is not complete. 
By 2.14 (2), J is extended by an ideal say / of R, and by 2.14 (1), the ring of 
idempotents of R/I is not complete. Thus R/I is not rationally complete. 
Thus if all quotient objects of R are to be complete, then B(R) must be finite, 
and R must be completely reducible. The opposite implication is straight­
forward. 

2.18. PROPOSITION. If R is algebraically closed, then all quotient objects of R 
are algebraically closed if and only if R is completely reducible. 

Proof. The quotient rings of R are always regular and their factor fields are 
always algebraically closed. Thus the only property at issue is that of being 
Baer, and this argument proceeds as in 2.17. 

2.19. LEMMA. Let Rbe a regular ring and let I be an ideal of R. Then I is the 
kernel of a localization of R, and the localization is R/I. 

Proof. Let I = f~), Mu where {M/\ is the family of maximal ideals of R 
containing I. The set S = flz (R — Mt) is multiplicative and / is the kernel 
of the localization with respect to 5. For if r is in the kernel, rs = 0, for some 
s £ S. Since s is in no Miy r is in each Mu and therefore in / . Conversely, 
if r G / , then rR = eR, for some idempotent e of R. Since e is in each Mu 

1 — e is in each R — Mu i.e. in S. Since r ( l — e) = 0, we conclude that r is 
in the kernel of the localization with respect to S. The localization Rs will 
be R/I because R/I consists only of zero divisors and units. 
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Enochs' question can now be answered as follows. 

2.20. PROPOSITION. Let R be an algebraically closed regular ring. Then every 
localization of R is algebraically closed if and only if R is completely reducible, 
i.e. if and only if R is a finite Cartesian product of algebraically closed fields. 

Proof. 2.18 and 2.19. 

2.21. Remark. It is also now clear that the demands that the ring be Baer 
in 2.7 are not superfluous. 

3. Weak-algebraic extensions. The motivation for our work is the 
following theorem [1, p. 84]: If S is a field extension of the field R, then S is 
algebraic over R if and only if all the rings between R and S are fields. 

3.1. Definition. Let R be a semiprime ring and let 5 be an over-ring of R. 
We will say that 5 is a weak-algebraic extension of R if all rings between R 
and 5 are essential over R. It is easy to verify that this coincides with the 
(usual) field-theoretic notion. Furthermore, it is clear that this condition is 
strictly stronger than essentiality; the complex field, for example, has many 
over-fields but no proper weak-algebraic extensions. If R is a semiprime ring, 
then Q(R) is a weak-algebraic extension of R. 

3.2. LEMMA. Let R be a semiprime ring and let S be an over-ring of R. Then S 
is weak-algebraic over R if and only if each non-zero element of S satisfies a 
polynomial equation with coefficients from R which has a non-zero absolute term. 

Proof. Assume that S is a weak-algebraic extension of R. If s £ 5\i<!, 
then R[s] is essential over R, and so there exists a polynomial, say, 
/ = rns

n + . . . + T\s + ro in R[s] and an a £ R, a ^ 0, such that sf = a. 
Transposition yields rns

n+l + . . . + ris2 + r0s — a = 0, which is an equation 
of the required form. That the elements of R satisfy such an equation is a 
triviality. 

Suppose, now, that all elements of 5 \ i ? satisfy such equations, and let T 
be a between ring of R and S. If t £ T, then T D R[t], and 

tTr\RD tR[t]nR ?* (0), 

as is evident from the polynomial equation over R for the element t. Therefore 
T is essential over R, and the proof is complete. We will subsequently refer 
to such polynomials and polynomial equations as weak-algebraic. 

3.3. COROLLARY. Let R be a subring of T, and let T be a subring of S. Then 
if S is a weak-algebraic extension of R, it is also a weak-algebraic extension of T. 

3.4. PROPOSITION. Let {Ri}iei be a family of semiprime rings and let {Si}iel 

be a family of rings such that St is a weak-algebraic extension of Rt for each i. 
Then S = II* Si is a weak-algebraic extension of R = Ylt Rt. 
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Proof. Let 5 be a non-zero element of S. Then there exists i G I such that 
(s)i 9^ Oi. Since St is a weak-algebraic extension of Ru there exist r^k\ 
k = 0, 1, 2, 3, . . . , n, in £<, r,(0) ^ 0*, such that 

(3) E r«tt)(*)* = 0«. 

Define f(1c\ k = 0, 1, 2, . . . , # , as follows. 

(f(fc))* = r<(*\ ( / ( % = 0, for allj e / . i ^ i . 

Then/<*> G i? for all fe,/^ ^ 0, and by (3), E * / ^ * = 0. Thus 5 satisfies a 
weak-algebraic polynomial equation over R. 

Earlier we established the transitivity of essential extensions; we now 
present a partial result on transitivity for weak-algebraic extensions. 

3.5. LEMMA. Let Rbe a semiprime ring and let S be a weak-algebraic extension 
of R. Then Q(S) is a weak-algebraic extension of R. 

Proof. Let q be a non-zero element of Q(S). Then there exist s±, s2 £ S such 
that qsi = s2 9e 0. Since Q(S) is regular, q generates the same principal ideal 
in Q(S) as does some (unique) idempotent, say e. Then q = qe and qesi = s2. 
Clearly es\ is non-zero, and so there exist s3, s± £ S such that esiSz = s4 ^ 0, 
whence qs^ = qesis% = S0S3. If s2s$ = 0, then qs± — 0, whence 0 = es4 = s4, 
a contradiction. Thus gs4 = s2sz ^ 0. Since S is essential over i?, there exist 
S5 £ 5, f 6 R such that s4s5 = r ^ 0 . Therefore qr = qs±s$ = s2szs5. If 
qs±s5 = 0, then 0 = es±s$ = s4s5 = r, a contradiction. Letting 5 = s2szs$ we 
have qr = s a. non-zero element of S. Recall that s satisfies a weak-algebraic 
polynomial equation over R. Substitution of qr in the latter yields a suitable 
equation for q. 

3.6. LEMMA. Let Rbe a semiprime ring and let S be a weak-algebraic extension 
of R. Let T be the integral closure of R in S; then T is an algebraic extension of R 
and S is a ring of quotients of T. 

Proof. T is essential over R, and it is given to be integral over R] hence it 
is algebraic over R. Take x G S. Since 5 is weak-algebraic over R, we have 
rnx

n + . . . + r\x + r0 = 0, for some rt G R, r0 ^ 0. Multiplication by r0 

yields r§rnx
n + . . . + r0rix + r0

2 = 0. Now the absolute term is still non-zero, 
and so it is not possible that all other terms be zero. Let the first non-zero 
term be rQrmxm. Now multiply the equation through by {r^rm)m~l to obtain: 

/ \m 1 / \m—l 1 2 / \m—2 i 

(r0rmx) + rm-iro(r0rmx) + rm-2r0 rm(r0rmx) + . . . 
+ ^ - V * - 2 ( r o V ) + r^tnT1 = 0. 

Now if r0
m+1rm

m~l = 0, then (r0^m)w+1 = 0 whence r0rm = 0, since R is 
semiprime, and this would contradict the choice of m. Therefore the absolute 
term in the equation is not 0. Therefore r0rmx ^ 0. But the equation states that 
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rormx is integral over R, and so it must lie in T. Thus 0 9e r0rmx £ T. Since 
such an equation is available for each x in S, we invoke [12, p. 46, Exercise 5] 
to conclude that 5 is a ring of quotients of T. 

3.7. COROLLARY. Let R be an algebraically closed semiprime ring and let S be 
a weak-algebraic extension of R. Then S is a ring of quotients of R. 

Proof. The integral closure of R in S is an algebraic extension of R, and 
must, therefore, coincide with R. 

3.8. Definition. A ring is weak-algebraically closed if it has no proper weak-
algebraic extensions. It is obvious that weak-algebraically closed rings are 
algebraically closed. As well, a weak-algebraically closed ring must be regular 
since the complete ring of quotients of a semiprime ring is regular. 

3.9. PROPOSITION. Let R be regular; then the following are equivalent: 
(1) R is weak-algebraically closed; 
(2) R is s elf-infective and all monic equations over R have roots in R; 
(3) R is s elf-infective and all of its factor fields are algebraically closed; 
(4) R is s elf-infective and algebraically closed; 
(5) R is the complete ring of quotients of an algebraically closed ring. 

Proof. (1) =» (2). If R is weak-algebraically closed, then R = Q(R), a self-
injective ring [12, p. 46, Exercise 6]. Also by 2.7 (2), monies over R have 
roots in R. 

(2) =» (3) as in 2.7. 
(3) => (4) since self-infective regular rings are Baer. 
(4) => (1) by 3.7 and the fact that a semiprime self-injective ring coincides 

with its maximal ring of quotients. 
(5) => (4) by 3.7 and (4) =* (5) trivially. 

3.10. COROLLARY. A Cartesian product of weak-algebraically closed rings is 
a weak-algebraically closed ring. 

Proof. By [12, p. 41, Proposition 8], a product of self-injective regular rings 
is again regular self-injective. Now invoke 2.8 and 3.9 (4) above. 

3.11. COROLLARY. If R is weak-algebraically closed, then all quotient objects 
of R are weak-algebraically closed if and only if R is completely reducible. 

Proof. The quotient rings of R are regular and their factor fields are alge­
braically closed. Thus the only property at issue is self-injectivity and this 
proceeds as in 2.17. 

We now state the following result due to Storrer. 

3.12. THEOREM [15, 10.1]. Let R be semiprime and let m:R-^S be an 
essential embedding of R into S. Then if Q(R) and Q(S) are complete rings of 
quotients of R and S, respectively, there exists an embedding m'\ Q(R) —» Q(S) 
such that m'\R = m. 
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3.13. THEOREM. Let R be a semiprime ring. Then R has a weak-algebraic 
closure &' (R); i.e. there exists a weak-algebraically closed ring 12' (R) which is a 
weak-algebraic extension of R. Furthermore, £2'(is!) is "universal" with respect 
to weak-algebraic extensions of R. 

Proof. Let 12'(i?) = Q(iï(R)). By 3.5, Q'(R) is a weak-algebraic extension 
of R. By 3.9 (5), &'(R) is weak-algebraically closed. Now for universality; 
let A be a weak-algebraic extension of R, and B the integral closure of R in A. 
By the universality of the algebraic closure, B can be embedded into £l(R). 
Furthermore, this embedding is essential since the image of B is a between 
ring of R and Q(R). Thus by 3.12, this embedding can be extended to an 
embedding of A into & (R) over R. 

3.14. COROLLARY. Any two weak-algebraic closures of R are isomorphic 
(over R). 

3.15. COROLLARY. The weak-algebraic closure commutes with arbitrary 
Cartesian products. 

Proof. 3.4 and 3.10. 

3.16. PROPOSITION (Transitivity). Let R be a subring of S and let S be a 
subring of T; then if T is weak-algebraic over S, and if S is weak-algebraic over R, 
then T is weak-algebraic over R. 

Proof. Clearly tt(R) = 12'(S). Thus there is a copy over R, of T in tt'(R), 
and every element of the copy satisfies a weak-algebraic polynomial equation 
over R. Since these equations will be preserved under isomorphism over R, 
every element of T satisfies a weak-algebraic polynomial equation over R. 

The following result is now clear. 

3.17. LEMMA. Let R be regular; then the following are equivalent: 
(1) the algebraic closure of R is s elf-infective; 
(2) every weak-algebraic extension of R is algebraic; 
(3) every weak-algebraic extension is regular. 

3.18. LEMMA. Let R be regular and let ti(R) be its algebraic closure. Then if 
ti(R) is rationally complete, Q(R) is integral over R. 

Proof. If tl(R) is rationally complete, then, by 3.12, U(R) contains a copy 
of Q(R) over R. 

We shall see that the converse to this lemma is not true in general. 

4. Some examples. Since the two closures 12 and 12' agree on fields, they 
also agree on completely reducible rings since the latter are just finite products 
of fields. In this section we will show that the two closures do differ in general. 
We begin with an example from the study of rings of continuous functions; 
our notation is that of Gillman and Jerison [8]. 
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4.1. Let X be a P-space without isolated points. These exist by [8, p. 193, 
13 P]. Then C(X) is a commutative regular ring with 1. If p is an arbitrary 
point of X, then p defines the maximal ideal Mv = {/ € C(X): f(p) = 0} and 
C(X)/MP is isomorphic to the real field [8, p. 56, 4.6 (a)]. Let Q(X) denote 
the complete ring of quotients of CiX). Then since C(X) is regular, there is 
at least one maximal ideal, say N, in Q(X) lying over Mp: It is shown in 
[9, 3.1, 4.2] that if X is any space, then the (totally ordered) factor fields of 
Q(X) which are isomorphic to the reals are in bisection with the isolated points 
of X. Therefore in our situation all such factor fields (in particular Q(X)/N) 
are hyper-real. Now if G = Q(X)/N were algebraic over the reals, it would 
be isomorphic with the reals since G is totally ordered and the reals are real-
closed (cf. [8, p. 172, (3)]). Since this fails, Q(X) is not an algebraic extension 
of C(X). But it is a weak-algebraic extension of C(X). From this example 
we draw a number of conclusions. 

4.2. A weak-algebraic extension need not be algebraic. 

4.3. An essential extension of a regular ring need not be regular. This follows 
directly from 2.3 (2). 

4.4. A regular Baer ring need not be self-injective. Such a ring is given, 
for example, by the integral closure of C(X) in Q(X) w^here X is the space 
of 4.1. 

4.5. In [7, 4.3] the rings QL(X) and QF(X) are introduced and it is shown 
that the former is the complete ring of quotients of the latter. To obtain QL(X) 
one considers the set of all locally constant continuous real-valued functions 
whose domains of definition are dense open subsets of the topological space X, 
and divides out by the equivalence relation which identifies two functions 
which agree on the intersection of their domains. QF{X) is the subring deter­
mined by the functions with finite range. Both rings are regular and QF(X) 
is Baer since it contains all the idempotents of QL(X). It is not hard to see 
that the two rings differ if X is the real field in its order topology. Let 
g £ QL(X) and suppose that gn + gn~%-i + • • • + Jo = 0 for some 
fi £ QF(X). We may assume that all the functions are defined on the domain D 
given by the intersection of their individual domains. Each ft is defined on a 
finite clopen partition II * of D, on the elements of which it is fixed. If II is the 
common refinement of the II u then II is finite and each ft is fixed on the 
elements of II. Now g can only assume a finite number of different values on a 
given element of II, since it must satisfy the polynomial above. Therefore g 
has finite range. Thus QF(X) is integrally closed in QL(X), therefore the 
conclusions 4.2 and 4.3 are valid for regular Baer rings. Also it should be noted 
that QF(X) is a nice example of a regular Baer ring which is not self-injective. 
The algebraic closure of QL(X) is discussed in § 6. 

4.6. The following example is motivated by model-theoretic considerations. 
Let F be a finite field of order pn, p a prime. Let R = I l X o F. Then R is regular, 
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and self-injective and by 3.15, O'(F) = I l K o 12(F). Let I f be a maximal ideal 
in O'(F) which is defined by a non-principal ultrafilter on the set indexing the 
Cartesian product of copies of 0(F) (cf. [11, 8.1]). The field Of {R)/M is an 
ultrapower of 0(F) and since 0(F) is countable, \tl'(R)/M\ = 2Ko by [11, 5.6]. 
Now R/M Pi R is an ultrapower of F and since F is finite, so are all of its 
ultrapowers, in particular so is R/M C\ R. Thus, considerations of cardinality 
show that ti'(R)/M is not algebraic over R/M C\ R. Therefore 0 ' (F) is not 
algebraic over R. 

4.7. 0 need not commute with infinite Cartesian products. 

Proof. 4.6. 

4.8. The algebraic closure of a self-injective ring need not be self-injective. 

Proof. 4.6. 

5. Applications to group rings. We first state a number of results con­
cerning group rings. All can be found in [12], except for 5.4, which was men­
tioned to me by I. Connell. 

5.1. The group ring R = AG is regular if and only if A is regular, G is 
locally finite, and the order of any finite subgroup of G is invertible in A. 

5.2. If A is self-injective and G is finite, then R is self-injective. 

5.3. If R is self-injective, then A is self-injective and G is locally finite. 

5.4. If R is Baer, then A is Baer and the orders of the elements of G are 
invertible in A. 

These results suggest an investigation of when group rings are algebraically 
closed, and when they are weak-algebraically closed. 

5.5. LEMMA. Let R = AG, R, A both regular. Then the quotient fields of R are 
algebraically closed if and only if the quotient fields of A are algebraically closed. 

Proof. Necessity. R/A ~ A, where A is the augmentation ideal of R. 
Sufficiency. Let M be a maximal ideal in R, and consider the field embedding 

A = A/M C\A-+ R/M =_R. Let g be any element of G. By 5.1, gn = 1 for 
some integer n. Thus g in R is algebraic over A. Thus the field embedding is 
algebraic, and since A is algebraically closed, the embedding is an isomorphism. 

5.6. PROPOSITION. Let R = AG, let R and A be regular and let G be finite. 
Then R is weak-algebraically closed if and only if A is. 

Proof. 5.2, 5.3, 5.5, and 3.9 (3). 

5.7. PROPOSITION. Let R = AG be regular. Then if R is algebraically closed, 
so is A. 

Proof. 5.4, 5.5, and 2.7. 
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5.8. LEMMA. Let G be a finite group, and R = AG, a regular group ring, 
where A is regular, algebraically closed and of prime characteristic. Then R is 
algebraically closed. 

Proof. By 5.5 and 2.7, it suffices to show that R is Baer. Q(R) = Q(A)G by 
[3, 3.6]. Let e be an idempotent in Q(R), say 

n 
e = Z) Z&u Qi G ' QC4)» gi£G> i = 1,2, . . . ,n. 

Let p be the characteristic of A. By the binomial theorem, e = ev<x — 
Ht ç.ipagipaj ce any positive integer. Thus exponentiation by pa acts as a 
permutation on the support of e. 

Let gi be an element in the support of e. By the above remark the set 
{gip3'-j = 0, 1, 2, . . .} lies in the (finite) support of e. Therefore there exist 
positive integers m,n,m > n, such that g?m = gfn. Reading off its coefficients 
in the equation epm = epn yields the equation g/m = <//n. Thus qt is integral 
over A. But since A is algebraically closed, it coincides with its integral 
closure in Q(A). Thus AG contains all idempotents of Q(A)G and is con­
sequently Baer. 

As a partial converse to 5.7 we have the following result. 

5.9. PROPOSITION. Let R = AG be a regular group ring. Then R is algebraically 
closed provided that G is finite and A is algebraically closed and of non-zero 
characteristic. 

Proof. A is regular and so it has no non-trivial nilpotent elements. In 
particular, the characteristic of A must be square-free, say n = 11 pt. If 
Ai = {a G A: apt = 0), then one verifies straightforwardly that i j is a 
regular ring of characteristic pt and that A == I I A t. Since A is Baer, each A t 

is Baer, whence it is algebraically closed by 2.8. Now R = ^4G = I I ^ G . 
By 5.8, each AtG is algebraically closed. By 2.9, R is algebraically closed. 

6. Applications to rings of continuous functions. [6] is concerned with 
the study of C(X), the ring of real-valued continuous functions defined on a 
topological space X. While C(X) is in general far from regular, there are a 
number of regular rings related to C(X) which arise in [7], and the question 
of determining their algebraic closures is posed. Any modifications made in 
the notation of [7] will be obvious in meaning. 

Let QR(X) denote the complete ring of quotients of C(X). It can be realized 
as the set of all continuous real-valued functions defined on dense open 
subsets of X, modulo the relation which identifies functions which agree on 
the intersection of their domains. Addition and multiplication are pointwise. 
Let QC(X) denote the ring of all complex-valued continuous functions defined 
by the same filter, modulo the same relation. 
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6.1. THEOREM. Q(QB(X)) = QC(X). 

Proof. The natural embedding is algebraic. Take / £ QC(X), f 9^ 0. Let 
a and b denote the purely real and purely complex parts of / ; these are 
continuous real-valued functions on the domain of / because they are the 
compositions w i t h / of the two projections from C to R. N o w / = a + ib and 
p — 2af + (a2 + b2) = 0 identically on the domain of / . This is a monic 
equation i n / with coefficients from QB(X); furthermore, the absolute term 
is not zero because/ is not the zero function. 

Qc(X) is algebraically closed. The factor fields of QR(X) are real closed. 
This can be seen by noticing that the proof of this theorem for the ring C(X), 
given in [8, p. 175], goes over entirely; simply argue on the intersection of the 
domains of the finitely many functions discussed. The factor fields of QC(X) 
are algebraic over these real-closed fields and they contain the image of the 
function which has constant value i. Thus they are algebraically closed 
[8, p. 172]. Since QC(X) is Baer, we invoke 2.7 to complete the proof. 

The ring QB(X), presented in [7, Chapter 4], is the Dedekind completion 
of Q(X) and is isomorphic to the ring of continuous functions defined by the 
filter of dense G5S of X, modulo the usual relation. 

6.2. THEOREM. Q(QR(X)) = QC(X). 

Proof. The fact that QC(X) has algebraically closed factor fields and that 
the embedding is algebraic proceeds as in 6.1. QC(X) is Baer because QR(X) 
is rationally complete [7, 4.8] and therefore Baer. 

The ring RQL(X), introduced in [7, 4.3], consists of those functions in 
QR(X), which are locally constant on their domains of definition. 

6.3. THEOREM. Q[RQL(X)] = CQL(X). 

Proof. The composition of a locally constant complex-valued function with 
either projection to the reals is still locally constant. Thus our embedding is 
algebraic as in 6.1. Also since RQL(X) is Baer [7, 4.3], so is CQL(X). 

Now a monic over CQL(X) is one over QC(X), so it has a root in Qc(X)t 

since this ring is algebraically closed (6.1). In fact, the root must lie in CQL(X). 

Specifically, let g £ QC(X) satisfy gn + fn-ig
n~l + . . . + fig + /o = 0, 

ft £ CQL(X). Let D be a dense open set in X, common to the domains of 
definition of the n + 1 functions appearing in the equation. To show that g is 
locally constant, we assume that g(d) = z, z some complex number, and show 
that g equals z on some neighbourhood of d. z is a root of the equation 

(4) xn + /«-iCd)*"-1 + . . . + fi(d)x + f0(d) = 0. 

Since each ft is locally constant, there exist Uu i• = 0, 1, . . . , n — 1, open 
neighbourhoods of d in D such tha t /* is fixed on Ut. Let U = Hi Ut. Then 
each fi is fixed on U, and so we conclude that g assumes on U only values 
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among the finitely many roots of (4). If one chooses (as is clearly possible 
since C is Hausdorff) W, an open set in C containing z and excluding all other 
roots of (4), then g is constant on the neighbourhood U H g~l{W) of p. T h u s 
all monies over CQL(X) have roots in CQL(X) and by 2.7, CQL(X) is 
algebraically closed. 

We turn to the case of continuous functions from a topological space X 
in to a finite field F (topologically discrete) denoting the ring by C(X, F). I t 
is easy to see t ha t compact Hausdorff totally disconnected spaces [8, p . 247] 
suffice for the s tudy of functions to F jus t as completely regular spaces suffice 
for rings of real-valued functions. 

6.4. PROPOSITION. Let X be compact, Hausdorff, and totally disconnected. 
Then Q(C(X, F)) ^ C(G(X), F), where G(X) is the projective cover of X, due 
to Gleason. 

Proof. From the construction and properties of the projective cover we have 
a surjection t: G(X) —> X , with the proper ty t ha t t maps any proper closed 
subset of G(X) onto a proper subset of X. As well, G(X) is compact , T 2 , and 
extremally disconnected. I t is clear t ha t / induces a ring monomorphism 
t*: C(X, F) —> C(G(X), F) under composition. 

By [13, p . 104, 24.2], C(G(X), F) is rationally complete. One claims t h a t 
C(G(X), F) is a ring of quotients of C(X, F). T a k e / 6 C(G(X), F),f ^ 0, 
then / defines a part i t ion of G(X) into disjoint clopen sets Ai, A2, . . . , An, 
where the At are the inverse images u n d e r / of the different elements of F. 
Now s i n c e / is non-zero, we assume, wi thout loss of generality, t h a t / ( ^ 4 i ) = 
d ^ 0 in F. T h e set B = U^=2 At is a proper closed set in G(X). T h u s t(B) 
is a proper closed set in X. Let D = X\t(B). Then D is open and it contains 
a non-void clopen set, say C. Clearly t~l(C) C A\. Consider the function 
h G C(X, F) defined as follows: h(C) = 1, and h(X\C) = 0. Then 
t*(h) G C(G(X), F) and is 1 on the clopen set t~l{C) in A\ and zero elsewhere. 
T h u s ft* (h) is the function which is d on t~l(C). Bu t this is the function t*(hd). 
Thus we have/**(A) = t*(hd) ^ 0. 

6.5. Remark. T h u s in the case of the ring of functions to a finite field, the 
complete ring of quot ients is always a ring of functions itself. This contras ts 
strongly with Hager 's result [9] for the ring of real-valued continuous functions. 

6.6. Remark. Q(C(X, F)) is an algebraic extension of C(X, F). For if n is 
the order of F, then rn = r for all r € C(X, F). If q G Q(C(X, F)), then there 
is a dense ideal D of C(X, F) such t h a t qD C C(X, F). If d Ç D, then 
qnd = qndn = (qd)n = qd. Therefore {qn - q)D = (0) and qn - q = 0, an 
equat ion of integral dependence. 

T h u s one can restrict the s tudy of the algebraic closure of C(X, F) to the 
case where X is extremally disconnected. 
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6.7. THEOREM. Let X be compact, Hausdorff, and extremally disconnected. 
Then OC(X, F) = C(X, OF), where 0(F) is given the discrete topology. 

Proof. It is clear that C(X, OF), under pointwise addition and multiplication, 
is a commutative ring with 1, which extends C(X, F). Since X is compact, 
the elements of C(X, OF) have finite range, and so they are defined on a finite 
partition of X into clopen sets; from this it is easy to see the regularity of 
C(X, OF). 

C(X, OF) is essential over C(X, F). T a k e / G C(X, OF), f ^ 0, defined on 
the partition X = \Jni=iAit with/04*) = xt Ç 0(F) . Let g be defined on the 
same partition as follows; if / is 0 on Aiy then so is g; if f{At) ^ 0, then 
g(Ai) = (fÇAi))-1. Clearly g is in C(X, OF), and fg is defined on a finite 
partition of X and is 0- or 1-valued. Since/ ^ 0, it follows that 

O^fgt C(X,F) 
establishing essentiality. 

C(X, OF) is integral over C(X, F). Consider an arbitrary finite (clopen) 
partition of X, say X = U'Li^U- Let kt be the function defined as follows; 
ki(At) = xu an arbitrary element of ti(F), ki(X\Ai) = 0. Since the element 
xt satisfies an integral equation over F, it follows that kt does as well (as 
coefficients in the equation for kt use functions with the appropriate element 
from F on Au and 0 elsewhere). But the sum of integral elements is again 
integrally dependent, and so the function which has arbitrary values of ti(F) 
assigned to the elements of an arbitrary (finite) partition of X is integral 
over C(X, F). The set of these functions is precisely C(X, &F). 

C(X, QF) is Baer since it is essential over C(X, F), a self-injective ring. One 
claims that every monic equation over C(X, ÇIF) has a root in C(X, UF). Let 

xn + x^gn^ + . . . + xgl + g0 = 0, gi G C(X, OF), 

be such a monic equation for which one seeks a root. Each gi is constant on 
the elements of a finite clopen partition of X. Let II be the common refinement 
of all of these partitions. II is clearly, itself, a finite clopen partition, say 
X = \JjDj. Since each gt is constant on each Djy and since &(F) is an 
algebraically closed field, it follows that there is a root, say yi in 0(F) , for 
the equation 

t, x'g^D,) = 0. 

The function y: X —>Q(F) which has value y} on Dj is in C(X, OF), and it 
satisfies the equation in question. By 2.7, C(X, OF) is algebraically closed 
and the proof of the theorem is complete. 

6.8. Remark. In view of Stone duality, any complete Boolean algebra can 
be represented as the ring of continuous functions from its spectrum to the 
two-element field. Thus 6.7 contains as a special case a representation for the 
algebraic closure of a complete Boolean ring. Since the embedding of any 
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Boolean ring into its complete ring of quotients is an algebraic embedding 
into a complete Boolean ring, it follows that this disposes of the algebraic 
closure of all Boolean rings. 
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