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Prolate spheroids settling in a quiescent fluid:
clustering, microstructures and collisions
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In this study we investigate the sedimentation of prolate spheroids in a quiescent fluid
by means of the particle-resolved direct numerical simulation. With the increase of the
particle volume fraction φ from 0.1 % to 10 %, we observe a non-monotonic variation of
the mean settling velocity of particles, 〈Vs〉. By virtue of the Voronoi analysis, we find
that the degree of particle clustering is highest when 〈Vs〉 reaches the local maximum at
φ = 1 %. Under the swarm effect, clustered particles are found to preferentially sample
downward fluid flows in the wake regions, leading to the enhancement of the settling
speed. As for lower or higher volume fractions, the tendency of particle clustering and
the preferential sampling of downward flows are attenuated. The hindrance effect becomes
predominant when the volume fraction exceeds 5 % and reduces 〈Vs〉 to less than the
isolated settling velocity. Particle orientation plays a minor role in the mean settling
velocity, although individual prolate particles still tend to settle faster in suspensions when
they deviate more from the broad-side-on alignment. Moreover, we also demonstrate that
particles are prone to form column-like microstructures in dilute suspensions under the
effect of wake-induced hydrodynamic attractions. The radial distribution function is higher
at a lower volume fraction. As a result, the collision rate scaled by the particle number
density decreases with the increasing volume fraction. By contrast, as another contribution
to the particle collision rate, the relative radial velocity for nearby particles shows a minor
degree of variation due to the lubrication effect.

Key words: particle/fluid flow

1. Introduction

Particle-laden flows are commonly encountered in natural and industrial processes, such
as the transport of pollution in the air or underwater, the marine snow generated by settling
plankton or microplastics and precipitation in the atmosphere (Pruppacher & Klett 2010;
Guazzelli & Hinch 2011; Trudnowska et al. 2021). One of the fundamental challenges in
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these applications is the gravity-driven sedimentation of particles in fluids, which involves
complex interactions between moving particles and the carrying fluid flow (Guazzelli &
Hinch 2011), as well as collisions among the dispersed particles (Ayala, Rosa & Wang
2008).

1.1. Settling of spherical particles
In past decades a series of experimental and numerical studies on the settling of an
isolated sphere have been carried out. These earlier studies revealed that the dynamic mode
and moving speed of a single falling/rising sphere are determined by two dimensionless
parameters, the density ratio α and the Galileo number Ga (Jenny, Duek & Bouchet 2004;
Horowitz & Williamson 2010; Zhou & Dušek 2015; Raaghav, Poelma & Breugem 2022).
The former measures the inertia of the solid particle and the later quantifies the ratio
between the buoyancy and viscous force acting on the sphere. In this study, our focus
is on settling particles so the density ratio is greater than unity. One can also describe
this problem by defining a dependent parameter, the Reynolds number Ret, based on the a
posteriori settling velocity Vt and the diameter of the sphere D. In the creeping-flow regime
(Ret � 1), the sphere settles vertically with a constant settling velocity by balancing the
buoyancy force with the Stokes drag. With the increase of the Reynolds number to a finite
value, the introduction of fluid inertia breaks the fore-aft symmetry of the fluid flow around
the settling sphere so the wake emerges. As Ret increases, the change of the rear-wake
morphology can trigger the path instability of the settling sphere. A variety of settling
modes, including vertical, oblique, zigzag, helical and chaotic motions, could be observed
with varying inertia of the fluid and particle (Jenny et al. 2004; Horowitz & Williamson
2010; Ern et al. 2012; Zhou & Dušek 2015; Raaghav et al. 2022).

Concerning the settling motion of a pair of particles, the hydrodynamic
interaction between them must be taken into account. A typical phenomenon is the
drafting-kissing-tumbling (DKT) process of a pair of initially vertical-aligned settling
spheres in the inertial-flow regime (Fortes, Joseph & Lundgren 1987; Glowinski et al.
2001). Specifically speaking, in the first stage (drafting stage), the trailing particle
accelerates its settling motion as it resides in the wake of the leading particle. The two
particles exhibit an attractive relative motion during this stage. Subsequently, the two
particles touch and form an elongated body aligning along the vertical direction (kissing
stage). However, settling with this configuration is unstable, so the particle pair tumbles
and separates under the effect of hydrodynamic interaction (tumbling stage). In this stage
the two particles behave as if they repel each other, and the originally trailing particle
becomes the leading one. Hence, the DKT process reflects the complicated hydrodynamic
interaction between a pair of settling particles.

When considering the sedimentation of a group of particles, the most well-known
phenomenon is the hindered settling motion of dispersed particles in suspensions
(Richardson & Zaki 1954), i.e. the reduction of the mean settling velocity of particles
with the increase of the volume fraction φ. The physical explanation of this hindrance
effect is as follows. To maintain zero net flux of the whole flow system, a mean upward
fluid flow is generated to counteract the downward flux of settling particles. As a result,
the upward mean flow increases the hydrodynamic drag acting on the particle phase and,
thus, reduces the mean settling velocity (Di Felice 1999). An empirical formula of the
hindered settling velocity of particles in the creeping-flow regime was also proposed by
Richardson & Zaki (1954). More recently, the hindered settling velocity of particles with
finite fluid inertia was also observed in the numerical studies by means of the two-way
coupling point-particle simulation (Climent & Maxey 2003) or the particle-resolved direct
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numerical simulation (PR-DNS) (Yin & Koch 2007; Zaidi, Tsuji & Tanaka 2014). The
empirical expression of the hindered settling velocity has also been improved in a series
of studies to incorporate the finite-Reynolds-number correction (Garside & Al-Dibouni
1977; Di Felice 1999; Yin & Koch 2007).

However, over the past two decades, a striking enhancement of the mean particle
settling velocity has been observed under certain conditions, thanks to the state-of-the-art
PR-DNS of the particle sedimentation (Kajishima & Takiguchi 2002; Kajishima 2004;
Uhlmann & Doychev 2014; Zaidi et al. 2014). Investigations into the particle spatial
distribution have shown that the enhanced settling velocity is always associated with the
formation of column-like particle clusters (Doychev 2014; Uhlmann & Doychev 2014;
Zaidi et al. 2014). Later on, the experimental work conducted by Huisman et al. (2016)
also confirmed these numerical observations. Zaidi et al. (2014) and Moriche et al. (2023)
attributed the formation of particle clusters to the DKT-like interactions among settling
particles, but this phenomenon can only be observed in dilute suspensions when the
Reynolds number Ret is sufficiently high. Conversely, at low Reynolds numbers, the
weaker wake-induced attraction among particles results in orderly particle arrangements
rather than particle clustering (Yin & Koch 2007; Zaidi et al. 2014; Zaidi, Tsuji &
Tanaka 2015). While, in dense suspensions, the short distances between particles disrupt
particle wakes and, thus, inhibit the formation of particle clusters as well (Zaidi 2018b).
Readers can refer to Chouippe et al. (2023) for the review of previous studies on this
problem.

1.2. Settling of non-spherical particles
In practice, the shape of dispersed particles is commonly non-spherical. For instance, ice
crystals in clouds, plankton in the marine environment and dusts in the atmosphere are
usually disk-like or rod-like in shape (Shaw 2003; Mallios, Drakaki & Amiridis 2020;
Slomka & Stocker 2020). For simplicity, non-spherical particles are often modelled by
smooth-surface prolate/oblate spheroids or by polyhedrons with edges. Compared with
spherical particles, the orientational behaviour and rotational motion of non-spherical
particles add complexity to their dynamics in fluid flows (Rahmani & Wachs 2014; Voth
& Soldati 2017).

As for a single spheroid settling in a quiescent fluid, the particle would maintain its
initial orientation in the creeping flow owing to the vanishing hydrodynamic torque. Thus,
the settling velocity of the spheroid is orientation dependent in this regime (Happel &
Brenner 1983). However, when the fluid inertia is taken into account, a non-negligible
hydrodynamic torque reorients the settling spheroid to a broad-side-on alignment (Khayat
& Cox 1989; Ardekani et al. 2016; Dabade, Marath & Subramanian 2016). Additionally,
when the fluid inertia is strong enough to trigger wake instability, the settling motion
of the spheroid transitions from the steady vertical falling to complicated unsteady
modes, similar to the case of a settling sphere. The velocity and mode (including spiral,
zigzag/fluttering, tumbling and chaotic) of the settling motion are jointly determined by
the density ratio, Galileo number and the shape of the spheroid (Chrust, Bouchet & Dušek
2013; Ardekani et al. 2016; Zhou, Chrust & Dušek 2017; Moriche, Uhlmann & Dušek
2021), and can also be altered by the presence of walls (Huang, Yang & Lu 2014; Yang,
Huang & Lu 2015).

Moreover, according to the numerical work by Ardekani et al. (2016), the DKT process
between a pair of settling spheroids is quite different from that of spherical particles. As
for a pair of oblate particles with an aspect ratio (the ratio between the polar and equator
radius) λ = 1/3, the two particles do not undergo the tumbling stage after they approach
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and touch. Instead, they fall with a steady pilled-up configuration, as if they are stuck
together (Ardekani et al. 2016). Regarding a pair of prolate spheroids with λ = 3, the
DKT process is more complicated and dependent on their initial relative angle (Ardekani
et al. 2016). If the symmetry axes of the two prolate particles are initially parallel, the
DKT process is similar to that of spherical particles. While, if the symmetry axes are
perpendicular at the beginning, a stable cross-like configuration is formed and the two
prolate particles do not separate for a long time after they touch, similar to the case of
oblate particles. In principle, the attraction zone (within which the trailing particle can
be attracted by the leading one) is larger, and the interaction time (the time duration for
the particle pair to keep in touch) is longer for the DKT process of spheroidal particle
pairs, compared with that of spherical ones (Ardekani et al. 2016; Moriche et al. 2023).
To conclude, the particle shape plays an important role in the hydrodynamic interaction
between settling particles.

As regards the settling of a large number of non-spherical particles, an increased
settling velocity of elongated fibres was observed in the creeping-flow regime due to the
formation of particle streamers aligning in the gravitational direction (Kuusela, Lahtinen
& Ala-Nissila 2003; Saintillan, Shaqfeh & Darve 2006; Shin, Koch & Subramanian 2009).
In the finite-fluid-inertia regime, Seyed-Ahmadi & Wachs (2021) numerically studied
the settling motion of cubic particles. In contrast to the clustered settling spheres at
Ga = 160 and φ = 1 %, the spatial distribution of settling cubes is closer to a random
distribution in the same parameter set-up, which was attributed to the greater rotational
rate of settling cubes. Fornari, Ardekani & Brandt (2018) simulated the sedimentation
of oblate spheroids with λ = 1/3 and Ga = 60 at different particle volume fractions.
They reported appreciable particle clustering for settling oblate particles at a relatively
low Reynolds number (Ret = 38.7), and considerable enhancement of the mean settling
velocity up to 〈Vs〉 ≈ 1.33Vt at φ = 0.5 %. Similar results were also reported in the recent
work by Moriche et al. (2023), who considered the low-aspect-ratio oblate spheroids with
λ = 2/3 and higher Galileo number with Ga = 111 and 152. As for the case of prolate
particles, Lu et al. (2023) simulated the settling of prolate spheroids with λ = 2 and
Ga = 41.8 at φ = 2.2 %, 5.5 % and 9.9 % using a relatively small periodic computational
domain. They reported a decreased mean particle settling velocity and a transition from the
hydrodynamic-interaction-dominated regime to the particle-collision-dominated regime
with the increase of φ.

1.3. Particle collisions
The collision rate among dispersed particles plays an important role in the particle
coagulation in fluid flows, which are relevant to many industrial and natural processes.
In the past, plenty of work has been carried out to study the collision and coagulation of
point-like spherical particles in turbulent flows in the framework of a one-way coupling
approach (Saffman & Turner 1956; Sundaram & Collins 1997; Wang, Wexler & Zhou
2000; Ayala et al. 2008). Readers can refer to the reviews by Grabowski & Wang (2013)
and Pumir & Wilkinson (2016) for more details. Recently, some researchers extended
the work to non-spherical particles, and demonstrated that the orientational behaviour
of elongated or flattened particles enhances their collision rate in turbulence (Siewert,
Kunnen & Schröder 2014; Jucha et al. 2018; Slomka & Stocker 2020; Arguedas-Leiva et al.
2022; Grujić et al. 2024). However, when further considering the intricate particle–fluid
and particle–particle interactions, the understanding of particle collision rates remains
limited. In Wang et al. (2005) the hydrodynamic interactions among particles were
addressed by adding the particle-induced disturbance into the background turbulence.
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These disturbances can either augment or attenuate collision rate, depending on whether
they act as the far-field or near-field influence. In the framework of PR-DNS, Chen
et al. (2020) simulated the transport of spherical particles in the homogeneous isotropic
turbulence, and studied the collision rate of bidispersed inertial particles. Furthermore,
Fornari et al. (2019) simulated settling spherical particles in both the quiescent fluid and
the turbulent environment, and examined the effect of particle spatial distribution and
relative motion on the collision rate. However, to the best of our knowledge, the collision
rate of settling non-spherical particles with the full consideration of fluid–particle and
particle–particle interactions has not been investigated so far.

1.4. Objective of the present study
According to the above literature review, we are still far from achieving a comprehensive
understanding of settling non-spherical particles in suspensions. In the present work, we
investigate the sedimentation of prolate particles in an initially quiescent fluid by means of
PR-DNS. In particular, considering the significant impact of hydrodynamic interactions on
the dynamics of pairwise settling prolate particles (Ardekani et al. 2016), we aim to explore
the collective behaviour of settling prolate particles at varying volume fractions. This work
is motivated by two concerns. First, although the enhancement of particle settling velocity
and particle clustering down to φ ≈ 0.02 % have been reported for spherical particles
(Doychev 2014; Huisman et al. 2016), to the best of the authors’ knowledge, little is known
about the sedimentation of non-spherical particles with φ < 0.5 % in the inertial-flow
regime. Hence, we study the settling motion of prolate spheroids within a wide range of the
volume fraction from φ = 0.1 % to 10 %, with the particle aspect ratio and Galileo number
fixed at λ = 3 and Ga = 80, following the study of a single and a pair of settling prolate
particles by Ardekani et al. (2016). The particle–fluid density ratio is set as α = 2, which
is a typical value for a solid–liquid system (Seyed-Ahmadi & Wachs 2021). Interestingly,
we observe a non-monotonic variation of the mean particle settling velocity as φ increases,
so we further investigate the influences of particle clustering, hindrance effect and particle
orientation on the settling speed of prolate spheroids. Second, the collision rate among
settling non-spherical particles with finite sizes is not well understood so far. Therefore,
we also investigate on this issue and scrutinize the particle pair statistics that are essential
in determining the particle collision rate.

The remainder of this paper is organized as follows. In § 2 we describe the physical
problem and the simulation set-ups of this study. Then, in § 3 we analyse the statistics
of particle motions and spatial distributions, followed by the examination of the collision
rate of dispersed particles at different particle volume fractions. Finally, we summarize the
findings and draw conclusions in § 4.

2. Simulation set-ups

The configuration of simulations in the present study is sketched in figure 1. The
prolate particle with an aspect ratio λ = a/b = 3 is considered in this study. The Galileo
number, defined by Ga =

√
(α − 1)|g|D3

eq/ν, is set as Ga = 80. Here, Deq = 2(ab2)1/3

is the equivalent diameter (defined as the diameter of a sphere with the same volume
of the prolate spheroid), α is the particle–fluid density ratio that is set as α = 2,
and g is the acceleration induced by gravity. Under this parameter set-up, a single
prolate spheroid settles vertically with the broad-side-on orientation (see Appendix A.3).
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Figure 1. Schematic representation of settling prolate particles in a quiescent fluid. The semi-major and
semi-minor axes of the prolate particle have a length of a and b, respectively. The unit vector along the
symmetry axis of the prolate particle is denoted by n. The angle between the vector n and the positive y
direction is defined as the pitch angle ψ . The gravity is applied in the negative y direction with an acceleration
of g.

The settling Reynolds number corresponding to the isolated settling velocity Vt is
Ret = VtDeq/ν = 61.8.

To study the effect of volume fraction on the settling motion of prolate particles,
we consider six simulation cases as listed in table 1. The particle volume fraction φ
is defined by φ = (πNpD3

eq)/(6LxLyLz), in which Np denotes the number of particles,
and Lx, Ly and Lz represent the length of the computational domain in the x, y and z
directions, respectively. The periodic boundary condition is imposed in each direction of
the computational domain. The grid resolution is set as �h = Deq/24 in the simulations,
which is fine enough to fully resolve the particle–fluid interactions (see Appendix A.3).
The time step used in the present simulations is �t = 0.01Deq/Vt, which corresponds
to a Courant number of CFL = 0.24 for the adopted grid resolution based on the settling
velocity of an isolated particle. The size of the computational domain and the total number
of grid cells are provided in table 1. As the gravity is applied in the negative y direction,
the computational domain along this vertical direction is set longer than the other two
lateral directions. Note that we reduce the size of the computational domain for the cases
with φ ≥ 5 % to save the computational cost. This is reasonable because the decorrelation
of the fluid velocity is more rapid as the particle volume fraction increases (Zaidi et al.
2014; Zaidi 2018b). We have checked that the two-point correlation functions for the
fluid velocity fluctuations decay to less than 0.3 at the longest distance, except for the
vertical velocity fluctuations along the vertical direction at φ = 0.5 % and 1 %. The slow
decorrelation at φ = 0.5 % and 1 % is attributed to the column-like particle clustering
in these two cases (see § 3.1.1 for more details), which was also reported in Uhlmann
& Doychev (2014) and Moriche et al. (2023). However, according to Zaidi (2021), the
statistics of the particle dynamics are not affected by the size of the computational domain
when it is larger than 10 times the particle size. Hence, the present computational domain
is sufficiently large for obtaining qualitatively reliable results and we do not enlarge the
domain size considering the affordability of the computational cost.
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Case φ [Lx × Ly × Lz]/D3
eq Np Ncell

1 0.1 % 32 × 100 × 32 196 1.416 billion
2 0.5 % 32 × 100 × 32 978 1.416 billion
3 1 % 32 × 100 × 32 1956 1.416 billion
4 2 % 32 × 100 × 32 3911 1.416 billion
5 5 % 24 × 60 × 24 3300 0.478 billion
6 10 % 20 × 50 × 20 3820 0.276 billion

Table 1. Simulation set-ups for settling prolate particles with different particle volume fractions. The total
number of grid cells used for the fluid flow simulation is denoted by Ncell.

As for the initial configuration of the dispersed particles, we adopt the method proposed
by Anoukou et al. (2018) to generate non-overlap prolate particles with random spatial
distribution and random orientations in the simulation. Released from rest, particles
accelerate their settling motion under the action of gravity, and the flow system eventually
reaches a statistically steady state after a developing transient. The statistics presented
in § 3 are collected in the steady state. Specifically, the data within a time window of
200Deq/Vt are used for computing the statistics for most cases, except for the extension
of this time window to 350Deq/Vt in the most dilute case with φ = 0.1 % because of the
considerably reduced number of particles.

To realize the PR-DNS of the present particle-laden flow system, we use the immersed
boundary method (IBM) to resolve the particle–fluid interactions (Peskin 2002; Iaccarino
& Mittal 2004). In particular, the fluid flow is simulated by numerically solving the
incompressible Navier–Stokes (N–S) equations with a second-order finite difference
method (Kim, Baek & Sung 2002). The six-degree-of-free motion of the dispersed
particles are simulated by integrating the Newton–Euler equations. Additionally, we
employ the direct-forcing IBM (Uhlmann 2005; Breugem 2012) for the coupling between
the particle motion and the fluid flow. Moreover, to model the inter-particle collisions, a
soft-sphere collision model together with a lubrication correction is employed (Costa et al.
2015; Ardekani et al. 2016). More details about the computational method adopted in the
present study are provided in Appendix A.

3. Results and discussion

3.1. Particle settling velocity
The first observable we discuss is the mean settling velocity of dispersed particles. Here,
the settling velocity is defined as the component of particle velocity along the gravitational
direction, i.e. Vs = v · eg = −vy. As shown in figure 2, the mean settling velocity 〈Vs〉
exhibits a non-monotonic variation with the increase of particle volume fraction from
φ = 0.1 % to φ = 10 %. Specifically, the mean settling velocity is greater than the settling
velocity of an isolated particle when φ ≤ 2 %, with a peak value of 〈Vs〉 ≈ 1.25Vt at φ =
1 %, and decreases to less than Vt when the particle volume fraction exceeds 5 %. In the
following, we look into the particle clustering, hindrance effect and the particle orientation
to interpret the non-monotonic variation of the particle mean settling velocity with the
change of the volume fraction.

3.1.1. Particle clustering
In previous studies it has been reported that the enhancement of the particle mean settling
velocity is highly related to the formation of particle clustering (Kajishima 2004; Uhlmann
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10–3

0.8 R. & Z. (1954)

Present

1.0

〈V
s〉/
V t

1.2

10–2

φ

10–1

Figure 2. Mean settling velocity of dispersed particles at different volume fractions. The empirical correlation
of the hindered settling velocity (Richardson & Zaki 1954) (depicted by the red dashed line) is included for
comparison.

& Doychev 2014; Fornari et al. 2018). Thus, we first examine the spatial distribution
of dispersed particles in the present simulations using the Voronoi analysis (Monchaux,
Bourgoin & Cartellier 2010). In this analysis method the entire computational domain
is partitioned into Np cells, i.e. Voronoi tessellations. The partitioning rule ensures that
a given spatial point inside the ith tessellation is closest to the centroid of the ith
particle among all particles. Accordingly, the spatial distribution of dispersed particles
can be quantified by the statistics of the normalized volume of Voronoi tessellations,
V̄Voro(i) = VVoro(i)Np/Vtot, where VVoro(i) is the volume of the ith Voronoi tessellation
and Vtot is the volume of the whole domain. If particles are orderly distributed in the
space (like molecules in a crystal), the entire domain would be evenly partitioned so
that V̄Voro ≡ 1 and the standard deviation is σ(V̄Voro) = 0. In contrast, in a system where
particle clustering arises, the prevalence of particle accumulations (represented by small
values of V̄Voro) and voids (represented by large values of V̄Voro) would increase the
intermittency of the probability density function (p.d.f.) of the standard deviation of V̄Voro
(Monchaux et al. 2010).

To quantify the degree of particle clustering, Tagawa et al. (2013) defined the clustering
indicator C based on the standard deviation of the normalized Voronoi volume of dispersed
particles as

C = σ
(
V̄Voro

)
/σ

(
V̄Voro,rand

)
, (3.1)

where the subscript ‘rand’ represents the assembly of particles with a random spatial
distribution. According to this definition, particles are considered to form clusters when
the clustering indicator exceeds unity, and a higher level of clustering is identified by
a greater value of C. As for point-like particles, the statistics of V̄Voro,rand conforms
to a gamma distribution, yielding a standard deviation of σ(V̄Voro,rand) = 0.447 (Ferenc
& Néda 2007). However, the value of σ(V̄Voro,rand) is a decreasing function of φ for
non-overlapping finite-size particles (Uhlmann 2020). In the present work, we generate
randomly distributed prolate particles with random orientations following the method
proposed by Anoukou et al. (2018) and compute σ(V̄Voro,rand) accordingly. To ensure the
convergence of σ(V̄Voro,rand) with sufficient samples, we repeat the generating process
1000 times for φ = 0.1 %, 200 times for φ = 0.5 % and 100 times for other volume
fractions.
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φ = 0.1 %
φ = 0.5 %

φ = 1 %

φ = 2 %
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φ = 10 %

1.6
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p
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100

(a) (b)

2 3 4

V̄Voro

5

Figure 3. Results of the Voronoi analysis at different volume fractions. (a) The p.d.f. of the normalized
volume of Voronoi tessellations. (b) Clustering indicator C at different volume fractions φ.

The statistical distributions of the normalized Voronoi volume in the current work are
illustrated in figure 3(a). We can clearly observe a raised tail for the p.d.f. of V̄Voro in
the cases with 0.5 % ≤ φ ≤ 2 %. In contrast, the distribution of V̄Voro is narrowed in the
densest suspension at φ = 10 %. Furthermore, the variation of the clustering indicator C
as the function of the volume fraction is illustrated in figure 3(b). Interestingly, the value
of C varies non-monotonically with a peak at φ = 1 %, which coincides with the highest
mean settling velocity of particles as is observed in figure 2. For the cases with a lower or
higher volume fraction, the clustering indicator is reduced, although its value remains to
be greater than unity. Thus, the particle clustering becomes less pronounced in more dilute
or denser suspensions.

In the previous studies of particle sedimentation the DKT-like interactions among
settling particles are regarded as the essential mechanism in the formation of particle
clusters (Kajishima 2004; Zaidi et al. 2014; Fornari et al. 2018; Moriche et al. 2023).
In particular, during the drafting stage of a DKT event, a pair of particles can attract
each other, reducing the distance between them. Furthermore, if these interacting particles
attract additional particles before they separate, the number of accumulated particles can
increase progressively, which eventually results in particle clustering in the suspension
(Moriche et al. 2023). Compared with settling spheres, spheroidal particles are more likely
to be drawn into the wake of a leading particle and tend to have a longer interaction time in
the DKT process (Ardekani et al. 2016). This explains the occurrence of clustered prolate
particles in this study, similar to the behaviour of settling oblate particles (Fornari et al.
2018; Moriche et al. 2023), in contrast to the absence of particle clustering of settling
spheres at a comparable Reynolds number (Zaidi et al. 2014).

In figure 4 we provide the visualization of the flow system at three typical volume
fractions φ = 0.1 %, 1 % and 10 %. In the most dilute case with φ = 0.1 % (figure 4a,d),
the particles are sparsely distributed in the space without appreciable particle clustering.
However, individual DKT events induced by the wake-related hydrodynamic interactions
can still be found (see figure 4g,h). As for the case with φ = 1 %, while, we can evidently
observe locally accumulated particles and some regions devoid of particles (see figure 4e).
Meanwhile, large-scale flow structures formed by the interconnected particle wakes are
also illustrated in figure 4(b). These structures exhibit the footprint of the column-like
particle clusters meandering along the vertical direction (with more details provided in
§ 3.2). While, in another limit of dense suspension, particles are crowded in the space as
shown in figure 4(c, f ). The too small distance between neighbouring particles frequently
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Figure 4. (a–c) Snapshots of the instantaneous flow field at (a) φ = 0.1 %, (b) φ = 1 % and (c) φ = 10 %.
Dispersed prolate particles are depicted in grey. The background contour represents the vertical fluid velocity
uy (normalized by Vt), with isosurfaces of uy = −〈Vs〉 shown in red. (d–f ) Vertical sections with a thickness
of Deq along the z direction taken from panels (a–c). Dispersed prolate particles are shown in blue. Isosurfaces
of the Q-criterion at Q = 0.2V2

t /D
2
eq are coloured by the magnitude of vorticity ‖Ω‖ (normalized by Vt/Deq).

(g,h) Zoom-in views of panel (a) to illustrate the touching particle pairs at φ = 0.1 %.

perturbs particle wakes, so as to inhibit the formation of particle clustering (Zaidi et al.
2014). Incidentally, the slight growth of the clustering indicator C from φ = 5 % to
10 % (see figure 3b) may be related to the more ordered arrangement for the randomly
distributed particles, which reduces σ(V̄Voro,rand) in (3.1).

Moreover, we also look into the statistics of the nearest neighbour distance (NND) of
particles in the present simulations. Here, the NND distance of the ith particle, denoted by
dNN(i), is defined by (Zaidi et al. 2014)

dNN(i) = min
j=1,2,...,Np,j /= i

∥∥xi − xj
∥∥ , (3.2)

where xi is the centroid position of the ith particle. In figure 5 the p.d.f.s of dNN at
different volume fractions are provided, with a comparison with that of the randomly
distributed particles. It is observed that the statistical distribution of dNN shifts to the
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Figure 5. The p.d.f. of the NND of particles at volume fractions of (a) φ = 0.1 %, 0.5 %, 1 % and (b) φ =
2 %, 5 %, 10 %. The solid lines are the results of the present simulations while the dashed lines represent the
results of randomly distributed prolate spheroids with random orientation. Each line starts from dNN = 2b,
which is the smallest centre-to-centre distance between two finite-sized prolate particles.

side of smaller values in all cases. This observation indicates that the dispersed particles
become more locally crowded than the randomly distributed particles, which is consistent
with the clustering nature of particles manifested by the Voronoi analysis (see figure 3).
In addition, the probability of finding touching particles with a centre-to-centre distance
dNN = 2b is increased, which can be ascribed to the DKT-like interactions between nearby
particles. Especially, there is a noticeable secondary peak of the p.d.f. of dNN , evaluated at
dNN = 2b, in the most dilute suspension at φ = 0.1 %, revealing the prevalence of touching
particle pairs undergoing the kissing stage of the DKT process. The touching particle pairs,
however, would become less stable with the intensified hydrodynamic disturbances and
more frequent inter-particle collisions as φ increases. As a result, this secondary peak
of the p.d.f. of dNN becomes invisible at higher volume fractions. Moreover, we also
calculate the ensemble average of dNN , denoted by 〈dNN〉, of each case (not presented
here). The results show that in the most dilute case at φ = 0.1 %, the value of 〈dNN〉 is
4.0Deq, considerably larger than that of the case with the strongest particle clustering
(i.e. 〈dNN〉 = 1.9Deq at φ = 1 %). To make a fair comparison, we normalize 〈dNN〉 by
that of a particle assembly with a random spatial distribution (denoted by 〈dNN〉rand), and
obtain 〈dNN〉/〈dNN〉rand = 0.93 for φ = 0.1 % and 0.70 at φ = 1 %. This indicates that
particles are closer to the random distribution at the lowest volume fraction, consistent
with the attenuation of the particle clustering as φ decreases from 1 % to 0.1 % obtained
by the Voronoi analysis. However, this observation is in a qualitative disagreement with
the intensified clustering trend for settling spherical particles at Ga = 178 with the volume
fraction decreasing from φ = 0.5 % to φ = 0.05 % (Doychev 2014). We speculate that the
disagreement is related to the weaker fluid inertia effect (characterized by the lower value
of Ga and also Ret) in the present study. The wake-induced hydrodynamic interactions,
which are essential for the attraction among settling particles, may not be strong enough
to make sparsely distributed particles form clusters at a very low volume fraction. This
argument, however, needs to be further examined by the simulations with the volume
fraction lower than 1 %.

Then, we further investigate the relationship between the clustering and settling velocity
of particles in the present flow system. Moriche et al. (2023) reported the positive
correlation between the standard deviation of Voronoi volumes and the mean settling
velocity of low-aspect-ratio oblate particles. Here, we compute the averaged settling
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Figure 6. Averaged settling velocity of dispersed particles conditioned on the Voronoi volume at different
volume fractions.

velocity conditioned on the Voronoi volume, denoted by 〈Vs〉VVoro , and present the results
in figure 6. It is shown that particles with smaller Voronoi tessellations tend to settle faster,
irrespective of the volume fraction. This correlation can be explained by the so-called
‘swarm effect’ (Koch & Hill 2001; Wang et al. 2022), which suggests that a cluster
of settling particles experiences lower total drag compared with the same number of
individual particles. To gain further understanding, we compute the fluid velocity sampled
by the particle, denoted by uf @p, by averaging the local fluid velocity on the surface of
a sphere centred at the particle centroid with a radius of 1.5Deq (Kidanemariam et al.
2013). Figure 7 shows the joint p.d.f. of the Voronoi volume and the sampled vertical
fluid velocity of the particle. In this figure we observe a positive correlation between
V̄Voro and uf @p

y , revealing that the particles in the clustering regions (represented by the
small value of V̄Voro) are prone to sample downward fluid flows, while in the void zones
(represented by the large value of V̄Voro) particles tend to experience stronger upward
flows. This observation can be attributed to the fact that the clustered particles are more
likely to reside in the wake of other particles, where the downward flow is dominated. On
the contrary, the fluid moves upwards in the void regions so as to decelerate the particle
settling motion. However, this correlation becomes less pronounced at φ ≥ 5 %, seemingly
due to the disruption of particle wakes and the diminished distinction between the ‘wake
region’ and ‘void region’ in dense suspensions.

Furthermore, we also examine the relationship between the translational velocity of
the particle and the local fluid velocity seen by the particle. In figure 8 we present the
joint p.d.f. of the vertical component of the particle velocity and the particle-sampled
fluid velocity. The results demonstrate that the particles tend to settle rapidly when
experiencing vertical downward flows (with the negative value of 〈uf @p

y 〉), and vice versa.
The correlations presented in figures 7 and 8 altogether can account for the decreased
settling velocity of particles with larger Voronoi volumes shown in figure 6. In addition,
we also compute the average value of the fluid vertical velocity sampled by particles,
denoted by 〈uf @p

y 〉, and compare it with the ensemble averaged fluid vertical velocity,
〈uy〉f , in figure 9(a). Interestingly, 〈uf @p

y 〉 is always smaller than 〈uy〉f , regardless of the
volume fraction. This observation reveals the preferential sampling of downward fluid
flows by dispersed particles, which was also reported by Uhlmann & Doychev (2014)
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Figure 7. Joint p.d.f. (scaled by its maximum value) of the normalized Voronoi volume V̄Voro and the vertical
fluid velocity sampled by particles uf @p

y at (a) φ = 0.1 %, (b) φ = 0.5 %, (c) φ = 1 %, (d) φ = 2 %, (e) φ =
5 % and ( f ) φ = 10 %. The horizontal and vertical dashed lines represent the mean value of uf @p

y and V̄Voro,
respectively.

for settling spheres at Ga = 178. Moreover, the difference between 〈uf @p
y 〉 and 〈uy〉f is

largest at φ = 1 %, corresponding to the strongest particle clustering with varying volume
fraction. Therefore, the preferential sampling of downward flows, which is most significant
for the strongest particle clustering, is the underlying mechanism of the aforementioned
swarm effect to enhance the particle mean settling velocity.

Additionally, we also look into the relative motion between the particle and fluid
phases. Here we define Urel = vy − 〈uy〉f as the relative vertical velocity between the
particle motion and the mean flow, and UL

rel = vy − uf @p
y as the local relative velocity.

In figure 9(b) we provide the ensemble average of these two relative velocities, denoted
by 〈Urel〉 and 〈UL

rel〉, at different volume fractions. It is observed that the variation of
〈UL

rel〉 with increasing φ is alleviated compared with that of 〈Urel〉. Especially in dilute
cases with φ ≤ 1 %, the difference of 〈UL

rel〉 among different cases is less than 4 %, similar
to the observation for settling spheres in dilute suspensions (Doychev 2014). Therefore,
the variation of the global relative particle–fluid velocity 〈Urel〉 as φ changes can be
substantially attributed to the different level of particle clustering and the preferential
sampling of the fluid velocity. More discussion about the variation of 〈UL

rel〉 is provided in
§ 3.1.3.

3.1.2. Hindrance effect
Let us now turn to the reduced particle mean settling velocity (i.e. 〈Vs〉 < Vt) in dense
suspensions at φ ≥ 5 % (see figure 2). The ensemble averaged fluid velocity, which can
be calculated by the flux conservation of the whole system as 〈uy〉f = φ/(1 − φ)〈Vs〉 (Yin
& Koch 2007), is enhanced as φ increases (see figure 9a). The enhanced upward fluid
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Figure 8. Joint p.d.f. (scaled by its maximum value) of the vertical fluid velocity sampled by particles, uf @p
y ,

and the particle vertical velocity, vy, at (a) φ = 0.1 %, (b) φ = 0.5 %, (c) φ = 1 %, (d) φ = 2 %, (e) φ =
5 % and ( f ) φ = 10 %. The horizontal and vertical dashed lines represent the mean value of vy and uf @p
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respectively.
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Figure 9. (a) Mean vertical fluid velocity sampled by the particles, 〈uf @p
y 〉, and the ensemble averaged velocity

of the fluid flow, 〈uy〉f . (b) Averaged relative velocity between the particle motion and the mean flow, Urel, and
between the particle motion and the local fluid flow, UL

rel.

flow has an opposite effect upon the sampling of downward flows by particles. In the
meantime, as φ increases, particle clustering is attenuated (with the clustering indicator
C decreasing) and the preferential sampling of downward flows becomes less pronounced
(with 〈uf @p

y 〉 approaching 〈uy〉f ). Consequently, the value of 〈uf @p
y 〉 decreases in magnitude

when φ > 1 % and even becomes positive at the highest volume fraction φ = 10 %. As
a result, the hindrance effect becomes predominant when the volume fraction exceeds
approximately 5 %, leading to the reduction of the mean settling velocity in this regime.
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Figure 10. The statistics of the orientation of settling prolate particles at different volume fractions.
(a) The p.d.f. of the cosine value of the pitch angle ψ . (b) Mean value of | cosψ | as a function of the volume
fraction.

As for the sedimentation of spherical particles, Richardson & Zaki (1954) proposed the
well-known empirical formula of the hindered settling velocity as a function of the particle
volume fraction, i.e.

〈Vs〉/Vt = (1 − φ)n. (3.3)

The exponent n in (3.3) was found to be an decreasing function of the settling Reynolds
number Ret and can be fitted by (Garside & Al-Dibouni 1977)

5.1 − n
n − 2.7

= 0.1Re0.9
t . (3.4)

In figure 2 we also depict the empirical hindered settling velocity as a function of φ given
by (3.3), with the exponent n = 3.17 obtained by substituting Ret = 61.8 in (3.4). It is
shown that the reduced settling velocity observed in the present simulations at φ ≥ 5 %
approaches the prediction by the empirical formula (3.3). The remaining discrepancy
can be ascribed to the weak effect of clustering and the change of orientation (see the
discussion on figure 10 in the following) of settling prolate particles.

3.1.3. Particle orientation
At last, we would like to study the orientation of settling prolate particles and its influence
on the particle settling motion. First, we compute the statistics of particle orientation in
the present simulations and display the results in figure 10. It is shown that in the cases
with low volume fractions the broad-side-on orientation (corresponding to | cosψ | = 0) of
settling prolate spheroids still prevails. This is the stable orientation of an isolated settling
prolate spheroid under the effect of the fluid inertia torque (Ardekani et al. 2016; Dabade
et al. 2016). However, with the increasing volume fraction, the orientation of particles
progressively shifts towards a random distribution, demonstrated by the flattening of the
p.d.f. of | cosψ | and the corresponding increase in the average value, 〈| cosψ |〉. This
observation manifests the overwhelming effect of particle–particle interactions to perturb
the stable orientation of settling prolate spheroids in dense suspensions. Then, we also
examine the correlation between the settling velocity and the orientation of particles in
the present flow system by computing the joint p.d.f. of these two quantities. As shown in
figure 11, prolate particles tend to settle faster as their orientation deviates more from the
broad-side-on alignment, irrespective of the volume fraction, just as the case of an isolated
settling prolate spheroid.
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Figure 11. Joint p.d.f. (scaled by its maximum) of the absolute cosine of the particle pitch angle and the
vertical velocity of the particle at (a) φ = 0.1 %, (b) φ = 0.5 %, (c) φ = 1 %, (d) φ = 2 %, (e) φ = 5 % and
( f ) φ = 10 %. The solid line represents the averaged settling velocity conditioned on the pitch angle (the data
with p.d.f.(| cosψ |) < 0.01 are masked). The dashed line represents the variation of an isolated settling prolate
spheroid with an artificially fixed pitch angle.

Furthermore, we examine the influence of particle orientation on the settling motion. As
for a single spheroid in a uniform flow, the drag coefficient depends on the attack angle
between the symmetry axis and the incoming flow (Zastawny et al. 2012). To examine the
case in the suspension, we compute the mean drag coefficient of the dispersed particles,
Cd, in each case under consideration. The definition of the mean drag coefficient is based
on the mean hydrodynamic drag force and the mean local particle–fluid relative velocity,
i.e.

Cd = 〈FH
y 〉

1
2
ρf 〈UL

rel〉2A
, (3.5)

where FH
y is the vertical component of the hydrodynamic force acting on the particle and

A = πD2
eq/4 the characteristic frontal area of the particle. Note that the time average of FH

y
is in balance with the buoyancy of the particle in the statistically steady state, i.e. 〈FH

y 〉 =
π(ρp − ρf )gD3

eq/6. Thus, according to the definition (3.5), the variation of 〈UL
rel〉 shown

in figure 9(b) is determined by Cd for different φ. As shown in figure 12, Cd first decreases
slightly as φ increases from 0.1 % to 0.5 %, which could be attributed to the increased
deviation from the broad-side-on orientation of settling prolate particles. However, Cd
then increases monotonically with the volume fraction when φ > 0.5 %. This cannot be
explained by the change of particle orientation since the dispersed particles deviate more
from the broad-side-on orientation as φ continues to grow (see figure 10). Therefore, we
would like to conclude that the change of particle orientation plays a minor role in the mean
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Figure 12. Mean drag coefficient as a function of the particle volume fraction.

settling velocity of dispersed particles, although the settling velocity of individual particles
is still orientation dependent. Incidentally, the increasing trend of the mean drag coefficient
with the increasing particle volume fraction was also reported in the studies of the flow
past a fixed or mobile assembly of spherical particles (Tenneti, Garg & Subramaniam
2011; Tavanashad, Passalacqua & Subramaniam 2021). This trend can be interpreted by
the change of the local flow conditions in the vicinity of the particle. Specifically speaking,
with the increase of the volume fraction, the fluctuations of the particle and fluid velocities
grow with the intensified particle–particle and particle–fluid interactions (see figure 18a
for more details). As a consequence, the dispersed particles exposed to turbulent local
flows would experience increased unsteady and nonlinear drags (Fornari, Picano & Brandt
2016), which contributes to the drag enhancement of settling particles.

3.2. Particle microstructures and particle–fluid interactions
According to the discussion in § 3.1.1, the spatial distribution of settling particles is
non-uniform in the suspensions. Therefore, it is of interest to examine the particle
microstructures. First, we calculate the particle pair distribution function P(r), which
provides the information about the probability of finding another particle relative to a
reference particle with a separation vector r. The definition of P(r) is referred to Yin &
Koch (2007), Zaidi et al. (2015) and Fornari et al. (2018). By definition, P(r) > 1 indicates
a higher probability of finding a pair of particles with a separation of r compared with the
uniform distribution of particles. In addition, as P(r) is axisymmetric about the direction
of gravity, we calculate the average of P(r) over the isotropic horizontal plane (i.e. x − z
plane), and obtain the pair distribution function as a function of the separation distance
r = ‖r‖ and the polar angle ϕ (the angle between the positive y direction and the vector
r), i.e.

P (r, ϕ) = 1
2π

∫ 2π

0
P (r) dθ = 1

2π

∫ 2π

0
P (r, θ, ϕ) dθ. (3.6)

Here, the variable of integration θ is the azimuth angle between the positive x direction
and the projection of vector r onto the horizontal plane.

In figure 13 we display the particle pair distribution function at different volume
fractions. It is observed that the value of P(r, ϕ) is significantly greater than unity along the
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Figure 13. Pair distribution function of particles at (a) φ = 0.1 %, (b) φ = 0.5 %, (c) φ = 1 %, (d) φ = 2 %,
(e) φ = 5 % and ( f ) φ = 10 %. Here, the horizontal and vertical directions are denoted by rx = r sinϕ and
ry = r cosϕ, respectively.

vertical direction in dilute suspensions. Therefore, we can infer that the dispersed particles
prefer to form column-like structures. To gain more information, we also compute the
probability of observing attracting particle pairs with the separation vector r, denoted
by Pin(r). Here, an attracting particle pair is identified if the relative radial velocity Wr
between the two particles is negative, i.e.

W{i,j}
r =

(
vi − vj

) · (
xi − xj

)
∥∥xi − xj

∥∥ < 0, (3.7)

where i and j represent the indices of the two particles. Same as the particle pair function,
we compute the average of Pin(r) over the isotropic horizontal directions and obtain the
two-dimensional function of Pin(r, ϕ), as shown in figure 14. In dilute suspensions, particle
pairs exhibit a strong tendency to attract each other along the vertical direction (indicated
by Pin > 0.5), but behave in a repulsive manner along the horizontal direction. We
attribute these observations to the DKT-like interactions among settling prolate particles.
As a result, the attraction and entrapment of particles in the wake of leading ones give
rise to the column-like particle microstructures, consistent with the results shown in
figure 13. In contrast to our result, it was reported that settling spheres tend to form
particle deficits along the vertical direction, while the spatial distribution of cubic particles
is more uniform under similar conditions (Ret < 70 and φ ≈ 1 %) (Yin & Koch 2007;
Zaidi 2018b; Seyed-Ahmadi & Wachs 2021). These differences highlight the effect of
particle shape on the wake-induced hydrodynamic interactions among settling particles.
For prolate spheroids, the attraction between particle pairs in the DKT-like events is
strong enough to entrap particles in the wake regions (Ardekani et al. 2016). Regarding
spherical particles, the shear-induced lift force dominates in wake regions, pushing trailing
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Figure 14. Probability of observing attracting particle pairs as a function of the separation r. Results are
shown for (a) φ = 0.1 %, (b) φ = 0.5 %, (c) φ = 1 %, (d) φ = 2 %, (e) φ = 5 %, ( f ) φ = 10 %.

particles outside the wake (Yin & Koch 2007). While, settling cubic particles are found to
have greater rotational rates, which generate lateral Magnus forces that help them escape
from the wake of leading particles. Hence, cubic particles are less likely to form obvious
microstructures (Seyed-Ahmadi & Wachs 2019, 2021). Additionally, due to the disruption
of particle wakes, the probability of observing attracting/repelling particle pairs is reduced,
and the regions where these events dominate diminish with the increasing volume fraction
(see figure 14). As a result, the column-like microstructures are gradually attenuated and
eventually becomes negligible at φ ≥ 5 %.

Furthermore, we quantify the radial characteristics of particle microstructures by
computing the radial distribution function (RDF) of the dispersed particles. The RDF,
denoted by g(r), is calculated from the two-dimensional pair distribution function P(r, ϕ)
by (Yin & Koch 2007)

g (r) = 1
2

∫ π

0
P (r, ϕ) sinϕ dϕ. (3.8)

As shown in figure 15(a), the spatial correlation of particle pairs is considerably increased
with g(r) > 1 for a small separation distance r in dilute suspensions. As the separation
distance r grows, the RDF gradually decays to g(r) ∼ 1, indicating the recovery to the
uniform distribution for particle pairs with long-distance separations. The peak value of
g(r), which is evaluated at the separation distance r = 2b at φ ≤ 2 %, is a monotonically
decreasing function of the volume fraction. While, in dense suspensions with φ ≥ 5 %, the
RDF is close to unity for all separation distances, corresponding to the attenuated particle
microstructures in these cases.

In previous studies on settling particles the degree of particle clustering is usually
quantified by the maximum value of the RDF (Zaidi et al. 2014; Fornari et al. 2018;
Zaidi 2018a). However, in the present work, we find that the monotonic decrease of the
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Figure 15. (a) Radial distribution function and (b) order parameter of particle pairs as functions of the radial
separation distance r.

maximum value of g(r) with the increasing volume fraction does not align with the
non-monotonic variation of the clustering indicator based on the Voronoi analysis (see
figure 3b). To interpret this inconsistency, which primarily occurs for φ < 1 %, we recall
the statistics of the NND provided in figure 5. By comparing these two statistics, the
RDF and the NND, we attribute the peak of the RDF at r = 2b to the prevalence of
touching particle pairs in the suspensions, corresponding to the rise of the p.d.f. of dNN
at dNN = 2b. In other words, the RDF actually reflects the pairwise information of the
dispersed particles instead of the particle clustering, which is a concept in a global sense.
The subtle difference between these two quantities becomes especially evident in the most
dilute case with φ = 0.1 %, where the presence of touching particles involved in individual
DKT events (see figure 4g,h) significantly increases the value of g(r) at r = 2b and gives
rise to the secondary peak of the p.d.f. of dNN at the same distance. Therefore, we shall
argue that the maximum value of the RDF is not a proper criterion to measure particle
clustering in the present flow system.

In addition, we also compute the order parameter 〈P2〉(r) to measure the orientational
feature of the particle microstructures. The order parameter is defined as the angular
average of the second Legendre polynomial (Yin & Koch 2007; Fornari et al. 2018)

〈P2〉 (r) =
∫ π

0 P(r, ϕ)P2(cosϕ) sin ϕ dϕ∫ π

0 P(r, ϕ) sin ϕ dϕ
, (3.9)

in which P2(cosϕ) = (3cos2ϕ − 1)/2. The value of 〈P2〉(r) would be equal to 1 if all
particle pairs with the separation r are vertically aligned, 0 for the isotropic arrangement
and -1/2 if the particle pairs are horizontally aligned (Yin & Koch 2007). In figure 15(b)
we depict the order parameter as a function of the radial separation distance r at different
volume fractions. In all cases under consideration, the order parameter is greater than
zero at r = 2b, indicating the tendency of nearby particle pairs to align vertically. This
phenomenon again manifests the DKT-like hydrodynamic interactions among settling
particles in the present system, which also make a difference even at φ ≥ 5 % with
weak particle clustering. While, the peak value of 〈P2〉 decreases as the volume fraction
increases, indicating the weakening influence of particle wakes. Additionally, 〈P2〉(r)
decays with the separation distance r rapidly to 〈P2〉 ∼ 0, indicating the recovery to an
isotropic particle arrangement, in the suspensions with φ ≥ 2 %. However, for the lower
volume fractions, the order parameter does not completely decay to zero with a small
residual positive value even for the long-distance particle separation of r ∼ 10Deq. This
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indicates that the wake-induced hydrodynamic interactions have a long working distance
for sparsely distributed particles in dilute suspensions.

Moreover, to demonstrate the fluid–particle interactions in the present flow system, we
examine the instantaneous vertical average of the particle concentration (denoted by 〈ζ 〉y)
and fluid vertical velocity (denoted by 〈uy〉y) at different volume fractions. The definitions
of 〈ζ 〉y and 〈uy〉y are as follows:

〈ζ 〉y (x, z) = 1
Ly

∫ Ly

0
ζ (x, y, z) dy, (3.10)

〈uy〉y (x, z) = 1
Ly

∫ Ly

0

[
1 − ζ (x, y, z)

]
uy (x, y, z) dy. (3.11)

Here, ζ(x, y, z) is an indicator function that is equal to 1 if a spatial point (x, y, z) locates
inside a particle, otherwise ζ(x, y, z) = 0. As shown in figure 16, the distribution of 〈ζ 〉y
on the horizontal plane is far from uniform in dilute suspensions, indicating the formation
of column-like particle microstructures. Also, we can evidently observe spatial correlation
between the high value of 〈ζ 〉y and the extreme negative value of 〈uy〉y, and vice versa. In
the regions where particles accumulate, the fluid flow moves downwards due to the drag
by settling particles, but moves upwards in the regions devoid of particles to keep zero net
flux of the whole system. However, as the volume fraction increases, the structures for 〈ζ 〉y
and 〈uy〉y become fragmented and the abovementioned correlation is weakened, owing to
the diminishing particle microstructures in dense suspensions.

At last, we look into the statistics of the velocity fluctuations of the particle and fluid
phases under the effect of the complicated particle–fluid interactions. In figure 17 we
illustrate the p.d.f.s of the fluctuation velocity of the particle and fluid vertical motions. In
general, the magnitudes of the velocity fluctuation of the two phases, which are quantified
by the standard deviations σvy and σuy (depicted in figure 18a), increase with the volume
fraction. Since the velocity fluctuation of the particle motion can be decomposed to the
contributions from the particle-sampled fluid flow and the local particle–fluid relative
motion, i.e. v′

y = UL
rel

′ + uf @p
y

′
, we have σ 2

vy
≈ σ 2

uL
rel

+ σ 2
uf @p

y
(with a negligible residual due

to the crossing term of these two contributions) (Uhlmann & Doychev 2014). Therefore,
to gain further understanding, we also present the information about the second and third
moments of UL

rel and uf @p
y in figure 18. As shown in figure 18(a), the contributions from

σuf @p
y

and σuL
rel

to the particle velocity fluctuation are almost equal at φ = 0.1 %, 0.5 %
and 10 %. However, interestingly, the former contribution dominates the latter one in the
other three cases, and this tendency is most significant at φ = 1 %, corresponding to the
strongest particle clustering. This observation was also discussed in Uhlmann & Doychev
(2014) and can be attributed to the different local fluid velocity experienced by the particles
in the clustering and void regions. Regarding the local particle–fluid relative motion,
we find that σuL

rel
increases monotonically as φ increases. This increase of fluctuation is

presumably due to the influence of the greater turbulence intensity (manifested by the
increase of σuy) on the particle–fluid relative motion in dense suspensions.

In addition, the asymmetric distribution of the particle and fluid velocity fluctuations
shown in figure 17 is worthy of further discussion. First, the asymmetry of the p.d.f. of
both v′

y and u′
y, manifested by the higher negative tails, is appreciable in dilute cases. The

skewed distribution of the fluid vertical velocity fluctuation, which has been reported in
the flow induced by settling particles (Doychev 2014) or rising bubbles (Risso 2018), is
related to the dominant effect of wakes. With the increase of the volume fraction, the
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Figure 16. Instantaneous particle concentration 〈ζ 〉y (scaled by its maximum and represented by the
background coloured contour) and fluid vertical velocity 〈uy〉y (represented by the contour lines) averaged
over the vertical direction at different volume fractions. Results are shown for (a) φ = 0.1 %, (b) φ = 0.5 %,
(c) φ = 1 %, (d) φ = 2 %, (e) φ = 5 %, ( f ) φ = 10 %.
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Figure 17. The p.d.f. of the vertical component of (a) the particle velocity fluctuations, v′
y = vy − 〈vy〉, and

(b) the fluid velocity fluctuations, u′
y = uy − 〈uy〉f .

p.d.f.s of velocity fluctuations gradually recover to be symmetric, which is confirmed
by the decrease of the skewness in magnitude shown in figure 18(b) and indicates the
attenuated effect of the particle wakes. Second, we note from figure 18(b) that the skewness
of the particle-sampled fluid velocity, Suf @p

y
, is negligible compared with that of the
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Figure 18. (a) Standard deviation (normalized by Vt) and (b) skewness of the vertical component of the particle
velocity vy, the fluid velocity uy, the fluid velocity sampled by the particle uf @p

y and the relative velocity
between the particle motion and the local fluid flow UL

rel.

local fluid–particle relative velocity, SUL
rel

. Therefore, the asymmetric distribution of the
particle vertical velocity at low volume fractions seems to be mainly related to the local
particle–fluid motion. We speculate that the considerable variation of SUL

rel
with varying

volume fraction may be caused by the change of the flow condition in the vicinity of the
dispersed particles, which is worthy of further investigation.

3.3. Particle-particle collisions
We finally investigate the collision rate of settling particles in the present flow system.
Here, we introduce the collision kernel Γ to quantify the collision rate. The dynamic
collision kernel, denoted by Γ D, is defined by (Wang et al. 2000, 2005)

Γ D = 2ṄC

n2 , (3.12)

where ṄC represents the number of collision events per unit volume per unit time and
n = Np/Vtot is the number density of particles in the suspension. In the meantime, the
collision kernel can also be described in a kinematic form (namely the kinematic collision
kernel Γ K), i.e. the inward flux of particles across the surface of a sphere with a collision
radius R12, as (Wang et al. 2000)

Γ K = 2πR2
12〈|Wr(R12)|〉g (R12) . (3.13)

We notice that the particle pair statistics are involved in the above definition. Specifically,
〈|Wr(R12)|〉 represents the average absolute radial relative velocity (RRV) of particle pairs
with a centre-to-centre distance R12, and g(R12) is the RDF evaluated at the collision radius
R12. It is important to note that the definition (3.13) is valid only under the flux-balance
assumption (Wang et al. 2000), which requires the equality between the inward and
outward fluxes of the particle motion across the surface of the collision sphere. For clarity,
we define the averaged magnitude of the negative and positive RRV as the inward and
outward velocity 〈W−

r 〉 and 〈W+
r 〉, respectively. Then, the average absolute RRV can be
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inward and outward flux. (c) Average relative angle between particle pairs. The horizontal dash-dotted lines
represent 〈θrel〉 = 45◦ and 〈θrel〉 = 60◦.

expressed as

〈|Wr|〉 = Pin〈W−
r 〉 + (1 − Pin)〈W+

r 〉, (3.14)

where Pin is the probability of observing negative the RRV (as has been shown in
figure 14). Accordingly, the flux-balance assumption is valid when the ratio between the
inward and outward flux, Cp, defined by (Wang et al. 2000)

Cp = Pin〈W−
r 〉

(1 − Pin) 〈W+
r 〉 , (3.15)

is equal to unity at the separation distance r = R12.
In figure 19 we present the particle pair statistics as functions of the radial separation

distance r. To begin with, figure 19(a) displays the relative radial velocities at different
volume fractions, leading to the following key observations. First, for a large separation
distance r, the relative radial velocities generally increase with the particle volume fraction
φ, which is ascribed to the intensified particle–fluid and particle–particle interactions as φ
grows. However, the slight decrease of 〈|Wr|〉 from φ = 5 % to φ = 10 % may be related
to the weakening effect of particle wakes, reminiscent of the decrease of the particle and
fluid velocity fluctuations shown in figure 18(a). Second, a notable peak value of 〈|Wr|〉
is observed at the separation distance r ≈ 1.5Deq in the most dilute case of φ = 0.1 %.
This reflects the influence of wake-induced DKT-like interactions on the particle relative
motion. However, this peak value diminishes as φ increases due to the disruption of
particle wakes. Third, as the separation distance approaches r = 2b, the relative radial
velocities of particles decrease rapidly. The deceleration of the approaching/separating
motions between nearby particles should be attributed to the lubrication effect. Last,
the mean inward velocity 〈W−

r 〉 and outward velocity 〈W+
r 〉 exhibit slight discrepancies,

indicating that the particle velocity field is compressible (Wang et al. 2000). While, as
shown in figure 19 (b), the ratio Cp between the inward and outward fluxes is equal
to unity (with some fluctuations due to the statistical error), irrespective of the volume
fraction. This indicates that the flux-balance assumption remains to be valid in the present
four-way coupling particle–fluid system, same as in the one-way coupling simulations of
point-particle-laden turbulent flows (Wang et al. 2000).

Moreover, we also illustrate the average relative angle 〈θrel〉 between the symmetry
axes of particle pairs with the varying separation distance in figure 19(c). Interestingly,
〈θrel〉 seems to converge to approximately 〈θrel〉 ≈ 45◦ − 50◦ with the approaching of the
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particle–particle distance, irrespective of the volume fraction. This observation is quite
different from the alignment of passive directors in the turbulence (Zhao et al. 2019), and
may be related to the hydrodynamic interactions between particle pairs (Ardekani et al.
2016). Additionally, as the separation distance increases, the value of 〈θrel〉 saturates to a
certain value dependent on the particle volume fraction: the saturated value of 〈θrel〉 is an
increasing function of φ, which can be explained by the orientational behaviour of settling
particles. In the limiting case where all particles settle with the major axis perpendicular to
gravity, the random orientation of particles on the two-dimensional horizontal plane will
lead to 〈θrel〉 = 45◦. The case with φ = 0.1 % is close to this limit as the broad-side-on
orientation dominates therein. While, in another limit where the particle orientations
are totally random in the three-dimensional space, the average relative angle should be
〈θrel〉 = 60◦. This interprets the increase of 〈θrel〉 as φ increases, in consideration of the
randomization of the particle orientation in the dense suspension (see figure 10a).

Now we return to the discussion on the particle collision kernel. When the flux-balance
assumption is valid, Γ K should be strictly equivalent to Γ D for spherical particles with
the collision radius being the diameter of the sphere (Wang et al. 2000). However, for
spheroidal particles, deriving the exact expression of the kinematic collision kernel Γ K is
theoretically challenging due to the complexity of their geometry. Alternatively, Siewert
et al. (2014) proposed treating the expression (3.13) as an approximate kinematic collision
kernel for spheroidal particles by using the equivalent diameter of the spheroid as the
collision radius (i.e. R12 = Deq).

In figure 20(a) we illustrate the dynamic and approximate kinematic collision kernel of
settling prolate particles at different volume fractions. The results demonstrate that Γ K

underestimates the exact dynamic collision kernel Γ D in the present flow system, similar
to the case of settling spheroids in a quiescent fluid with the negligence of particle–particle
interactions (Jiang et al. 2024). Since the flux-balance assumption has been validated, the
discrepancy between Γ K and Γ D should be ascribed to the abovementioned approximation
regarding the geometry of the prolate spheroid when defining the approximate kinematic
collision kernel. Even though, Γ K still provides a reasonable estimation of the collision
kernel, as it qualitatively captures the decreasing trend of Γ D with the increasing volume
fraction φ.

Furthermore, we depict the variation of g(Deq) and 〈|Wr(Deq)|〉, both of which
contribute to the kinematic collision kernel Γ K via (3.13), with the change of the
volume fraction in figure 20(b). On the one hand, g(Deq) decreases monotonically as
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φ increases, which plays an essential role in the reduction of Γ K . This highlights the
significance of the wake-induced particle microstructures (as has been discussed in § 3.2)
to the collision rate for settling particles. Accordingly, we remark that although the
maximum value of RDF is not an appropriate criterion to quantify the particle clustering,
the RDF is particularly relevant to the collision efficiency of particles as it directly
contributes to the kinematic collision kernel. On the other hand, the average absolute
RRV, 〈|Wr(Deq)|〉, exhibits a minor degree of variation with the change of the volume
fraction. Previous studies on settling spheroidal particles in turbulence, which ignored
particle–particle interactions, reported the enhancement in the average RRV owing to the
dispersion of the settling velocity of randomly oriented spheroidal particles (Siewert et al.
2014; Jucha et al. 2018). However, this mechanism does not apply to the present flow
system, although particle orientations become more randomized as φ increases. With
the fully resolved particle–particle hydrodynamic interactions herein, we attribute the
abovementioned difference to the predominate effect of lubrication on the relative motion
among nearby particles. Under the lubrication effect, the relative radial velocity of particle
pairs reduces with the separation distance approaching r = Deq (see figure 19a), and is
responsible for the nearly constant value of 〈|Wr(Deq)|〉 for different volume fractions.

4. Concluding remarks

In the present work we investigate the sedimentation of prolate particles in a quiescent
fluid. Focusing on the volume fraction effect, we conducted the PR-DNS of settling
particles in the suspensions with different volume fractions from φ = 0.1 % to φ = 10 %.
The main findings in the present work are sketched in figure 21. Strikingly, we observe
a non-monotonic variation of the mean settling velocity of the dispersed particles with
the increase of volume fraction. The highest mean settling velocity is present at an
intermediate volume fraction φ = 1 %, accompanied with the most significant particle
clustering. By further investigating the fluid velocity sampled by dispersed particles,
we illustrate the preferential sampling of the downward fluid flows for particles in the
clustering regions, which underlies the so-called swarm effect and accelerates the settling
motion of the dispersed particles. In the cases φ < 1 %, the degree of clustering is lowered
for sparsely distributed particles, presumably due to the limited effect of wake-induced
hydrodynamic attractions among settling particles. In another limit with a high volume
fraction, however, the crowded arrangement of particles disrupts particle wakes, which
also inhibits the formation of particle clustering. In this regime the enhanced upward mean
flow makes the hindrance effect become predominant, and results in the reduction of the
particle mean settling velocity to less than the isolated settling velocity. In contrast to the
particle clustering and hindrance effect, the change of particle orientation plays a minor
role in determining the mean settling velocity, although individual prolate spheroids in
the suspension still tend to settle faster when they deviate more from the broad-side-on
orientation.

In the second part of this study we investigate the microstructure of settling prolate
particles. The study on the particle pair distribution function reveals that particles tend
to form vertically aligned microstructures in dilute suspensions. By further looking into
the relative velocity of particle pairs with different separation positions, we attribute
the presence of column-like particle microstructures to the wake-induced hydrodynamic
attractions among settling particles. It is noted that although the particle clustering is
weakened in the most dilute case with φ = 0.1 %, the spatial distribution of particles is far
from uniform therein. This is ascribed to the long working distance of the wake-induced
hydrodynamic interactions for the sparsely distributed particles in the space. Under this
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Figure 21. Summary sketch of the findings in the present work regarding settling prolate particles with the
varying volume fraction.

effect, individual DKT events become prevalent in the dilute suspension, which increases
the probability of finding vertically aligned particle pairs, and also augments the RDF at
the close separation distance. Additionally, the velocity fluctuations for both the particle
and fluid phases exhibit an asymmetric distribution in dilute suspensions due to the
complicated particle–fluid interactions. However, with the increasing particle volume
fraction, the microstructures progressively diminish owing to the disruption of particle
wakes, and the dispersed particles tends to become uniformly distributed in the space.
Meanwhile, the statistical distributions of the fluid and particle velocities recover to be
symmetric with enhanced fluctuations in dense suspensions.

The final part of this study focuses on the collision rate of settling particles. To
quantify the collision efficiency, we introduce the collision kernel and discuss this
quantity in both dynamic and kinematic perspectives. As the particle pair statistics are
involved in the kinematic representation of the collision kernel, we also examine the
relative velocity and orientation between particle pairs. It is demonstrated that different
mechanisms dominate the relative radial velocity of particle pairs at different separation
distances: the lubrication effect at short distances, the wake-induced DKT-like interactions
at intermediate distances, and the overall fluid–particle and particle–particle interactions
at longer distances. Despite the compressibility of the particle velocity field, which is
indicated by the non-equal inward and outward average velocities for particle pairs, the
flux-balance assumption remains to be valid in the present four-way coupling particle–fluid
system. The angle between particle pairs exhibits similarity for close particle separations,
but becomes volume fraction dependent at long separation distances due to the different
orientational distribution of the dispersed particles. As regards the collision efficiency,
the monotonic decrease of the collision kernel with the increasing volume fraction is
primarily caused by the decrease of the RDF, which is related to the diminishing particle
microstructures. This finding highlights the significance of the RDF in determining the
particle collision rate, although it cannot provide a reliable measure of the particle
clustering. In contrast, the RRV between particle pairs with the separation distance equal to
the collision radius remains almost constant at different volume fractions. This is attributed
to the predominant lubrication effect among nearby particle pairs, which decelerates
their approaching/separating motions at the close distance. Hence, the effect of particle
relative motion contributes little to the variation of the collision kernel when the volume
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fraction changes. In summary, the particle–particle hydrodynamic interactions, including
the wake-induced attractions and the lubrication effect, are crucial in affecting the collision
rate of settling prolate spheroids.
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Appendix A. Numerical method and validations

A.1. Fluid flow simulation and the IBM
In the present work we use the PR-DNS to solve the fluid flow laden with freely moving
particles. Specifically, we adopt the IBM to resolve the particle–fluid interactions (Peskin
2002; Iaccarino & Mittal 2004). We consider the Newtonian fluid with density ρf and
dynamic viscosity μf , and the fluid flow is governed by the incompressible N–S equations
as

∇ · u = 0, (A1)

ρf

(
∂u
∂t

+ u · ∇u
)

= −∇p + μ∇2u + ρf f IB, (A2)

where u and p represent the velocity and pressure of the fluid flow, respectively. The
forcing term f IB in (A2) represents the immersed boundary (IB) force to satisfy the
non-slip boundary condition on particle surfaces (as elaborated in the following).

To simulate the fluid flow, we numerically solve the incompressible N–S
equations ((A1)–(A2)) with a second-order finite difference method (Kim et al. 2002). The
temporal advancement from the nth to the (n + 1)th time step using the Crank–Nicolson
scheme is (Kim et al. 2002)

u∗ − un

�t
+ 1

2
(H(u∗)+ H(un)) = −Gpn−1/2 + 1

2Re

(
Lu∗ + Lun) , (A3)

u∗∗ = u∗ +�tf n+1/2
IB , (A4)

DGδp = Du∗∗/�t, (A5)

pn+1/2 = pn−1/2 + δp, (A6)

un+1 = u∗∗ −�tGδp. (A7)

Here, H, G, L and D represent the spatial discrete convection, gradient, Laplacian
and divergence operators, respectively, which are calculated by the second-order
central-difference scheme on a staggered Eulerian grid (Kim et al. 2002). In the present
simulations the computational domain is discretized by a uniform Eulerian grid with
the grid spacing of �h = �x = �y = �z. In (A3) the first prediction velocity u∗ is
updated without the consideration of IB forces. Specifically, the approximate factorization
of the coefficient matrix through the block lower-and-upper decomposition is conducted
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to decouple the different velocity components, and then u∗ is obtained by solving a serious
of tri-diagonal linear equations without iteration (Kim et al. 2002). Then, the second
prediction velocity u∗∗ is calculated via (A4) with the inclusion of IB forces, as is outlined
in (A8)–(A10). Finally, the velocity projection step is performed, including the solution
of the Poisson equation (A5) (in which δp is the pressure increment), and the update
of pressure and fluid velocity to a new time step via (A6) and (A7). To numerically
solve the Poisson equation (A5), we conduct two-dimensional fast Fourier transformations
along x and z directions and solve the uncoupled tri-diagonal linear equations along the
y axis (Kim et al. 2002). The parameter Re = U0L0/ν presented in (A3) is the Reynolds
number based on the characteristic velocity (U0) and length (L0) to normalize the N–S
equations ((A1)–(A2)). In the present work, we use the settling velocity of an isolated
spheroid as the characteristic velocity (i.e. U0 = Vt), and the equivalent diameter of the
spheroid as the characteristic length scale (i.e. L0 = Deq).

Then we move on to the implementation of the IBM. In this method, one needs to
allocate a set of Lagrangian marker points to represent the surface of a particle. To do
so, we adopt the method proposed by Eshghinejadfard et al. (2016) to allocate NL = 2263
points on the surface of each prolate spheroid. As regards the calculation of IB forces
presented in (A4), we employ the direct-forcing IBM as follows (Uhlmann 2005; Breugem
2012):

U∗
l =

∑
ijk

u∗
ijkδ

(
X n

l − xijk
)
�h3, (A8)

F n+1/2
l = Up(X n

l )− U∗
l

�t
, (A9)

f n+1/2
IB,ijk =

∑
l

F n+/2
l δ

(
xijk − X n

l
)
�Vl. (A10)

Note that the above steps should be conducted in synchronization with the flow simulation
between (A3) and (A4). In the above equations, the capital letters refer to the variables
defined on the Lagrangian marker point. In (A8) the first prediction velocity u∗ is
interpolated from the Eulerian grid to the Lagrangian marker point using the Dirac-delta
function δ(·), in which X n

l denotes the position of the lth Lagrangian marker point on
the particle surface. Then, the IB force is calculated on the Lagrangian marker point
through (A9), where Up represents the rigid velocity of the particle. Finally, the IB forces
are spread onto the Eulerian grid with the Dirac-delta function via (A10), in which �Vl
represents the volume of the lth Lagrangian marker point. The Dirac-delta function used
for the transformation of variables on the Eulerian grid and the Lagrangian point is defined
by

δ (x) = 1
�h3 ·Θ

( x
�h

)
·Θ

( y
�h

)
·Θ

( z
�h

)
, (A11)

where Θ(·) is a three-grid-width discrete Dirac-delta function as (Roma, Peskin & Berger
1999)

Θ(r) =

⎧⎪⎪⎨
⎪⎪⎩

1
6 (5 − 3|r| −

√
−3(1 − |r|)2 + 1), 0.5 ≤ |r| ≤ 1.5,

1
3 (1 + √−3r2 + 1), |r| ≤ 0.5,

0, otherwise.

(A12)

Furthermore, in the implementation of the direct-forcing IBM, we adopt the
multi-forcing scheme with Ns = 2 iterations to better approximate the non-slip boundary
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Figure 22. Time evolution of the vertical velocity of two settling spheres undergoing the DKT interaction.
Here P1 and P2 denote the initially leading and trailing particle, respectively; ‘Ref’ represents the result
provided in Breugem (2012).

condition on the particle surface (Breugem 2012), and use the inward retraction of
Lagrangian marker points with a distance of rd = 0.3�h (Breugem 2012) to counteract
the excess in the particle effective diameter induced by the finite width of the discrete
Dirac-delta function. One can refer to our previous work (Jiang et al. 2024) for more
details about the present numerical method and the validations, in which we simulated
the benchmark cases of a single settling sphere or oblate spheroid at different Reynolds
numbers (Ten Cate et al. 2002; Moriche et al. 2021).

A.2. Validation: DKT of two settling spheres
To further validate the present numerical method in the problems involving
particle–particle interactions, we simulate the DKT process of two settling spheres in
a closed container (Glowinski et al. 2001; Breugem 2012). The flow configuration is
introduced as follows. The container has a size of Lx × Ly × Lz = [0, 1 cm] × [0, 4 cm] ×
[0, 1 cm], and is filled with a Newtonian fluid with a density of ρf = 1000 kg m−3 and a
kinematic viscosity of ν = 10−6 m2 s−1. The gravity is applied in the negative y direction
with an acceleration of g = 9.8 m s−2. Two spheres with a diameter of D = 0.167 cm
and a density of ρp = 1140 kg m−3 settle from rest in the container. The initial positions
of the two particles are x1 = (0.495 cm, 3.16 cm, 0.495 cm) (initially leading particle)
and x2 = (0.505 cm, 3.5 cm, 0.505 cm) (initially trailing particle). In the simulation, the
computational domain (which is the same as the container) is discretized by Nx × Ny ×
Nz = 96 × 384 × 96 Eulerian grid cells, and the surface of each sphere is represented
by NL = 731 Lagrangian marker points. Figure 22 depicts the temporal evolution of the
vertical velocity of the two spheres during the DKT process. We observe that the initially
trailing particle is accelerated and settles faster than the leading particle from t ≈ 0.15 s,
and progressively approaches the leading one (drafting stage). At around t ≈ 0.34 s, the
two particles get in touch (kissing stage) and then separate (tumbling stage). As shown
in figure 22, the velocities of two particles calculated by the present simulation are in
agreement with the reference data (Breugem 2012) in the drafting stage. While, there is a
slight discrepancy between the present result and the reference data after the collision of
the two spheres, which is attributed to the difference in the collision model adopted here
and in Breugem (2012).
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Figure 23. Time evolution of the (a) horizontal velocity, (b) vertical velocity and (c) pitch angle of the isolated
prolate spheroid settling in an initially quiescent fluid. The characteristic velocity Ug = √

(α − 1)gDeq is used
for the normalization.

A.3. Grid-independence test: sedimentation of an isolated prolate particle
In this section we simulate the settling motion of an isolated prolate particle in the
quiescent fluid, and examine the influence of grid resolution on the simulation results. The
prolate particle with the same parameters as in the main text (i.e. λ = 3, Ga = 80, α = 2)
is considered. In this simulation we utilize the strategy of a moving domain (Chen, Ku &
Lin 2019) to capture the entire settling process of the particle, from rest to steady state,
using a computation domain with the size of Lx × Ly × Lz = 12Deq × 24Deq × 12Deq.
We impose a Dirichlet boundary condition with zero velocity on the bottom boundary,
a Neumann boundary condition on the upper boundary of the computational domain
and the periodic boundary condition in the lateral directions. At the beginning of the
simulation, the prolate spheroid is released from rest with an initial pitch angle of ψ0 =
60◦ (n0 = (nx, ny, nz) = (

√
3/2, 0.5, 0)). To test the grid independence, three different

grid resolutions, i.e. �hcoarse = Deq/16, �hmedium = Deq/24 and �hfine = Deq/32, are
used for the simulation. As shown in figure 23, the simulation results change a little
with the refinement of the grid from �h = Deq/16 to �h = Deq/24, but the discrepancy
between the data obtained by the intermediate-grid and fine-grid simulations is negligible.
Therefore, the resolution of �h = Deq/24 is sufficient to resolve the fluid–particle
interaction under the present parameter set-up, and is thus adopted in the simulations
in the main text. Moreover, figure 23(c) shows that the prolate spheroid re-orients to
the broad-side-on alignment with ψ = 90◦ as the steady orientation under the effect of
fluid inertia. The terminal settling velocity is Vt = 0.772Ug, yielding a Reynolds number
of Ret = VtDeq/ν = 61.8. This Reynolds number is not high enough to trigger wake
instability, so the prolate spheroid settles vertically without oscillation.
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