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Explosive dispersal of granular media widely occurs in nature across various length scales,
enabling engineering applications ranging from commercial or military explosive systems
to the loss prevention industry. However, the correlation between the explosive dispersal
behaviour and the structure of dispersal system is far from completely understood, thereby
compromising the prediction of the explosive dispersal outcome resulting from a specific
dispersal system. Here, we investigate the dispersal behaviours of densely packed particle
rings driven by the enclosed pressurized gases using coarse-grained computational fluid
dynamics–discrete parcel method. Distinct dispersal modes emerge from the dispersal
systems with vastly varying sets of the macro- and micro-scale structural parameters in
terms of the dispersal completeness and the spatial uniformity of the dispersed mass.
Further investigation reveals the variation in the dispersal modes arises from the collective
effects of multiscale gas–particle coupling relationships. Specifically, the macroscale
coupling dictates the cyclic momentum/energy transfer between gases and particle ring
as an entirety. The mesoscale coupling relates to the inter-pore gas filtration through
the thickness of the particle ring, leading to the mass/energy reduction of the explosive
source. The microscale coupling involves the individual particle dynamics influenced
by the local flow parameters. A persistent macroscale coupling results in an incomplete
dispersal which takes the form of an aggregated annular band, whereas the meso- and
micro-scale couplings alter the macroscale coupling to a different extent. By incorporating
the effects of the variety of structural parameters on the multiscale gas–particle coupling
relationships, a non-dimensional parameter referred to as the modified mass ratio is
constructed, which shows an explicit correlation with the dispersal mode. We proceed to
establish a dispersal ring model in the continuum frame which accounts for the macro and
meso-scale coupling effects. This model proves to be capable of successfully predicting
the ideal and validated failed dispersal modes.

† Email address for correspondence: xuekun@bit.edu.cn

© The Author(s), 2024. Published by Cambridge University Press 999 A46-1

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

74
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

mailto:xuekun@bit.edu.cn
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jfm.2024.745&domain=pdf
https://doi.org/10.1017/jfm.2024.745


L. Miao, J. Li and K. Xue

Key words: shock waves, mixing enhancement, particle/fluid flow

1. Introduction

Explosive dispersal of granular media, whereby the detonation of central explosive or
sudden release of pressurized gases disperses the densely packed particles to form dilute
particle clouds, occurs in a wide range of natural phenomena and engineering processes
(Formenti, Druitt & Kelfoun 2003; Eckhoff 2009; Aglitskiy et al. 2010; Frost 2018; Kuranz
et al. 2018; Marr et al. 2018; Pontalier et al. 2018; Rigby et al. 2018). In volcanic eruptions,
the explosive expansion of pressurized gases through an initially concentrated dispersion
of particles expels mixtures of pressurized gases and fragments of magma within volcanic
conduits (Marjanovic et al. 2018). For various commercial and military explosive systems,
such as fire extinguishing devices using explosive dispersed dry powders (Klemens, Gieras
& Kaluzny 2007), thermobaric and fuel-air bombs (Frost et al. 2010, 2012), the explosive
dispersal of granular media and the ensuing mixing of particulate matter with air are of
particular importance to their reliable applications (Zhang et al. 2015; Bai et al. 2018;
Posey et al. 2021). To harness the explosive dispersal of granular media and attain the
optimal dispersal outcome in terms of the size and the concentration of the resulting
aerosol cloud, it is of utmost importance to establish the correlation between the dispersal
process and the structure of the dispersal system.

A widely accepted archetype of the explosive dispersal system consists of a densely
packed particle shell surrounding a central explosive source which may take the form
of either a high explosive or the pressurized gas pocket (Frost et al. 2012, 2018; Ling
& Balachandar 2018; Osnes, Vartdal & Pettersson Reif 2018; Fernández-Godino et al.
2019; Hughes et al. 2020; Koneru et al. 2020). Even such a simplistic configuration has
a multitude of structural parameters on both macro- and micro-scales. The macroscale
set of parameters includes the geometries and masses of the particle shell and the central
explosive, the porosity of the particle packings, the total energy of the explosive source,
etc. While the particle size (size distribution), density, morphology and material properties
constitute the microscale set of parameters. Among the variety of parameters, the mass
ratio, M/C, namely the mass ratio between the particle shell and the explosive, is found to
play a pivotal role in determining the initial expanding velocity of the dispersed particulate
matter, Vring (Milne 2016). Since the inverse of the M/C scales with the energy available
for the particles per unit mass, it underpins the macroscale coupling between the central
explosive source and the particle shell as an entirety. As previous study reveals, an
increased M/C leads to a more enduring macroscale coupling, which is characterized by
the cyclical fluctuation of the central pressure and the synchronized expansion–implosion
pulsation of the enclosing shell (Kun et al. 2023). Conversely a short-lived macroscale
coupling is expected for a very small M/C, where the initial energy imparted upon the
particle shell is so high that the shell prematurely expands out of the reach of the central
pressurized region.

The aforementioned macroscale gas–particle coupling that is equivalent to the coupling
between the central gases and the continuum encasing shell occurs on the inner surface
of shell, although the solid stresses inside the particle shell arises from the inter-grain
contacts (Saurel et al. 2010; Black, Denissen & McFarland 2018; Marayikkottu & Levin
2021). The explosive dispersal of the continuum shell is predominantly governed by
the macroscale coupling. In contrast, the explosive dispersal of the granular media is
influenced collectively by the meso- and microscale couplings, whereby a variety of the
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Multiscale understanding of structural effect

macro- and micro-scale parameters become relevant. Specifically, the detonation products
or the pressurized gases induce an intense gas filtration through the thickness of the
particle shell (Lv et al. 2018; Li et al. 2021). The resulting inter-pore gas flows and the
diffusional pressure field also mediate the momentum/energy transfer from the explosive
source to the particles via drag forces (Mehta et al. 2018; Gai et al. 2020; Hughes et al.
2021) and pressure gradient forces. Meanwhile the gas flow out removes the energy from
the dispersal system, reducing the energy available for the particles. Since the intensity
of the gas filtration varies with the mesoscale-averaged porosity and gas–particle relative
velocity, the gas filtration mediated coupling is referred to as the mesoscale gas–particle
coupling.

Both macro- and mesoscale coupling require that the particle shell remains coherent,
namely enduring inter-particle contacts dominate the inter-particle interactions. The
integrity of the particle shell will be significantly compromised by massive particle
shedding that is inevitable for dry particle packings without inter-grain cohesion (Frost
et al. 2012; Milne et al. 2014). Accordingly, the confinement provided by the particle
shell to the central gases is weakened, leading to an enhanced gas escape. Less energy
is retained in the central gas pocket. Meanwhile the gas filtration begins to cease since
no significant pressure gradient is built across the thickness of a very diluted particle
shell. In this scenario both macro- and mesoscale couplings become insignificant. If the
particle shell is prone to shedding particles, the gas–particle coupling soon evolves into
the coupling between gases and individual particles, thereafter the microscale coupling
prevails. Because either the meso- or microscale gas–particle coupling depends on both the
macro- and micro-scale parameters, it is necessary to properly account for the effects from
those multiscale parameters for establishing the structure-dispersal behaviour correlation.

Resolving the multiscale gas–particle coupling that underlies the explosive dispersal
of the particle shell can be aided by laboratory-scale simulation with the particle-scale
information (Ling, Balachandar & Parmar 2016; Mo et al. 2018, 2019). Thus, adopting
a coarse-grained computational fluid dynamics–discrete parcel method, we carried out
four-way coupled Euler–Lagrange simulations wherein the denotation of a cylindrical
burster was simulated by the sudden release of pressurized gases in the central gas
pocket. More than one hundred simulations were performed wherein the macro- and/or
micro-scale structural parameters of the dispersal system vary from system to system,
which allows us access to a wide variety of multiscale couplings and the resulting dispersal
behaviours. Informed by the governing mechanisms of multiscale gas–particle couplings,
a modified mass ratio is proposed which explicitly correlates with the dispersal mode. We
proceeded to establish a continuum-based theoretical model which accounts for the macro-
and meso-scale gas–particle couplings. Despite a lack of microscale coupling, this model
successfully predicts whether a given dispersal system produces an ideal or validated
failed dispersal mode, paving the way to establishing a fully resolved structure-dispersal
behaviour correlation.

The paper is organized as follows: in § 2 we present the numerical method, the
prototypal configuration of the explosive dispersal system and the numerical set-up.
The characteristic events associated with the macro-, meso- and microscale gas–particle
couplings and their respective influences on the dispersal behaviours are elaborated in § 3.
At the end of which, a complex non-dimensional descriptor known as the modified mass
ratio is devised, to correlate the dispersal mode of the dispersal systems with multiscale
parameters. An elaborate theoretical model that incorporates the macro- and mesoscale
couplings is established in § 4 to predict the dispersal mode. The microscale coupling
effects are further discussed in § 5. Finally, the results are summarized in § 6.
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2. Numerical method

2.1. Governing equations and numerical algorithm
Numerical simulations were performed based on the coarse-grained compressible
computational fluid dynamics-discrete parcel method (CCFD-DPM), a coarse-grained
Euler–Lagrange numerical approach suitable for gas–particle flows in laboratory-scale
systems (Sundaresan, Ozel & Kolehmainen 2018; Tian et al. 2020). The CCFD-DPM
approach tracks and accounts for parcel–parcel contact interactions. Each parcel consists
of multiple physical particles with the same physical and kinetic properties. The number
of physical particles that a computational parcel represents is quantified using a scaling
factor, namely the super particle loading, χ , whose value is set based on the volume/mass
fraction of the particles and computational memory available. For particle–gas systems,
the reported χ in previous literature ranges from O(101) to O(103) (Osnes et al. 2018;
Koneru et al. 2020). In the present work, χ is of the order of O(101).

For the gas phase, the volume-averaged governing equations [(2.1)–(2.3)] constructed
in the Eulerian frame are based on a five-equation transport model, i.e. a simplified
form of the Baer–Nunziato model, which has been modified to account for compressible
multiphase flows ranging from dilute to dense gas–particle flows (Baer & Nunziato 1986)

∂(φf 〈ρf 〉)
∂t

+ ∇ · (φf 〈ρf 〉ũf ) = 0, (2.1)

∂(φf ũf 〈ρf 〉)
∂t

+ ∇ · (φf 〈ρf 〉ũf ũf + φf 〈Pf 〉) = 〈Pf 〉∇φf

+
∑

i

{φp,iρp,iDp,i(ũp,i − (ũf )i)}, (2.2)

∂(φf 〈ρf 〉Ẽf )

∂t
+ ∇ · (φf 〈ρf 〉Ẽf ũf + φf 〈Pf 〉ũf )

= 〈Pf 〉∇φf · ũp +
∑

i

{φp,iρp,iDp,i(up,i − (ũf )i) · ũp,i}. (2.3)

The gas volume fraction, velocity, density, pressure and the total energy of the gas are
represented by φf , uf , ρf , Pf and Ef , Ef = ρf ef + 0.5 ρf uf uf , respectively. In (2.1)–(2.3),
〈 〉 and ˜ denote phase-averaged and mass-averaged variables, respectively, ρp.i and up,i
are the density and velocity of parcel i, Dp,i is the drag force coefficient of parcel i and
φp.i = wi,f Vp,i/Vf is the contribution of parcel i to the weighted particle volume fraction
(wi,f is the distributed weight that parcel i contributes to the particle volume fraction in
fluid cell, Vp,i and Vf are the volumes of parcel i and the fluid cell).

We employ the Di Felice model combined with Ergun’s equation ((2.4)–(2.7)) to
calculate Dp (Di Felice 1994), which considers the effects of both the particle Reynold
number, Rep, and the particle phase volume fraction, φp. The model has been widely used
in particle-laden multiphase flows

Dp,i = 3
8sg

Cd
|uf − up,i|

rp
, (2.4)

Cd = 24
Rep

⎧⎨⎩8.33
φp

φf
+ 0.0972Rep if φf < 0.8

fbase · φ
−ζ
f if φf ≥ 0.8

, (2.5)
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fbase =
{

1 + 0.167Re0.687
p if Rep < 1000

0.0183Rep if Rep ≥ 1000
, (2.6)

ζ = 3.7 − 0.65 exp
[
−1

2 (1.5 − log10Rep)
2
]
. (2.7)

In (2.4)–(2.5), Cd is the dimensionless coefficient of the drag force, sg is the specific
weight of individual particles and rp is the particle radius. For dense particle flows
(φf < 0.8), (2.4) reduces to the original Ergun equation. Otherwise, Cd takes the form
of Stokes’s law multiplied by a factor of fbase, which varies with Rep, as indicated by (2.6)
and (2.7).

The particle phase is represented by discrete parcels whose motion is governed by
Newton’s second law ((2.8) and (2.9))

dup,i

dt
= Dp,i(uf − up,i) − 1

ρp
∇〈Pf 〉 + 1

mp

∑
j

FC,ij, (2.8)

dxp,i

dt
= up,i, (2.9)

where up,i and xp,i denote the velocity and displacement of parcel i, respectively, and F C,ij
represents the collision force between parcels i and j.

A four-way coupling strategy was adopted to account for the momentum and energy
transfer between gases and particles. Specifically, the particle drag force and the associated
work were incorporated into the momentum and energy equations of the gas phase as the
source terms. The particle parcels are driven by the pressure gradient force, drag force and
collision force between parcels (2.8). A soft sphere model, represented by a linear-spring
dashpot model, was employed to model the collision force between parcels. Hence F C,ij
consists of a repulsive force and a damping force

F C,ij = kn,pδn − γn,pun,ij, (2.10)

where kn,p and γ n,p are the stiffness and damping coefficients of parcels, δn and un,ij are
the overlap and normal velocity difference between parcels in contact; γ n,p is a function
of the parcel restitution coefficient εp

γn,p = − 2 ln εp√
π2 + ln εp

√
mpkn,p. (2.11)

To solve the equations governing the gases, the weighted essentially non-oscillatory
scheme was used to reconstruct the primary flow variables. A Riemann solver proposed
by Harten, Lax and van Leer was used to obtain the intercell fluxes. The third-order
Runge–Kutta method was applied to the time integration. The equations describing
the parcel velocity and position were discretized by the velocity-Verlet algorithm.
Bilinear/trilinear interpolation functions were adopted to calculate the particle volume
fraction and source terms on the Eulerian grids, as well as the fluid variables on Lagrangian
parcels (Liu, Osher & Chan 1994). Numerical details with regard to CCFD-DPM can be
found in our previous works (Tian et al. 2020).

The CCFD-DPM framework has been validated against several benchmark experiments
involving shock driven particle laden flows (Tian et al. 2020), such as Rogue’s experiments
(Rogue et al. 1998) which investigate the shock dissipation through particle curtains, the
experiments carried by Britan & Ben-Dor (2006), which access both the gaseous and
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Figure 1. (a) Two-dimensional numerical configuration of the explosive dispersal system (only one quarter of
the configuration is shown). Distribution of the simulated dispersal systems in the parameter space (M/C, Egas)
(b) and (dp, ρp) (c). The symbol size in (b) and (c) scales with the recurrence frequency of the corresponding
parameter combination in all numerical cases.

solid pressures inside particle columns impinged head on by shocks and the experiments
of shock induced interfacial instability of granular media (Xue et al. 2018). Specifically
the CCFD-DPM-based simulations reproduce the characteristic expanding velocity and
the signature finger-like jetting structure of the explosive dispersal, further validating
the applicability of the CCFD-DPM method in investigating the explosive dispersal
phenomena (Tian et al. 2020).

2.2. Numerical set-up
The two-dimensional numerical configuration is shown in figure 1(a) which has a high
pressure gas pocket with the initial pressure P0 and the radius of Rgas. The gas pocket is
enclosed by a densely packed particle ring with inner and outer radii of Rin,0 and Rout,0,
respectively. The volume fraction of particle ring φ0 ranges from random loose packing
φ0,min = 0.5 to the random dense packing φ0,max = 0.65. The annular particle ring domain
is filled by computational parcels generated by the radius expansion algorithm (Yan,
Hai-Sui & Glenn 2009). A population of parcels with artificially small radii that ensure
no particle overlap is randomly created within the specified domain. Then, all parcels are
expanded until the specified parcel size distribution and desired volume fraction are both
satisfied. The real particle has a diameter of dp while the diameter of the parcel uniformly
ranges from 0.75dp to 1.25dp to avoid potential crystallization during shock compaction.
A random but homogenous arrangement of parcels is achieved as shown in the zoomed-in
inset of figure 1(a) wherein the parcels are coloured by the local Voronoi volume fraction
φp,voro. The parcel has a density of ρp same as the real particles.

For the simplified configuration shown in figure 1(a), the macroscale set of structural
parameters includes the geometries of the central gas pocket and the particle ring, Rgas,
Rin,0 and Rout,0, the gas pressure and temperature, P0 and T0, the total mass of particle
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ring, mring = πρpφ0(R2
out,0 − R2

in,0), etc. Both Rgas and P0 contribute to the explosion
energy of the gas pocket which can be approximated by the Brode equation (Crowl 2003)

Egas = (P0 − Pamb)Vgas

γ − 1
= π(P0 − Pamb)R2

gas

γ − 1
, (2.12)

where Vgas is the volume of the gas pocket, Pamb is the ambient pressure and γ is the ratio
of specific heat. The mass ratio based on the masses of pressurized gases and the particle
ring is given by

M/C = π(R2
out,0 − R2

in,0)φ0ρp

πR2
gasρgas

= (R2
out,0 − R2

in,0)φ0ρpRT0

R2
gasP0

. (2.13)

Since the particles in the CCFD-DPM method are modelled as smooth spheres, the
surface roughness, the angularity and the material properties are difficult to account for.
The microscale structure of the dispersal system is mainly embodied by the particle
diameter and density, dp and ρp, both contributing to the inertia of the particle.
Figure 1(b,c) shows the distributions of more than 140 numerical cases in the macro- and
micro-scale parametric spaces, namely (Egas, M/C) and (dp, ρp) spaces, respectively. The
symbol size in figure 1(b,c) scales with the recurrence frequency of the corresponding
parameter combination in all numerical cases. Via varying the macroscale structural
parameters, the M/C of numerical cases ranges from O(100) to O(104), spanning over five
orders of magnitude. On the other hand, dp ranges from O(101) to O(102) μm while ρp

ranges from O(101) to O(103). The vast variations in the macro- and microscale structural
parameters fully expose the variability of the resulting dispersal behaviours which are
normally prohibited by the experimental means. Exact values of the structural parameters
in each numerical case are presented in table 1 in Appendix A. For clarity, the system is
labelled by three symbols, M/C, −dp (in units of μm), − ρp (in units of kg m−3).

3. Numerical results

3.1. Macroscale disposal behaviour
In order to gain knowledge of the overall explosive dispersal behaviour of the particle ring,
a space–time (r–t) diagram manifesting the spatio-temporal variations in particle volume
fraction φp(r, t) was constructed using the circumferentially averaged φp. Figure 2(a–f )
displays six typical r–t diagrams for systems with different combinations of macro- and
microscale parameters. The inner and outer boundaries of the dispersed particle cloud
denoted by the dotted lines are defined in such way that 90 % of particles are enclosed
by the boundaries. The corresponding snapshots showing the positions of the dispersed
particles at very late times are presented in figure 3(a–f ).

Figure 2(a) shows the most ideal dispersal which occurs at the lower limit of the M/C
range. The particle ring undergoes a persistent expansion accompanied by substantial
particle shedding from the inner surface, forming an annular particle cloud laden with
uniformly distributed particles (figure 3a). The particle cloud becomes increasingly dilute
as the volume swells until the momentum of particles is depleted by the drag forces. If
the ring expansion is not fast enough, the innermost layers are susceptible to the negative
central pressure due to the overexpansion of the central gases and eventually sucked into
the centre, as seen in figure 2(b,c) (also see figure 3b,c). Hereafter, a negative pressure
refers to a pressure below the ambient one, otherwise the pressure is positive.

999 A46-7

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

74
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.745


L. Miao, J. Li and K. Xue

0

0.5

0.71.0 8

6

4

2

0

0.8

0.6

t (
m

s)

0.4

0.2

0
0.04 0.08 0.12 0.16

10

8

6

4

2

0
0.07 0.14 0.21 0.280.05 0.15 0.25 0.35

12

9

6

3

50

40

30

20

10

0

t (
m

s)

0
0.05 0.10 0.15 0.20

100

80

60

40

20

0
0.05 0.15 0.25 0.350.05 0.10 0.15 0.20

φp

0.6

0.4

0.3

0.2

0.1

r (m) r (m) r (m)

(a) (b) (c)

(d ) (e) ( f )

Figure 2. The r–t diagrams of φp(r, t) for systems 9.7-100-2500 (a), 104-100-1503 (b), 159-100-2500 (c),
288-60-1503 (d), 1035-100-2500 (e), 2043-100-2500 ( f ). The inner and outer boundaries of particle clouds are
denoted by dotted lines.
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Figure 3. Positions of the dispersed particles at very late times for systems 9.7-100-2500 (a), 104-100-1503 (b),
159-100-2500 (c), 288-60-1503 (d), 1035-100-2500 (e), 2043-100-2500 ( f ). Particles are rendered according
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velocities while the colour ranging between cyan and navy blue represents inbound velocities.
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As seen in figure 2(d–f ), with increasing M/C, the persistent expansion of the ring is
gradually taken over by the expansion–implosion pulsation which is compromised or even
terminated by the intense particle shedding from both inner and outer surfaces of the
ring. A variety of dispersal behaviours contrasting with the ideal dispersal emerge. For
the system 288-60-1503, as shown in figure 2(d), the particle ring disintegrates during
the first implosion, hurling a majority of particles towards the centre. These particles
collide with each other and lose their momentum due to the frequent inelastic collisions.
Eventually, most particles reside in the central region instead of being propelled out,
resulting in an incomplete dispersal (figure 3d). Another unwanted dispersal outcome
occurs when the ring disintegrates at the very moment the ring is about to implode
(figure 2e) or the pulsating ring comes to rest in an equilibrium location (figure 2f ). In
these scenarios, a significant proportion of particles end up in an annular region near the
initial location of the ring (see figure 3e, f ) with finger-like jets bursting from the inner and
outer surfaces, carrying away a fraction of particles. Hence, figure 2(e, f ) demonstrates a
highly incomplete and non-uniform dispersal.

Most engineering applications desire a uniformly distributed particle cloud via a
complete explosive dispersal. The completeness of the explosive dispersal can be
quantified by the proportion of particles which are eventually dispersed out, χ . The
value of χ is derived by running the numerical experiments until the ring disintegrates
or ceases to pulsate and finally tallying the outbound particles. The uniformity of the
dispersed particle cloud is assessed by measuring the deviation of the mass centre
radius of the actual particle cloud, Rmass, from that of the hypothetically homodispersed
particle cloud, Rmass,homo, κ = |Rmass − Rmass,homo|/Rmass,homo. The values of Rmass and
Rmass,homo are calculated when the average particle volume fraction inside the region
delimited by the inner and outer boundaries falls to 0.1. The mathematical definitions of
χ , Rmass, Rmass,homo and corresponding numerical procedures of equations are elaborated
in Appendix B.

Figure 4(a,b) shows the variations in χ and κ with increasing M/C, respectively.
The size of symbols scales with 1/dp, while the colour of the symbols is rendered
according to ρp. The detectable dependences of χ and κ on M/C emerge from
figure 4(a,b). As M/C increases from O(102) to O(104), χ decreases significantly while κ
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undergoes a substantial and non-convergent increase, indicating that the dispersal becomes
increasingly incomplete and non-uniform beyond a M/C threshold of around O(102). It is
worth noting that there exist significant variabilities in χ and κ among dispersal systems
in the M/C range of O(102) to O(103) which have identical M/C but different ρp and dp.
Specifically, the system 55-100-3506 yields an ideal dispersal with a close-to-unity χ and a
minimum κ , χ = 0.99 and κ = 0.003. By contrast, the systems with larger but much lighter
particles, systems 55-450-417 and 55-250-210, result in the incomplete and non-uniform
dispersals with χ = 0.8 (system 55-450-417) and 0.3 (system 55-250-210), and κ = 0.06
(system 55-450-417) and 0.16 (system 55-250-210). The non-trivial influences on the
dispersal behaviour brought by the microscale parameters will be accounted for in §§ 3.3
and 3.4.

3.2. Macroscale gas–particle shell coupling
The overall explosive dispersal behaviour characterized by χ and κ is predominately
dictated by the macroscale gas–particle coupling, as revealed in the previous study
(Kun et al. 2023). Figure 5(a–f ) presents the space–time (r–t) diagrams of the
gaseous pressure fields, Pgas(r, t), for the systems shown in figure 2(a–f ), wherein the
circumferentially averaged Pgas is used to plot the r–t diagrams. We superimpose the inner
and outer boundaries of the particle cloud (denoted by white dotted lines) as well as
those of the dense core band (denoted by light yellow dashed lines) in figure 5. The
dense core band remains densely packed, φdense ≥ 0.3, so that it suffices to effectively
confine the central gases and maintain the pressure differential between the inner and outer
boundaries. The disappearance of the dense core band signifies the complete disintegration
of the particle ring.

There are two characteristic events defining the evolution of the central pressure field
enclosed by the inner surface of ring. The first is the multiple reflections of the shock waves
and rarefaction fans between the centre and the inner surface, which is most prominent
in early times, as shown in figure 5(a). All waves quickly attenuate as the ring rapidly
expands. The overexpansion of the central gases takes over to dominate the gas dynamics,
causing a drastic decline of the central pressure which eventually becomes negative. The
resulting adverse pressure gradient, which is directed outwards, exerts inward pressure
gradient forces on the particles. Thereby, the expanding ring decelerates. If the expanding
ring completely disintegrates, particles in the inner layers may well reverse their motion
and be sucked into the centre. The central gases gush out and quickly mix with the outside
gases. In this scenario, a uniform pressure field is established (figure 5b,c). Otherwise,
the dense core band eventually begins to implode, which in turn gives rise to the
recovery of the central pressure and the rebuilding of a favourable pressure gradient field.
In due time, the imploding dense core band will again reverse its motion and commence
a second expansion. The synchronization between the central pressure fluctuation and the
ring pulsation is termed macroscale gas–particle coupling which comes to an end when
either the ring disintegrates (figure 5d,e) or the kinetic energy of the ring is damped away
(figure 5f ).

The sustainability of the macroscale gas–particle coupling in terms of the duration of
the synchronization between the central gases and the enclosing ring, depends on three
pivotal processes that occur on the macro-, meso- and microscale, as elaborated below.
The first involves the initial momentum/energy transfer from the explosive source (central
gases) to the enclosing ring. If the ring expansion is excessively fast, which occurs with
small M/C, the central negative pressure field barely influences the dynamics of the ring,
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Figure 5. The r–t diagrams of Pgas(r, t) for systems 9.7-100-2500 (a), 104-100-1503 (b), 159-100-2500 (c),
288-60-1503 (d), 1035-100-2500 (e), 2043-100-2500 ( f ). The inner and outer boundaries of particle clouds
and dense core band are denoted by while dotted lines and light yellow dashed lines.

as shown in figure 5(a). The macroscale gas–particle coupling is short lived, only serving
to provide the initial impetus to the particle ring. In this scenario, the time scale of the
ring dynamics, which is defined as the time the ring takes to expand to twice the initial
diameter, tring, is one order smaller than that of the pressure field, which is characterized
by the time the central pressure takes to decrease to the ambient pressure, tgas, namely
τmacro = tring/tgas ∼ O(10−1). From figure 5(a–d), τmacro = 0.6, 1.2, 4.9, 12.5, indicating an
improved compatibility between the ring dynamics and the gas evolution with increasing
M/C. Note that τmacro does not exist for the systems 1034-100-2500 and 2043-100-2500
since the ring cannot expand to twice its initial diameter prior to the implosion.

3.3. Mesoscale gas–particle shell coupling
The initial momentum/energy transfer from the central gases to the particle ring occurs
during the shock compaction phase which begins when the incident shock impinges on the
inner surface of the ring and ends when the outer surface gains velocity. Two fundamental
processes dominate the shock compaction, as schematized in figure 6(a,b). One is the
transmission of blast loading exerted on the inner surface of the ring via the solid stresses
arising from inter-particle contacts. The other is the inter-pore gas filtration driven by
the pressure differential between the inner and outer surfaces of the ring. Alongside the
inter-pore gas flows, a diffusional pressure field develops. Particles hence experience
the pressure gradient forces and drag forces besides the solid stresses. All these forces
together accelerate the particles and compact them to a compacted packing. Since the
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Figure 6. Schematics of compaction wave propagation via inter-particle stresses (a) and gas filtration through
pores in the granular packing (b) induced by the impingement of the incident shock.

momentum/energy transportation is caused by the collective particle movements and
inter-pore gas flows, the shock compaction is governed by the mesoscale gas–particle
coupling.

While the particle ring gains the momentum, the interstitial gas flows cause substantial
mass and energy losses of the central gases, thereby reducing the energy transferred
to the ring. The resulting mass/energy reduction varies from system to system due
to the distinctively different gas filtration. Figure 7 shows the early-time space–time
(r–t) diagrams of φp (figure 7a,b), Pgas (figure 7c,d) and ugas (figure 7e, f ) for systems
1035-50-1828 and 1035-800-1828. The trajectories of the compaction front (CF) and
the diffusional pressure front (DPF) are superimposed on each panel in figure 7. The
CF delineates the compacted particle packing. As the CF reaches the outer surface of
the ring, the shock compaction phase is completed with the compacted ring acquiring
an initial expansion velocity Vring. The distance of the DPF from the inner surface
of the ring, LDPF = RDPF − Rin, characterizes the propagation depth of the transient
diffusional pressure field whose determination is presented in Appendix C. For the system
1035-50-1828, the DPF propagates far slower than the CF, thereby there is no interstitial
gas flowing out of the outer surface of the ring during the shock compaction phase
(figure 7e). By contrast, the DPF distinctly precedes the CF in the system 1035-800-1828,
inducing the intensified and persistent gas flows (figure 7f ). Accordingly, the mass and
energy losses mediated by the gas flowing out vary significantly. The mass ratios of gases
retained in the central gas pocket after the shock compaction phase, χgas, are 96 % and
73 % for the systems 1035-50-1828 and 1035-800-1828, respectively. As expected, the
ring in the system 1035-800-1828 gains a faster initial expanding velocity than that in the
system 1035-50-1828, Vring,1035−50−1828 = 8 m s−1, Vring,1035−800−1828 = 5 m s−1.

Since the mass and energy losses of the central gases are associated with the propagation
velocity ratio between the DPF and the CF, τmeso = VDPF/VCF, if τmeso can be expressed
as a function of structural parameters, the energy diminishing effect arising from the
mesoscale gas–particle coupling can be estimated for a given dispersal system. The
advance of the DPF depends on the velocity of the local interstitial gas flows relative
to the solid skeleton, VDPF = ugas(RDPF) − usolid(RDPF). Ignoring the nonlinear terms, the
interstitial gas flows can be accounted for by the Darcy equation, whose expression in polar
coordinates is given by (3.1)

ε(ugas − usolid) = − k
μ

dPgas

dr
, (3.1)
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Figure 7. Early-time space–time (r–t) diagrams of φp (a,b), Pgas (c,d) and ugas (e, f ) for systems 1035-50-1828
(a,c,e) and 1035-800-1828 (b,d, f ). The trajectories of the CF and the DPF are superimposed on each
panel.

where ε is the local porosity, μ is the dynamic viscosity of the interstitial gases and the
permeability k is a function of the volume fraction φp described by the Ergun expression

k = 1
150

ε3

(1 − ε)2 d2
p. (3.2)
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Thus, VDPF is proportionate to the local gradient of the transient diffusional pressure
field at the DPF, (dPgas/dr)|RDPF , which varies as the DPF advances. As a first order of
approximation, we assume a linearly declining pressure field across the thickness of the
ring, leading to an unvaried pressure gradient

dPgas

dr
= −P5 − Pamb

hring
, (3.3)

where the initial pressure exerted on the inner surfaces of the ring is represented by the
reflected pressure P5 which is estimated by the normal shock wave relation with the initial
pressure P0. The ambient pressure Pamb represents the pressure exerted on the inner and
outer surfaces of the ring. As a matter of fact, the central pressure decreases due to the
expansion of the inner surface and the filtration induced mass flow out. Thus, the constant
pressure assumption overestimates dPgas/dr, which is somewhat offset by replacing the
actual propagation depth of the diffusional pressure field with the thickness of the ring.
Substituting (3.2)–(3.3) into (3.1) and replacing φp with φ0 to have

VDPF = d2
p

150
(1 − φ0)

2

μφ2
0

P5 − Pamb

hring
. (3.4)

Equation (3.4) specifies the structural parameters affecting VDFP, including the
macroscale parameters such as P0, φ0 and hring, as well as the microscale parameter dp.
The time derivative of RDPF yields an absolute propagation velocity of the DPF in contrast
with the relative velocity implied by the VDPF given in (3.4). Thus, we subtract the average
particle velocity upon the DPF from the average RDPF to derive VDPF for numerical cases
(details can be found in Appendix C). For the systems 1035-50-1828 and 1035-800-1828,
the numerically derived VDPF are 2.3 and 606 m s−1, respectively, which agree well with
the respective theoretical predictions given in (3.4), 2.6 and 658.2 m s−1.

As to the VCF, our previous work (Kun et al. 2023) proposed a shock compaction model
accounting for the propagation of the CF in the particle packings driven by the diffusional
pressure field. This model yields an adequate prediction of the VCF given in (3.5) for the
densely packed granular column with the upstream and downstream pressure kept constant

VCF =
√

P5 − Pamb

ρp

φcomp

(φcomp − φ0)φ0
, (3.5)

where φcomp is the maximum volume fraction reached by an assembly of particles with
a certain size distribution, here φcomp = 0.7. Although the studied configuration has a
divergent geometry and the pressure on the inner surface of the ring is unsteady, (3.5) still
provides a reasonable estimation for the VCF. With (3.5), the systems 1035-50-1828 and
1035-800-1828 share the same VCF of 63.4 m s−1, compared with the respective numerical
results, 64.8 and 54.2 m s−1.

Combining (3.4) and (3.5) we obtain the expression of τmeso as a function of a variety
of structural parameters

τmeso = VDPF

VCF
= 1

150
(1 − φ0)

2

φ2
0

·
√

(φcomp − φ0)φ0

φcomp
· d2

p
√

(P5 − Pamb)ρp

μhring
. (3.6)

Figure 8 plots χgas for all systems with varying τmeso. The symbols are rendered
according to the corresponding M/C. An explicit τmeso dependence of χgas is discernible
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Figure 8. Variation in χgas with τmeso. symbols are rendered according to the corresponding M/C. A master
curve fitted by a polynomial function with an 80 % confidence interval is superimposed in the plot.

as τmeso ranges from O(10−2) to O(101). At the lower limit of the τmeso range,
τmeso ∼ O(10−2), the filtration is far slower than the compaction. The value of χgas is close
to unity, indicating a minimum gaseous mass flow out. A slightly downward slope of χgas

emerges when the τmeso approaches O(100), the gas filtration beginning to drain the central
gases. In the mid- and upper range, τmeso ∼ O(100) − O(101), χgas rapidly decreases with
increasing τmeso. The correlation between χgas and τmeso can be described by a fitting
function

χgas = f (lg τmeso) = 0.0227(lg τmeso)
3 − 0.172(lg τmeso)

2

− 0.111 lg τmeso + 0.933, τmeso ∼ O(10−2) − O(101). (3.7)

Notably, χgas for systems at the lower limit of the investigated M/C range,
M/C ∼ O(101), exhibits non-trivial deviations from the fitting master curve. As revealed
in the last section, the expansion of the ring in this M/C range is exceedingly fast so that
the central pressure undergoes a drastic drop. The constant surface pressure assumption
underpinning (3.4) and (3.5) does not hold. Thus, the correlation between χgas and τmeso
can no longer be adequately described in (3.7). Since χgas is negligible (χgas > 92 %) in
these cases, mainly thanks to the quite short duration of the shock compaction phase, we
assume χgas = 1, ignoring the gas filtration altogether.

The gas filtration associated with the mesoscale gas–particle coupling reduces the
effective mass in the central gas pocket, equivalent to an increased mass ratio, M/(C ·
χgas) = M/(C · f (lg τmeso)) whereby the influence of the mesoscale coupling on the
dispersal is properly accounted for. Although the derivation of (3.7) is based on the
simulation data, the τmeso dependence of the χgas can also be constructed via a theoretical
model introduced in § 4.

3.4. Microscale gas–particle shell coupling
In contrast with the solid or liquid shells/rings, the particle shedding and the variations
of volume fraction are inevitable throughout the dispersal of the particle shell/ring.
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Since the shed-off particles and particles in regions with very low φp (φp < 0.3) neither
sustain persistent inter-particle contacts nor effectively confine the central gases, they
cannot be regarded as part of the densely packed particle shell/ring. The actual particle ring
whose pulsation synchronizes with the central pressure fluctuation hence has smaller mass
than the initial one, equivalent to having a reduced M/C. Therefore, the particle shedding
and localized pack loosening may well fundamentally change the dispersal behaviour.
Since these events involve the individual particle dynamics, the resulting thinning of the
effective particle ring embodies the microscale gas–particle coupling. In this section, we
first explore the mechanism governing the particle shedding and pack loosening, then
proceed to quantify the influence of these microscale processes on the overall dispersal
and finally shed light on the outliers in figure 4(a).

The integrity of particle ring is maintained during the shock compaction phase and the
incipient expansion phase when a favourable pressure gradient is imposed on the particles.
The direction of the pressure gradient is soon reversed as the central pressure drops to
a negative value. Figure 9(a,b) shows the radial profiles of the pressure and pressure
gradient, Pgas(r) and ∇rPgas(r), during the overexpansion phase of the central gases for the
system 288-60-1503 whose r–t diagram of φp is shown in figure 2(d). The corresponding
radial profiles of the particle velocity and volume fraction, up(r) and φp(r), are presented
in figure 9(c,d), respectively. The substantial central pressure decline emanates expansion
waves into the particle ring, unloading the compacted particles in the wake. The particles
adjacent to the inner surface of the ring become so loosely packed (figure 9d) that no
appreciable pressure gradient is built therein (figure 9b), inducing a dilute inner band.
Meanwhile an outermost layer of the ring pells off when the CF reflects off the outer
surface and transitions to an inward travelling rarefaction wave. Particles swept by the
rarefaction wave are prone to breaking away from the outer surface, forming a shedding
outer band. In between the dilute inner band and the shedding outer band there exists a
densely packed core band whose φp(r) peaks at the band centre and this is denoted as
BCφmax in figure 9(d) with the red dotted line. Meanwhile, an adverse pressure gradient
field with the radial profile resembling that of φp(r) is established across the thickness of
the dense core band. The amplitude of the inward pointing pressure gradient forces, |F∇P |,
increases on approaching BCφmax and decreases on moving away from BCφmax as expressed
in (3.8)

|F∇P| ∼ 0, r < Rdense,in or r > Rdense,out,

∂|F∇P|
∂r

> 0, Rdense,in ≤ r < Rφmax,

∂|F∇P|
∂r

< 0, Rφmax ≤ r ≤ Rdense,out.

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (3.8)

Where Rdense,in, Rφmax and Rdense,out represent the radii of the inner boundary, the centre
(BCφmax) and the outer boundary of the densely packed core band. The drag forces,
Fdrag, which are proportionate to the pressure gradient forces in the dense packings, have
identical radial profiles (Kun et al. 2023).

Such distinctive profiles of F∇P and Fdrag result in a non-monotonic radial variation in
up(r) (figure 9c,e). During the ring implosion phase, in the inner half of the dense core
band (Rdense,in ≤ r < Rφmax), the absolute value of the up(r) increases with r. Particles in
the outer layers tightly compress against those in the inner layers. Thereby, the inner half
of the dense core band remains densely packed. By contrast, the absolute value of up(r)
decreases with r in the outer half of the dense core band (Rφmax ≤ r ≤ Rdense,out), leading to
a persistent pack loosening and eventually particle shedding. Notably, the imploding dense
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Figure 9. Variations in radial profiles of Pgas(r) (a), ∇rPgas(r) (b), up(r) (c) and φp(r) (d) for the system
288-60-1503 during the overexpansion phase of central gases, 5.3 ms < t < 8.9 ms. The dotted lines in each
plot from left to right represent the inner boundary of the particle cloud, the inner boundary of the dense core
band, the band centre BCφmax , the outer boundary of the dense core band and the outer boundary of the particle
cloud, respectively. Typical radial profiles of ∇rPgas(r), up(r) and φp(r) are shown in (e).

core band arrests the drifting particles in the dilute inner band, countering the particle
shedding from the outer surface.

Figure 10 shows the temporal mass percentage of particles collected by the inner
boundary of the dense core band, χadd(t), and those breaking loose from the outer
boundary, χ shed(t), during the ring implosion. The variation in the thickness of the dense
core band, hdense(t), is also superimposed in figure 10. For the system 288-60-1503,
the particle shedding effect always prevails over the particle collecting effect. The ring
completely disintegrates when the former depletes the entire dense core band at Rφmax =
0.134. In this scenario, a disastrous dispersal, where a majority of particles collapse into
the centre, is observed.

999 A46-17

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

74
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.745


L. Miao, J. Li and K. Xue

2 4 6 8 10

t  (ms)

0

0.5

1.0

1.5

0

0.01

0.02

0.03

0.04

0.05

h d
en

se
 (

m
)

χadd(t)χ (t)

χshed(t)

hdense(t)

Figure 10. Temporal variations in χadd(t), χ shed(t) and hdense(t) during the ring implosion phase for the
system 288-60-1503.

The ring thinning effect originating from the particle shedding depends on the dynamics
of the ring as well as the individual particle. Specifically, particles of small inertia are
more prone to reverse their motion and less likely to break loose compared with those of
large inertia. On the other hand, a short-lived implosion of ring does not allow particles
enough time to complete the motion reversal so that the ring sheds more severely than the
long-lasting one. Thus, it is necessary to quantify the time scales of the ring implosion as
well as the particle motion reversal.

Assuming an outbound particle with density of ρp and diameter of dp is about to reverse
its motion driven by an inward directing pressure gradient force, the pressure gradient
can be estimated by assuming a linear decline of pressure across the thickness of the
ring, namely ∇P = Pamb/hring. The characteristic time such a particle takes to reverse
its motion is

tp =
√

2dphringρp

Pamb
. (3.9)

The derivation of tp is presented in Appendix D. Smaller tp is, the faster the outbound
particle reverses to inbound and the less likely it is to break loose.

As seen from figure 2(e, f ), the expansion–implosion cycle of the ring is semi-symmetric
in terms of the duration and the amplitude as well. Hence, the time scale of the ring
implosion can be approximated by that of the ring expansion introduced in § 3.2, namely
the tring which is expressed in (3.10) under the assumption of a constant expansion velocity

tring = Rout,0

Vring,Gurney
. (3.10)

The denominator in (3.10), Vring,Gurney, is the estimation of Vring by a modified Gurney
equation (Mo et al. 2019) which accounts for the effect of the volume fraction φ0
in addition to the structural parameters normally considered in a conventional Gurney
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equation

Vring,Gurney =
√√√√√ 2egas

M/C
0.2ρ0.18

p
+ 0.5

· F(φ0, M/C), (3.11)

F(φ0, M/C) = 1 + [0.162 exp(1.127φ0) − 0.5] · lg(M/C). (3.12)

The egas in (3.11) is the explosion energy per unit mass of the central gases

egas = Egas

mgas
= (P0 − Pamb)RT0

(γ − 1)P0
� RT0

(γ − 1)
. (3.13)

The ratio between tring and tp, τmicro = tring/tp, measures the importance of the
microscale particle shedding relative to the macroscale ring implosion. Combining
(3.9)–(3.13) leads to the expression of τmicro which is a function of both macroscale and
microscale parameters

τmicro = Ip(dp, ρp) · Fmacro(M/C, ρgas, Rout,0, hring, φ0), (3.14)

Ip = 1
d0.5

p ρ0.5
p

, (3.15)

Fmacro = Rout,0

2F(φ0, M/C)

√√√√( M/C
0.2ρ0.18

p
+ 0.5

)
Pamb

egashring
. (3.16)

A smaller τmicro, or equivalently a larger 1/τmicro, indicates a longer particle motion
reversal time relative to the entire implosion duration. Particles are more likely to remain
outbound, breaking loose from the imploding ring. This argument is corroborated by the
τmicro dependence of the cumulative volume fraction of shed particles at the end of the
first ring implosion, χ shed, shown in figure 11. Indeed, χ shed significantly increases as
τmicro decreases from O(102) to O(101). Once τmicro falls below 20, χ shed converges to
unity, indicating a complete falling apart of the ring during the first implosion. Notably,
the symbols in figure 11 are rendered according to the respective M/C. A M/C dependence
of τmicro is discernible in the mid- and upper range of the M/C, M/C ∼ O(103) − O(104).
Specifically, a larger M/C results in a higher τmicro, suggesting the ring thinning effect
caused by the particle shedding becomes increasingly insignificant with increasing M/C.

As seen in (3.14), τmicro is the product of a particle inertia related factor Ip (3.15)
and a macroscale complex Fmacro (3.16) which is a function of the M/C and the ring
geometry. Decreasing dp and/or ρp leads to an elevated Ip whereby τmicro increases.
The particle mass loss caused by the particle shedding will be suppressed. Equivalently,
the effective ring in motion is thicker than its counterpart with a smaller τmicro. The
resulting dispersal behaviour resembles that with an amplified M/C. Figure 12 exhibits
the r–t diagrams of φp for systems 55-100-3506 (figure 12a), 55-450-417 (figure 12b),
55-250-210 (figure 12c) which show worsening completeness and uniformity of dispersal,
as first alluded to in § 3.1. These three systems have the same M/C, similar ring geometry
but different dp and ρp, and thereby different Ip. As Ip decreases from 1.7 (dp = 100 μm,
ρp = 3506 kg m−3) to 2.3 (dp = 450 μm, ρp = 417 kg m−3), then to 4.4 (dp = 250 μm,
ρp = 210 kg m−3), the disintegration of the ring is significantly retarded and leads to a
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Figure 11. The τmicro dependence of χ shed . Symbols are rendered according to M/C. The master curve with
an 80 % confidence interval is superimposed in the plot.
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Figure 12. The r–t diagrams of φp for systems 55-100-3506 (a), 55-450-417 (b), 55-250-210 (c). The inner
and outer boundaries of the particle clouds are denoted by white dashed lines.

lower proportion of particles, χ = 0.99, 0.8, 0.3 for these three systems, respectively. This
complete-to-incomplete dispersal transition caused by different microscale couplings is
responsible for the bulk of the outliers in figure 4(a).

3.5. Structure-dispersal correlation
The previous sections shed light on the multiscale gas–particle coupling relations
underlying the varying explosive dispersal behaviours. The influences of the macro-,
meso- and microscale coupling on the dispersal behaviour can be characterized via
the parameter complex, M/C (2.13), τmeso (3.6) and τmicro (3.14), respectively. These
non-dimensional complexes incorporate a range of macro- and microscale structural
variables. The M/C plays a primary role in determining the overall dispersal performance
in terms of χ and κ . The parameters τmeso and τmicro bring about the complementary but
indispensable influences related to the mass reduction of gases and particles, respectively.
In this section, we aim to construct a defining non-dimensional complex which adequately
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Figure 13. Correlation between M/C and (M/C)*. The size of symbols scales with τmeso, while the colour of
symbols is rendered according to τmicro.

manifests the correlative effects arising from the M/C, τmeso and τmicro, thereby bridging
the dispersal systems to the resulting dispersal performances.

An explicit τmeso dependence of χgas, χgas(τmeso) is established in § 3.3, as presented
by (3.7), which is validated throughout the investigated M/C range except at the lower
limit of the range, M/C ∼ O(100 − 101). Beyond that range, the original M/C ought to be
replaced by M/(C·χgas(τmeso)) to account for the influence of τmeso. As to τmicro, although
it is clear that the diminishing mass of the particle ring in motion becomes stronger with
a smaller τmicro, equivalent to having a reduced M/C, the exact correlation between them
is beyond the scope of the present study. Thus, to incorporate the microscale coupling
effect we tentatively modify the M/C by multiplying it by lg(τmicro). Finally, we construct
a modified mass ratio, (M/C)*, which is formulized as

(M/C)∗ =
⎧⎨⎩(M/C) · lg(τmicro) (M/C) ∼ O(100 − 101)

(M/C) · 1
χgas(τmeso)

· lg(τmicro) (M/C) ≥ O(101)
. (3.17)

The correspondence between the M/C and (M/C)* for all systems is presented in
figure 13. The size of the symbols scales with τmeso, while the colour of the symbols
is rendered according to τmicro. Where the M/C is of the order of O(103), the (M/C)* is
proportionate to the M/C as the effects of τmicro and τmeso are minimum. Otherwise in the
lower- and mid-range of M/C, M/C ∼ O(101) − O(102), the (M/C)* of systems with the
upper limit of τmeso and/or the lower limit of τmicro significantly deviate from the scaling
law.

Replacing the M/C with the (M/C)*, we replot figure 4(a,b) in figure 14(a,b). In contrast
with the wide data variabilities shown in figure 4(a,b), the data converging into the
master curves of χ ((M/C)*) and κ((M/C)*) is substantially improved without apparent
outliers, which corroborates the decisive role of (M/C)* in determining the dispersal
characteristics. As seen in figure 14(a,b), the dispersal remains complete (χ ∼ 1) and
uniform (κ remains minimum), namely an ideal dispersal, until the (M/C)* is of the
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Figure 14. Variations in χ (a) and κ (b) with increasing (M/C)*. The size of symbols scales with the 1/dp,
while the colour of symbols is rendered according to ρp.

order of O(102). Thereafter, dispersal incompleteness quickly exacerbates as χ begins a
sudden and substantial decline, where χ drops to below 0.5 over one decade of (M/C)*.
Meanwhile, κ increases moderately. Accordingly, the explosive dispersal transitions from a
complete and uniform one into an incomplete one with a non-trivial proportion of particles
failing to disperse out. Regardless, particles in the dispersed particle cloud remain mostly
uniformly distributed as suggested by the low value of κ (κ < 0.1). Thus, this dispersal
mode is referred to as a partial dispersal. When the (M/C)* reaches the order of O(103)
and beyond, the decreasing rate of χ significantly slows down, gradually approaching zero
as (M/C)* approaches O(104). By contrast the growth rate of κ expedites, indicating a
quickly worsening uniformity of dispersal. In this scenario the majority of particles dwell
in a highly concentrated region, giving rise to a failed dispersal.

4. Theoretical modelling

4.1. Criteria for the dispersal mode transition
As revealed in § 3.5, the dispersal mode transitions from ideal to partial then to
failed as the (M/C)* increases from O(10−1) to O(104). The (M/C)* thresholds
signifying the ideal-to-partial and partial-to-failed mode transitions are denoted
as (M/C)∗th,I and (M/C)∗th,II , as marked in figure 14(a,b), (M/C)∗th,I∼1 × 102,
(M/C)∗th,II∼1 × 103, respectively. Since the exact values of the (M/C)∗th,X (X = I or II)
are sensitive to the numerical models and parameter set-ups, the (M/C)∗th,X (X = I or
II) marked in figure 14(a,b) only serves as the reference rather than a guaranteed guide
to predicting the dispersal mode. Instead of resorting to a single defining parameter, in
this section we attempt to establish a theoretical model accounting for the entire ring
dynamics resulting from a specific dispersal system. Combed with reasonable criteria for
the dispersal mode transitions, the model allows for the prediction of the dispersal mode.

Firstly, the criterion for the ideal-to-partial dispersal mode transition is introduced.
As discussed in § 3.2, in the ideal dispersal the time scale of the ring expansion is far
smaller than that of the gas evolution, τmacro ∼ O(10−1). Figure 15(a) shows the variation
in τmacro with the (M/C)*. Indeed all systems with (M/C)* falling below (M/C)∗th,I
satisfy this requirement. Thereafter τmacro increases to O(100), the time scale of the
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Figure 15. Variations in τmacro (a) and ξ imp (b) with the (M/C)*. Dark red symbols in (b) represent the
semi-failed dispersal while light red symbols represent validated failed dispersal.

ring dynamics becoming comparable to that of the pressure evolution, leading to a vast
number of particles being sucked into the centre by the negative central pressure. Therefore
τmacro ∼ O(10−1) serves as a requirement for an ideal dispersal.

At the other end of the dispersal mode spectrum, a failed dispersal featuring sustained
macroscale coupling requires a complete ring to implode at least once. The likelihood of
the particle ring surviving a complete implosion depends on the thickness of the ring as
well as the implosion distance. A thinner ring with a larger radius is less likely to survive
a complete implosion (see figure 2c–f ). Figure 15(b) plots the ratio between the thickness
and the outer radius of the ring at the very moment of motion reversal (see the inset of
figure 15b), ξ imp = hdense,imp/Rdense,imp, for systems of the failed dispersal mode. The ring
here refers to the dense core band introduced in § 3.4. The systems wherein the rings do
not survive the first implosion are denoted by the dark red circles. Otherwise, the systems
are denoted by the light red circles. Thereafter, these two groups of systems are referred to
as the semi- and validated failed dispersal. The former clusters just below the (M/C)∗th,II
while the latter is above the (M/C)∗th,II . Clearly, the ξ imp of all the light red circles exceeds
0.1, thereby systems with ξ imp > 0.1 suffice to predict a validated failed dispersal.

4.2. Continuum-based explosive dispersal model
The last section sets the criteria for the ideal and validated failed modes, namely
τmacro ∼ O(10−1) and ξ imp > 0.1, respectively. To derive τmacro and ξ imp, it is necessary
to adequately reproduce two primary ring dynamics phases, namely the shock compaction
and the ring pulsation phases, which are the focus of two sub-models. The shock
compaction sub-model aims to account for CF which propagates through the thickness
of the ring and couples with the transient interstitial gas flows, thereby estimating the
kinetic energy imparted to the particle rings and the mass/energy loss of the central
gases at the end of shock compaction. The final state of the shock compaction sub-model
serves as the initial state of the following ring pulsation sub-model. The ring pulsation
sub-model intends to yield the key dynamic parameters pertinent to the ring and
central gases, such as tring, tgas, hdense,imp and Rdense,imp, whereby τmacro and ξ imp are
determined. A value of τmacro of the order of O(10−1) results in the ideal dispersal mode.
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Otherwise, ξ imp is assessed sequentially. If ξ imp > 0.1 holds, a validated failed dispersal is
expected. Otherwise the resulting dispersal is either partial or semi-failed.

4.2.1. Evolution of central gases and gas filtration
Considering the configuration of the archetype shown in figure 1(a), wherein a circular
central gas pocket with the initial radius Rin,0 is filled with homogenous static gases with
an initial pressure P0 and density ρcentre,0

ρcenter,0 = P0

R̄T0
, (4.1)

where R̄ is the specific gas constant, R̄ = 288.7 J kg−1 k−1. The enclosing ring with the
initial inner and outer radii of Rin,0 and Rout,0 comprises the compressible porous medium
with the initial porosity ε0 and the solid phase density ρsolid.

Throughout the shock compaction and the following ring pulsation phases, gases in
the central gas pocket are allowed to flow out (the central pressure is positive) or flow
in (the central pressure is negative) due to the inter-pore gas filtration which is governed
by Darcy’s law (3.1). The mass loss or gain rate of the central gases depends on the gas
velocity on the inner surface of the ring relative to the moving inner surface

ṁgas(t) = 2πRin · ρgas(Rin) · [ugas(Rin) − Vin] · ε(Rin), (4.2)

where ρgas(Rin), ugas(Rin) and ε(Rin) are the instantaneous interstitial gas density, gas
velocity and the porosity on the inner surface of the ring, respectively, and Vin is the
expanding velocity of the inner surface. Since the positive ugas directs outward, a positive
the mass loss rate induces a negative mass gain rate. The instantaneous mass retained
inside the central gas pocket is

mgas(t) = mgas,0 −
∫ t

0
2πRin · ρgas(Rin) · [ugas(Rin) − Vin] · ε(Rin) dt, (4.3)

where mgas,0 = πR2
in,0·ρcentre,0 is the initial mass of the central gases. The cumulative

mass flux combined with the volumetric variation of the central gas pocket caused by the
expansion or implosion of the ring collectively leads to the density evolution of the central
gases

ρcenter = R2
in,0

R2
in

ρcenter,0 − ∫ t
0

2ρgas(Rin)

Rin
· [ugas(Rin) − Vin] · ε(Rin) dt

= R2
in,0

R2
in

ρcenter,0 + ∫ t
0

2ρgas(Rin)

Rin
· k
μ

∇PRin dt.
(4.4)

Assuming an isentropic expansion for the central gases gives

Pcenter

ρ
γ
center

= P0

ρ
γ

center,0
, (4.5)

where γ is the specific heat ratio, γ = 1.4. Substituting (4.1) and (4.4) into (4.5) to derive
the instantaneous central pressure, which is also the pressure exerted on the inner surface
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of the ring, Pgas(Rin) = Pcentre

Pgas(Rin) = Pcenter = R̄γ Tγ

0

Pγ−1
0

·
[

R2
in,0

R2
in

P0

R̄T0
+
∫ t

0

2ρgas(Rin)

Rin
· k
μ

∇PRin dt

]γ

. (4.6)

As seen in (4.6), Pcenter depends on the ring dynamics and the gas filtration as well.
The former dictates the volumetric variation of the central gas pocket via the variable
Rin. The latter involves the dynamic flow parameters, ugas(Rin) and ρgas(Rin), which are
incorporated into the Morrison equation in polar coordinates

∂(εPgas)

∂t
=

∂

(
k
μ

∂Pgas

∂r
Pgasr − εusolidPgasr

)
r∂r

, (4.7)

where usolid is the velocity of the solid phase, Vin = usolid(Rin). The boundary conditions of
(4.7) are set by the pressure on the inner and outer surfaces of the ring, Pgas(Rin) = Pcenter
and Pgas(Rout) = Pamb. Since the evolution of the central gases (4.6), the gas filtration (4.7)
and the ring dynamics are coupled together, their governing equations ought to be solved
together.

4.2.2. Shock compaction sub-model
Upon the release of the pressurized central gases, a diffusional pressure field develops
across the thickness of the ring and progresses outwards, as demonstrated in figure 16(a).
Meanwhile, the interstitial gases start to flow, driven by the diffusional pressure field. The
solid phase of the ring immersed in the advancing diffusional pressure field is subjected to
the outward pressure gradient force F∇P and the associated drag force Fdrag, both of which
scale with the local pressure gradient

F∇P = −dPgas/dr
ρsolid

, (4.8)

Fdrag = ε

1 − ε
F∇P = − ε

1 − ε

dPgas/dr
ρsolid

. (4.9)

These forces compact the solid skeleton to a compacted band with a minimum porosity
εmin, εmin = 1 −φcomp = 0.3 in the present study. The compacted band extends from the
inner surface of the ring to a CF, as shown in figure 16(a). Ahead of the CF there exists
a transitional zone with a finite thickness of wCF (wCF ∼ 10dp) across which ε and usolid
gradually decrease from εmin and usolid(RCF) to ε0 and zero, respectively. To approximate
the variations in ε and usolid inside the transitional zone, a Gauss error function is employed

ε(r) = 1 − εmin + ε0

2
+ εmin − ε0

2
· erf

(
4

r − RCF

wCF

)
, RCF ≤ r ≤ RCF + wCF,

(4.10)

usolid(r) = usolid,CF

2
− usolid,CF

2
· erf

(
4

r − RCF

wCF

)
, RCF ≤ r ≤ RCF + wCF, (4.11)

erf(x) = 2√
π

∫ x

0
e−η2

dη, (4.12)

where usolid,CF = usolid(RCF). The values of ε(r) and usolid(r) described in (4.10) and (4.11)
agree well with the numerically derived profiles of ε and usolid as seen in figure 16(a).
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Figure 16. Schematics of configuration considered in the theoretical model. (a) A CF has a finite thickness
of wCF across which the porosity ε and solid velocity usolid gradually decrease. (b) Propagation of the CF
with a velocity of VCF driven by F∇P and Fdrag. The radial profiles of ε(r), usolid(r), F∇P (r) and Fdrag(r) are
superimposed in the plots.

Thanks to the significant variation of the porosity, the flow dynamics of the interstitial
gases undergoes fundamental changes when flowing through the transitional zone ahead
of the CF. Thus, prior to resolving (4.7) it is necessary to determine the location of the CF,
namely RCF(t), which is to be addressed below.

The momentum balance of the annular compacted band demonstrated in figure 16(b) is
given by (4.13)

ρsolid(1 − εmin)

∫ RCF

Rin

u̇solid(r)r dr = −ρsolid(1 − ε0)usolid,CFVCFRCF

+ ρsolid(1 − εmin)

∫ RCF

Rin

F∇Pr dr

+ ρsolid(1 − εmin)

∫ RCF

Rin

Fdragr dr, (4.13)

where u̇solid is the acceleration of the solid phase. The first term on the right-hand side
of (4.13) accounts for the growing mass of the compacted band. The second and third
terms on the right-hand side of (4.13) represent the total pressure gradient force and the
total drag force exerted on the compacted band with a cross-section of unit area. The mass
conservation of the incompressible compacted band requires that usolid is proportional to
1/r

usolid(r) = VinRin

r
, Rin ≤ r ≤ RCF, (4.14)

where Vin is equal to the particle velocity herein, Vin = usolid(Rin). Differentiating (4.14)
leads to the expression of u̇solid

u̇solid(r) = V̇inRin

r
+ V2

in
r

− (VinRin)
2

r3 , Rin ≤ r ≤ RCF. (4.15)
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At the CF

usolid,CF = VinRin

RCF
, (4.16)

u̇solid,CF = V̇inRin

RCF
+ V2

in
RCF

− (VinRin)
2

R3
CF

. (4.17)

The VCF and Vin ought to meet the Rankine–Huguenot condition

Vin = VCFRCF

Rin

(
ε0 − εmin

1 − εmin

)
. (4.18)

Equations (4.13)–(4.18) constitute the complete set of equations governing the shock
compaction of the solid phase which is coupled with the evolution of the interstitial
gas flows. Appendix E elaborates on the algorithm adopted to numerically solve those
equations with the reference frame fixed on the inner surface of the ring.

4.2.3. Ring pulsation sub-model
Once the CF reaches the outer surface of the ring, the ring dynamics transitions to the
ring pulsation synchronizing with the fluctuation of the central pressure. To predict tring,
tgas, hdense,imp and Rdense,imp, we only need to reproduce the first expansion-to-implosion
transition (EIT) of the ring. Since significant particle shedding occurs during the
implosion, the ring before the first EIT is regarded as incompressible with an unvaried
porosity, ε = εmin. The momentum balance of the ring as an entirety is expressed as

ρsolid(1 − εmin)

∫ Rout

Rin

ru̇solid dr = ρsolid(1 − εmin)

∫ Rout

Rin

F∇P · r dr

+ ρsolid(1 − εmin)

∫ Rout

Rin

Fdrag · r dr. (4.19)

As in (4.13), the first and second terms on the right-hand side of (4.19) represent the total
pressure gradient force and the total drag force exerted on the ring with a cross-section of
unit area. The values of F∇P and Fdrag are described by (4.8) and (4.9), respectively.

Since the ring is incompressible, we have

usolid(r) = VinRin

r
, Rin ≤ r ≤ Rout, (4.20)

u̇solid(r) = V̇inRin

r
+ V2

in
r

− (VinRin)
2

r3 , Rin ≤ r ≤ Rout. (4.21)

Integrating u̇solid from the inner to the outer surface of the ring leads to∫ Rout

Rin

u̇solidr dr =
∫ Rout

Rin

(
V̇inRin + V2

in − V2
in

R2
in

r2

)
dr

= V̇inRin(Rout − Rin) + V2
in

(Rout − Rin)
2

Rout
. (4.22)
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Figure 17. Simulation derived and theoretically predicted results for the system 1035-50-1828. (a) Trajectories
of the inner and outer surfaces of the ring as well as the CF. (b) Central pressure evolution. (c) Cumulative
gaseous mass loss ratio.

Substituting (4.8), (4.9) and (4.22) into (4.19) reduces to

(Rout − Rin)ρsolid

[
V̇inRin + V2

in

(
1 − Rin

Rout

)]
= − 1

1 − εmin

∫ Rout

Rin

dPgas/dr · r dr.

(4.23)

Equations (4.20), (4.21) and (4.23) constitute the key governing equations of the ring
dynamics in the ring pulsation sub-model. The evolution of the central gases and the gas
filtration through the ring take place concurrently. The corresponding numerical algorithm
is also presented in Appendix E.

4.3. Validation and applicability of the explosive dispersal model
Figure 17(a) compares the simulation derived and theoretically predicted trajectories of
the inner and outer surfaces of the ring as well as the CF for the system 1035-50-1828. The
consistencies between the numerical results and the theoretical predictions validate the
capacity of the explosive dispersal model in terms of accounting for the ring dynamics.
From figure 17(a) the theoretically predicted Vring, hdense,imp and Rdense,imp are identified,
Vtheo

ring = 9.2 m s−1, htheo
dense,imp = 0.045 m and Rtheo

dense,imp = 0.22 m, which agree well with
their numerically derived counterparts since the derivation rates are 15 %, 24 %, 14 %,
respectively. As to the gaseous evolution, the theoretical model also provides validated
predictions of the central pressure evolution, Pnum

center(t), as well as the cumulative gaseous
mass loss ratio, χnum

gas (t), as shown in figure 17(b,c). The predicted time scale of central
gases, ttheo

gas = 5.68 ms, has a deviation rate of 0.14 %. Since the ring cannot expand to
twice its initial diameter, τ theo

macro approaches infinity, while ξ theo
imp = 0.2, indicating a failed

dispersal, which is consistent with the simulation results where the system 1035-50-1828
indeed produces a failed dispersal.

Besides the macroscale parameters, the model properly accounts for the mesoscale
momentum/energy transportation, especially during the shock compaction phase. As
shown in figure 18(a,b), the model reproduced well the diffusional pressure field Pgas(r, t)
and the transient velocity field of solid phase usolid(r, t) that is observed in the simulation.
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Figure 18. Comparisons of the simulation derived and theoretically predicted radial profiles of Pgas(r, t) (a)
and usolid(r, t) (b) during the shock compaction phase for the system 1035-50-1828.

Figure 19 plots the numerically derived and theoretically predicted time scales of the
ring (figure 19a), ttheo

ring and tnum
ring , as well as the time scales of the central gases (figure 19b),

ttheo
gas and tnum

gas , for all investigated systems. An overall consistency between ttheo
ring and tnum

ring
is discernible, as is the case for ttheo

gas and tnum
gas . Notably, the estimations of the time scale

of the ring via the Gurney equation (3.10), tGurney
ring , are also supplemented in figure 19(a).

Clearly, the consistency between ttheo
ring and tnum

ring is substantially improved compared with

tGurney
ring , especially in the mid- and upper range of the (M/C)* wherein ttheo

ring and tnum
ring do not

exist since the ring cannot expand to twice its initial radius prior to the EIT. The resulting
τ theo

macro for all systems are show in figure 19(c) in comparison with τ num
macro. All systems with

τ theo
macro ∼ O(10−1) indeed result in ideal dispersal since their actual τ num

macro are of the order
of O(10−1). Thereby the theoretical model can successfully identify the ideal dispersal.

For systems with the order of τ theo
macro larger than O(10−1), ξ imp is used to decide whether

they are the validated failed mode. The theoretically predicted ξ theo
imp for all systems are

plotted in figure 19(d) in comparison with ξnum
imp . For the ideal and partial dispersal modes,

ξnum
imp does not exist since the rings disintegrate prior to the first implosion. By contrast,

the ring implosion always occurs in the theoretical model since the ring disintegration is
not accounted for, yielding a finite ξ theo

imp for all systems. The overall (M/C)* dependence
of ξ theo

imp is similar to that of ξnum
imp . It is most noteworthy that the systems denoted by the

light red circular symbols, which are guaranteed to result in a validated failed dispersal, all
dwell in the domain of ξ theo

imp > 0.1 (see the inset of figure 19d), indicating the theoretical
model suffices to identify the validated failed mode.

5. Discussion

Although the explosive dispersal model can successfully identify the ideal and the
validated failed dispersal, it becomes deficient in terms of discerning the partial and
semi-failed dispersal. On the other hand, the (M/C)* dependences of χ and κ seem much
less explicit in the semi-failed dispersal mode as seen in figure 20(a,b). The relatively
wide variability of data indicates the deficiency of the (M/C)* in correlating the dispersal
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Figure 20. The (M/C)* dependences of χ (a) and κ (b) for systems resulting in the semi-failed dispersal.

characteristics of the semi-failed dispersal. The origin of these two problems lies in the
inadequacy of incorporating the microscale gas–particle coupling effect into neither the
theoretical model nor the (M/C)*.

As revealed in § 3.4, the microscale gas–particle coupling, which is manifested by
the particle shedding and pack loosening, significantly influences the ring dynamics,
especially the post-shock compaction phase. Accounting for these particle-scale events
in a continuum-based theoretical model is quite challenging since the underlying physics
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Figure 21. The r–t diagram of Pgas (a), up (b), φp (c) and ε̇vol (d) for the system104-100-2500. (a,b,d) Show
the shock compaction phase while (c) shows a complete dispersal.

is far from being well understood, let alone properly modelling these events. From the
previous and present studies, several primary mechanisms contributing to these events
are identified, such as the spalling of the outmost layer upon compaction wave reflection
off the outer surface of the ring, the packing dilation caused by the inward and outward
expansion waves, particle erosion due to the vortices deposited on the outer surface
as well as the circumferential pressure variation due to the disturbed ring surface.
Developing physics informed models for these processes and integrating them into the
explosive dispersal model will be the focus of the follow-up study. Meanwhile, the various
microscale gas–particle couplings should be characterized by respective non-dimensional
parameters which embody the underlying physics. Potentially, it can help us to devise
more comprehensive complex(es) which better bridge the dispersal systems and dispersal
characteristics.

Another event requiring more attention is the multiple shock and expansion wave
reflections between the centre and the inner surface of the ring at the incipient evolution of
central gases. Figure 21(a,b,d) shows the r–t diagram of Pgas, up and the volumetric strain
rate ε̇vol for the system104-100-2500 during the shock compaction phase, respectively. As
each incident shock reflected from the centre impinges on the inner surface of the ring, a
new CF begins to traverse the ring, as seen in figure 21(b,d). If the trailing CF does not
catch up with the preceding one during the shock compaction phase, up(r) discontinues
across each CF, as shown in figure 21(b). As a result, the ring becomes laminated when
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the inward expansion wave sweeps through the thickness of the ring. The separated outer
layer quickly disintegrates, exposing the inner layer, as shown in the r–t diagram of φp
during the entire dispersal (figure 21c). The ring lamination surely affects the subsequent
ring dynamics, which needs to be properly addressed in the future study.

6. Conclusion

The present work sheds light on the multiscale mechanism governing a variety of explosive
dispersal behaviours of particles which display distinctively different completeness
and uniformity of dispersal. The macroscale gas–particle coupling depends on the
initial impetus imparted on the particles by the explosive source, which underpins the
characteristic of the resulting dispersal. The gas filtration arising from the mesoscale
coupling drains the explosion energy available for the particles. The microscale coupling
is manifested by the particle-scale events, specifically, the particle shedding and the pack
loosening, which diminish the mass of the coherent ring in motion. The macro-, meso-
and microscale gas–particle coupling combined plays a collective and decisive role in
determining the dispersal modes. A non-dimensional modified mass ratio is proposed
to incorporate multiscale coupling effects, whereby the dispersal modes are correlated
with the dispersal systems consisting of macro- and microscale parameters. We proceed
to develop a continuum-based explosive dispersal model which accounts for the macro-
and mesoscale coupling. By properly reproducing the ring dynamics at the early stage,
this model can successfully distinguish the dispersal systems which generate the ideal or
validated failed dispersal.
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Case number M/C P0 (bar) Rin,0 (mm) Rout,0 (mm) φ0 ρp (kg m−3) dp (μm)

1 1035 20 50 150 0.6 1828 50
2 1035 20 80 180 0.6 5625 50
3 1014 17 80 180 0.5 5625 50
4 1014 17 50 150 0.5 1828 50
5 1015 17 60 160 0.5 2955 50
6 1035 20 50 150 0.6 1828 400
7 1035 20 60 160 0.6 2955 50
8 1035 20 60 160 0.6 2955 400
9 1035 20 50 150 0.6 1828 600
10 1035 20 50 150 0.6 1828 800
11 1035 20 80 180 0.6 5625 400
12 1014 17 50 150 0.5 1828 400
13 1015 17 60 160 0.5 2955 400
14 1014 17 80 180 0.5 5625 400
15 1014 17 80 180 0.5 5625 100

Table 1. For caption see on next page.
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Case number M/C P0 (bar) Rin,0 (mm) Rout,0 (mm) φ0 ρp (kg m−3) dp (μm)

16 288 36 40 90 0.5 1503 100
17 287 60 40 90 0.5 2500 100
18 266 108 40 90 0.5 4167 100
19 266 108 40 90 0.5 4167 300
20 287 100 40 90 0.5 4167 900
21 287 60 60 172 0.5 2500 100
22 287 97 40 110 0.5 2500 100
23 287 78 40 90 0.65 2500 100
24 266 71.3 40 70 0.65 4167 900
25 288 36 40 90 0.5 1503 80
26 288 36 40 90 0.5 1503 60
27 288 36 40 90 0.5 1503 120
28 345 60 40 90 0.6 2500 100
29 310 108 40 110 0.6 2500 100
30 490 200 40 180 0.6 2500 100
31 451 108 40 130 0.6 2500 100
32 492 52 40 106 0.5 2500 100
33 500 145 40 170 0.5 2500 100
34 1150 25 40 90 0.5 4167 500
35 575 50 40 90 0.5 4167 560
36 575 50 40 90 0.5 4167 900
37 2875 10 40 90 0.5 4167 900
38 2875 10 40 90 0.5 4167 90
39 2875 10 40 90 0.5 4167 180
40 690 10 40 90 0.5 1000 180
41 4139 5 50 150 0.6 1828 400
42 2264 10 50 150 0.6 2000 200
43 3002 7 60 160 0.6 3000 400
44 1051 10 60 160 0.6 1500 400
45 552 20 80 180 0.6 3000 200
46 18 17 80 180 0.5 100 400
47 24 20 50 150 0.5 50 600
48 102 20 50 150 0.6 180 600
49 283 20 50 150 0.6 500 600
50 9198 36 40 90 0.5 48000 60
51 241 78 40 90 0.65 2100 58
52 241 78 40 90 0.65 2100 80
53 241 78 40 90 0.65 2100 216
54 241 78 40 90 0.65 2100 342
55 137 200 40 70 0.65 6000 900
56 374 60 40 90 0.65 2500 50
57 374 60 40 90 0.65 2500 192
58 374 60 40 90 0.65 2500 412
59 345 60 40 90 0.6 2500 630
60 58 25 40 90 0.5 210 500
61 58 50 40 90 0.5 417 900
62 2875 10 40 90 0.5 4167 62
63 2060 17 60 160 0.5 6000 50
64 2060 17 60 160 0.5 6000 40
65 207 60 40 90 0.6 1500 630
66 345 60 40 90 0.6 2500 400
67 632 78 40 90 0.65 5500 216
68 1035 20 40 90 0.6 2500 100
69 207 100 40 90 0.6 2500 100

Table 1. For caption see on next page.
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Case number M/C P0 (bar) Rin,0 (mm) Rout,0 (mm) φ0 ρp (kg m−3) dp (μm)

70 103 200 40 90 0.6 2500 100
71 692 60 40 121 0.6 2500 100
72 1038 40 40 121 0.6 2500 100
73 1538 27 40 121 0.6 2500 100
74 2076 20 40 121 0.6 2500 100
75 5190 8 40 121 0.6 2500 100
76 172 100 40 90 0.5 2500 100
77 173 60 40 90 0.5 1503 100
78 479 60 40 90 0.5 4167 100
79 599 145 40 170 0.6 2500 100
80 649 145 40 170 0.65 2500 100
81 104 100 40 90 0.5 1503 100
82 224 100 40 90 0.65 2500 100
83 1534 20 40 106 0.6 2500 100
84 4410 21.6 81 171 0.65 2500 100
85 48 183 80 140 0.5 5625 600
86 48 183 50 110 0.5 1934 200
87 862 20 40 90 0.5 2500 100
88 862 20 40 90 0.5 2500 300
89 48 183 50 110 0.5 1934 600
90 55 183 60 120 0.5 3506 200
91 55 183 60 120 0.5 3506 600
92 48 183 80 140 0.5 5625 200
93 48 220 50 110 0.6 1934 200
94 48 220 50 110 0.6 1934 600
95 55 220 60 120 0.6 3506 200
96 55 220 60 120 0.6 3506 600
97 48 220 80 140 0.6 5625 200
98 48 220 80 140 0.6 5625 600
99 9.7 245 40 50 0.5 2500 100
100 9.7 443 40 57 0.5 2500 100
101 9 443 40 54 0.6 2500 100
102 26 336 40 70 0.5 2500 100
103 5 336 40 46 0.6 2500 100
104 27 198 40 57 0.6 2500 100
105 26 91 40 50 0.5 2500 100
106 27 165 40 57 0.5 2500 100
107 53 100 40 57 0.6 2500 100
108 48 220 40 70 0.6 2500 100
109 48 183 40 70 0.5 2500 100
110 97 108 40 70 0.6 2500 100
111 159 55 40 70 0.5 2500 100
112 155 180 40 110 0.5 2500 100
113 191 55 40 70 0.6 2500 100
114 192 90 40 90 0.5 2500 100
115 207 55 40 70 0.65 2500 100
116 287 60 40 90 0.5 2500 100
117 287 78 40 90 0.65 2500 100
118 688 60 40 131 0.5 2500 100
119 692 50 40 121 0.5 2500 100
120 697 44 40 106 0.6 2500 100
121 690 30 40 90 0.6 2500 100
122 805 108 40 170 0.6 2500 100

Table 1. For caption see on next page.
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Case number M/C P0 (bar) Rin,0 (mm) Rout,0 (mm) φ0 ρp (kg m−3) dp (μm)

123 852 30 40 106 0.5 2500 100
124 876 10 40 70 0.5 2500 100
125 796 26 40 90 0.6 2500 100
126 1035 20 40 90 0.6 2500 100
127 1023 30 40 106 0.6 2500 100
128 1014 17 40 90 0.5 2500 100
129 1023 25 40 106 0.5 2500 100
130 2043 48 40 180 0.6 2500 100
131 2069 10 40 90 0.6 2500 100
132 2276 5 40 70 0.65 2500 100
133 2012 18 40 110 0.65 2500 100
134 4903 20 40 180 0.6 2500 100
135 5161 8 40 131 0.5 2500 100
136 5170 8.7 40 121 0.65 2500 100
137 5964 9 40 131 0.65 2500 100
138 4776 7 40 110 0.6 2500 100
139 4765 7.6 40 110 0.65 2500 100
140 6920 6 40 121 0.6 2500 100
141 6973 4.4 40 106 0.5 2500 100
142 6898 3 40 90 0.6 2500 100
143 60 9.7 40 50 0.5 2500 100

Table 1. Parameters in numerical cases.

Appendix A. Details of parameters in each numerical case

Appendix B. Derivation of the completeness and uniformity of the explosive
dispersal

In this appendix, the derivation of the completeness and uniformity of the explosive
dispersal is illustrated. The completeness of the explosive dispersal is characterized by
the parameter χ , which is derived by tallying the mass of particles with an outward radial
velocity mu+ and the total particle mass mring when the ring disintegrates or ceases to
pulsate, χ = mu+/mring. For system 1014-100-2500 whose r–t diagram of φp is presented
in figure 1(e), the ring ceases to pulsate after 30 ms. The distribution of dispersed particles
at 50 ms is presented in figure 3(e). The mass of particles finally dispersed out (coloured
in red) adds up to mu+ = 11.33 kg, the total mass of all particles mring equals 30.63 kg.
Combining mu+ and mring brings us to χ = 0.37.

The uniformity of the dispersed particle cloud is characterized by the parameter κ =
|Rmass − Rmass,homo|/Rmass,homo which assesses the deviation of the mass centre’s radius
of the actual particle cloud, Rmass, from that of the hypothetically homodispersed particle
cloud, Rmass,homo when the average φp inside particle cloud falls to 0.1. Considering the
particle cloud with the inner and outer boundaries of Rin and Rout, the space within Rin and
Rout is discretized into n concentric rings of same radial width R, n = (Rout − Rin)/R.
The circumferentially averaged φp and radius of concentric rings i are denoted as φp,i
and Ri respectively, obeying Ri = Rin + (i − 1)R. The values of Rmass and Rmass,homo are
calculated by (B1) and (B2) respectively,
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Rmass

Rmass,homo

Rin

Rout

Figure 22. The particle distribution when the particle cloud obtains an average φp of 0.1 for system
1014-100-2500. The four circles from the inner corners outwards denote Rin, Rmass, Rmass,homo, Rout,
respectively.

Rmass =

n∑
i=1

[(R2
i − R2

i−1) · φR,i · Ri]

n∑
i=1

[(R2
i − R2

i−1) · φR,i]
, (B1)

Rmass,homo =

n∑
i=1

[(R2
i − R2

i−1) · Ri]

R2
out − R2

in
. (B2)

For system 1014-100-2500, the particle distribution when the particle cloud obtains
an average φp of 0.1 is shown in figure 22, where Rin = 0.065 m and Rout = 0.201 m
are denoted by the blue solid lines. Adopting R = 0.001 m, Rmass = 0.119 m and
Rmass,homo = 0.144 m are obtained from (B1) and (B2), respectively, and denoted by the
red and blue dotted lines in figure 22. Finally κ = |Rmass − Rmass,homo|/Rmass,homo =
0.174.

Appendix C. The determination of propagation depth of the transient diffusional
pressure field

This appendix presents the determination of the propagation depth of DPF, including
two methods working in different scenarios. For systems where the gaseous velocity
exceeds zero before the arrival of the CF, the DPF precedes the CF. The DPF induces the
perturbation of the gas pressure field, which can be traced by the flow field overpressure.
Generally, where the overpressure is equal to 0.1 % of the reflection overpressure
(θ = P5 − Pamb) is considered to be the position of the DPF. So, the DPF could be tracked
with the contour of 0.1% θ . For system 1014-800-1828, as shown in figure 7( f ), the gaseous
velocity exceeds zero before the arrival of the CF, suggesting a faster DPF than CF. In this
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Figure 23. The space–time (r–t) diagrams of dimensionless flow field overpressure θ* for system
1014-800-1828, superimposed on the contour lines of θ .

case, the DPF can be traced with the contour of 0.1 %θ . The space–time (r–t) diagram of
dimensionless flow field overpressure θ* for system 1014-800-1828 is showed in figure 22,
which is converted from the space–time (r–t) diagrams of gaseous pressure Pgas of system
1014-800-1828, namely figure 7(d), with (C1)

θ∗ = P − Pamb

P5 − Pamb
. (C1)

In figure 23, the contour line of θ* is superimposed as the white line, with the contour line
of 0.1 %θ* donated as the DPF.

For systems where the gaseous velocity exceeds zero until the arrival of the CF, the
DPF propagates slower than the CF. The CF brings disturbance to the gas pressure field,
invalidating the method taken to determine the DPF for systems with a faster DPF than
CF. Under this circumstance, the trajectory of the DPF corresponds to the trajectory of the
fluid particle at the initial inner surface of the ring and can be traced with the space–time
(r–t) diagrams of gaseous velocity, as illustrated in figure 24. The radial position of the
fluid particle at time t can be expressed as

x =
∫ t

0
ugas dt. (C2)

Where ugas denotes the velocity of the fluid particle that varies with time. Figure 7(e)
shows the space–time (r–t) diagrams of gaseous velocity for system 1014-50-1828, where
gaseous velocity exceeds zero until the arrival of CF, implying a slower DPF than CF.
In this circumstance, the trajectory of DPF, which is denoted by the white dotted line in
figure 7(e), is obtained from the gaseous velocity field combining (C2).

With the trajectory of DPF, the time when DPF arrives at outer edge of the ring tDPF is
obtained, which serves to compute the average absolute velocity of interstitial gas flows,
Vgas = (RDPF − Rin,0)/tDPF. To gain VDFP, namely the velocity of the local interstitial
gas flows relative to the solid skeleton, we continue to subtract the averaged particle
velocity at DPF, Vsolid. Finally, VDFP = Vgas − Vsolid. The numerical results of Vgas(Vsolid)
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uf  (0)

uf  (�t)
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x (�t) = uf  (�t) ∙ �t

�t
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�t

�t

r

t

Figure 24. Schematic diagram of the fluid particle trace entering the particle ring from the inner surface
when t = 0.

for the systems 1035-50-1828 and 1035-800-1828 are 9.8 m s−1 (7.5 m s−1) and 606 m s−1

(0 m s−1), respectively. So, the numerical results of VDPF for systems 1035-50-1828 and
1035-800-1828 are 2.3 and 606 m s−1, respectively.

Appendix D. Derivation of the characteristic time scale of an individual particle

The ring thinning effect is determined by the competition between the macroscale ring
implosion and the microscale particle shedding, while the latter could be quantified with
the time an individual particle takes to move its characteristic length scale, namely tp. In
this appendix, we present a detailed account of the derivation of tp.

Considering an initially static particle with a volume of Vp. As the particle is inside the
ring, it shares the same pressure gradient field with the ring. Assuming the pressure falls
by 1 atm linearly across the thickness of the ring, the pressure gradient force applied to the
individual particle could be estimated by (D1)

F∇P = PambVp

hring
. (D1)

Subjected to the pressure gradient force, the particle starts to move from static with the
acceleration ap

ap = F∇P

Vpρsolid
= PambVp

hringVpρsolid
= Pamb

hringρsolid
. (D2)

Suppose the particle keeps a constant acceleration ap, so the movement distance x acts
as a function of time t

1
2 ap · t2 = x. (D3)

Considering the particle diameter, dp, as the characteristic length scale of an individual
particle, substituting x with dp, we obtain the time the particle takes to move its
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characteristic length scale

tp =
√

2dphringρp

Pamb
. (D4)

Appendix E. Numerical solutions of the theoretical model

This appendix presents the numerical iterative algorithm of the shock compaction and
ring pulsation models introduced in § 4.2. To distinguish the same variables in different
models, subscripts c and p are applied to denote variables in the shock compaction and ring
pulsation models, respectively. The superscript j represents the jth time step. Both of the
models are constructed in the coordinate system fixed to the inner surface of the ring, with
space discretized into nodes equally along the radial direction. The relative and absolute
coordinate of node i at the jth time step is denoted as r j

i and R j
i , respectively, obeying

r j
i = R j

i − R j
in. Specially, for convenience, we adopt r j

CF(R j
CF), r j

out(R
j
out) to denote the

relative (absolute) coordinates of CF and outer radii, respectively. The value of R j
i ranges

from 0 to R j
out to solve the evolution of the thermodynamic state of the central gases and

the state of the particle ring.
For the shock compaction model, the initial condition ( j = 0) corresponds to the

impingement of the incident shock on the internal surface of the ring, leading to the
following equations:

R0
CF,c = R0

in,c. (E1)

The initial pressure distribution is described with (E2)

P0
gas,c(r

0
i,c

) =
{

P, r0
i,c ≤ 0

Pamb, 0 < r0
i,c ≤ r j

out,c
. (E2)

Substituting (4.8–4.9), (4.15–4.16) and (4.18) into (4.13) leads to⎡⎣V̇j+1
in,c R j

in,c + (V j
in,c)

2 − (V j
in,c)

2
R j

in,c

R j
CF,c

⎤⎦ (R j
CF,c − R j

in,c)

= − (1 − ε0)

(1 − εmin)
V j

in,cR j
in,cV j

CF,c + ∫ R j
CF,c

R j
in,c

−P j
gas,c(R

j
i+1,c) − P j

gas,c(R
j
i,c)

(1 − εmin)ρsolidr
R j

i,c dr.

(E3)
Combining (E1) and (E3) to gain the initial absolute velocity of the internal surface

V0
in,c =

√
P0 − Pamb

ρsolid

(ε0 − εmin)

(1 − εmin)(1 − ε0)
, (E4)

substituting V0
in,c into (4.18) results to the initial absolute velocity of the CF

V0
CF,c =

√
(P0 − Pamb)

ρsolid

(1 − εmin)

(1 − ε0)(ε0 − εmin)
. (E5)

The initial absolute velocity of particle at CF is expressed by

u0
solid,CF = V0

in,cR0
in,c

R0
CF,c

. (E6)
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In the compaction phase, generally, the ring is divided into three parts, namely the
compacted band (0 < ri,c < r0

CF,c), the transitional zone (r0
CF,c < ri,c < r0

CF,c + wCF) and
the uncompacted band (r0

CF,c + wCF < ri,c < r0
out,c). Particles within the compacted band

hold εmin, while particles within the uncompacted region keep ε0, between which, namely
the transitional zone, the porosity there is approximated with the Gauss error function
(4.10). As for the central gas region (ri,c < 0), there exists no particle, so porosity there is
set to 0.999 instead of unity to avoid a zero denominator when compute the permeability
with (E8). To sum up, the initial porosity distribution is described as (E7)

ε0
c (r

0
i,c) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0.999, r0
i,c < 0,

εmin, 0 ≤ r0
i,c ≤ r0

CF,c,

εmin + ε0

2
− ε0 − εmin

2
· erf

(
4

r0
i,c − r0

CF,c

wCF

)
, r0

iCF,c
≤ r0

i,c
≤ r0

CF,c + wCF,

ε0, r0
CF,c + wCF < r0

i,c ≤ r0
out,c,

(E7)

k0
c(r

0
i,c) = 1

150

[ε0
c (r

0
i,c)]

3

[1 − ε0
c (r

0
i,c)]

2 d2
p, r0

i,c ≤ r0
out,c. (E8)

Similarly, the distribution of particle velocity is depicted with four piecewise functions
as shown in (E9). The absolute velocity of particles within the compacted band (0 < ri,c <

r0
CF,c) is proportional to 1/R to ensure mass conservation (4.16); the velocity of particles

inside the transitional zone (r0
CF,c < ri,c < r0

CF,c + wCF) are approximated with the Gauss
error function (4.11); while particles within the uncompacted band (r0

CF,c + wCF < ri,c <

r0
out,c) remain static. Where there exists no particle (ri,c < 0), the absolute particle velocity

is set to zero, resulting in a negative relative particle velocity. In summary, the initial
relative particle velocity distribution is described as (E9)

U0
solid,c(r

0
i,c) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−V0
in,c, r0

i,c < 0,

V0
in,cR0

in,c

R0
i,c

− V0
in,c, 0 ≤ r0

i,c ≤ r0
CF,c,

u0
solid,CF

2
− u0

solid,CF

2
· erf

(
4

r0
i,c − r0

CF,c

wCF

)
− V0

in,c, r0
CF,c ≤ r0

i,c
≤ r0

CF,c + wCF,

−V0
in,c, r0

CF,c + wCF < r0
i,c ≤ r0

out,c.

(E9)

Below, the time marching scheme for the shock compaction model is presented. Here,
R j+1

in,c (R j+1
CF,c) is updated using R j

in,c(R
j

CF,c) and V j
in,c(V

j
CF,c), as described in (E10) and

(E11)

Rj+1
in,c = R j

in,c + V j
in,c · t, (E10)

Rj+1
CF,c = R j

CF,c + V j
CF,c · t. (E11)

The absolute coordinate is transformed into relative coordinate with (E12)

rj+1
i = Rj+1

i − Rj+1
in . (E12)
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Specially, the relative coordinates of the inner surface and CF are expressed by

rj+1
in,c = 0, (E13)

rj+1
CF,c = r j

CF,c + (V j
CF,c − V j

in,c) · t, (E14)

where t is a sufficiently small interval of time estimated by the time required for the CF
to reach the external surface in the simulation. With updated R j+1

in,c and R j+1
CF,c, similar to

the derivation of (E7), the porosity distribution is updated with (E15)

εj+1
c (rj+1

i,c ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0.999, rj+1
i,c < 0,

εmin, 0 ≤ rj+1
i,c ≤ rj+1

CF,c,

εmin + ε0

2
− ε0 − εmin

2
· erf

(
4

rj+1
i,c − rj+1

CF,c

wCF

)
, rj+1

CF,c < rj+1
i,c ≤ rj+1

CF,c + wCF,

ε0, rj+1
CF,c + wCF < rj+1

i,c ≤ rj+1
out,c.

(E15)

The permeability is correspondingly updated with (E16)

kj+1
c

(
rj+1

i,c

)
= 1

150

[
ε

j
c

(
rj+1

i,c

)]3

[
1 − ε

j
c

(
rj+1

i,c

)]2 d2
p, rj+1

i,c ≤ rj+1
out,c. (E16)

The discrete scheme of the (4.5) is shown in (E17), where the first-order backward
difference is applied to the time term and the central difference at half-nodes (i − 1/2
and i + 1/2) is used for the space term

Pj+1
gas,c

(
rj+1

i,c

)
= [(A − B) · dt + C]

ε
j+1
c

(
rj+1

i,c

) , 0 < rj+1
i,c < rj+1

out,c, (E17a)

A =
k j

c

(
rj+1

i+1/2,c

)
P j

gas,c

(
rj+1

i+1/2,c

)
rj+1

i+1/2,c

P j
gas,c

(
rj+1

i+1,c

)
− P j

gas,c

(
rj+1

i,c

)
r

μrj+1
i,c r

−
k j

c

(
rj+1

i−1/2,c

)
P j

gas,c

(
rj+1

i−1/2,c

)
rj+1

i−1/2,c

P j
gas,c

(
rj+1

i,c

)
− P j

gas

(
rj+1

i−1,c

)
r

μr j
i,cr

,

(E17b)

B =

ε
j
c

(
rj+1

i+1/2,c

)
P j

gas,c

(
rj+1

i+1/2,c

)
U j

solid,c

(
rj+1

i+1/2,c

)
rj+1

i+1/2,c

−ε
j
c

(
rj+1

i−1/2,c

)
P j

gas,c

(
rj+1

i−1/2,c

)
U j

solid,c

(
rj+1

i−1/2,c

)
rj+1

i−1/2,c

r j
i,cr

, (E17c)

C = ε j
c

(
rj+1

i,c

)
P j

gas,c

(
rj+1

i,c

)
. (E17d)
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The variables at half-nodes (i − 1/2, i + 1/2) are calculated with the values of side nodes
as shown in (E18)–(E21)

k j
c

(
r j

i−1/2

)
=

2k j
c

(
r j

i−1,c

)
· k j

c

(
r j

i,c

)
k j

c

(
r j

i−1,c

)
+ k j

c

(
r j

i,c

) , k j
c

(
r j

i+1/2

)
=

2k j
c

(
r j

i+1,c

)
· k j

c

(
r j

i,c

)
k j

c

(
r j

i+1,c

)
+ k j

c

(
r j

i,c

) ,

(E18a,b)

ε j
c

(
r j

i−1/2,c

)
=

2ε
j
c

(
r j

i−1,c

)
· ε

j
c

(
r j

i,c

)
ε

j
c

(
r j

i−1,c

)
+ ε

j
c

(
r j

i,c

) , ε j
c

(
r j

i+1/2,c

)
=

2ε
j
c

(
r j

i+1,c

)
· ε

j
c

(
r j

i,c

)
ε

j
c

(
r j

i+1,c

)
+ ε

j
c

(
r j

i,c

) ,

(E19a,b)

P j
gas,c

(
r j

i−1/2,c

)
=

P j
gas,c

(
r j
−1,c

)
+ P j

gas,c

(
r j

i,c

)
2

,

P j
gas,c

(
r j

i+1/2,c

)
=

P j
gas,c

(
r j

i,c

)
+ P j

gas,c

(
r j

i+1,c

)
2

, (E20a,b)

U j
solid,c

(
r j

i−1/2,c

)
=

U j
solid,c

(
r j

i−1,c

)
+ U j

solid,c

(
r j

i+,c

)
2

,

U j
solid,c

(
r j

i+1/2,c

)
=

U j
solid,c

(
r j

i,c

)
+ U j

solid,c

(
r j

i+1,c

)
2

. (E21a,b)

The pressure on the outer surfaces of the ring satisfies the boundary condition

Pj+1
gas,c

(
rj+1

out,c

)
= Pamb. (E22)

Considering the volumetric increase in the gas pocket and the mass outflow due to the
infiltration effect, we update ρ

j
center,c with (E23)

ρ
j+1
center,c = ρ

j
center,c

(
R j

in,c

)2

(
Rj+1

in,c

)2 + 2
ρ

j
center,ck j

c

(
r j

0,c

)
μR j

in,c

⎛⎝P j
gas,c

(
r j

1,c

)
− P j

gas,c

(
r j

0,c

)
r

⎞⎠t.

(E23)

Assuming an isentropic expansion for the central gases, we update the inner pressure
with ρ

j+1
center,c

Pj+1
gas,c

(
rj+1

i,c

)
= P0(

ρ0
center,0

)γ

(
ρ

j+1
center,c

)γ

, rj+1
i,c ≤ 0. (E24)
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Substituting Pj+1
gas,c, Rj+1

in,c, Rj+1
CF,c, V j

in,c, V j
CF,c into (E25) to update the acceleration of the

internal surface

V̇j+1
in,c = − (1 − ε0)

(1 − εmin)

V j
in,cV j

CF,c(
Rj+1

CF,c − Rj+1
in,c

)

+

∫ rj+1
CF,c

rj+1
0,c

−[Pj+1
gas,c

(
rj+1

i+1,c

)
− P j

gas,c

(
rj+1

i,c

)
]Rj+1

i dr(
Rj+1

CF,c − Rj+1
in,c

)
Rj+1

in,c (1 − εmin) ρsolidr
+
(

V j
in,c

)2

Rj+1
CF,c

− V j
in,c

Rj+1
in,c

. (E25)

The parameter V̇j+1
in,c in turn serves to update Vj+1

in

Vj+1
in,c = V j

in,c + V̇j+1
in,c · t. (E26)

Here, Vj+1
CF,c satisfies the Rankine–Huguenot condition (4.18) and is updated by (E27)

Vj+1
CF,c = Vj+1

in,c Rj+1
in,c

Rj+1
CF,c

(
1 − εmin

ε0 − εmin

)
. (E27)

The parameter uj+1
solid,CF meets (E28)

uj+1
solid,CF = Vj+1

in,c Rj+1
in,c

Rj+1
CF,c

. (E28)

Analogous to the (E9), Vj+1
in,c and uj+1

solid,CF are used to update the distribution of absolute
particle velocity as shown in (E29)

Uj+1
solid,c(r

j+1
i,c ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−Vj+1
in,c , rj+1

i,c < 0

Vj+1
in,c Rj+1

in,c

Rj+1
i,c

− Vj+1
in,c , 0 ≤ rj+1

i,c ≤ rj+1
CF,c

uj+1
solid,CF

2
− uj+1

solid,CF

2
· erf

(
4

rj+1
i − Rj+1

CF,c

wCF

)
− Vj+1

in,c , rj+1
CF,c < rj+1

i,c ≤ rj+1
CF,c + wCF

Vj+1
in,c , rj+1

CF,c + wCF < rj+1
i,c ≤ rj+1

out,c

.

(E29)

Equations (E10)–(E29) are solved iteratively until the CF arrives at the external surface,

R
jcomp
CF,c = R0

out, where jcomp represents the end time step of the shock compaction model.
The thermodynamic state of the central gases and the state of the particle ring at tcomp

sets the initial conditions for the ring pulsation model

P0
gas,p = P

jcomp
gas,c, ρ0

center,p = ρ
jcomp
center,c, R0

in,p = R
jcomp
in,c , R0

out,p = Rout,0, U0
solid,p = U

jcomp
solid,c,

V0
in,p = V

jcomp
in,c , V0

out,p = V
jcomp
in,c Rout,0/R

jcomp
in,c , ε0

p = ε
jcomp
c , k0

p = k
jcomp
c .

⎫⎬⎭
(E30)
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Below, the time marching scheme for the ring pulsation model is presented. Here, Rj+1
in,p

(Rj+1
out,p) is updated with R j

in,p (R j
out,p) and V j

in,p (V j
out,p), as described in (E31)–(E32)

Rj+1
in,p = R j

in,p + V j
in,p · t, (E31)

Rj+1
out = R j

out + V j
out · t. (E32)

The absolute coordinate is transformed into relative coordinate with (E33)

r j
i,p = R j

i,p − R j
in,p. (E33)

Specially, the relative coordinates of inner and outer surfaces are expressed by

rj+1
in,c = 0, (E34)

rj+1
out,p = r j

out,p + (V j
out,p − V j

in,p) · t. (E35)

The porosity of the ring keeps εmin due to the assumption of an incompressible ring and
mass conservation. The porosity of the central gas region (r0

i,p < 0) is set to 0.999 instead

of unity to avoid a zero denominator. Substituting r j+1
out,p into (E36) to update ε

j+1
p , we in

turn update the permeability with (E37)

εj+1
p =

⎧⎨⎩0.999, rj+1
i,p < 0

εmin, 0 ≤ rj+1
i,p ≤ rj+1

out,p

, (E36)

kj+1
p (rj+1

i,p ) = 1
150

[
ε

j+1
p rj+1

i,p

]3

[
1 − ε

j+1
p

(
rj+1

i,p

)]2 d2
p, rj+1

i,p ≤ rj+1
out,p. (E37)

The pressure distribution within the ring is updated with (E38)

Pj+1
gas,p

(
rj+1

i,p

)
= [(A − B) · dt + C]

ε
j+1
p

(
rj+1

i,p

) , 0 < rj+1
i < rj+1

out,p, (E38a)

A =
k j

p

(
r j

i+1/2,p

)
P j

gas,p

(
r j

i+1/2,p

)
r j

i+1/2,p

P j
gas,p

(
r j

i+1,p

)
− P j

gas,p

(
r j

i,p

)
r

μr j
i+1/2,pr

−
k j

p

(
r j

i−1/2,p

)
P j

gas,p

(
r j

i−1/2,p

)
r j

i−1/2,p

P j
gas,p

(
r j

i,p

)
− P j

gas,p

(
r j

i−1,p

)
r

μr j
i−1/2,pr

,

(E38b)
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B =

ε
j
p

(
r j

i+1/2,p

)
P j

gas,p

(
r j

i+1/2,p

)
V j

solid,p

(
r j

i+1/2,p

)
r j

i+1/2,p

−ε
j
p

(
r j

i−1/2,p

)
P j

gas,p

(
r j

i−1/2,p

)
V j

solid,p

(
r j

i−1/2,p

)
r j

i−1/2,p

r j
i,pr

, (E38c)

C = ε j
p

(
r j

i,p

)
P j

gas,p

(
r j

i,p

)
. (E38d)

Where the variables at half-nodes (i − 1/2, i + 1/2) are calculated with the values of side
nodes

k j
p

(
r j

i−1/2,p

)
=

2k j
p

(
r j

i−1,p

)
· k j

p

(
r j

i,p

)
k j

p

(
r j

i−1,p

)
+ k j

p

(
r j

i

) , k j
p

(
r j

i+1/2,p

)
=

2k j
p

(
r j

i+1,p

)
· k j

p

(
r j

i,p

)
k j

p

(
r j

i+1,p

)
+ k j

p

(
r j

i,p

)
(E39a,b)

ε
j
p

(
r j

i−1/2,p

)
=

2ε
j
p

(
r j

i−1,p

)
· ε

j
p

(
r j

i,p

)
ε

j
p

(
r j

i−1,p

)
+ ε

j
p

(
r j

i,p

) , ε
j
p

(
r j

i+1/2,p

)
=

2ε
j
p

(
r j

i+1,p

)
· ε

j
p

(
r j

i,p

)
ε

j
p

(
r j

i+1,p

)
+ ε

j
p

(
r j

i,p

)
(E40a,b)

P j
gas,p

(
r j

i−1/2,p

)
=

P j
gas,p

(
r j

i−1,p

)
+ P j

gas,p

(
r j

i,p

)
2

,

P j
gas,p

(
r j

i+1/2,p

)
=

P j
gas,p

(
r j

i,p

)
+ P j

gas,p

(
r j

i+1,p

)
2

(E41a,b)

U j
solid,p

(
r j

i−1/2,p

)
=

U j
solid,p

(
r j

i−1,p

)
+ U j

solid,p

(
r j

i,p

)
2

,

U j
solid,p

(
r j

i+1/2,p

)
=

U j
solid,p

(
r j

i,p

)
+ U j

solid,p

(
r j

i+1,p

)
2

,

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (E42)

where ρ
j+1

center,p is acquired by accounting for the volumetric increase in the gas pocket and
the mass outflow due to the infiltration effect (E43)

ρ
j+1
center,p = ρ

j
center,p

(
R j

in,p

)2

(
Rj+1

in,p

)2 + 2
ρ

j
center,pk j

p

(
r j

0,p

)
μR j

in,p

⎛⎝P j
gas,p

(
r j

1

)
− P j

gas,p

(
r j

0

)
r

⎞⎠t.

(E43)
Assuming an isentropic expansion for the central gases we obtain P j+1

gas,p with (E44)

Pj+1
gas,p

(
rj+1

i,p

)
= P0(

ρ0
center,0

)γ

(
ρ

j+1
center

)γ

, rj+1
i,p ≤ 0, (E44)
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and substituting Pj+1
gas,p, Rj+1

in,p, Rj+1
out,p and V j

in,p, V j
CF,p into (E45) to update the acceleration

of the internal surface at j + 1 time step we get

V̇j+1
in,p =

(
V j

in,p

)2

Rj+1
out,p

+

∫ rj+1
out,p

rj+1
0,p

−
[
Pj+1

gas

(
rj+1

i+1,p

)
− Pj+1

gas

(
rj+1

i,p

)] (
Rj+1

i,p

)
dr(

Rj+1
out,p − Rj+1

in,p

)
Rj+1

in,pr (1 − εmin) ρsolid

−
(

V j
in,p

)2

Rj+1
in,p

,

(E45)
which serves to acquire Vj+1

in,p

Vj+1
in,p = V j

in,p + V̇j+1
in,p · t. (E46)

Substituting Vj+1
in,p into (E47) we gain Vj+1

out,p

Vj+1
out,p =

Vj+1
in,p · Rj+1

in,p

Rj+1
out,p

. (E47)

The relative particle velocity in the central gas region (r j
i,p < 0) is set as −V j

in,p as
stagnate in the absolute coordinate. Applying the assumption of an incompressible ring
with mass conservation, the absolute particle velocity within the ring is proportional to
1/R.
In conclusion, the relative particle velocity distribution follows

Uj+1
solid,p

(
rj+1

i,p

)
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−Vj+1

in,p, rj+1
i,p < 0

Vj+1
in,pRj+1

in,p

rj+1
i,p + Rj+1

in,p

− Vj+1
in,p, 0 ≤ rj+1

i,p ≤ rj+1
out,p

. (E48)

Equations (E31)–(E48) are solved iteratively until presumably the expansion-to-contraction
of the ring occurs, Vout < 0.
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