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Abstract

We prove the standard conjectures for complex projective varieties that are deformations
of the Hilbert scheme of points on a K3 surface. The proof involves Verbitsky’s theory of
hyperholomorphic sheaves and a study of the cohomology algebra of Hilbert schemes
of K3 surfaces.

1. Introduction

An irreducible holomorphic symplectic manifold is a simply connected compact Kähler manifold
X, such that H0(X, Ω2

X) is generated by an everywhere non-degenerate holomorphic two-form
(see [Bea83, Huy99]).

Let S be a K3 surface and S[n] the Hilbert scheme (or Douady space) of length n zero-
dimensional subschemes of S. Beauville proved in [Bea83] that S[n] is an irreducible holomorphic
symplectic manifold of dimension 2n. If X is a smooth compact Kähler manifold deformation-
equivalent to S[n], for some K3 surface S, then we say that X is of K3[n]-type. The variety
X is then an irreducible holomorphic symplectic manifold. The odd Betti numbers of X
vanish [Got94].

The moduli space of manifolds of K3[n]-type is smooth and 21-dimensional, if n> 2, while
that of K3 surfaces is 20-dimensional [Bea83]. It follows that if S is a K3 surface, a general Kähler
deformation of S[n] is not of the form S′[n] for a K3 surface S′. The same goes for projective
deformations. Indeed, a general projective deformation of S[n] has Picard number 1, whereas for
a projective S, the Picard number of S[n] is at least 2.

In this note, we prove the standard conjectures for projective varieties of K3[n]-type. Let us
recall general facts about the standard conjectures.

In the paper [Gro69] of 1968, Grothendieck states those conjectures concerning the existence
of some algebraic cycles on smooth projective algebraic varieties over an algebraically closed
ground field. Here we work over C. The Lefschetz standard conjecture predicts the existence of
algebraic self-correspondences on a given smooth projective variety X of dimension d that give
an inverse to the operations

H i(X)→H2d−i(X)
given by the cup-product d− i times with a hyperplane section, for all i6 d. Above and
throughout the rest of the paper, the notation H i(X) stands for singular cohomology with
rational coefficients.
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Over the complex numbers, the Lefschetz standard conjecture implies all the standard
conjectures. If it holds for a variety X, it implies that numerical and homological equivalence
coincide for algebraic cycles on X, and that the Künneth components of the diagonal of X ×X
are algebraic. We refer to [Kle68] for a detailed discussion.

Though the motivic picture has tremendously developed since Grothendieck’s statement of
the standard conjectures, very little progress has been made in their direction. The Lefschetz
standard conjecture is known for abelian varieties [Lie68], and in degree 1, where it reduces to
the Hodge conjecture for divisors. The Lefschetz standard conjecture is also known for varieties
X, for which H∗(X) is isomorphic to the Chow ring A∗(X), see [Kle94]. Varieties with the
latter property include flag varieties, and smooth projective moduli spaces of sheaves on rational
Poisson surfaces [ES93, Mar07].

In the paper [Ara06], Arapura proves that the Lefschetz standard conjecture holds for
uniruled threefolds, unirational fourfolds, the moduli space of stable vector bundles over a smooth
projective curve, and for the Hilbert scheme S[n] of every smooth projective surface, see [Ara06,
Corollaries 4.3, 7.2 and 7.5]. He also proves that if S is a K3 or abelian surface, H an ample
line-bundle on S, and M a smooth and compact moduli space of Gieseker–Maruyama–Simpson
H-stable sheaves on S, then the Lefschetz standard conjecture holds forM (see [Ara06, Corollary
7.9]). Those results are obtained by showing that the motive of those varieties is very close, in a
certain sense, to that of a curve or a surface. Aside from those examples and ones obtained by
specific constructions from them (e.g. hyperplane sections, products, projective bundles, etc.),
very few cases of the Lefschetz standard conjecture seem to be known.

The main result of this note is the following statement.

Theorem 1.1. The Lefschetz standard conjecture holds for every smooth projective variety of
K3[n]-type.

Since the Lefschetz standard conjecture is the strongest standard conjecture in characteristic
zero, we get the following corollary.

Corollary 1.2. The standard conjectures hold for any smooth projective variety of K3[n]-type.

Note that by the remarks above, Theorem 1.1 does not seem to follow from Arapura’s results,
as a general variety of K3[n]-type is not a moduli space of sheaves on any K3 surface.

Theorem 1.1 is proven in § 8. The degree 2 case of the Lefschetz standard conjecture, for
projective varieties of K3[n]-type, is already known, by results of [Cha10], combined with [Mar,
Theorem 1.6]. Section 2 gives general results on the Lefschetz standard conjecture. Sections 3–5
introduce the algebraic cycles we need for the proof, while §§ 6 and 7 contain results on the
cohomology algebra of the Hilbert scheme of K3 surfaces.

Unless otherwise specified, we will consider K-groups, cohomology groups, etc. with rational
coefficients. For instance, K(X, Z) will denote the K-group of X with integer coefficients, and
K(X) will by definition denote K(X, Z)⊗Q.

2. Preliminary results on the Lefschetz standard conjecture

Let X be a smooth projective variety of dimension d. Let ξ ∈H2(X) be the cohomology class
of a hyperplane section of X. According to the hard Lefschetz theorem, for all i ∈ {0, . . . , d},
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cup-product with ξd−i induces an isomorphism

Ld−i := ∪ξd−i :H i(X)→H2d−i(X).

The Lefschetz standard conjecture was first stated in [Gro69, Conjecture B(X)]. It is the
following.

Conjecture 2.1. Let X and ξ be as above. Then for all i ∈ {0, . . . , d}, there exists an algebraic
cycle Z of codimension i in the product X ×X such that the correspondence

[Z]∗ :H2d−i(X)→H i(X)

is the inverse of ∪ξd−i.

If this conjecture holds for some specific i on X, we will say that the Lefschetz conjecture
holds in degree i for the variety X. It is known that for the conjecture to hold, it is enough to
require for the morphism [Z]∗ above to be any isomorphism, see [Kle68, Theorem 4.1].

We will derive Theorem 1.1 as a consequence of Theorem 4.1 and Corollary 6.2 below. In this
section, we prove some general results we will need. The reader can consult [Ara06, §§ 1 and 4]
for related arguments, and [And96] for a more general use of polarizations and semi-simplicity.
Let us first state an easy lemma.

Lemma 2.2. Let X be a smooth projective variety of dimension d. Let i6 d be an integer.

(1) Assume i= 2j is even, and let α ∈H2j(X) be the cohomology class of a codimension j
algebraic cycle in X. Then there exists a cycle Z of codimension i= 2j in X ×X such that the
image of the correspondence

[Z]∗ :H2d−2j(X)→H2j(X)

contains α.

(2) Assume that X satisfies the Lefschetz standard conjecture in degree up to i− 1. Then
X ×X satisfies the Lefschetz standard conjecture in degree up to i− 1.
Let j and k be two positive integers with i= j + k. Then there exists a cycle Z of codimension
i in (X ×X)×X such that the image of the correspondence

[Z]∗ :H4d−i(X ×X)→H i(X)

contains the image of Hj(X)⊗Hk(X) in Hj+k(X) =H i(X) by cup-product.

Proof. Let α ∈H2j(X) be the cohomology class of a codimension j algebraic cycle T in X. Let Z
be the codimension i= 2j algebraic cycle T × T in X ×X. Since the image in H i(X)⊗H i(X)
of the cohomology class of Z in H2i(X ×X) is α⊗ α, the image of the correspondence

[Z]∗ :H2d−i(X)→H i(X)

is the line generated by α. This proves (1).
Let us prove the first part of (2). We repeat some of Kleiman’s arguments in [Kle68]. Assume

that X satisfies the Lefschetz standard conjecture in degree up to i− 1. We want to prove that
X ×X satisfies the Lefschetz standard conjecture in degree up to i− 1. By induction, we only
have to prove that X ×X satisfies the Lefschetz standard conjecture in degree i− 1.

For any j between 0 and i− 1, there exists a codimension j algebraic cycle Zj in X ×X such
that the correspondence

[Zj ]∗ :H2d−j(X)→Hj(X)
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is an isomorphism. For k between 0 and 2d, let πk ∈H2d−k(X)⊗Hk(X)⊂H2d(X ×X) be
the kth Künneth component of the diagonal. By [Kle68, Lemma 2.4], the assumption on X
implies that the elements π0, . . . , πi−1, π2d−i+1, . . . , π2d are algebraic. Identifying the πj with
the correspondence they induce, this implies that for all j between 0 and i− 1, the projections

πj :H∗(X)→Hj(X) ↪→H∗(X)

and

π2d−j :H∗(X)→H2d−j(X) ↪→H∗(X)

are given by algebraic correspondences. Replacing the correspondence [Zj ]∗ by [Zj ]∗ ◦ π2d−j ,
which is still algebraic, we can thus assume that the morphism

[Zj ]∗ :H2d−k(X)→H2j−k(X)

induced by [Zj ] is zero unless k = j.
Now consider the codimension i− 1 cycle Z in (X ×X)× (X ×X) defined by

Z =
i−1∑
j=0

Zj × Zi−1−j .

We claim that the correspondence

[Z]∗ :H4d−i+1(X ×X)→H i−1(X ×X)

is an isomorphism.
Fix j between 0 and i− 1. The hypothesis on the cycles Zj implies that the correspondence

[Zj × Zi−1−j ]∗ :H4d−i+1(X ×X)→H i−1(X ×X)

maps the subspace H2d−k(X)⊗H2d−i+1+k(X) of H4d−i+1(X ×X) to zero unless k = j, and it
maps H2d−j(X)⊗H2d−i+1+j(X) isomorphically onto Hj(X)⊗H i−1−j(X). The claim follows,
as does the first part of (2).

For the second statement, let j and k be as in the hypothesis. Since j (respectively k) is smaller
than or equal to i− 1, X satisfies the Lefschetz standard conjecture in degree j (respectively k).
As a consequence, there exists a cycle T (respectively T ′) in X ×X such that the morphism

[T ]∗ :H2d−j(X)→Hj(X)

(respectively [T ′]∗ :H2d−k(X)→Hk(X)) is an isomorphism. Consider now the projections p13

and p23 from X ×X ×X to X ×X forgetting the second and first factor respectively, and let
Z in CH i(X ×X ×X) be the intersection of p∗13T and p∗23T

′. We view Z as a correspondence
between the first two factors and the third. Since the cohomology class of Z is just the cup-
product of that of p∗13T and p∗23T

′, it follows that the image of the correspondence

[Z]∗ :H4d−i(X ×X)→H i(X)

contains the image of Hj(X)⊗Hk(X) in Hj+k(X) =H i(X) by cup-product. 2

The following result appears in [Cha10, Proposition 8].

Theorem 2.3. Let X be a smooth projective variety of dimension d, and let i6 d be an integer.
Then the Lefschetz conjecture is true in degree i for X if and only if there exists a disjoint union
S of smooth projective varieties of dimension l > i satisfying the Lefschetz conjecture in degree
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up to i− 2 and a codimension i cycle Z in X × S such that the morphism

[Z]∗ :H2l−i(S)→H i(X)

induced by the correspondence Z is surjective.

The following statement is an immediate corollary of Lemma 2.2 and Theorem 2.3.

Corollary 2.4. Let X be a smooth projective variety of dimension d, and let i6 d be an
integer. Suppose that X satisfies the Lefschetz standard conjecture in degree up to i− 1.

Let Ai(X)⊂H i(X) be the subspace of classes, which belong to the subring generated by
classes of degree <i, and let Algi(X)⊂H i(X) be the subspace of H i(X) generated by the
cohomology classes of algebraic cycles.1

Assume that there is a cycle Z of codimension i inX ×X such that the image of the morphism

[Z]∗ :H2d−i(X)→H i(X)

maps surjectively onto the quotient space H i(X)/[Algi(X) +Ai(X)]. Then X satisfies the
Lefschetz standard conjecture in degree i.

Proof. We use Lemma 2.2. Let α1, . . . , αr be a basis for Algi(X). We can find codimension i
cycles Z1, . . . , Zr in X ×X and (Zj,k)j,k>0,j+k=i in (X ×X)×X, such that the image of the
correspondence

[Zl]∗ :H2d−i(X)→H i(X)

contains αl for 1 6 l 6 r, and such that the image of the correspondence

[Zj,k]∗ :H4d−i(X ×X)→H i(X)

contains the image of Hj(X)⊗Hk(X) in Hj+k(X) =H i(X), for j + k = i.
We proved that X ×X satisfies the Lefschetz standard conjecture in degree up to i− 1.

The disjoint union of the cycles Z ×X, (Zl ×X)16l6r and (Zj,k)j,k>0,j+k=i in a disjoint union
of copies of (X ×X)×X thus satisfies the hypothesis of Theorem 2.3 (we took products with
X in order to work with equidimensional varieties). Indeed, the space generated by the images
in H i(X) of the correspondences [Zj,k]∗ contains Ai(X) by definition. Adding the images in
H i(X) of the [Zl ×X]∗, which generate a space containing Algi(X), and the image in H i(X)
of [Z ×X]∗, which maps surjectively onto H i(X)/[Ai(X) + Algi(X)], we get the whole space
H i(X).

This ends the proof, and shows that X satisfies the Lefschetz standard conjecture in
degree i. 2

The strategy formulated in Corollary 2.4 will be used in the rest of this paper to prove
Theorem 1.1.

Corollary 2.5. Let X be a smooth projective variety with cohomology algebra generated by
classes in degree less than i, and assume that X satisfies the Lefschetz standard conjecture in
degree up to i. Then X satisfies the standard conjectures.

Proof. Using induction and taking Z = 0, the previous corollary shows that X satisfies the
Lefschetz standard conjecture, hence all the standard conjectures, since we work in characteristic
zero. 2

1 Note that this subspace is zero unless i is even.
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Note that the Lefschetz conjecture is true in degree 1, because it is a consequence of
the Lefschetz theorem on (1, 1)-classes. The preceding corollary hence allows us to recover the
Lefschetz conjecture for abelian varieties which was proved in [Lie68].

3. Moduli spaces of sheaves on a K3 surface

Let S be a projective K3 surface. Denote by K(S, Z) the topological K-group of S, generated
by topological complex vector bundles. The K-group of a point is Z and we let χ :K(S, Z)→ Z
be the Gysin homomorphism associated to the morphism from S to a point. The group K(S, Z),
endowed with the Mukai pairing

(v, w) :=−χ(v∨ ⊗ w),

is called the Mukai lattice and denoted by Λ(S). Mukai identifies the group K(S, Z) with
H∗(S, Z), via the isomorphism sending a class F to its Mukai vector ch(F )

√
tdS . Using the

grading of H∗(S, Z), the Mukai vector of F is

(rank(F ), c1(F ), χ(F )− rank(F )), (3.1)

where the rank is considered in H0 and χ(F )− rank(F ) in H4 via multiplication by the
orientation class of S. The homomorphism ch(•)

√
tdS : Λ(S)→H∗(S, Z) is an isometry with

respect to the Mukai pairing on Λ(S) and the pairing

((r′, c′, s′), (r′′, c′′, s′′)) =
∫
S
c′ ∪ c′′ − r′ ∪ s′′ − s′ ∪ r′′

on H∗(S, Z) (by the Hirzebruch–Riemann–Roch theorem). Mukai defines a weight 2 Hodge
structure on the Mukai lattice H∗(S, Z), and hence on Λ(S), by extending that of H2(S, Z),
so that the direct summands H0(S, Z) and H4(S, Z) are of type (1, 1) (see [Muk87]).

Let v ∈ Λ(S) be a primitive class with c1(v) of Hodge-type (1, 1). There is a system of
hyperplanes in the ample cone of S, called v-walls, that is countable but locally finite [HL97,
ch. 4C]. An ample class is called v-generic, if it does not belong to any v-wall. Choose a v-
generic ample class H. Let MH(v) be the moduli space of H-stable sheaves on the K3 surface
S with class v. When non-empty, the moduli space MH(v) is a smooth projective irreducible
holomorphic symplectic variety of K3[n] type, with n= ((v, v) + 2)/2. This result is due to several
people, including Huybrechts, Mukai, O’Grady, and Yoshioka. It can be found in its final form
in [Yos01].

Over S ×MH(v) there exists a universal sheaf F , possibly twisted with respect to a non-
trivial Brauer class pulled-back fromMH(v). Associated to F is a class [F ] in K(S ×MH(v), Z)
(see [Mar07, Definition 26]). Let πi be the projection from S ×MH(v) onto the ith factor.
Assume that (v, v)> 0. The second integral cohomology H2(MH(v), Z), its Hodge structure,
and its Beauville–Bogomolov pairing [Bea83], are all described by Mukai’s Hodge-isometry

θ : v⊥ −→H2(MH(v), Z), (3.2)

given by θ(x) := c1(π2!
{π!

1(x∨)⊗ [F ]}) (see [Yos01]). Above, π2!
and π!

1 are the Gysin and pull-
back homomorphisms in K-theory.
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4. An algebraic cycle

Let M :=MH(v) be a moduli space of stable sheaves on the K3 surface S as in § 3, so that M
is of K3[n]-type, n> 2. Assume that there exists an untwisted universal sheaf F over S ×M.
Denote by πij the projection from M× S ×M onto the product of the ith and jth factors.
Denote by Ei the relative extension sheaf

Extiπ13
(π∗12F , π∗23F). (4.1)

Let ∆⊂M×M be the diagonal. Then E1 is a reflexive coherent OM×M-module of rank 2n− 2,
which is locally free away from ∆, by [Mar, Proposition 4.5]. The sheaf E0 vanishes, while E2

is isomorphic to O∆. Set κ(E1) := ch(E1) exp[−c1(E1)/(2n− 2)]. Then κ(E1) is independent of
the choice of a universal sheaf F . Let κi(E1) be the summand in H2i(M×M). Then κ1(E1) = 0.

There exists a suitable choice of MH(v), one for each n, so that the sheaf E1 over
MH(v)×MH(v) can be deformed, as a twisted coherent sheaf, to a sheaf Ẽ1 over X ×X, for
every X of K3[n]-type [Mar]. See [Cal00] for the definition of a family of twisted sheaves. We note
here only that such a deformation is equivalent to a flat deformation of End(E1), as a reflexive
coherent sheaf, together with a deformation of its associative algebra structure. Verbitsky’s theory
of hyperholomorphic reflexive sheaves plays a central role in the construction of the deformation,
see [Ver99]. The characteristic class κi(Ẽ1) is well defined for twisted sheaves [Mar]. Furthermore,
κi(Ẽ1) is a rational class of weight (i, i), which is algebraic, whenever X is projective. The
construction is summarized in the following statement.

Theorem 4.1 [Mar, Theorem 1.6]. Let X be a smooth projective variety of K3[n]-type. Then
there exists a smooth and proper family p : X → C of irreducible holomorphic symplectic
varieties, over a simply connected reduced (possibly reducible) projective curve C, points t1, t2 ∈
C, isomorphismsM∼= p−1(t1) and X ∼= p−1(t2), with the following property. Let q : X ×C X → C
be the natural morphism. The flat section of the local system R∗q∗Q through the class κ(E1) in
H∗(M×M) is algebraic in H∗(Xt ×Xt), for every projective fiber Xt, t ∈ C, of p.

5. A self adjoint algebraic correspondence

In this section, we introduce the algebraic correspondences on moduli spaces of sheaves on
K3 surfaces that will be used in the proof of the main result. Starting with the sheaf Ei as
above, we construct correspondences with suitable properties with respect to Mukai pairings
and monodromy operators.

Given a topological space X denote by K(X) its topological K-group with rational
coefficients. We keep the notation M :=MH(v) of § 4. As earlier, let (x, y) :=−χ(x∨ ⊗ y) be
the Mukai pairing on K(M). Given a class α in H∗(M) denote by α∨ the image of α via the
automorphism of H∗(M) acting on H2i(M) via multiplication by (−1)i. The Mukai pairing on
H∗(M) is by definition

(α, β) :=−
∫
M
α∨β.

Define

µ :K(M)−→H∗(M) (5.1)

by µ(x) := ch(x)
√
tdM. Then µ is an isometry, by the Hirzebruch–Riemann–Roch theorem.
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Remark 5.1. Note that the graded direct summands H i(M) of the cohomology ring H∗(M)
satisfy the usual orthogonality relation with respect to the Mukai pairing: H i(M) is orthogonal
to Hj(M), if i+ j 6= 4n.

Given two Q-vector spaces V1 and V2, each endowed with a non-degenerate symmetric bilinear
pairing (•, •)Vi , and a homomorphism h : V1→ V2, we denote by h† the adjoint operator, defined
by the equation

(x, h†(y))V1 := (h(x), y)V2 ,

for all x ∈ V1 and y ∈ V2. We consider H∗(M), K(M), and K(S), all as vector spaces over Q
endowed with the Mukai pairing.

Let [Ei] ∈K(M×M) be the class of the sheaf Ei, i= 1, 2, given in (4.1). Set

[E] := [E2]− [E1].

Let πi be the projection fromM×M onto the ith factor, i= 1, 2. The algebraic correspondence
[E] induces a morphism

f̃ ′ :K(M)→K(M).

It satisfies f̃ ′(x) := π2!
(π!

1(x)⊗ [E]), where π2!
and π!

1 are the Gysin and pull-back
homomorphisms in K-theory. Let pi be the projection from S ×M onto the ith factor. Similarly,
the algebraic correspondences [F ] and [F∨] induce morphisms

φ′ :K(S)→K(M)

with φ′(λ) := p2!
(p!

1(λ)⊗ [F ]) and

ψ′ :K(M)→K(S)

with ψ′(x) := p1!
(p!

2(x)⊗ [F∨]), where F∨ is the dual class.
We have the following identities

ψ′ = (φ′)†, (5.2)
f̃ ′ = φ′ ◦ ψ′. (5.3)

Equality (5.2) is a K-theoretic analogue of the following well known fact in algebraic geometry.
Let Φ :Db(S)→Db(M) be the Fourier–Mukai functor with kernel F . Set FR := F∨ ⊗ p∗1ωS [2]
and let Ψ :Db(M)→Db(S) be the Fourier–Mukai functor with kernel FR. Then Ψ is the right
adjoint functor of Φ (see [Muk81] or [Huy06, Proposition 5.9]). The classes of F∨ and FR in
K(S ×M) are equal, since ωS is trivial. The equality (5.2) is proven using the same argument
as its derived-category analogue. Equality (5.3) expresses the fact that the class [E] is the
convolution of the classes of F∨ and F .

The identities (5.2) and (5.3) imply that f̃ ′ is self adjoint. Set

f ′ := µ ◦ f̃ ′ ◦ µ†.

Then f ′ is the self adjoint endomorphism given by the algebraic class

(π∗1
√
tdM) ch([E])(π∗2

√
tdM)

in H∗(M×M).
In order to use monodromy arguments in § 7, we will not work with f ′ directly, but

rather with a normalization of f ′ which satisfies a monodromy-invariance property. Set
α := exp((−c1(φ′(v∨)))/(2n− 2)). Note that α is the Chern character of a Q-line-bundle.
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Let τα :H∗(M)→H∗(M) be cup-product with α, i.e., τα(x) := x ∪ α. Then τα is an isometry.
Hence, τ †α = τ−1

α . Define

φ := τα ◦ µ ◦ φ′,
ψ := ψ′ ◦ µ† ◦ τ−1

α ,

f := φ ◦ ψ.

Then f is the self adjoint endomorphism given by the algebraic class

π∗1 exp
(
c1(φ′(v∨))

2n− 2

)
(π∗1
√
tdM) ch([E])(π∗2

√
tdM)π∗2 exp

(
−c1(φ′(v∨))

2n− 2

)
. (5.4)

Finally, let hi :H∗(M)→H2i(M) be the projection, and ei :H2i(M)→H∗(M) the
inclusion. Set

fi := hi ◦ f ◦ e2n−i.

Note that fi is induced by the Künneth component in H2i(M)⊗H2i(M) of the class given
in (5.4).

6. Generators for the cohomology ring and the image of fi

Let A2i ⊂H2i(M) be the subspace of classes, which belong to the subring generated by classes
of degree <2i. Set

H
2i(M) :=H2i(M)/[Q · ci(TM) +A2i].

Proposition 6.1. The composition

H4n−2i(M)
fi−→H2i(M)→H

2i(M) (6.1)

is surjective, for i> 2.

The proposition is proven below after Claim 7.2. Let gi :H4n−2i(M)→H2i(M) be the
homomorphism induced by the graded summand of degree 4i of the cycle

−(π∗1
√
tdM)κ(E1)(π∗2

√
tdM). (6.2)

Denote by f̄i :H4n−2i(M)→H
2i(M) the homomorphism given in (6.1) and define ḡi :

H4n−2i(M)→H
2i(M) similarly in terms of gi.

Corollary 6.2. The equality ḡi = f̄i holds for i> 2. In particular, ḡi is surjective, for i> 2.

Proof. The equality c1([E]) = π∗1c1(φ′(v∨))− π∗2c1(φ′(v∨)) is proven in [Mar, Lemma 4.3]. Hence,
the difference between the two classes (5.4) and (6.2) is ch(O∆)π∗1tdM. Now chj(O∆) = 0, for
0 6 j < 2n. Hence, fi = gi, for 0 6 i6 n− 1. The quotient group H2i(M) vanishes, for i > n− 1,
by [Mar02, Lemma 10, part 4]. Consequently, f̄i = 0 = ḡi, for i> n. 2

Set φi := hi ◦ φ. We abuse notation and identify hi with the endomorphism ei ◦ hi of H∗(M).
Similarly, we identify e2n−i with the endomorphism e2n−i ◦ h2n−i of H∗(M). With this notation
we have

h†i = e2n−i.
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We get the following commutative diagram.

H4n−2i(M)
fi //

e2n−i

��

φ†i

44

H2i(M)

H∗(M)
f //

ψ &&LLLLLLLLLL
H∗(M)

hi

OO

K(S)
φ

99ttttttttt

φi

YY

(6.3)

The two main ingredients in the proof of Proposition 6.1 are the following theorem and the
monodromy equivariance of diagram (6.3) reviewed in § 7.

Theorem 6.3. The composite homomorphism

K(S)
φi−→H2i(M)→H

2i(M)

is surjective, for all i> 1.

Proof. The subspaces chi(φ′(K(S))), i> 1, generate the cohomology ring H∗(M), by [Mar02,
Corollary 2]. When M= S[n], this was proven independently in [LQW02]. The same statement
holds for the subspaces φi(K(S)) + span{ci(TM)}. Indeed, φ1(K(S)) = ch1(φ′(K(S))) =
H2(M), since φ′(λ∨) is a class of rank 0, for λ ∈ v⊥, and so c1(φ′(λ∨)) = φ1(λ∨), for λ ∈ v⊥.
Now ch1(φ′([v⊥]∨)) =H2(M), since Mukai’s isometry given in (3.2) is surjective. For i > 1, the
subspaces chi(φ′(K(S))) and φi(K(S)) are equal modulo the subring generated by H2(M) and
the Chern classes of TM. The surjectivity of the composite homomorphism follows. 2

Claim 6.4. If φi is injective, then Im(fi) = Im(φi).

Proof. The assumption implies that φ†i is surjective. Furthermore, we have fi = φi ◦ φ†i . The
equality Im(fi) = Im(φi) follows. 2

In the next section we will prove an analogue of the above claim, without the assumption
that φi is injective (see Claim 7.2).

7. Monodromy

Recall that the Mukai lattice Λ(S) is a rank 24 integral lattice isometric to the orthogonal
direct sum E8(−1)⊕2 ⊕ U⊕4, where E8(−1) is the negative definite E8 lattice and U is the
unimodular rank 2 hyperbolic lattice [Muk87]. Recall thatM is the moduli spaceMH(v). Denote
by O+Λ(S)v the subgroup of isometries of the Mukai lattice, which send v to itself and preserve
the spinor norm. The spinor norm is the character OΛ(S)→{±1}, which sends reflections by
−2 vectors to 1 and reflections by +2 vectors to −1. The group O+Λ(S)v acts on Λ(S) and on
K(S)∼= Λ(S)⊗Z Q via the natural action.

Let DS :K(S)→K(S) be given by DS(λ) = λ∨.

Theorem 7.1. (i) [Mar08, Theorem 1.6] There exists a natural homomorphism

mon :O+Λ(S)v −→GL[H∗(M)],
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introducing an action of O+Λ(S)v on H∗(M) via monodromy operators. Denote the image of
g ∈O+Λ(S)v by mong.

(ii) [Mar08, Theorem 3.10] The equation

mong(φ(λ∨)) = φ([g(λ)]∨) (7.1)

holds for every g ∈O+Λ(S)v, for all λ ∈ Λ(S). Consequently, the composite homomorphism

K(S) DS−→K(S)
φ−→H∗(M)

is O+Λ(S)v equivariant.2

Set w :=DS(v). We have the orthogonal direct sum decomposition

K(S) = Qw ⊕ w⊥Q
into two distinct irreducible representations of O+Λ(S)v, where we consider a new action of
O+Λ(S)v on K(S), i.e., the conjugate by DS of the old one. So g ∈O+Λ(S)v acts on K(S)
via DS ◦ g ◦DS . Let πw :K(S)→Qw and πw⊥ :K(S)→ w⊥Q be the orthogonal projections. Let
φw : Qw→H∗(M) be the restriction of φ to Qw and φw⊥ : w⊥Q →H∗(M) the restriction of φ to
w⊥Q . We have

πw ◦ ψ = (φw)† and πw⊥ ◦ ψ = (φw⊥)†.

Set φi,w := hi ◦ φw and φi,w⊥ := hi ◦ φw⊥ . Then

(φi,w)† = πw ◦ ψ ◦ e2n−i,

(φi,w⊥)† = πw⊥ ◦ ψ ◦ e2n−i.

Claim 7.2. The homomorphisms fi and φi in diagram (6.3) have the same image in H2i(M).

Proof. Clearly, φi,w is injective, if it does not vanish. We observe next that the same is true for
φi,w⊥ . This follows from the fact that φi,w⊥ is equivariant with respect to the action of the group
O+Λ(S)v (Theorem 7.1, part (ii)). Now w⊥Q is an irreducible representation of O+Λ(S)v. Hence,
φi,w⊥ is injective, if and only if it does not vanish. We have

φi = φi,w ◦ πw + φi,w⊥ ◦ πw⊥ ,
(φi)† = (φi,w)† + (φi,w⊥)†,

fi = φi,w ◦ (φi,w)† + φi,w⊥ ◦ (φi,w⊥)†.

Furthermore, the image of (φi,w)† is equal to Qw, if φw,i does not vanish, and the image of
(φi,w⊥)† is equal to w⊥Q , if φi,w⊥ does not vanish. Hence, the image of φi,w ◦ (φi,w)† is equal to
the image of φi,w and the image of φi,w⊥ ◦ (φi,w⊥)† is equal to the image of φi,w⊥ . Thus, the
image of fi is equal to the sum of the images of φi,w and φi,w⊥ . The latter is precisely the image
of φi. 2

Proof of Proposition 6.1. Follows immediately from Theorem 6.3 and Claim 7.2. 2

2 The appearance of λ∨ instead of λ as an argument of φ in (7.1), as well as in equation (3.2) for Mukai’s
isometry, is due to the fact that we use the Mukai pairing to identify Λ(S) with its dual. So the class of
[F ]⊗ p∗2 exp((−c1(φ′(v∨)))/(2n− 2)) in K(S ×M)∼=K(S)⊗K(M) is O+Λ(S)v invariant with respect to the
usual action of O+Λ(S)v on the first factor, and the monodromy action on the second.
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8. Proof of the main theorem

We can now prove the main result of this note. We use the notation of § 2.

Proof of Theorem 1.1. Let X be a smooth projective variety of K3[n]-type. According to Theorem
4.1, there exists a smooth and proper family p : X → C of irreducible holomorphic symplectic
varieties, over a connected reduced projective curve C, points t1, t2 ∈ C, isomorphismsM∼= Xt1
and X ∼= Xt2 , where Xt denotes the fiber of p at t.

Additionally, if q : X ×C X → C is the natural morphism, we can choose the family so that
there exists a flat section s of the local system R∗q∗Q through the class κ([E1]) in H∗(M×M)
which is algebraic in H∗(Xt2 ×Xt2).

The map t 7→ tdXt ∈H∗(Xt) induces a global section of the local system R∗p∗Q. It follows
that there exists a flat section r of the local system R∗q∗Q through the class

(π∗1
√
tdM)κ([E1])(π∗2

√
tdM) ∈H∗(M×M),

where π1 and π2 are the two projections M×M→M, such that r(t2) is algebraic in
H∗(Xt2 ×Xt2).

Let us denote by Zi an algebraic cycle in H2i(X ×X) with cohomology class the degree 2i
component of r(t2).

Using the cycles Zi, we prove by induction on i6 n that X satisfies the Lefschetz standard
conjecture in degree 2i for every integer i, recall that the cohomology groups of X vanish in odd
degrees. This is obvious for i= 0.

Let i6 n be a positive integer. Assume that the Lefschetz conjecture holds for X in degree
up to 2i− 1, and let A2i(X)⊂H2i(X) be the subspace of classes, which belong to the subring
generated by classes of degree strictly less than 2i. By Corollary 2.4, we only need to show that
the composition

H4n−2i(X)
[Zi]∗−→H2i(X)→H2i(X)/[A2i(X) + Q · ci(TX)] (8.1)

is surjective.
The degree 4i component of r induces a morphism of local systems

R2n−4ip∗Q→R2ip∗Q,

the fiber of which at t2 is induced by Zi. Furthermore, the quotient map

H2i(X)→H2i(X)/[A2i(X) + Q · ci(TX)]

extends to a surjective map of local systems

R2ip∗Q→ L,

where L is the local system such that Lt =H2i(Xt)/[A2i(Xt) + Q · ci(TXt)] for every point t in C.
With this notation, the map (8.1) is the fiber at t2 of the composition

R2n−4ip∗Q→R2ip∗Q→ L. (8.2)

Since the curve C is connected, it follows that the map (8.1) is surjective if and only if the
fiber at t1 of (8.2) is surjective. By definition, the fiber at t1 of the map (8.2) is the map ḡi of
Corollary 6.2, where it is proven that it is surjective. This concludes the proof. 2

Remark 8.1. Note that the proof of the main result of this note makes essential use of
deformations of hyperkähler varieties along twistor lines, and that a general deformation of a
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hyperkähler variety along a twistor line is never algebraic, see [Huy99, 1.17]. Though the standard
conjectures deal with projective varieties, we do not know a purely algebraic proof of the result
of this note.
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