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1. Introduction. Compact elementary operators acting on the algebra £(H) of all
bounded operators on some Hilbert space H were characterised by Fong and Sourour in
[9]. Akemann and Wright investigated compact and weakly compact derivations on
C*-algebras [1], and also studied compactness properties of the sum and the product of
the right and the left regular representation of an element in a C*-algebra [2]. They used
the concept of a compact Banach algebra element due to Vala [17]: an element a in a
Banach algebra A is called compact if the mapping x — axa is compact on A. This notion
has been further investigated by Ylinen [18, 19, 20}, who showed in particular that a is a
compact element of the C*-algebra A if x — axa is weakly compact on A [19].

In Section 2 we will discuss some of the properties of the set K(A) of compact
elements in a C*-algebra A with emphasis on the case of a prime C*-algebra. This
information will then be used in Section 3 to characterise compact and weakly compact
elementary operators on prime C*-algebras which extends the results in [2] and [9]. As a
consequence we will confirm a conjecture by Fong and Sourour that on the Calkin algebra
there do not exist non-zero compact elementary operators in a much stronger form.

An elementary operator on a C*-algebra A is a mapping of the form §:x— i axb;,
j=1

where a=(a,,...,a,), b=(by,...,b,)eM(A)* and M(A) denotes the multiplier
algebra of A. It has emerged that the properties of S can be described very neatly if the
algebra A is prime; i.e., if the product IJ of any two non-zero ideals I and J of A is again
non-zero. More generally, an ideal I of A is a prime ideal if the quotient A/I is a prime
algebra. For example the ideal #(H) of all compact operators on a Hilbert space H is a
prime ideal in £L(H).

The main tool to obtain the above mentioned characterisations, Theorems 3.7 and
3.8, will be the following result which was proved in the first part of the paper
([13, Theorem 4.1}).

THEOREM 1.1, Let A be a prime C*-algebra and for a, b € M(A)" let S = Z"] M,,,, be
j=1

the corresponding elementary operator. If the set {b,, . .., b,} is linearly independent, then
the following conditions are equivalent:

(a) §=0,

(b) a;=0for1=j=n.
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This result gives full information in which way the elements a;, b; € M(A) can be
changed without changing the generated elementary operator. In order to make this more
explicit, we call the elementary operator x—>axb, (a,beM(A)), a (two-sided)
multiplication on A and denote it by M, ,. The minimal length I(S) of a non-zero
elementary operator S now is the minimum of the number of multiplications whose sum
represents S. In the case § =0 we define I(S) = 0. Each representation of § by a sum of
[(S) multiplications is called a minimal representation of S. As an immediate consequence

of Theorem 1.1, a representation § = f} Mg, is minimal if and only if both {a,, ..., a,}
j=1
and {b,, ..., b,} are linearly independent subsets of M(A), and in any other minimal

n
representation S= Y M,
k=1

.4 the elements c,, d, are linear combinations of a;, b;

respectively whenever A is a prime C*-algebra ([13, Proposition 4.6 and Corollary 4.7]).

2. The ideal of compact elements in a prime C*-algebra. Throughout this paper A
will denote a C*-algebra with spectrum A. The reduced atomic representation m, of A is

the direct sum 7, = G?i m,, where (i, H) is some irreducible representation in t € A (cf.
[15, 4.3]). If {A; i et; } is a family of C*-algebras, by ¢ A; we will denote their restricted
direct sum, i.e. l

z;"A,. = {x =(x;) e Z‘*’A,- \Ve>0:{iell||x;|| = ¢} is ﬁnite}.

A C*-algebra is said to be of elementary type if it is isomorphic to ¥(H) for some Hilbert
space H. The socle soc(A) of a C*-algebra A is the sum of all minimal left ideals of A,
unless A does not contain any minimal left ideal in which case soc(4) = 0. The elements
in soc(A) are called finite rank elements; it is easily seen that a € soc(4) if and only if M, ,
is a finite rank operator on A ([5, C*.1.2]).

The following proposition, entailing in particular that K(A) is a closed ideal, lists
several known characterisations of the compact elements of a C*-algebra A. The
equivalences (b) < (c) & (e) are implicit in [2], and (b) & (c) is [19, Theorem 3.1]. Here,
they will follow from our results on elementary operators; thus the proof is postponed
until Section 3.

ProposiTiON 2.1. The following conditions on an element a of a C*-algebra A are
equivalent:

(a) a e K(A);

(b) M, , is compact,

(c) M, , is weakly compact;

(d) aesoc(A);

(e) ac L& 1, where (I,),n is a sequence of orthogonal closed ideals of A of

elementary type;
() m.(a) & IS H(H).
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In the case where A is equal to F(H), the ideal K(A) coincides with ¥(H)
({16, Theorem 3]), and thus K(A) is the unique minimal closed ideal of A. This remains
true in prime C*-algebras.

ProposiTION 2.2. If A is a prime C*-algebra then soc(A) is contained in every
non-zero closed ideal of A. Thus, if K(A)#0, it is the only minimal closed ideal of A.

Proof. Let e be a minimal projection in A. Then P, = {x € A | xAe =0} is the unique
primitive ideal in A which does not contain e ([S, BA.3.5]). Since A is prime, P, =0.
Indeed, AxAAeA =0 implies that AxA =0. Thus every non-zero primitive ideal P of A
contains e, and since every minimal left ideal L is of the form L = Ae for some minimal
projection e, it follows that soc(A) = P. Since each closed ideal of A is the intersection of
those primitive ideals which contain it ([15, 3.13.8]), soc(A) is contained in every
non-zero closed ideal. Since K(A) =soc(A) by 2.1, the second assertion follows. O

We now investigate the structure of K(A) for a prime C*-algebra A. For the notions
of liminal, antiliminal, and type I C*-algebras see [7, Section 4] and [15, Chapter 6]. We
recall here that a positive element a in a C*-algebra A is called abelian if the range of the
multiplication M, , is a commutative algebra. A C*-algebra which is generated by its
abelian elements is said to be of type I,. Every C*-algebra contains a largest ideal of type
I,, namely the C*-subalgebra I, generated by all abelian elements ([15, 6.1.7]).

ProposITION 2.3. If A is a prime C*-algebra, then K(A) = L,ve;. In particular, a prime
C*-algebra A is antiliminal if and only if K(A)=0.

Proof. If A does not contain any non-zero abelian element, then there is no minimal
projection in A whence K(A) = I, =0. Thus we may assume that A is not antiliminal.
Then, by Proposition 2.2, K(A) c Ip. To prove the reverse inclusion take a non-zero
abelian element a in A. Then ‘

axaaya = ayaaxa, (for all x, y € A).

Thus (a*xa®)ya® — a’y(a*xa®) =0, for all x, y € A. Since A is prime, by Theorem 1.1, for
each x € A there is A(x) € C such that a*xa® = A(x)a®. In particular, M,: ,.A c Ca®. Since
a®=A(a*)a* with A(a®)>0, the element e:=A(a®)"'a* is a projection in A. Thus,
a = A(a*)"e is a scalar multiple of a minimal projection for

eAe = a’Aa® = Ca®=Ce.

This proves L, c K(A). O

Remarks. 1. Since a prime C*-algebra which contains minimal projections is
primitive (see below), it follows from Proposition 2.3 that a prime C*-algebra which is not
antiliminal is primitive. This, of course, is well known (cf. e.g. [4, Lemma 3.1]); however,
our approach via elementary operators reveals that this is only a special case of

Martindale’s characterisation of prime rings satisfying a generalised polynomial identity
([12, Theorem 3]).
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2. The inclusion K(A) < I, remains true without primeness. In fact, for every
C*-algebra A the ideal K(A) is of type I, ([14, 6.14.3]). Therefore, K(A) is liminal and
thus contained in the largest liminal ideal I, of A (cf. [18, p. 32]). A commutative
C*-algebra without minimal projections provides an example of a liminal C*-algebra
with K(A)=0. It is easy to see that, for a prime C*-algebra A, again K(A) coincides
with L.

A W*-algebra is prime if and only if it is a factor. In addition, each closed ideal in a
factor is a prime ideal. The following well-known result shows in particular that, in every
factor A, the ideal K(A) is also the largest ideal of type I.

ProrosITION 2.4. For every Hilbert space H the Calkin algebra €(H)= %£(H)/X(H)
is an antiliminal prime C*-algebra.

For an arbitrary prime C*-algebra A the situation may be different. Apart from
trivial cases, e.g. if A is liminal or antiliminal, the generalised Calkin algebra A/K(A)
need neither be antiliminal nor be prime. For an example let A be the C*-algebra
generated by X(H) and two orthogonal infinite dimensional projections on H. Then
A/K(A)=C :

Nevertheless, primeness will play an important role in the next section. Before we
turn our attention back to elementary operators, we recall that a prime C*-algebra A with
non-zero socle is already primitive. If p is a minimal projection in A, we endow the
minimal left ideal Ap with an inner product (x | y) = y*x and put H, = (Ap, (- | )). Then,
H, is a Hilbert space whose inner product norm coincides with the original norm on Ap
(IS, p- 79)). By m,(a)x = ax for a € A, x € H, we can define an irreducible representation
of A on H,, which is faithful since A is prime. Therefore, A is primitive. In addition,
7, (soc(A)) = F(H,), the finite rank operators on H,, and 7(K(A)) = ¥ (H,) ([5, F.4.3]).

Lemma 2.5. For every C*-algebra A we have soc(A)=soc(M(A)) and K(A)=
K(M(A)).

Proof. If pAp =Cp, then pA**p =Cp, and thus pM(A)p =Cp. Therefore each
minimal projection in A is a minimal projection in M(A), whence soc(A) c soc(M(A)). If
p € M(A) is a minimal projection, then Cp = pAp c A, which implies that p € A. Since,
moreover, M(A)p = Ap, we conclude that soc(M(A)) csoc(A4). The second assertion
now follows by Proposition 2.1 (d). O

Remark. For Banach algebras there are also different notions of compact elements,
most of which coincide in the C*-case (cf. [S, R.5]). For W*-algebras there is another
concept of compact elements due to Breuer [6]. An element a of a W*-algebra A is called
compact relative to A if it belongs to the closed ideal #(A) generated by all finite
projections in A. In general, »(A) is strictly larger than K(A), and therefore less suited
for our purposes.

3. Compact and weakly compact elementary operators. We begin our investiga-
tions by characterising the weakly compact elementary operators on the algebra £(H) as
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those which vanish on the Calkin algebra. Recall that a bounded linear operator T on a
Banach space E is weakly compact if and only if the second adjoint 7** maps the second
dual E** of E into the natural embedding ¢E of E into E** ([8, V1.4.2]). Recall also that
the second dual X (H)** of the C*-algebra % (H) can be identified with £(H), and that
an operator T € £(&£(H)) which leaves ¥(H) invariant is ultraweakly continuous if and
only if (Tism))** = T. For such T denote by T € £(€(H)) the induced operator on the
Calkin algebra. The next lemma is a reformulation of [2, Proposition 2.1].

Lemma 3.1. Let T:¥Z(H)— L(H) be an ultraweakly continuous bounded linear
operator which leaves X (H) invariant. Then T is weakly compact if and only if T = 0.

Proof. If T, = T\, denotes the restriction of T to #(H) then, by Gantmacher’s
theorem ([8, V1.4.8]), T; is weakly compact if and only if T1* = T is weakly compact. By
the remarks above, this is equivalent to Ty*¥(H) c #(H); i.e. T=0. O

Now, we are in a position to apply Theorem 1.1 in order to unify Propositions 2.2,
2.3 and 2.7 of (2] (see also [19, Theorem 3.1] and [20, Theorem 3.1}) and to generalise
them to arbitrary elementary operators.

ProposITION 3.2. Let A= %(H), and fora, be A" let § = f} M,,,, be the correspond-
j=1

ing elementary operator. If the set {b,, . . .s b, } is linearly independent mod ¥ (H) then the
following conditions are equivalent:

(a) S is weakly compact;

(b) aje X(H) forall 1=j=n.

Proof. By Lemma 3.1, S is weakly compact if and only if the induced operator §
vanishes on the Calkin algebra. Denoting by & the canonical homomorphism from £(H)

onto €(H) we have § = i M4, =) Since € (H) is prime, by Proposition 2.4, it follows
j=1
from Theorem 1.1 that § =0 if and only if 7#(a;) =0 for all j. O

In particular, 3.1 and 3.2 show that the primeness of €(H) is nothing but the
assertion that M, , is weakly compact if and only if a or b is compact. We recall at this
place that M, ,#0 is compact on Z(H) if and only if both a and b are compact
([16, Theorem 3]).

The following characterisation of weakly compact derivations on Z£(H) was first
established by Akemann and Wright in {1, Theorem 3.1]. We obtain it here as an
immediate consequence.

CoroLLARY 3.3. The following conditions on a derivation 6 on £(H) are equivalent:
(a) 6 is weakly compact;

(b) 6Z(H) c X(H);

(c) 6 =4, for some ae ¥(H).

Proof. (a)&(b) by 3.1 and (a)&(c) by 3.2. O
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Our next aim is to extend Proposition 3.2 to arbitrary prime C*-algebras. If 7 is a
representation of a C*-algebra A, we denote by & the extended ultraweakly continuous
representation of its enveloping W*-algebra A**. Then 7 maps the closed unit ball AT* of
A** onto the closed unit ball 7(A)] of the ultraweak closure m(A)". If we consider A and

M(A) canonically embedded in A** and §= Z] M, . with g;, b;e M(A), then S;=
Z M (), 5y is the induced elementary operator on w(A)".

LemMa 3.4. Let A be a C*-algebra and let & be a representation of A. If S is a
(weakly) compact elementary operator, then so is S; and Szn(A)" c w(A).

Proof. If § is (weakly) compact, then so is its second adjoint $** ([8], V1.4.8 and
VI1.5.2, respectively). From

Si(A)y = SxA(ATY) = AS**AT* € A(A) = n(A)
we obtain S;t(A)” = n1(A) as well as the (weak) compactness of S;. O

LemMA 3.5. If S is a weakly compact elementary operator on a C*-algebra A, then
SA c K(A).

Proof. Let m, denote the reduced atomic representation of A. Then =z, (A)'=
Y2 Z(H,) ([15, 4.3.8]). If S is weakly compact on A, by Lemma 3.4 its extension S; is
t

weakly compact on 7,(A)". Denote by S, the induced mapping on x,(A)" = #(H,) for each
teA. Since S, is weakly compact it follows by Lemma 3.1 that S,£(H,) c %(H,). By an
argument similar to [1, Lemma 3.2] (see also [2, Lemma 2.4]) there exists a sequence
(tu)nen in A such that S,=0if £ ¢ {t, | n e N} and 11m IS,,Il = 0. Therefore, if y = S; x for

some x = (x,) € 7,(A)", then y,=0forallr¢ {t, |ne N} and 11m Il Il = 0. From this and
Lemma 3.4 we obtain

S5 27 L(H) € 27 H(H) N 7,(4). (1)

Our last claim is that
2y H(H) 0 m,(4) = 2 (K(4)) @)
This together with (1) will yield S; 7,(A)" < w,(K(A)) from which SA c K(A) follows by

the faithfulness of z, ({15, 4.3.11]).
Since M, , is compact for every a € K(A), by (1),

n e
M o), maya(A) € 20 H(H,).
t

In particular, m,(a)m,(a)*n,(a) belongs to L& #(H,); i.e. lim ||x, (a)|>=0 for some
t n—ow
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sequence (¢(1)),en in A and ||7,(a)]|> =0 for all ¢ ¢ {¢(n) | n € N}. Thus 7,(a) € £ H(H,).
Conversely, take a e A with z,(a) € Z’]f,” X(H,), i.e. m(a)=0 for all but a ’countable
number of indices t(n) € A, 'lll_li 17my(@)ll = 0 and m,.\(a) € H(H,,) for all n e N. Since

the multiplications M, () x,./() are compact on £(Hy,,), the formula
Sm = 5@1 Mﬂr(n)(ﬂ)-ﬂn(n)(ﬂ)

defines a sequence of compact mappings which converges uniformly to M, () » (), as we
have lim (M, (a).x @il =0. Thus M, , is compact on A. The proof is complete. I
n—»w -

Remark. The conclusion in Lemma 3.5 cannot be reversed as the example
A=J(H) and § = M, ,, with p an infinite dimensional projection on H, shows.

In [9], Fong and Sourour conjectured that on the Calkin algebra €(H) on a
separable Hilbert space H there cannot exist any non-zero compact elementary operator.
This conjecture was confirmed by Apostol and Fialkow [3], and independently by
Magajna [11]. Propositions 2.3 and 2.4 show that this is only a special case of the
following consequence of Lemma 3.5.

CoROLLARY 3.6. There are no non-zero weakly compact elementary operators on a
C*-algebra without non-zero compact elements.

Before we go on to establish our main results, we provide the proof of Proposition
2.1 that was promised in Section 2.

Proof of 2.1. (a) & (b) by definition, and (b) =>(c) is obvious.

(c)=>(a) Since M,, weakly compact implies that ada c K(A), by Lemma 3.5, it
follows that a € K(A).

(b) & (d) by [5, C*.1.3].

(a) & (f) by identity (2) in the proof of Lemma 3.5.

(f)=> (e) If a € A is such that 7,(a) € L& H(H,), then there is a sequence (£,),cn in A
t
with lim ||z, (a)|| =0 and m(a)=0 if t¢{s,|neN}. If a#0 we may assume that

m,(a) #0, and thus X (H,) N x, (A) # 0. By Kadison’s transitivity theorem, it follows that
#(H,)c =, (A) (cf. [15, 6.1.4]). Hence ae LY I,, where I, =% (H,) via &, for each

neN. An argument analogous to the last part in the proof of Lemma 3.5 yields
(e)=>(b). O

Using the results obtained so far, it is now easy to characterise the weakly compact
elementary operators on a prime C*-algebra.
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THEOREM 3.7. Let A be a prime C*-algebra and for a, b € M(A)" let S = i M, ,, be
j=1

the corresponding elementary operator. If the set {b,,...,b,} is linearly independent
mod K(A) then the following conditions are equivalent:

(a) S is weakly compact,;

(b) a;e K(A) forall 1=j=n.

Proof. (b)=>(a) This is true in every C*-algebra and without the additional
assumption on {by, ..., b,}. If a;e K(A) for all j, then the left multiplication L, is
weakly compact for all j ([20, Theorem 3.1]). Since the weakly compact operators form an

ideal ([8, VI1.4.6]), the operator S = f] L, Ry, is weakly compact.
j=1

(a) > (b) First assume that K(A) = 0. By Lemma 3.5, S is weakly compact if and only
if $=0. Thus the assertion follows by Theorem 1.1. Now assume K(A)+#0. If p is a
minimal projection in A, then the corresponding irreducible representation (7, H,) of A
(see Section 2) extends to an irreducible representation of M(A), denoted by the same
symbol. Since M(A) is prime ([13, Lemma 2.2]), 7, is faithful on M(A). By hypothesis,
the set {7,(b,), ..., m,(b,)} is linearly independent mod H#(H,) (which equals x,(K(A))

by Lemma 2.5). Since S; = jZ:]l M. (), 7,57 Is weakly compact on £(H,) by Lemma 3.4, it
follows that m,(a;) € X(H,) by Proposition 3.2. Thus ;e K(A) forall 1Sj=n. O
The following description of compact elementary operators was proved in the case
A = %(H) by Fong and Sourour in [9, Theorem 2].
THeEOREM 3.8. Let A be a prime C*-algebra and for a, b e M(A)" let § = i M, be
j=1

the corresponding elementary operator. If S is compact and {by, ..., b,} is linearly
independent, then a; € K(A) forall 1=j=n.

Proof. If K(A) =0, then S is compact if and only if § =0 by Lemma 3.5. Hence, the
assertion is a consequence of Theorem 1.1.

If K(A)#0, then K(A)=n""(%(H)) for some faithful irreducible representation
(z, H) of A. Since S is compact if and only if the induced elementary operator S; on
Z(H) is compact (Lemma 3.4), the assertion follows from the corresponding result on
Z(H) ([9, Theorem 2]). O

CoroLLARY 3.9. A non-zero elementary operator S on a prime C*-algebra A is
compact if and only if there are linearly independent subsets {a;, . . ., a,}, {by, ..., b,} in

K(A) such that S = f] M, s,
j=1

Proof. Let n=1I(S)=1 be the minimal length of §. If §= f} M, is a minimal
i=1

representation, both subsets {ay,...,a,} and {b,,...,b,} of M(A) are linearly
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independent (see Section 1). If S is compact, so is § = ‘Z] M, .- since Sx = (Sx*)*. Thus,
j=1

by Theorem 3.8, {a), ..., a,} = K(A) and {b,, ..., b,} c K(A).

The converse conclusion follows from Vala’s theorem ([16, Theorem 3]) stating that
M, , is compact whenever a and b are compact operators on H applied in an irreducible
representation (7, H) of A. O

As another consequence of Theorem 3.8, there are no non-zero compact derivations
on an infinite dimensional prime C*-algebra. This result appeared (with an incorrect
proof) for the case A = £(H) in [10]. Similarly, Corollary 3.3 can be extended to prime
C*-algebras.

CoroLLARY 3.10. Every compact elementary operator on a prime C*-algebra is the
norm-limit of elementary operators of finite rank.

Proof. Let S be a compact elementary operator on the prime C*-algebra A. Without
loss of generality we may assume that /(S) = 1. By Corollary 3.9, we thus have S=M,,
with a, b in K(A)\{0}. Since

3
=1 -k
M,,=z z 4 M(b+i"a‘)‘,(b+i"a’))
k=0

we may further assume that a = b*. Since K(A)=s0c(A), there is a sequence (b, ),y in
soc(A) with b = lim b,. Similarly to [§, C*.1.2] one can show that each multiplication

M,. . is of finite rank. Therefore, M,.,=1lim M,,, is approximated by finite rank
operators. [ "
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