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ABSTRACT. In an expansion scheme in velocity space, the first order 
perturbations of a stellar system bear close resemblance to those of a 
fluid. This feature is exploited to study the structure of the Hilbert 
space of the linear perturbations of a stellar system, to provide a 
classification for the modes, and to construct ansatz for variational 
calculations. The first order non-radial modes appear to be trispectral 
in that they are predominantly derived from a scalar potential, a 
toroidal vector potential, or a poloidal vector potential. The 
eigenfrequencies and the eigenf unctions of radial (& = 0) and non-
radial (l = l) modes of polytropes and of truncated isothermal 
distributions are calculated. The density waves associated with these 
modes are also reported. 

1. ANTONOV'S PROBLEM AND A TECHNIQUE OF ANALYSIS 

Let F ( e ) be a phase space equilibrium distribution for a spherically 
symmetric stellar system, where Ε - 1/2 v^ + U(x) is the energy 
integral and U(x) is the mean self-gravitational field of the system. 
Let <f (x,v,t) be a perturbation on F and 6U(x,t) be the 
gravitational field associated with it. The perturbation satisfies the 
linearized Liouville equation, 

" 1 1 1 

Antonov (1962) decomposed *f into symmetric and antisymmetric parts in 
the velocity space, eliminated the symmetric component from Eq.(l) and 
arrived at his celebrated eigenvalue equation to which one often resorts 
to study the stability of star clusters. Let <p +(x,y,t) = ± ^ + (xj±Y,t) 
be these components. They satisfy the following equations: 

+ DCp_ = 0 , (2a) 
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2 
3 <f 

at' 
- d φ - G — D 

dE 
D'Cp 1 |x-xf άτ 1 = 0 (2b) 

where a prime on a function or an operator indicates that the object in 
question is to be evaluated at x f,v f and DX F = dx fdv f. We shall 
consider only those cases for which" dF/dE is either~positive or 
negative for all E. Let 9 _ = 1 dF/dE I1/2

 f (χ,γ)βχρ(ΐωΐ ). Introduce 
this expression in Eq.(2b), divide the result by IdF/dEI1'2« multiply 
by f*exp(-io)t ) from left , and integrate over the permissible volume 
of the phase space. After some integrations by parts one arrives at 
the following variational expressions for ω 2: 

ω 2 = [Wx + sign(dF/dE)W2]/S , (3) 

where 

S = /f*FDX > 0 , (3a) 

Wl = /Df*DFDT > 0 , (3b) 

W2 = G//D<f ̂ D'Cp l̂x-x1 I"1
 D T D X 1 ^ . (3c) 

Because of the symmetry of S_, Wl and W2 under the interchange of 
f and f* or (£_ and (p g , ω 2 is real. The W2-integral arises 
from perturbations in the gravitational potential and can be simplified 
considerably. The density perturbation is given by 

6p(x) = /<f + dv = - —j- /d<P dv . (Ua) 

The gravitational potential associated with it is 

6U(x) = -ο/δρίχΜίχ-χ'Γ1 dg' · (^) 
The two expressions are of course related by Poisson1s equation, 
V 26U = UïïGôp. Substituting Eqs.(U) in Eq.(3c) and using Poisson1s 
equation to carry out an integration by part yields 

W2 = jLiSgl J V(ôU*)«V(6U)dx * 0 . (5) 

From Eqs.(3) and (5) it is evident that S_ is positive definite, and 
Wl and W2 are positive. They can be zero iff Df = 0. It, immédiately, 
follows that the system is stable, that is, ω 2 > 0 if dF/dE ^ 0. 
This, for example is the case for the polytropic distributions, 
F(E) = (-E)n-3/25 g £ ο , for which 1/2 < η ̂  3/2. Distributions with 
positive energy gradient are bound to vanish discontinuously at some 
energy; Ε = 0, say. The subtlety associated with this discontinuity is 
analyzed in Sobouti (198U). Polytropes with η > 3/2, isothermal and 
truncated isothermal distributions have negative energy gradients. Their 
stability or instability cannot be inferred in any simple manner from 
the above equations. It has, however, been shown that such systems are 
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stable against perturbations leading to radial displacements in the 
configuration space (Dorémus et al., 1970, 1971)· To the best of the 
author's knowledge, however, their stability against general phase-
space perturbations is as yet unknown. 

As to the solution of Eqs . (3 ) , let us observe that fix^v) is 
antisymmetric in y. A Fourier sine-transformation of f_ ïn~ y-space, 
followed by a series expansion of sin(k.y) appearing in the transformation 
gives a series expansion of £ in v:~" 

ί ( ϊ , ν ) = ξ . ( χ ) ν . - | ζ . ^ ) ν . ν Α + . . . , (6) 

where » ̂ i ^ k ^ 9 e t c * a r e a v e c r t o r field, a third rank tensor 
field, etc. The' limit on y at any space point χ is the escape 
velocity from that point, namely 

ν ^ ν 
e 

= [ - 2 U ( x ) ] 1 / 2 . (7) 

Substituting Eq .(6) in Eqs.(3) and integrating over the velocities gives 
a variational expression for involving integrals in x-space only. 
This reduction from the six-dimensional phase space to the three-
dimensional configuration space clarifies conceptual ambiguities and 
makes the computations tractable. In a first order approximation let us 
keep only the first term in Eq . ( 6 ) . One obtains (Sobouti, 198U): 

S = / φ 2 to , (8a) 

Wl = M [ a j * * d j*i + 2 3 ^ » a ^ ]dg + J * 2 3 ! ^ * ^ ( 8 b ) 

W2 = σ / 3 . Γ Ψ ξ γ ] 3 ! [ ψ ξ . ] ! Ix-x'ldxdx1 , (8c) 

where 

4 > 2 = ^ L (.2^5/2 f ( 9 a ) 

Φ(*0 = ^ ( - 2 U ) 7 7 2 , (9b) 

ψ = ^ J |dF/dE| l / 2 v^dv. (9c) 

0 

Eqs.(8) are similar to those governing the linear oscillations of a 
star, in that in both cases one deals with the standing modes of a vector 
field g(^). In a fluid £(x) represents the Lagrangian displacement 
of a fluid element. In a stellar system it is proportional to the 
Lagrangian displacement of a volume element (Sobouti, 1986). By a 
modified version of Helmholtz's theorem (Sobouti, 198l), the vector 
field φ2 £ can be expressed in terms of one scalar potential and two 
vector potentials: 

φ 2 ξ = - φ 2 ν χ 3 + V x A x + V x A 2 , V · ^ 2 = 0 . (lO) 
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Because of the solenoidal character of the vector potentials there are 
only two independent ones. We shall choose and A 2 in such a way 
that V χ A l a n d Y x Ap are poloidal and toroidal f i e l d s , respectively. 
Thus wê may write 

i = i s + I p + ä t 
( 1 1 ) 

i s = -2x 8 · (lia) 

€ = V χ V χ (r χ ) / φ 2 (Hb) 

I t = V χ ( Γ Χ ΐ ) / φ 2 , ( 1 1 c ) 

3 1 1 ( 1 X S 9 Xp a n ( i are scalar fields. Any two components of Eq.(ll) 
are mutually orthogonal in the sense that fφ2 £*. £^ d χ, α ^ β = s,p,t. 
Following Elsasser ( 1 9 ^ 6 ) , the three components will "be Îermed as 
scaloidal, poloidal and toroidal fields. For a spherically symmetric 
systems the scalars X s, Xp and χ^ can be expanded in spherical 
harmonics and variational ansatz be chosen as linear combinations of 
various terms. Numerical calculations show that the standing modes fall 
into three categories: i) modes in which the scaloidal component is 
predominant. These are analogous to the p-modes of a fluid system; 
ii) Modes in which the poloidal term is dominant. These are the counter-
parts of the g-modes of a fluid; (iii) Modes which are essentially made 
up of toroidal fields and have very small but non-zero eigenfrequencies. 
These are similar to the neutral toroidal displacements of a fluid. The 
radial modes corresponding to spherically symmetric perturbations are of 
course of scaloidal type and share properties with the radial modes of 
a fluid star. Numerical calculations for radial modes of polytropes 
and truncated isothermal distributions can be found in Sobouti ( 1 9 8 U , 
1 9 8 5 ) . The non-radial modes are analyzed and computed in Sobouti ( 1 9 8 6 ) . 
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