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Composition operators

R.K. Singh and B.S. Komal

2
A study of centered composition operators on Z- is made in this

paper. Also the spectrum of surjective composition operators is

computed. A necessary and sufficient condition is obtained for

the closed unit disc to be the spectrum of a surjective

composition operator.

1 . Preliminaries

o
Let L (A) be the Hilbert space of a l l square integrable functions on

a a-f in i te measure space (X, S, X) and le t c)> be a non-singular

measurable transformation from X into i t se l f . Then the equation

C f = f ° <f> for every f i. L (X) defines a l inear transformation. If

o
C, happens to be a bounded operator on L (X) , then we call it a
<P

composition operator. If X = N , the set of all non-zero positive

integers and X is the counting measure on the family of all subsets of

2 2
N , then L (X) = I , the Hilbert space of all square summable sequences.

2
In this note we have studied composition operators on Z . The

second section characterises centered composition operators while the third

section is devoted to the study of the spectrum of a surjective composition

operator. If H is a Hilbert space, then B{H) denotes the Banach

algebra of all bounded linear operators on H .

2
2. Centered composition operators on I

Let H be a complex Hilbert space, T $ B(H) , and let
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sT = {{T*)kr^ : k € N} U {2*(2"»)k : k <E N} . Then T is defined to be a

centered operator i f any two elements of s~ commute. These operators

have been studied by Morrel and Muhly [4] in de t a i l . We give a necessary

and sufficient condition for a composition operator to be centered.

THEOREM 2 .1 . Let <(> be a mapping from N into itself such that

C, € B[l ) . Then C is centered if and only if ft is constant on

[T)~ ({"}) for every n € N and p € N } where jl is the Radon-Nikodym

u

derivative of the measure X(<J> )~ with respect to the measure X .

For the proof of the theorem we need the following lemma.

LEMMA 2.2. If $ is a measurable transformation from a measure

space (X, S, X) into itself such that C € B[L2(\)) , then

= M v for every k € N 3
J0

where M j, is the multiplication operator induced by ft .

Proof. Since C € B[L2{\)) , it is easy to show that

C . = C, £ B{L (X)) , where § is obtained by composing ()> fc-times. If

p
f and g are any two elements in L (X) and k € N , then

[
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[ f-g

This shows that (c?) CV = M , . Hence the proof of the lemma is complete.

Proof of theorem. Suppose that the condition of the theorem holds.

Let A, B € sn . Then A = C*Vr or A = Cl.C^ and B = C*PCP. or

S = (flcf for some fe, I, p , and m in ff . If A = C*V<; and

B = C ^ C A » t h e n f r o m t h e above lemma it follows that AB = M M = BA .

If A = C*kC^ and B = cTc*m and if e ^ is the nth basis vector
9 9 9 9

defined by e \q) = 6 (the Kronecker delta), then

M iffjiW ( n ) ^ (by definition of C*
J C ()) (J)

where X- denotes the characteristic function of the set E . A similar
ti

computation shows that Me1"' = fi(n)X . . Thus AB = BA .
0 UTWu)})}

Suppose now that A = C.C* and B = (f!c*m and without loss of generality
9 9 9 9

assume m S I . Then
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ABeM =

Also

BAeM

This shows that AB = BA .

On the other hand, suppose the condition of the theorem is not true.

Then there exist n±, n2 € (<j)P)~1( {«}) such that /^(nj * /^(n
2)

 f o r

some p, k, n t N . If A = C*Vj; and S = C^C*P , then

ABe 1 = £ - X and M e X

° ( P 1 P ) )
Since /«(«,) / /n("p^ ' w e c a n c o n c l u d e t h a t AB * BA . Hence C is not

centered. This completes the proof of the theorem.

2

3. Spectrum of a composition operator on I

This section is devoted to the study of the spectrum of a composition

2
operator on t . The set of all complex numbers will be denoted by C

and the set D defined by D = {\ : X 6 C and |X| 2 1} is called the

closed unit disc. The symbol o(T) stands for the spectrum of T . The
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unit circle will "be denoted by a .

THEOREM 3 . 1 . If <j> : N •*• N is an injection which is not a

surjection, then a[C ) = D .

Proof. S i n c e <j> i s n o t a s u r j e c t i o n , t h e r e i s an n € N such t h a t

x U " 1 ( { n 1 } ) = 0 . Let ^"[n^] = nm+± f o r m (. N and l e t

M = span{e m : m € N] . Then M i s a c l o s e d subspace of I . B y t h e

2 •*•

projection theorem I = M @ M . Since M is a reducing subspace of
Ci> ' C<b = C6^M ® C * ' J- ' w h e r e ^(Jff denotes the res t r i c t ion of C to

2
the subspace E . Define the transformation 5 from I into M by

Se = e m for every m d N .

Then S is a bounded linear transformation. Also S is invertible and

cAi, - SU*S~X , vhere U* is the adjoint of the unilateral shift U .

Since similar operators have the same spectrum [3, Problem 60], we have

a{C \M) = a(U*) . Thus o[C \M) = D by the solution to Problem 67 of [3].

Since = °{C^\M) u ( ^ | J , D c a ^ ) . From a corollary to

Theorem 2.1 of [8], \\CA\ = 1 and hence o(c.) c D . Thus a(cj = D .

The following two theorems compute the spectrum of invertible

composition operators. We know that C is invertible if and only if <b

is invertible [8, Theorem 2.2].

THEOREM 3.2. Let C £ B{12) be invertible, and assume for every

n d N there exists an m Z N such that <j>m(«) = n . Let

m = inf{m : <)> (n) = n} and Q = {m : n € N] . Then

*[C ) = U {X : \<1 = 1} .
9 <?€«

Proof. For q1 € S , l e t E = {n : n £ N and <J>̂ (n) = n] . Then

Af = span-je ^ : p (. E J- i s a reducing subspace of C. . Since <|) i s
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invertible, the family [M \ q € Q) is a disjoint orthogonal family of

o p p
subspaces which spans Z . Thus 1 can be written as Z = Y © M

qlQ q

Since ^ = I on E , i t follows tha t I = Y @ l\t. = Y @ Cfl., .
q q?Q Mq q?Q * Mq

From th is we can conclude that

o(I) = U a\(fl\ 1 , [3, p. 80]
q£Q <• v q>

= U (^jjw J (^y the spectral mapping theorem).
qlQ » M

?

This shows that Q{pAij ) = 1 f o r every i? € S . Hence

°(<>U ) = U : X« - 1} . Since C^ = ^ @ C^| ,

* qiQ * Mq ' r qZQ

COROLLARY. If <}> is periodic with period m , then

O{CJ = {X : Xm = 1} .

THEOREM 3 .3 . If C € B{l2) is invertible and if for some n € N ,

there does not exist any m € N such that <j>m(n) = n , then a[c ) = a .

Proof. Let n € N be such tha t <l>m(n0) ?̂  nQ for a l l m € N . For

ffl € N 9 l e t W = (f> I WrtJ SLIld. M = I T J 11 ̂ r\ \ J " ^ ^ fi = JM ; 17! ( ZJ ,

where Z is the set of all integers, and !„ = span{e ̂  : p € #} , then

(i)

2 2
If the transformation 5 from I (Z) into Z._ is defined as

[n 1
Se = e for every m (. Z t then 5 is a bounded linear invertible

transformation and C,I „ = 5^*5" , where V is the bilateral shift.<j>'2
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Thus by [3 , Problem 60], o{c | 2) = a(W*) . From Problem 68 of [ 3 ] ,

a(W*) = c and from the re la t ion ( l ) , we have a(C\ I -1 c a(C,) . Since

C, is invertible implies that C, i s unitary [S, Theorem 2 .3 ] , i t follows

that a[c.) = a .
v m 7

COROLLARY. C is hermitian if and only if a[C) c {-l, 1} .

Proof. Suppose C, is hermitian. Then by Theorem 3 of [6],

(j) o ((> = J , and hence o{cA c {-1, l} by the corollary to Theorem 3.2.

Conversely, if o(C,) c {-1, l} , then C, is invertible and so it is

normal. Hence C, is hermitian in view of Corollary 1.7 of [5],

COROLLARY. Let <$> -. N ->• N be an injection. Then a(C.) = D if and

only if C, is not an injection.

Proof. Suppose C, is not an injection. Then (j> is not onto. Thus

by Theorem 3.1, o{C.) = D .

On the other hand, if C. is an injection, then <p is onto. This

shows that (j) is invertible which further shows that C is unitary.

Hence o(C.) c c , which is a contradiction.
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