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Composition operators

R.K. Singh and B.S. Komal

A study of centered composition operators on Z2 is made in this
paper. Also the spectrum of surjective composition operators is
computed. A necessary and sufficient condition is obtained for
the closed unit disc to be the spectrum of a surjective

composition operator.

1. Preliminaries

Let LZ(A) be the Hilbert space of all square integrable functions on
a o-finite measure space (X, S, A) and let ¢ be a non-singular

measurable transformation from X into itself. Then the equation

C¢f =fo¢ for every f € L2(A) defines a linear transformation. If

C¢ happens to be a bounded operator on LQ(X) , then we call it a

composition operator. If X =N , the set of all non-zero positive

integers and A 1is the counting measure on the family of all subsets of
N , then L2(A) = 72 , the Hilbert space of all square summable sequences.

In this note we have studied composition operators on Z2 . The
second section characterises centered composition operators while the third
section is devoted to the study of the spectrum of a surjective composition
operator. If H 1is a Hilbert space, then B(H) denotes the Banach

algebra of all bounded linear operators on H .

2. Centered composition operators on Zz

Let H be a complex Hilbert space, T € B(H) , and let
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sp = {(T*)ka : k€n}u {Tk(T*)k : k €N} . Then T is defined to be a
centered operator if any two elements of sT commute. These operators

have been studied by Morrel and Muhly [4] in detail. We give a necessary

and sufficient condition for a composition operator to be centered.
THEOREM 2.1. Let ¢ 'be a mapping from N into itself such that

2
Cy € B(1°) . Then Cy

(q;p)_l({n}) for every n € N and p € N, where f]é i8 the Radon-Nikodym

ig centered if and only if fg 18 constant on

)_l with respect to the measure X .

derivative of the measure )\(¢k
For the proof of the theorem we need the following lemma.

LEMA 2.2, If ¢ <is a measurable transformation from a measure

space (X, S, A\) 1into itself such that C¢ € B(L2(X)) , then

[Ca)kc{; = Mfk for every k €N,
0

where M fk is the multiplication operator induced by fJé .
0

Proof. Since C¢ € B(Lg()\)) , it is easy to show that

Cp= C{; € B(Lz(k)) , where ¢k is obtained by composing ¢ Kk-times. If
¢

f and g are any two elements in Le()\) and k € N , then
k
((ep¥ekr, gy = (chr. g)
(¢ .f, C.q)
A

J fo¢k-go¢kdl
X

(Fg) © ¢ar
X

| raah
X
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- J g -
X
= (Mfkfs g) .
0

This shows that (C&;)kc{; = Mfk . Hence the proof of the lemma is complete.
0

Proof of theorem. Suppose that the condition of the theorem holds.

Let 4, B €8, . Then 4 =c$kc’(; or 4 =ctert ana B=C$p0ﬁ or

¢ ¢

B=C’£C$m for some k, L, p,and m in N . If A=C$kc{; and

B = c(;ch , then from the above lemma it follows that 4B = MkofP = BA .
0“0

If A =C$kCJ(; and B =C{ZC$m and if e(n) is the nth basis vector

6nq (the Kronecker delta), then

defined by e(n)(q)

(n) _ ..k m _(n)
ume™ = oz c:c{;'c; e
m

= Mfk ¢e(¢ () (by definition of €} [8])
0

= fo(n)x _ ,
O "D}

where XE' denotes the characteristic function of the set E . A similar

computation shows that BAe(n) = flé(n)X{ AB = BA .

my=l¢r.m )
") ({e"(m N}
Suppose now that 4 = C;C&‘)Z and B = C’;C‘;m and without loss of generality

assume m < 7 . Then
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(n) _ ALl m (n)
4B = ool cf;’c&; e
= cloxt ™y

A P!

m 1 . l-
ol (m)c,cy My

{6™(n)}
= fm(¢m(n))X .
° {69 "D}
Also
(n) ml L (n)
BAe'™ = cch(; CyCs'e

This shows that AB = B4 .
On the other hand, suppose the condition of the theorem is not true.

Then there exist n,, n, € (¢p)_l({n}) such that fﬁ(nl] # fﬁ(nz) for

some p, k,m €N . If A= C$k0$ and B = CgC;p , then
(n ) n
ABe - . } and BAe( l) = fﬁ[nl)X

o N CACANN () )

Since fﬁ[nl) # fg(ne] , we can conclude that AB # BA . Hence C¢ is not

centered. This completes the proof of the theorem.

3. Spectrum of a composition operator on 12

This section is devoted to the study of the spectrum of a composition

operator on 12 . The set of all complex numbers will be denoted by C
and the set D defined by D = {X : X € ¢ and |A| =1} is called the
closed unit disc. The symbol o(T) stands for the spectrum of T . The
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unit circle will be denoted by ¢ .

THEOREM 3.1. If ¢ : N > N is an injection which is not a

surjection, then O(C¢) =D .
Proof. Since ¢ 1is not a surjection, there is an nl € N such that
A ¢-l({n }) =0 . Let ¢m[n ) =n for m € N and let
1 1 m+1

()

M = spanie :m €N} . Then M is a closed subspace of Z2 . By the

Py
projection theorem 12 =M®M . Since M is a reducing subspace of

C¢ s C¢ = C¢|M C)C¢|ML , where C¢|E denotes the restriction of C¢ to

the subspace E . Define the transformation S from Z2 into M by

()
Se(m) =e ™ for every m € N .

Then S 1is a bounded linear transformation. Also S is invertible and

C¢|M = syrst , where U* is the adjoint of the unilateral shift U .
Since similar operators have the same spectrum [3, Problem 60], we have

0(C¢|hﬂ = g(U*) . Thus 0(C¢|kﬂ = D by the solution to Problem 67 of [3].
Since 0(C¢) = 0(C¢|AJ U (C¢|ML) , D« 0(C¢) . From a corollary to

Theorem 2.1 of [§], [/CJ| =1 and hence 0(C¢) © D . Thus 0(C¢) =D .

The following two theorems compute the spectrum of invertible
composition operators. We know that €, is invertible if and only if ¢

¢

is invertible [§, Theorem 2.2].

THEOREM 3.2. Let C¢ € B(Zg) be invertible, and assume for every

n € N there exists an m € N such that ¢m(n) =n. Let
m
(

m = inf{m : ¢ (n) =n} and Q = {mn :n €N} . Then

¢(C¢) = U {a:2a9=1}.
q¢e

Proof. For q € @ , let Eq ={n:nenl and ¢%Un) =n} . Then
Mq = span{e(p) tp € Eq} is a reducing subspace of C, . Since ¢ 1is

¢
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invertible, the family {Mq | ¢ € Q} is a disjoint orthogonal family of

subspaces which spans 12 . Thus 12 can be written as 12 = Z @M
9

since ¢ =I on E_, it follows that I = ¥ @®I|, = ¥ @cgl
q 4ce

q€Q q M

q
From this we can conclude that

ol(I) = U alcd] , [3, p. 803
qeq Mg
U [Cd)lM )q (by the spectral mapping theorem).
q¢Q q
This shows that 0(C¢|M) =1 for every q € @ . Hence
q
O(CI)={A:)\q=l}.SinceC=?@Cl ’
M v M
g ¢ gip *Y,
ofc.) = U ofc,],, ) . Hemce ofc) = U {x:2a9=1}.
¢ q€Q ¢ Mq ¢ 7€

COROLLARY. If ¢ <s periodic with period m , then

o(cy) = I : =1} .

THEOREM 3.3. If c, € B(1®) is imvertible and if for some n € N,

¢
there does not exist any m € N such that ¢m(n) =n, then o(C¢) =c.

Proof. Let 7, € N be such that ¢m(no) # 7y for all m € N . For

méN , let nm = ¢m[no] and n_, = (¢m)_l({no}] . If E = {nm cm € Z} ,

)

where Z 1is the set of all integers,and Z; = spa.n{e(p 1 p € E} , then

2 _ .2, .2
(1) Z-ZE@ZN\E.

If the transformation S from ZZ(Z) into Z; is defined as

(m) - e("m)

Se for every m € Z , then S 1is a bounded linear invertible

transformation and ( = SW"S-l , where W is the bilateral shift.

|
¢l 2
’g
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Thus by [3, Problem 60], 0(C¢|12] = g(W*) . From Problem 68 of [3],
E
o(W*) = ¢ and from the relation (1), we have O(C¢|Z2) c 0(C¢) . Since
E
C¢ is invertible implies that C¢ is unitary [8, Theorem 2.3], it follows

that o(C¢) =c .

COROLLARY, C¢ is hermitian if and only if 0(C¢] c {-1, 1} .

Proof. Suppose C¢ is hermitian. Then by Theorem 3 of [6],

¢ o ¢ =TI , and hence 0(0¢) c {-1, 1} by the corollary to Theorem 3.2.

Conversely, if o(c¢) < {-1, 1} , then cq) is invertible and so it is

normal. Hence C, is hermitian in view of Corollary 1.7 of [5].

¢
COROLLARY. Let ¢ : N+ N be an injection. Then O'(C¢) =D if and

only if C, 1is not an injection.

¢

Proof. Suppose C¢ is not an injection. Then ¢ 1is not onto. Thus

by Theorem 3.1, O(Cq)) =D .

On the other hand, if Cq) is an injection, then ¢ is onto. This

shows that ¢ 1is invertible which further shows that C¢ is unitary.

Hence o(C,) < ¢ , which is a contradiction.

N
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