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Abstract. The classification of flag-transitive generalized quadrangles is a

long-standing open problem at the interface of finite geometry and permutation

group theory. Given that all known flag-transitive generalized quadrangles are

also point-primitive (up to point–line duality), it is likewise natural to seek

a classification of the point-primitive examples. Working toward this aim, we

are led to investigate generalized quadrangles that admit a collineation group

G preserving a Cartesian product decomposition of the set of points. It is

shown that, under a generic assumption on G, the number of factors of such

a Cartesian product can be at most four. This result is then used to treat

various types of primitive and quasiprimitive point actions. In particular, it

is shown that G cannot have holomorph compound O’Nan–Scott type. Our

arguments also pose purely group-theoretic questions about conjugacy classes

in nonabelian finite simple groups and fixities of primitive permutation groups.
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§1. Introduction

Generalized quadrangles are point–line incidence geometries introduced

by Tits [25] in an attempt to find geometric models for simple groups of Lie

type. The classical generalized quadrangles arise in this way [21, Section 3].

Each admits one of the simple classical groups T = PSp(4, q)∼= Ω5(q),

PSU(4, q)∼= PΩ−6 (q) or PSU(5, q) acting transitively on flags (incident

point–line pairs). Moreover, the point and line stabilizers are certain

maximal subgroups of T , so T acts primitively on both points and lines. The

classification of flag-transitive generalized quadrangles is a long-standing

open problem. In addition to the classical families, only two other flag-

transitive examples are known, up to point–line duality, with each admitting

an affine group acting point-primitively but line-imprimitively. Hence, all of

the known flag-transitive generalized quadrangles are also point-primitive

(up to duality), and so it is natural to seek a classification of the point-

primitive examples. Indeed, this is arguably a more difficult problem,

because one begins with essentially no information about the action of

the collineation group on lines, nor any notion of what “incidence” means,

whereas in a flag-transitive point–line geometry, points and lines correspond

to cosets of certain subgroups of the collineation group, and incidence is

determined by nonempty intersection of these cosets.

Here we prove the following theorem. The abbreviations HS (holomorph

simple), HC (holomorph compound), SD (simple diagonal), CD (compound

diagonal), PA (product action), AS (almost simple) and TW (twisted

wreath) refer to the possible types of nonaffine primitive permutation group

actions, in the sense of the O’Nan–Scott theorem as stated in [22, Section 6].

In the second column of Table 1, soc(G) denotes the socle of the group

G, namely the subgroup generated by its minimal normal subgroups. By

fixΩ(h) we mean the number of elements fixed by a permutation h of the set

Ω, and Q−(5, 2) denotes the unique generalized quadrangle of order (2, 4).

Note also that, in the notation for finite simple groups of Lie type used

in Table 1 (and throughout the paper), ε=± and A+
n = An, A−n = 2An,

D+
n = Dn, D−n = 2Dn, E+

6 = E6, E−6 = 2E6.

Theorem 1.1. If Q is a thick finite generalized quadrangle with a

nonaffine collineation group G that acts primitively on the point set P of Q,

then the action of G on P does not have O’Nan–Scott type HC, and the

conditions in Table 1 hold for the remaining O’Nan–Scott types.
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Table 1.
Conditions for Theorem 1.1. Here T is a nonabelian finite simple group, k > 2 and

r > 2. If G acts primitively of type CD (resp. PA) on P, then G6H o Symr for

some primitive group H 6 Sym(Ω) of type SD (resp. AS) with socle T k (resp. T ).

Type soc(G) Necessary conditions
HS T × T T has Lie type

Aε
5, Aε

6, B3, C2, C3, Dε
4, Dε

5, Dε
6, Eε6, E7 or F4

SD T k T is a sporadic simple group or T ∼= Altn with n6 18;
T is an exceptional Lie type group;
T has Lie type A1 or Aε

n with 26 n6 8;
T has Lie type Bn or Cn with 26 n6 4; or
T has Lie type Dε

n with 46 n6 8

CD (T k)r r = 2 and T ∼= Altn with n6 9;
r = 2 and T is a sporadic simple group

with T 6∼= Suz, Co2, Fi22, Fi23, B or M;
r = 2 and T has Lie type

A1, Aε
2, Aε

3, B2, 2B2, 2F4, G2 or 2G2; or
r = 3 and either T ∼= J1 or T has Lie type A1 or 2B2

PA T r r = 2 and fixΩ(h)< |Ω|3/5 for all h ∈H \ {1};
36 r 6 4, T is a group of Lie type,

and fixΩ(h)< |Ω|1−r/5 for all h ∈H \ {1}; or
36 r 6 4 and H = T ∼= Altp with point stabilizer
p · (p− 1)/2 for some prime p≡ 3 (mod 4)

AS T fixP(g)< |P|4/5 for all g ∈G \ {1}; or
Q= Q−(5, 2) with T ∼= PSU4(2)

TW T r fixP(g)< |P|4/5 for all g ∈G \ {1}

Before we proceed, a remark is in order about the assumption in

Theorem 1.1 thatG not be an affine group. IfG is affine, then the generalized

quadrangle Q necessarily arises from a so-called pseudo-hyperoval in a pro-

jective space PG(3n− 1, q) with q even [12]. In joint work with Glasby [6],

we were able to classify the generalized quadrangles admitting an affine

group that acts primitively on points and transitively on lines: they are pre-

cisely the two flag-transitive, point-primitive, line-imprimitive generalized

quadrangles mentioned above. However, without the extra assumption of

transitivity on lines, the problem is equivalent to the classification of the

https://doi.org/10.1017/nmj.2017.35 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2017.35


90 J. BAMBERG, T. POPIEL AND C. E. PRAEGER

pseudo-hyperovals that have an irreducible stabilizer. As explained in [6,

Remark 1.3], this latter problem would appear to be extremely difficult,

and possibly intractable. It also has a rather different flavor to the cases

treated in the present paper, and so we do not consider it further here.

Let us now establish some definitions and notation, before discussing

further. By a point–line incidence geometry we mean a triple Γ = (P, L, I),
where P and L are sets whose elements are called points and lines,

respectively, and I⊆ P × L is a symmetric binary relation called incidence.

We sometimes write Γ = (P, L) instead of (P, L, I), when we do not need to

refer to the incidence relation explicitly. Two points (resp. lines) of Γ are said

to be collinear (resp. concurrent) if they are incident with a common line

(resp. point). A collineation of Γ is a permutation of P ∪ L that preserves P
and L setwise and preserves the incidence relation. By a collineation group

of Γ we mean a subgroup of the group of all collineations of Γ, which is

called the full collineation group.

A generalized quadrangle is a point–line incidence geometry Q= (P, L)

that satisfies the following two axioms: (i) two distinct points are incident

with at most one common line, and (ii) given a point P and a line ` not

incident with P , there exists a unique point incident with ` that is collinear

with P . The second axiom implies that every pair in P ∪ L is contained in

an ordinary quadrangle, and that Q contains no triangles. All generalized

quadrangles considered in this paper are assumed to be finite, in the sense

that P and L are finite sets. If every point is incident with at least three

lines, and every line is incident with at least three points, then Q is said

to be thick. In this case, there exist constants s> 2 and t> 2 such that

every point is incident with exactly t+ 1 lines and every line is incident

with exactly s+ 1 points [26, Corollary 1.5.3]. The pair (s, t) is called the

order of Q. Observe also that there is a natural concept of point–line duality

for generalized quadrangles: if (P, L) is a generalized quadrangle, then so is

(L, P); and if (P, L) has order (s, t), then (L, P) has order (t, s).

Let us now discuss Theorem 1.1 further. The primitive permutation

groups on a finite set ∆ are classified into eight types according to the

O’Nan–Scott Theorem as presented in [22, Section 6]. In 2012, Bamberg

et al. [5] showed that if a thick finite generalized quadrangle admits a

collineation group G that acts primitively on both points and lines, then

G must be an almost simple (AS type) group. That is, G must satisfy

T 6G6Aut(T ) for some nonabelian finite simple group T . Given that there

exist point-primitive generalized quadrangles that are line-transitive but
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line-imprimitive, our initial aim was to extend the result of [5] by relaxing

the line-primitivity assumption to line-transitivity. In addition to handling

the affine (HA type) case with Glasby [6], we were also able to show that

no such examples arise if the point action has type HS or HC [8].

Theorem 1.1 significantly strengthens and expands upon the results of [5],

[8]. The idea behind its proof begins with the following observations. A

primitive group G6 Sym(∆) of O’Nan–Scott type HC, CD, PA or TW

preserves a Cartesian product decomposition ∆ = Ωr, for some set Ω and

some r > 2. Therefore, in studying point-primitive generalized quadrangles,

we are led in particular to consider generalized quadrangles with collineation

groups that preserve a Cartesian product decomposition of the point

set. The following theorem shows that the number of factors of such a

decomposition becomes severely restricted under a fairly generic assumption

on the group. Here a semiregular permutation group action is one in which

only the identity element fixes a point, and if H1, . . . , Hr are permutation

groups on sets Ω1, . . . , Ωr, respectively, then the product action of the

direct product
∏r
i=1 Hi on the Cartesian product

∏r
i=1 Ωi is the action

(ω1, . . . , ωr)
(h1,...,hr) = (ωh11 , . . . , ωhrr ). We also recall that a permutation

group is said to act regularly if it acts transitively and semiregularly.

Theorem 1.2. Let Ω1, . . . , Ωr be finite sets with 26 |Ω1|6 · · ·6 |Ωr|,
where r > 1, and let Hi 6 Sym(Ωi) for each i ∈ {1, . . . , r}. Assume further

that H1 is nontrivial and that its action on Ω1 is not semiregular. Suppose

that N =
∏r
i=1 Hi is a collineation group of a thick finite generalized

quadrangle Q= (P, L) of order not equal to (2, 4), such that P =
∏r
i=1 Ωi

and N has the product action on P. Then r 6 4, and every nonidentity

element of H1 fixes less than |Ω1|1−r/5 points of Ω1.

The proof of Theorem 1.2 relies on the existence of a nonidentity element

h1 of H1 that fixes at least one point of Ω1. If r > 2, one can then construct

a collineation (h1, 1, . . . , 1) ∈N of Q that fixes at least
∏r
i=2 |Ωi| points of

the Cartesian product P =
∏r
i=1 Ωi. Theorem 1.2 is then deduced from the

following result, which bounds the number of points fixed by a nonidentity

collineation of an arbitrary thick finite generalized quadrangle. The proofs

of both theorems are given in Section 2.

Theorem 1.3. Let θ be a nonidentity collineation of a thick finite

generalized quadrangle Q= (P, L). Then either θ fixes less than |P|4/5 points

of Q, or Q is the unique generalized quadrangle Q−(5, 2) of order (2, 4) and

θ fixes exactly 15 of the 27 points of Q.
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Remark 1.4. Theorem 1.3 improves a particular case of a recent result of

Babai on automorphism groups of strongly regular graphs [1, Theorem 1.7].

If Q has order (s, t) then its collinearity graph, namely the graph with

vertex set P and two vertices adjacent if and only if they are collinear

in Q, is a strongly regular graph with parameters v = |P|= (s+ 1)(st+ 1),

k = s(t+ 1), λ= s− 1 and µ= t+ 1. Roughly speaking, we have v ≈ s2t and

k ≈ st, so the condition k 6 n3/4 in assertion (b) of [1, Theorem 1.7] becomes

t6 s2, which is just Higman’s inequality for generalized quadrangles (see

Lemma 2.1(ii)). Babai’s result, which applies far more generally to strongly

regular graphs that are nontrivial, nongraphic and nongeometric, therefore

implies that a nonidentity collineation θ of Q can fix at most O(|P|7/8)

points. Theorem 1.3 sharpens the 7/8 exponent in this bound to 4/5 in the

case of collinearity graphs of generalized quadrangles (and replaces the “O”

by an explicit constant). (Note also that assertion (a) of [1, Theorem 1.7]

sharpens the 7/8 exponent to 5/6 when, roughly, t> s: the condition k >
n2/3 roughly translates to t> s, and the corresponding bound is O(

√
kn),

with
√
kn≈ s3/2t> (s2t)5/6 ≈ |P|5/6 when t> s.)

To aid our discussion, let us now state the following immediate corollary

of Theorem 1.2.

Corollary 1.5. Let Ω be a finite set with |Ω|> 2, and suppose that

H 6 Sym(Ω) is nontrivial and not semiregular. Suppose that N =Hr, r > 1,

is a collineation group of a thick finite generalized quadrangle Q= (P, L) of

order not equal to (2, 4), such that P = Ωr and N has the product action on

P. Then r 6 4, and every nonidentity element of H fixes less than |Ω|1−r/5
points of Ω.

We apply Corollary 1.5 to groups N that arise as subgroups of certain

types of primitive groups. This in turn motivates certain questions about

nonabelian finite simple groups. As illustration, consider the case where Ω =

T for some nonabelian finite simple group T , with H = T × T acting on Ω

via ω(x,x′) = x−1ωx′. This situation arises when N is the socle (the subgroup

generated by the minimal normal subgroups) of a primitive group of type

HS (r = 1) or HC (r > 2). If x′ = x then the element (x, x′) = (x, x) ∈H
fixes precisely |CT (x)| points of Ω, where CT (x) is the centralizer of x in

T . Corollary 1.5 therefore implies that r 6 4, and that |CT (x)|< |T |1−r/5
for all x ∈ T \ {1}. We therefore ask which nonabelian finite simple groups

T satisfy this condition. If r = 4 then we require that |CT (x)|< |T |1/5 for

all x ∈ T \ {1}, which is false for every nonabelian finite simple group T .
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Table 2.
Possibilities for a nonabelian finite simple group T with the property that

|CT (x)|< |T |1−r/5 for all x ∈ T \ {1}, where r ∈ {1, 2, 3}.

T r = 1 r = 2 r = 3
Altn 56 n6 18 56 n6 9 56 n6 6
sporadic any T 6∼= Suz, Co2, Fi22, T ∼= J1

Fi23, B or M
exceptional Lie type any T ∼= 2F4(q), G2(q), T ∼= 2B2(q)

2G2(q) or 2B2(q)
PSLn+1(q) 16 n6 8 16 n6 3 n= 1, q 6= 7
PSUn+1(q) 26 n6 8 26 n6 3 —
PSp2n(q) or Ω2n+1(q) 26 n6 4 n= 2 —
PΩ±2n(q) 46 n6 8 — —

Indeed, it is well known that every nonabelian finite simple group T contains

an involution x with |CT (x)|> |T |1/3 (in fact, every involution in T has this

property [19, Proposition 2.4]). For r ∈ {1, 2, 3}, we verify the following

result in Section 3. Although this result follows from routine calculations,

we include it here in case it proves to be a convenient reference.

Proposition 1.6. Let r ∈ {1, 2, 3} and let T be a nonabelian finite

simple group. Then either |CT (x)|> |T |1−r/5 for some x ∈ T \ {1}, or T

is one of the groups listed in Table 2.

Our new results about generalized quadrangles with point-primitive

collineation groups are proved in Sections 4–6. Corollary 1.5 is applied not

only to actions of type HS or HC as illustrated above, but also to types SD,

CD and PA. In particular, the proof of Theorem 1.1 does not depend on

the Classification of Finite Simple Groups (CFSG) to the extent that, for

G of type HC, CD or PA with socle T r × T r, T (k−1)r or T r, respectively,

the proof that r 6 4 depends only on Corollary 1.5. The CFSG is, however,

needed to prove Proposition 1.6 and some of the results in Section 5. For

type PA, the group H in Corollary 1.5 is an almost simple primitive group,

so we are led to consider lower bounds on the fixity of such a group, namely

the maximum number of points that can be fixed by a nonidentity element.

In Section 6, we discuss how refinements of a recent result of Liebeck and

Shalev [19, Theorem 4] on this problem, currently being carried out by Elisa

Covato at the University of Bristol as part of her PhD research [11], can be

adapted to further improve the bound r 6 4 in this case. In particular, for
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r ∈ {3, 4} we are able to show that T cannot be a sporadic simple group,

and to rule out the case T ∼= Altn except in one specific action when n is a

prime congruent to 3 modulo 4 (see Table 1). The proof of Theorem 1.1 is

presented in Section 7.

Section 8 concludes the paper with a discussion and some open problems.

In light of the growing body of work toward a classification of point-primitive

generalized quadrangles, and the possible avenues outlined in Remarks 5.11,

6.4 and Section 8 for attacking the cases left open by Theorem 1.1, we feel

that the following conjecture can be made with a reasonable amount of

confidence.

Conjecture 1.7. If a thick finite generalized quadrangle Q admits a

collineation group G that acts primitively on the point set of Q, then G is

either affine or almost simple.

§2. Bounding the number of points fixed by a collineation

The facts summarized in the following lemma are well known. (The

existence of an order is proved in [26, Corollary 1.5.3], and proofs of

assertions (i)–(iii) may be found in [21, Section 1.2].)

Lemma 2.1. Let Q be a thick finite generalized quadrangle. Then Q has

an order (s, t), and the following properties hold:

(i) Q has (s+ 1)(st+ 1) points and (t+ 1)(st+ 1) lines;

(ii) s1/2 6 t6 s2 6 t4 (Higman’s inequality);

(iii) s+ t divides st(st+ 1).

A point–line incidence geometry S = (P, L, I) is called a grid if there

exist positive integers s1 and s2 such that the point set P can be written

in the form {Pij | 06 i6 s1, 06 j 6 s2}, the line set L can be written in

the form {`k | 06 k 6 s1} ∪ {`′k | 06 k 6 s2}, and we have PijI`k if and only

if i= k, and PijI`
′
k if and only if j = k. Each point of S is then incident

with exactly two lines, and |P|= (s1 + 1)(s2 + 1). Let us say that such a

grid has parameters s1 and s2. Note that a grid with parameters s1 = s2 is a

generalized quadrangle of order (s1, 1). A dual grid is defined analogously, by

swapping the roles of points and lines. That is, there exist positive integers t1
and t2 such that L can be written in the form {`ij | 06 i6 t1, 06 j 6 t2},
P can be written in the form {Pi | 06 i6 t1} ∪ {P ′j | 06 j 6 t2}, PkI`ij if

and only if i= k, and P ′kI`ij if and only if j = k. In this case, each line is
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incident with exactly two points, and |P|= (t1 + 1) + (t2 + 1). Let us say

that such a dual grid has parameters t1 and t2.

If θ is a collineation of a generalized quadrangle Q= (P, L), then it

makes sense to consider the point–line incidence geometry Qθ = (Pθ, Lθ)
with Pθ = {P ∈ P | P θ = P}, Lθ = {` ∈ L | `θ = `}, and incidence inherited

fromQ. Here we callQθ the substructure of Q fixed by θ. It may happen that

Qθ is a grid or a dual grid, or a generalized quadrangle. More specifically, we

have the following result, based on the description of the possible structures

of Qθ given by Payne and Thas [21, 2.4.1].

Lemma 2.2. Let Q= (P, L) be a thick finite generalized quadrangle of

order (s, t). Let θ be a nonidentity collineation of Q, and let Qθ = (Pθ, Lθ) be

the substructure of Q fixed by θ. Then at least one of the following conditions

holds.

(i) Pθ is empty.

(ii) Lθ is empty and Pθ is a set of pairwise noncollinear points. In

particular, |Pθ|6 st+ 1.

(iii) All points of Qθ are incident with a common line, and |Pθ|6 s+ 1.

(iv) All points of Qθ are collinear with a common point, and

|Pθ|6 s(t+ 1) + 1.

(v) Qθ is a grid. In this case, either |Pθ|= (s+ 1)2 and s6 t, or |Pθ|< s2.

(vi) Qθ is a dual grid, and |Pθ|6 2(t+ 1).

(vii) Qθ is a thick generalized quadrangle, and |Pθ|6 (s+ 1)(t+ 1).

In particular, either |Pθ|6 (s+ 1)(t+ 1); or s> t+ 3, Qθ is a grid and

|Pθ|< s2.

Proof. The possible structures (i)–(vii) of Qθ are given by [21, 2.4.1].

We verify the claimed upper bounds for |Pθ|. The bounds in cases (iii)

and (iv) are immediate, because every line ofQ is incident with exactly s+ 1

points, and every point of Q is incident with exactly t+ 1 lines. For case (ii),

note [21, Section 2.7] that the maximum size of a set of pairwise noncollinear

points in Q is st+ 1. For (v), if Qθ is a dual grid with parameters t1 and

t2, then t1 6 t and t2 6 t, and hence |Pθ|6 2(t+ 1).

Now suppose that Qθ is a grid with parameters s1 and s2, noting that

s1 6 s and s2 6 s, and assuming (without loss of generality) that s1 > s2. If

s1 = s2 = s then |Pθ|= (s+ 1)2, and Qθ is a generalized quadrangle of order

(s, 1), so [21, 2.2.2(i)] implies that s6 t. The case s2 = s− 1 cannot occur,
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because if θ fixes s points incident with a line then it must also fix the final

point; and if s2 6 s− 2 then |Pθ|6 (s+ 1)(s− 1)< s2. Finally, suppose that

Q is a thick finite generalized quadrangle, and let (s′, t′) denote its order.

Then |Pθ|= (s′ + 1)(s′t′ + 1) by Lemma 2.1(i). If t′ = t then s′ < s because

θ 6= 1, so [21, 2.2.1] implies that s′t= s′t′ 6 s, and hence |Pθ|6 (s/t+ 1)

(s+ 1)6 (t2/t+ 1)(s+ 1) = (s+ 1)(t+ 1), where for the second inequality

we use Lemma 2.1(ii). If t′ < t then the dual statement of [21, 2.2.1] yields

s′t′ 6 t, so |Pθ|= (s′ + 1)(s′t′ + 1)6 (s+ 1)(t+ 1).

The final assertion is deduced by comparing the upper bounds on

|Pθ| established in each case. We observe that |Pθ|6 (s+ 1)(t+ 1) except

possibly in the second case of (v), where our bound is |Pθ|< s2. However,

if s6 t+ 2 then in this case we have |Pθ|< s2 < (s+ 1)(t+ 1).

Remark 2.3. We mention a paper of Frohardt and Magaard [14, Sec-

tion 1.3], in which results analogous to Lemma 2.2 are obtained for gener-

alized d-gons with d ∈ {6, 8}, namely generalized hexagons and generalized

octagons. The known examples of such geometries admit point- and line-

primitive actions of almost simple groups with socle 3D4(q) or G2(q) (for

d= 6) and 2F4(q) (for d= 8). Frohardt and Magaard use the aforementioned

results to determine upper bounds for fixities of primitive actions of groups

G with generalized Fitting subgroup 3D4(q), G2(q) or 2F4(q) (and they

also treat the other exceptional Lie type groups of Lie rank 1 or 2). By

comparison, we instead apply Lemma 2.2 to determine which groups might

act primitively on the points of a generalized d-gon (with d= 4 in our

case). (We remark that we have also investigated point-primitive generalized

hexagons and octagons, although via different methods than in the present

paper [7], [20].)

We now use Lemma 2.2 to prove Theorem 1.3, from which we deduce

Theorem 1.2.

Proof of Theorem 1.3. Let (s, t) be the order of Q, and let Qθ = (Pθ, Lθ)
be the substructure of Q fixed by θ. We must show that either |Pθ|< |P|4/5,

or (s, t) = (2, 4) and |Pθ|= 15 for Q= Q−(5, 2).

First suppose that s 6= 2. By Lemma 2.2, we have either |Pθ|< s2

or |Pθ|6 (s+ 1)(t+ 1). If |Pθ|< s2 then |Pθ|< |P|4/5 since |P|= (s+ 1)

(st+ 1)> s2t> s5/2 by Lemma 2.1. If |Pθ|6 (s+ 1)(t+ 1) then it suffices

to show that the function f(s, t) = ((s+ 1)(st+ 1))4/5 − (s+ 1)(t+ 1) is

positive for all s> 3, for all s1/2 6 t6 s2. This is readily checked when

s ∈ {3, 4}, so assume that s> 5. Regarding s and t as real variables,
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we have

∂f

∂t
(s, t) =

(s+ 1)(4s− h(s, t))

h(s, t)
, where h(s, t) = 5((s+ 1)(st+ 1))1/5.

As s, t are positive, this derivative is positive if and only if 4s− h(s, t)>

0. Since s> 5 and 26 t6 s2, we have h(s, t)6 5(6
5s)

1/5(11
10st)

1/5 6
5(33

25)1/5s4/5. Hence, 4s− h(s, t)> s4/5(4s1/5 − 5(33
25)1/5). The right-hand

side of this inequality is positive if s > (5
4)5(33

25) = 4125
1024 ≈ 4.028, and so

certainly (∂f/∂t)(s, t)> 0 when s> 5 and s1/2 6 t6 s2. Since f(s, t)>
f(s, s1/2) and f(s, s1/2)> 0 for s> 5, it follows that f(s, t)> 0 for all s> 5,

for all s1/2 6 t6 s2.

Now suppose that s= 2. Then t ∈ {2, 4} by Lemma 2.1. There exist

unique generalized quadrangles of orders (2, 2) and (2, 4), namely the

symplectic space W(3, 2) and the elliptic quadric Q−(5, 2), respectively [21,

5.2.3 and 5.3.2]. The full collineation groups of these generalized quadrangles

are PΓSp4(2) and PΓU4(2), respectively. One may use the package FinInG [3]

in the computer algebra system GAP [15] to check that every nonidentity

collineation of W(3, 2) fixes at most 7 points. Since W(3, 2) has a total of

15 points and 154/5 ≈ 8.73> 7, the claimed inequality |Pθ|< |P|4/5 holds

for every nonidentity collineation θ in this case. On the other hand, there

exist 36 nonidentity collineations of Q−(5, 2) that fix 15 points, but the total

number of points of Q−(5, 2) is 27 and 274/5 ≈ 13.97< 15. We also remark

that the substructure fixed by such a collineation is, in fact, a generalized

quadrangle of order (2, 2). Every other nonidentity collineation of Q−(5, 2)

fixes at most 9 points.

Proof of Theorem 1.2. Since the action of H1 on Ω1 is not semiregular,

there exists h1 ∈H1 \ {1} fixing at least one point of Ω1. Let f1 be the

number of points of Ω1 fixed by h1. Let θ = (h1, 1, . . . , 1) ∈N , and let f be

the number of points of Q fixed by θ. If r = 1 then Theorem 1.3 implies that

f1 = f < |P|4/5 = |Ω1|4/5. If r > 2 then Theorem 1.3 gives f1
∏r
i=2 |Ωi|= f <

|P|4/5 = (
∏r
i=1 |Ωi|)4/5, so f1(

∏r
i=2 |Ωi|)1/5 < |Ω1|4/5. Since (

∏r
i=2 |Ωi|)1/5 >

|Ω1|(r−1)/5, it follows that f1 < |Ω1|1−r/5. In particular, 1− r/5> 0 because

f1 > 1, and so r 6 4.

We also use Lemma 2.2 to sharpen the 4/5 exponent bound in The-

orem 1.3 in some special cases. The proofs are just modifications of the

proof of Theorem 1.3, but since the details are somewhat tedious to check,

we include them at the end of the paper, in Section 9, to save the reader
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having to reproduce them. We also remark that the exponent 94/125 = 0.752

in case (i) of Proposition 2.5 could be changed to 3/4 + ε for any ε > 0 at

the expense of increasing the upper bound on s in case (ii), but that this

would not have been useful for our arguments in Section 5.

Proposition 2.4. Let Q= (P, L) be a finite generalized quadrangle of

order (s, t), let θ be any nonidentity collineation of Q, and let Qθ = (Pθ, Lθ)
be the substructure of Q fixed by θ. Then either

(i) |Pθ|< |P|7/9,

(ii) s ∈ {2, 3}, t= s2 and Qθ is a generalized quadrangle of order (s, s), or

(iii) s> t+ 3, Qθ is a grid and |Pθ|< s2.

Proposition 2.5. Let Q= (P, L) be a finite generalized quadrangle of

order (s, t), let θ be any nonidentity collineation of Q, and let Qθ = (Pθ, Lθ)
be the substructure of Q fixed by θ. Then either

(i) |Pθ|< |P|94/125,

(ii) s < 2.9701× 1015, or

(iii) s> t+ 3, Qθ is a grid and |Pθ|< s2.

Proposition 2.6. Let Q= (P, L) be a finite generalized quadrangle of

order (s, t), let θ be any nonidentity collineation of Q, and let Pθ denote the

set of points fixed by θ. Suppose that t= s+ 2. Then |Pθ|< |P|7/9 if s> 3,

and |Pθ|< |P|13/18 if s> 5.

§3. Centralizer orders in nonabelian finite simple groups

Here we verify some lemmas about centralizer orders in nonabelian

finite simple groups, from which Proposition 1.6 is immediately deduced.

Specifically, we need to know which nonabelian finite simple groups T

contain nonidentity elements x with “large” centralizers, in the sense that

|CT (x)|> |T |1−r/5 for r equal to one of 1, 2 or 3. This question is readily

and exactly answered for alternating groups and sporadic simple groups in

the following two lemmas. Note that we treat the Tits group 2F4(2)′ in

Lemma 3.2 along with the sporadic groups.
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Lemma 3.1. Let T ∼= Altn with n> 5. Then

(i) |CT (x)|< |T |4/5 for all x ∈ T \ {1} if and only if n6 18,

(ii) |CT (x)|< |T |3/5 for all x ∈ T \ {1} if and only if n6 9,

(iii) |CT (x)|< |T |2/5 for all x ∈ T \ {1} if and only if n6 6.

Proof. If n> 19 and x ∈ T is a 3-cycle, then we have

|CT (x)|= 3
2(n− 3)!> (1

2n!)4/5 = |T |4/5.

The remaining assertions are readily verified using GAP [15].

Lemma 3.2. Let T be either a sporadic finite simple group or the Tits

group 2F4(2)′. Then

(i) |CT (x)|< |T |4/5 for all x ∈ T \ {1},
(ii) |CT (x)|< |T |3/5 for all x ∈ T \ {1} if and only if T 6∼= Suz, Co2, Fi22,

Fi23, B or M,

(iii) |CT (x)|< |T |2/5 for all x ∈ T \ {1} if and only if T ∼= J1.

Proof. This is readily verified by checking maximal centralizer orders in

the ATLAS [10].

Next we consider the exceptional Lie type groups, namely those of type

E8, E7, Eε6 (where ε=±), F4, 2F4, G2, 2G2, 3D4 or 2B2. Note that we make

no attempt to check the converse of assertion (i) (although this could be

done using standard references including those cited here).

Lemma 3.3. Let T be a finite simple group of exceptional Lie type.

(i) If T has type E8, E7, Eε6, F4 or 3D4, then there exists x ∈ T \ {1} with

|CT (x)|> |T |3/5.

(ii) |CT (x)|< |T |2/5 for all x ∈ T \ {1} if and only if T has type 2B2.

Proof. (i) For T ∼= E8(q), F4(q) or 3D4(q), take x ∈ T to be a unipo-

tent element of type A1 in the sense of [18, Tables 22.2.1 and 22.2.4]

and [23], respectively. Then |CT (x)|= q57|E7(q)|, q15|C3(q)| or q12(q6 − 1),

respectively, and it is readily checked that |CT (x)|> |T |3/5 in each case.

Now suppose that T ∼= E7(q) or Eε6(q), and write G := Inndiag(T ). Take

x ∈ T to be a unipotent element of type A1 in the sense of [18,

Tables 22.2.2 and 22.2.3], respectively. Then xT = xG by [9, Corol-

lary 17.10], so we have |CT (x)|= |CG(x)|/|G : T |= q33|D6(q)|/gcd(2, q − 1)
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or q21|Aε
5(q)|/gcd(3, q − ε), respectively, and again one can check that

|CT (x)|> |T |3/5 in each case.

(ii) If T ∼= 2B2(q) then |CT (x)|6 q2 < (q2(q2 + 1)(q − 1))2/5 = |T |2/5 for

all x ∈ T \ {1} [24]. It remains to check that |CT (x)|> |T |2/5 for some x ∈
T \ {1} when T has type 2F4, G2 or 2G2. In these respective cases, take x

to be a unipotent element of type (Ã1)2, A1 or (Ã1)3 in the sense of [18,

Tables 22.2.5–22.2.7], so that |CT (x)|= q10|2B2(q)|, q5|A1(q)| or q3.

Finally, we consider the finite simple classical groups. Again, we do not

check the converses of assertions (i) or (ii), remarking only that one could

do so using the monograph [9] of Burness and Giuidici, where the conjugacy

classes of elements of prime order in these groups are classified.

Lemma 3.4. Let T be a finite simple classical group.

(i) If T has type Aε
n, Dn or 2Dn with n> 9, or type Bn or Cn with n> 5,

then there exists x ∈ T \ {1} with |CT (x)|> |T |4/5.

(ii) If T has type Aε
n with n> 4, type Bn or Cn with n> 3, or type Dn or

2Dn with n> 4, then there exists x ∈ T \ {1} with |CT (x)|> |T |3/5.

(iii) |CT (x)|< |T |2/5 for all x ∈ T \ {1} if and only if T ∼= PSL2(q) with

q 6= 7.

Proof. Throughout the proof, we write q = pf with p a prime and f > 1.

First suppose that T has type A1. That is, T ∼= PSL2(q), with q > 4. The

smallest nontrivial conjugacy class of T has size q(q − 1), 1
2(q2 − 1) or

1
2q(q − 1) according to whether p= 2, q ≡ 1 (mod 4) or q ≡ 3 (mod 4). Hence,

every nontrivial conjugacy class of T has size greater than |T |3/5 if and only

if q 6= 7. Equivalently, |CT (x)|< |T |2/5 for all x ∈ T \ {1} if and only if q 6= 7.

Now suppose that T has type Aε
n with n> 2. That is, T ∼= PSLεn+1(q)

(where we write L+ := L and L− := U). Let x ∈G := PGLεn+1(q) be an

element of order p with one Jordan block of size 2 and n− 1 Jordan blocks

of size 1. That is, a1 = n− 1, a2 = 1 and a3 = · · ·= ap = 0 in the notation

of [9, Section 3.2.3]. Then x ∈ T , and xT = xG by [9, Propositions 3.2.7

and 3.3.10], so by [9, Tables B.3 and B.4], |CT (x)|= |CG(x)|/|G : T |=
(1/d)|CG(x)|= (1/d)q2n−1|GLεn−1(q)|, where d := gcd(n+ 1, q − ε). Hence

(1) |CT (x)|= 1

d
qn(n+1)/2

n−1∏
i=1

(qi − εi) and |T |= 1

d
qn(n+1)/2

n+1∏
i=2

(qi − εi).
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For n ∈ {2, 3} we must show that |CT (x)|> |T |2/5. If n= 2 then d6 3,

so |CT (x)|> 1
3q

3(q − ε) while |T |6 q3(q2 − ε2)(q3 − ε3). This implies that

|CT (x)|> |T |2/5 for all q > 7, and one may check directly that this inequality

also holds for q < 7. If n= 3 then d6 4, so |CT (x)|> 1
4q

6(q − ε)(q2 − ε2)

while |T |6 q6(q2 − ε2)(q3 − ε3)(q4 − ε4). This implies that |CT (x)|> |T |2/5
for all q > 3, and a direct calculation shows that this inequality also holds

for q = 2. Now suppose that 46 n6 8. We must show that |CT (x)|> |T |3/5.

Since q > 2, (1) gives

|CT (x)|> 1

d

qn
2

2n−1
and |T |6 1

d

(
3

2

)n
qn

2+2n,

and so it suffices to show that q2n2−6n > d222n−533n. Indeed, since d6 n+ 1,

it suffices to show that q2n2−6n > (n+ 1)222n−533n. This inequality holds for

all q > 2 if n ∈ {7, 8}, for all q > 3 if n= 6, for all q > 4 if n= 5, and for all

q > 11 if n= 4. In the remaining cases, where (n, q) = (6, 2), (5, 2), (5, 3), or

(4, q) with q < 11, one may check directly that |CT (x)|> |T |3/5. It remains

to show that |CT (x)|> |T |4/5 for all q > 2 when n> 9. If q > 3 then (1) gives

|CT (x)|> 1

d

(
2

3

)n−1

qn
2

and |T |6 1

d

(
4

3

)n
qn

2+2n,

so it suffices to show that qn
2−8n > d · 23n+53n−5. Indeed, since d6 n+ 1,

we can just show that qn
2−8n > (n+ 1)23n+53n−5. This inequality holds for

all q > 3 if n> 11; if n= 10, it holds for all q > 5, and if n= 9, it holds for all

q > 29. For n= 10 with 26 q < 5, and n= 9 with 26 q < 29, one may check

directly that |CT (x)|> |T |4/5. Finally, we must check that |CT (x)|> |T |4/5
when q = 2 and n> 9. Since n> 9, and since 255

256q
i 6 qi − ε6 257

256q
i for i> 8,

(1) gives

|CT (x)|> 1

d

(
255

256

)n−8

qn
2−28

7∏
i=1

(qi − 1)

and

|T |6 1

d

(
257

256

)n−8

qn
2+2n−27

7∏
i=2

(qi − 1).

Noting also that d6 3, we see that it suffices to show that

2n
2−8n−322555n−40

7∏
i=2

(qi − 1)> 3 · 256n−82574n−32.

This holds for all n> 9, and so the proof of the Aε
n case is complete.
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Next, suppose that T has type Cn, where n> 2. That is, T ∼= PSp2n(q).

Write G := PGSp2n(q), noting that |G : T |= gcd(2, q − 1). If p > 2, take

x ∈G of order p with one Jordan block of size 2 and 2(n− 1) Jordan

blocks of size 1. That is, a1 = 2(n− 1), a2 = 1 and a3 = · · ·= ap = 0 in the

notation of [9, Section 3.4.3]. Then x ∈ T , and by [9, Proposition 3.4.12], xG

splits into two T -conjugacy classes and hence |CT (x)|= 2|CG(x)|/|G : T |=
1
2q

2n−1|Sp2(n−1)(q)|. If p= 2 then T =G and we take x to be an involution

of type b1 as in [9, Table 3.4.1], so that |CT (x)|= q2n−1|Sp2(n−1)(q)|. Hence,

for every p, we have

(2) |CT (x)|= 1

d
qn

2
n−1∏
i=1

(q2i − 1) and |T |= 1

d
qn

2
n∏
i=1

(q2i − 1),

where d= gcd(2, q − 1)6 2. If n= 2 then |CT (x)|> 1
2q

4(q2 − 1) and |T |6
q4(q2 − 1)(q4 − 1), and it follows that |CT (x)|> |T |2/5 for all q > 2. Sim-

ilarly, for n ∈ {3, 4} one may check that |CT (x)|> |T |3/5 for all q > 2.

Now suppose that n> 5. Since q2i > 4, we have q2i − 1> 3
4q

2i for all i> 1,

and so |CT (x)|> 1
2(3

4)n−1q2n2−n, while |T |< q2n2+n. Hence, to show that

|CT (x)|> |T |4/5, it suffices to show that (3
4)5n−5q2n2−9n > 2. This inequality

holds for all q > 2 when n> 6, and for all q > 4 when n= 5; for (n, q) = (5, 2)

and (5, 3), one may check directly that |CT (x)|> |T |4/5.

Now suppose that T has type Bn, where n> 2. That is, T ∼= Ω2n+1(q)

with q odd. For q ≡ 1 or 3 (mod 4), let x ∈G := PGO2n+1(q) be an invo-

lution of type tn or t′n, respectively, in the sense of [9, Sections 3.5.2.1

and 3.5.2.2]. Then x ∈ T and xT = xG, so |CT (x)|= |CG(x)|/|G : T |=
1
2 |CG(x)|= |SO±2n(q)| by [9, Table B.8]. Now,

(3) |SO±2n(q)|= qn
2−n(qn ∓ 1)

n−1∏
i=1

(q2i − 1)>
1

2
qn

2
n−1∏
i=1

(q2i − 1),

and the right-hand side above is the value of |CT (x)| that we obtained

in the Cn case. Since |Ω2n+1(q)|= |PSp2n(q)|, we therefore reach the same

conclusions as for type Cn.

Now suppose that T has type Dε
n, namely T ∼= PΩε

2n(q) with n> 4.

Let G := Inndiag(PΩε
2n(q)), as defined on [9, page 56]. Assume first that

p > 2, noting that |G : T | divides 4. Take x ∈G of order p with one Jordan

block of size 2(n− 2) and two Jordan blocks of size 2. That is, a1 =

2(n− 2), a2 = 2 and a3 = · · ·= ap = 0 in the notation of [9, Section 3.5.3].
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Then x ∈ T , and [9, Propositions 3.5.14(i) and (ii,b)] imply that xT =

xG. Therefore, [9, Table B.12] gives |CT (x)|= |CG(x)|/|G : T |> 1
4 |CG(x)|=

1
8q

4n−7|Oε1
2(n−2)(q)||Sp2(q)|, where the value of ε1 =± depends on n and q as

described there. Multiplying the inequality in (3) by 2 to get a lower bound

for |Oε1
2(n−2)(q)|, it follows that

(4) |CT (x)|> 1

8
qn

2−2(q2 − 1)
n−3∏
i=1

(q2i − 1),

while

(5) |T |= 1

d
qn(n−1)(qn − ε)

n−1∏
i=1

(q2i − 1),

where d= gcd(4, qn − ε). Since q2i > 9 for all i> 1, and in particular qn >
34 = 81, we have

(6) |CT (x)|> 1
8(8

9)n−2q2n2−5n+6 and |T |< 82
81q

2n2−n.

For 46 n6 8 we need |CT (x)|> |T |3/5, so by (6) it suffices to show that

(8
9)5n−10q4n2−22n+30 > 85(82

81)3, which holds unless (n, q) = (4, 3) or (4, 5).

For (n, q) = (4, 5), (4)–(5) imply that |CT (x)|> |T |3/5; for (n, q) = (4, 3), a

GAP [15] calculation shows that there exists an elements x ∈ T \ {1} for

which this inequality holds. For n> 9 we claim that |CT (x)|> |T |4/5, and

we now have qn > 39 = 19683, so we can replace the 82
81 in (6) by 19684

19683 to

see that it suffices to show that (8
9)5n−10q2n2−21n+30 > 85(19684

19683)4. If n> 10

then this inequality holds for all q > 3, and if n= 9 then it holds for q > 127.

For n= 9 and q < 127, using the equality in (3) we obtain

|CT (x)|> 1

4
qn

2−n(qn−2 − 1)(q2 − 1)

n−3∏
i=1

(q2i − 1),

which implies that |CT (x)|> |T |4/5 except when q = 3 and ε= +. However,

in this case we have |G : T |= 2 (compare [9, Figure 2.5.1 and Lemma 2.2.9],

noting that the discriminant of a hyperbolic quadratic form on F2n
q with

(n, q) = (9, 3) is �, in the notation used there, because n(q − 1)/4 = 9 is

odd), so the 1
4 in the above estimate for |CT (x)| may be replaced by 1

2 , and

we again obtain |CT (x)|> |T |4/5.
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Finally, suppose that T ∼= PΩε
2n(q) with q even, noting that T =G in

this case. Take x ∈G to be an involution of type a2 as in [9, Table 3.5.1].

Then |CT (x)|= q4n−7|Ωε
2(n−2)(q)||Sp2(q)| and gcd(4, qn − ε) = 1, so instead

of (4)–(5) we have

(7) |CT (x)|> 1

4
qn

2−2(q2 − 1)
n−3∏
i=1

(q2i − 1)

and

(8) |T |= qn(n−1)(qn − ε)
n−1∏
i=1

(q2i − 1).

(In the bound for |CT (x)| we drop a factor of 1
4 because |G : T |= 1 for q even,

but pick up a factor of 1
2 because Ωε

2(n−2)(q) has index 2 in SOε
2(n−2)(q).)

For 46 n6 8 we need |CT (x)|> |T |3/5. As qi > 2 for all i> 1, and in

particular qn > 16, it suffices to show that (3
4)5n−10q4n2−22n+30 > 45(17

16)3.

This inequality holds unless (n, q) = (4, 2) or (4, 4), in which cases a direct

calculation shows that |CT (x)|> |T |3/5. For n> 9 we must show that

|CT (x)|> |T |4/5. We now have qn > 512, and so it suffices to show that

(3
4)5n−10q2n2−21n+30 > 45(513

512)4. This inequality holds unless (n, q) = (10, 2),

or n= 9 and q 6 28. One may use (7)–(8) to check that |CT (x)|> |T |4/5 in

each of these cases except (n, q) = (9, 2), in which case the desired inequality

may be verified by a direct calculation.

§4. Quasiprimitive point actions of type SD or CD

We now apply Corollary 1.5 to permutation groups N that arise as

subgroups of certain types of primitive groups. In some cases, we are also

able to treat quasiprimitive groups, namely those in which every nontrivial

normal subgroup is transitive. In this section, we consider the case where

the group N in Corollary 1.5 has a “diagonal” action. Specifically, we work

under the following hypothesis.

Hypothesis 4.1. Let T be a nonabelian finite simple group, let k > 2,

and write H = T k. Let Ω = {(y1, . . . , yk−1, 1) | y1, . . . , yk−1 ∈ T}6H, and

let H act on Ω by

(9) (y1, . . . , yk−1, 1)(x1,...,xk) = (x−1
k y1x1, . . . , x

−1
k yk−1xk−1, 1).
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Suppose that N =Hr is a collineation group of a thick finite generalized

quadrangle Q= (P, L, I) of order (s, t), such that P = Ωr and N has the

product action on P.

This situation arises when N is the socle of a primitive permutation

group G6 Sym(Ω) of type HS, HC, SD or CD. For type HS (resp. HC) we

have k = 2 and r = 1 (resp. r > 2), G has two minimal normal subgroups,

each isomorphic to T r, and the socle of G is T r × T r, which is isomorphic

to N . For type SD (resp. CD) we have k > 2 and r = 1 (resp. r > 2), and

G has a unique minimal normal subgroup, isomorphic to T kr ∼=N . Note

that the notation k and r is consistent with that of Table 1. Of course,

G must (usually) satisfy certain other conditions [22, Section 6] in order

to actually be primitive, but these conditions are not needed for the proof

of Proposition 4.2. It suffices that there is a subgroup of the form N . In

particular, we are also able to treat quasiprimitive groups [22, Section 12],

because the (action of the) socle of G is the same as in the respective

primitive types. (Note that a quasiprimitive group of type HS or HC is

necessarily primitive, but a quasiprimitive group of type SD or CD need

not be primitive.)

Proposition 4.2 shows, in particular, that the parameter r in Hypoth-

esis 4.1 can be at most 3. As illustrated after Corollary 1.5, the proof

relies on the information about centralizer orders in nonabelian finite

simple groups given in Proposition 1.6. We also observe that when r = 3,

there always exists a solution (s, t) = (|Ω| − 1, |Ω|+ 1) of the equation

|Ω|3 = |Ω|r = |P|= (s+ 1)(st+ 1), and this solution satisfies properties (ii)

and (iii) of Lemma 2.1. Hence, although we are unable to rule out the case

r = 3 completely, we verify that this “obvious” situation cannot occur.

Proposition 4.2. If Hypothesis 4.1 holds then r 6 3 and |CT (x)|<
|T |1−r/5 for all x ∈ T \ {1}, and in particular T must appear in Table 2.

Moreover, if r = 3 then (s, t) 6= (|Ω| − 1, |Ω|+ 1).

Proof. Note first that |P|= |Ω|r = |T |(k−1)r. In particular, the excluded

case (s, t) = (2, 4) in Corollary 1.5 does not arise, because |P|> |T |>
|Alt5|= 60> (2 + 1)(2 · 4 + 1). If we take x := x1 = · · ·= xk 6= 1 in (9),

then (y1, . . . , yk−1, 1) ∈ Ω is fixed if and only if y1, . . . , yk−1 ∈ CT (x).

That is, (x, . . . , x) ∈H fixes precisely |CT (x)|k−1 elements of Ω (and,

in particular, the action of H on Ω is not semiregular). Corollary 1.5

therefore implies that r 6 4 and |CT (x)|k−1 < |Ω|1−r/5 = |T |(k−1)(1−r/5),

namely |CT (x)|< |T |1−r/5, for all x ∈ T \ {1}. If r = 4 then we have a
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contradiction because every nonabelian finite simple group T contains

a nonidentity element x with |CT (x)|> |T |1/5. For example, it is well

known that T contains an involution x with |CT (x)|> |T |1/3 (indeed, every

involution has this property [19, Proposition 2.4]). Therefore, r 6 3. In

particular, Proposition 1.6 tells us that T must be one of the groups

appearing in Table 2. To prove the final assertion, suppose toward a

contradiction that r = 3 and (s, t) = (|Ω| − 1, |Ω|+ 1). Take any x ∈ T with

|CT (x)|> |T |1/3. Then ((x, . . . , x), (1, . . . , 1), (1, . . . , 1)) ∈Hr =H3 =N

fixes |CT (x)|k−1|T |2(k−1) > |T |7(k−1)/3 = |P|7/9 points of Q, contradicting

Proposition 2.6.

The following immediate consequence of Proposition 4.2 (and the preced-

ing observations) implies the SD and CD cases of Theorem 1.1.

Proposition 4.3. Let Q= (P, L) be a thick finite generalized quadrangle

admitting a collineation group G that acts quasiprimitively of type SD or CD

on P. Then the conditions in Table 1 hold.

§5. Primitive point actions of type HS or HC

We now consider the case where k = 2 in Hypothesis 4.1 in more detail.

As explained above, this case arises when N is the socle of a primitive

permutation group G6 Sym(Ω) of type HS (r = 1) or HC (r > 2). When

k = 2, it is natural to simplify the notation of Hypothesis 4.1 by identifying

the set Ω with T r, so we first recast the hypothesis in this way and also

establish some further notation.

Hypothesis 5.1. Let T be a nonabelian finite simple group and let N =

T r × T r act on T r by

y(u1,u2) = u−1
2 yu1.

Let M = {(u, 1) | u ∈ T r}6N , so that M may be identified with T r acting

regularly on itself by right multiplication. Suppose that N is a collineation

group of a thick finite generalized quadrangle Q= (P, L, I) of order (s, t)

with P = T r. Let P1 ⊂ P denote the set of points collinear with but not

equal to the identity element 1 ∈ T r = P, and let L1 ⊂ L denote the set of

lines incident with 1. Given a line ` ∈ L, let ¯̀⊂ P denote the set of points

incident with `.

The following lemma may essentially be deduced from [27, Lemma 10]

upon observing that the assumption gcd(s, t)> 1 imposed there is not

necessary (as far as we can tell, and at least not in our more restrictive
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setting). We include a proof to make it clear that we do not need to make

this assumption. Our notation differs from that of [27, page 654] as follows:

the point-regular group G is our M ∼= T r, and the point O is our point 1,

so that ∆ is our P1.

Lemma 5.2. Suppose that Hypothesis 5.1 holds. Let x ∈ P1, and let `x be

the unique line in L1 incident with x. Then, for every i ∈ {1, . . . , |x| − 1},
the conjugacy class (xi)T

r
is contained in P1. Moreover, the collineation

(x, 1) ∈M fixes `x.

Proof. Let us first establish some notation. Given u ∈ T r = P, write

fixP(u) = {P ∈ P | P (u,1) = P},

collP(u) = {P ∈ P | P (u,1) is collinear with but not equal to P},

fixL(u) = {` ∈ L | `(u,1) = `},

concL(u) = {` ∈ L | `(u,1) is concurrent with but not equal to `}.

Since the subgroup M = {(u, 1) | u ∈ T r} of N acts regularly on P, fixP(u)

is empty. Moreover, P ∈ collP(u) if and only if the points P (P−1,1) = 1

and (Pu)(P−1,1) = PuP−1 are collinear, which is if and only if PuP−1 ∈
uT

r ∩ P1. Since for g, h ∈ T r we have gug−1 = huh−1 if and only if g−1h ∈
CT r(u), it follows that

|collP(u)|= |uT r ∩ P1||CT r(u)|,

as in the proof of [27, Lemma 3]. Then (again, as in that proof) [21, 1.9.2]

implies that

(10) |collP(u)|= (s+ 1)|fixL(u)|+ |concL(u)|= |uT r ∩ P1||CT r(u)|,

for every u ∈ T r.
Now, since x ∈ P1, we have u−1xu= x(u,u) ∈ P1 for every collineation of

the form (u, u) ∈N , because such collineations (are precisely those that)

fix the point 1. That is, every T r-conjugate of x is in P1. In other words,

xT
r ∩ P1 = xT

r
, and so (10) implies that

|collP(x)| = (s+ 1)|fixL(x)|+ |concL(x)|

= |xT r ||CT r(x)|= |T r|= |P|= (s+ 1)(st+ 1).(11)

In particular, we have collP(x) = P; that is, every point of Q is mapped

to a collinear point under the collineation (x, 1) ∈M . We now claim that
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concL(x) is empty. If not, then some line ` is concurrent with its image under

the collineation (x, 1). Let P denote the unique point incident with both `

and `(x,1). Then Px−1 is incident with `, being the image of P under the

collineation (x, 1)−1 = (x−1, 1), and Px−1 6= P because x 6= 1 and M acts

regularly on P. Since Q is thick, there exists a third point P3 incident with

`, distinct from P and Px−1. Since collP(x) = P, the points P
(x,1)
3 = P3x

and P3 are collinear. Moreover, P3x is collinear with P , because both of

these points are incident with `(x,1). Therefore, P3x is collinear with two

distinct points that are incident with `, namely P3 and P , and so P3x is

itself incident with ` because Q contains no triangles. This, however, means

that P3x is incident with both ` and `(x,1), which forces P3x= P and hence

P3 = Px−1, a contradiction. Therefore, |concL(x)|= 0 as claimed, and so

(11) implies that

(12) |fixL(x)|= st+ 1.

Next, we show that (xi)T
r ⊆ P1 for all i ∈ {1, . . . , |x| − 1}. For each such i,

we certainly have fixL(x)⊆ fixL(xi), because if the collineation (x, 1) fixes a

line then so too does (x, 1)i = (xi, 1). In particular, |fixL(xi)|> |fixL(x)|=
st+ 1, by (12). On the other hand, no two lines fixed by (xi, 1) can be

concurrent, because if they were, then the unique point incident with both of

them would be fixed by (xi, 1), a contradiction since M acts regularly on P.

Hence, the total number of points that are incident with some line in fixL(xi)

is (s+ 1)|fixL(xi)|. As this number cannot exceed |P|= (s+ 1)(st+ 1), we

must also have |fixL(xi)|6 st+ 1. Therefore, |fixL(xi)|= st+ 1. Now (10)

implies, on the one hand, that

|collP(xi)|= (s+ 1)|fixL(xi)|+ |concL(xi)|= |P|+ |concL(xi)|.

Since |collP(xi)|6 |P|, this implies that |concL(xi)|= 0, and then in turn

that |P|= |collP(xi)|. Appealing again to (10), we now deduce that

|(xi)T r ∩ P1||CT r(xi)|= |P|= |T r|, which implies that (xi)T
r ⊆ P1 as

required. The first assertion is therefore proved.

Finally, we must show that the collineation (x, 1) fixes the unique line

`x ∈ L1 incident with x. If |x|= 2, then (x, 1) fixes `x because it fixes setwise

the subset {1, x} of points incident with `x. That is, it maps 1 to 1(x,1) =

1x= x and x to x(x,1) = x2 = 1. Now suppose that |x|> 2. Then the point

1(x,1)2 = x2 6= 1 is collinear with x because x is collinear with 1. On the

other hand, (x2)Tr ⊆ P1 by the first assertion, so in particular x2 is collinear
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with 1. Therefore, x2 is collinear with two distinct points incident with `x
(namely 1 and x), and so is itself incident with `x because Q contains no

triangles. Hence, (x, 1) fixes `x because it maps a pair of points incident

with `x, namely 1 and x, to another pair of points incident with `x, namely

x and x2.

Hypothesis 5.1 imposes the following restrictions on the points and lines

incident with the identity element of T r = P, and on the order (s, t) of Q.

Lemma 5.3. The following assertions hold under Hypothesis 5.1.

(i) P1 is a union of T r-conjugacy classes.

(ii) Every line ` ∈ L1 has the property that ¯̀ is a subgroup of T r. Specifi-

cally, ¯̀= {u ∈ T r | (u, 1) ∈M fixes `}.
(iii) Every line ` ∈ L1 is incident with an involution.

(iv) If there exists a line in L1 incident with representatives of every T r-

conjugacy class of involutions in P1, then N acts transitively on the

flags of Q and r > 2.

(v) T r has at least three conjugacy classes of involutions.

(vi) If T r has exactly three conjugacy classes of involutions, then either P1

contains exactly two of these classes, or N acts transitively on the flags

of Q and r > 2.

(vii) gcd(s, t) = 1 and t> s+ 1.

Proof. (i) This follows immediately from Lemma 5.2.

(ii) If u ∈ ¯̀ then the collineation (u, 1) ∈M fixes ` by Lemma 5.2.

Conversely, if (u, 1) fixes ` then, because 1 ∈ P is incident with `, so too

is 1(u,1) = u; that is, u ∈ ¯̀.

(iii) If ` ∈ L1 is not incident with any involution, then ¯̀, which is a sub-

group of T r by (ii), must have odd order. That is, s+ 1 = |¯̀| must be odd.

However, (s+ 1)(st+ 1) = |T |r is even by the Feit–Thompson theorem [13],

so s must be odd and hence s+ 1 must be even, a contradiction.

(iv) If ` ∈ L1 is incident with representatives of every conjugacy class of

involutions in P1, then ` can be mapped to any other line in L1 by some

element of the stabilizer N1 = {(u, u) | u ∈ T r} in N of the point 1 ∈ P = T r.

Since N acts transitively on P, this means that N acts transitively on the

flags of Q, and hence on L. If r = 1, this contradicts [8, Theorem 1.1],

because N acts primitively on P in this case. Hence, r > 2.

(v) Suppose toward a contradiction that T r contains at most two

conjugacy classes of involutions. Then r = 1, because if r > 2 then any
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involution x ∈ T gives rise to the three pairwise nonconjugate involutions

(x, 1, . . . , 1), (1, x, 1, . . . , 1) and (x, x, 1, . . . , 1) in T r. Hence, by (iii), T

must have exactly two conjugacy classes of involutions, say xT and yT ,

and both must be contained in P1. Without loss of generality, x and y

commute, because at least one of them centralizes a Sylow 2-subgroup of T .

Therefore, xy is an involution, and so must be collinear with 1 ∈ P. Since 1

is collinear with x, the images of 1 and x under the collineation (y, 1) ∈M
are collinear. That is, 1(y,1) = y is collinear with x(y,1) = xy. Similarly, 1 and

y are collinear, and hence so too are 1(x,1) = x and y(x,1) = yx= xy. Since

the involution xy is also collinear with 1 and Q contains no triangles, the

points 1, x, y and xy must be incident with a common line. In particular, x

and y are incident with a common line in L1. Since r = 1, this contradicts

(iv).

(vi) Let x, y and z denote representatives of the three T r-conjugacy

classes of involutions. If P1 contains exactly one of these classes, then N

acts flag-transitively by (iv), and it follows from [8, Theorem 1.1] that r > 2.

Now suppose that P1 contains all three of xT , yT and zT . Without loss of

generality, x centralizes a Sylow 2-subgroup of T r and both y and z commute

with x, so xy = yx and xz = zx are involutions. Arguing as in the proof of

(iii), we deduce that 1, x, y and xy are incident with a common line ` ∈ L1.

Replacing y by z in this argument, we see that z is also incident with `, so

(iv) again implies that N acts flag-transitively, and it follows that r > 2.

(vii) If gcd(s, t)> 1 then [27, Lemma 6(1)] implies that every nontrivial

T r-conjugacy class intersects P1. However, assertion (i) then implies that

P1 = P \ {1}, which is impossible. Therefore, gcd(s, t) = 1. In particular, to

show that t> s+ 1 it suffices to show that t> s. The proof of this assertion is

adapted from that of [8, Corollary 2.3]. Choose two distinct lines `1, `2 ∈ L1,

so that ¯̀
1 and ¯̀

2 are subgroups of T r by (ii). For brevity, we now abuse

notation slightly and identify `1 and `2 with ¯̀
1 and ¯̀

2, respectively, dropping

the “bar” notation. Since `1 is a subgroup of T r and right multiplication

by any element of T r is a collineation of Q (identified with an element of

M), we have in particular that every right coset `1g2 of `1 with g2 ∈ `2
corresponds precisely to the set of points incident with some line of Q.

Similarly, left multiplications (identified with elements of {1} × T r 6N)

are collineations, so every left coset g1`2 of `2 with g1 ∈ `1 is a line of Q.

Therefore, L′ = {g1`2 | g1 ∈ `1} ∪ {`1g2 | g2 ∈ `2} is a subset of L. Consider

also the subset P ′ = `1`2 of P = T r, and let I′ be the restriction of I to

(P ′ × L′) ∪ (L′ × P ′). If we can show that Q′ = (P ′, L′, I′) is a generalized
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Table 3.
Alternating and sporadic groups in the proof of Proposition 5.4.

r T s t s(t+ 1)
1 Alt7 11 19 220
1 Alt8 19 53 1026
2 Alt6 19 341 6498
2 M11 89 7831 697048
2 J1 419 175141 73384498

quadrangle of Q of order (s, 1), then [21, 2.2.2(i)] will imply that t> s. Let

us first check that Q′ satisfies the generalized quadrangle axiom. Take ` ∈ L′
and P ∈ P ′ not incident with `. Since Q satisfies the generalized quadrangle

axiom, there is a unique point P0 ∈ P incident with ` and collinear with

P . Since `⊂ P ′, we have P0 ∈ P ′, and so Q′ also satisfies the generalized

quadrangle axiom. It remains to check that Q′ has order (s, 1). Every line

in L′ is incident with s+ 1 points in P ′, being a coset of either `1 or `2, so

it remains to show that every point in P ′ is incident with exactly two lines

in L′. Given P = g1g2 ∈ P ′, where g1 ∈ `1, g2 ∈ `2, each line ` ∈ L′ incident

with P is either of the form h1`2 for some h1 ∈ `1 or `1h2 for some h2 ∈ `2,

and since P ∈ `, we must have h1 = g1 or h2 = g2, respectively. Therefore,

P is incident with exactly two lines in L′, namely g1`2 and `1g2.

Proposition 4.2 restricts the possibilities for the simple group T in

Hypothesis 5.1 to those listed in Table 2. The following result shows that,

moreover, T must be a Lie type group.

Proposition 5.4. If Hypothesis 5.1 holds then T is a Lie type group.

Proof. We have |P|= |T |r, and r ∈ {1, 2, 3} by Proposition 4.2. For each

of the alternating and sporadic simple groups T in Table 2, we check

computationally for solutions of |T |r = (s+ 1)(st+ 1) satisfying s> 2, t> 2

and properties (ii) and (iii) of Lemma 2.1 (see Remark 5.5). If r = 3

then the only such solutions have the form (s, t) = (|T | − 1, |T |+ 1) =

(|Ω| − 1, |Ω|+ 1), and this contradicts the final assertion of Proposition 4.2.

If r ∈ {1, 2} then the possibilities for T and (s, t) are as in Table 3. By

Lemma 5.3(i), P1 is a union of T r-conjugacy classes, and so we must

be able to partition |P1|= s(t+ 1) into a subset of the sizes of these

classes (respecting multiplicities). When r = 1 and T ∼= Alt7 or Alt8, this

is impossible: the nontrivial conjugacy class sizes not exceeding s(t+ 1)
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are 70, 105 and 210 in the first case, and 105, 112 and 210 in the second

(with each occurring exactly once). Similarly, if r = 2 and T ∼= J1, one

may check computationally that there is no partition of s(t+ 1), where

(s, t) = (419, 175141), into nontrivial T 2-conjugacy class sizes. Hence, it

remains to consider the cases where r = 2 and T ∼= Alt6 or M11. Here we first

determine computationally the possible partitions of s(t+ 1) into nontrivial

T 2-conjugacy class sizes to obtain a list of possible partitions of P1 into

T 2-conjugacy classes. Now, because the point graph of Q is a strongly

regular graph in which adjacent vertices have λ := s− 1 common neighbors

and nonadjacent vertices have µ := t+ 1 common neighbors, P1 must be a

partial difference set of T 2 with these parameters. That is, each nonidentity

element y ∈ T 2 must have exactly λ representations of the form y = ziz
−1
j

for zi, zj ∈ P1 if y ∈ P1, and exactly µ such representations if y 6∈ P1. A

computation verifies that this condition is violated for each of the partitions

of P1 determined in the previous step.

Remark 5.5. In the proof of Proposition 5.4, and at several other points

in Sections 5 and 6, we need to check computationally whether certain

positive integers X can be equal to the number of points of a thick

finite generalized quadrangle. That is, we check for integral solutions (s, t)

of the equation (s+ 1)(st+ 1) =X subject to the constraints s> 2, t> 2,

s1/2 6 t6 s2 6 t4 and s+ t | st(st+ 1) imposed by Lemma 2.1. In Section 5,

X has the form |T |m for some nonabelian finite simple group T and

some m6 3, and in Section 6 we instead have X = Y m with m6 4 and

Y the index of a maximal subgroup of an almost simple group. The

above inequalities imply that s must lie between X1/4 − 1 and X5/2, so it

suffices to consider every integer s in this range and determine whether t=

((X − 1)/s− 1)/(s+ 1) is an integer and, if so, whether s+ t | st(st+ 1).

We remark that we found it useful to also observe that s must divide X − 1,

because it turned out that X − 1 had only a very small number of divisors

in many of the cases that we had to consider.

We now show that r cannot equal 3, and deduce some further restrictions

on T when r ∈ {1, 2}.

Proposition 5.6. If Hypothesis 5.1 holds then r 6 2 and T is a Lie type

group with the property that |CT (x)|< |T |1−2r/9 for all x ∈ T \ {1}.

Proof. By Propositions 4.2 and 5.4, T is a Lie type group and r 6 3.

We now show that |CT (x)|< |T |1−2r/9 for all x ∈ T \ {1} and deduce
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from this that r 6= 3. Suppose, toward a contradiction, that there exists

x ∈ T \ {1} with |CT (x)|> |T |1−2r/9. Define w = (x, 1, . . . , 1) ∈ T r and let

Qθ = (Pθ, Lθ) be the substructure of Q fixed by θ = (w, w) ∈N1. Then

Pθ = CT (x)× T r−1, and hence |Pθ|> |T |(1−2r/9)+(r−1) = |T |7r/9 = |P|7/9.

Proposition 2.4 then says that either s> t+ 3, or (s, t) ∈ {(2, 4), (3, 9)}.
The first of these conditions contradicts Lemma 5.3(vii); the second implies

that |T |r = (s+ 1)(st+ 1) ∈ {27, 112}, which is impossible because |T |> 60.

Hence, every x ∈ T \ {1} must satisfy |CT (x)|< |T |1−2r/9. For r = 3, this

says that |CT (x)|< |T |1/3 for all x ∈ T \ {1}, a contradiction because we

can always find some x with |CT (x)|> |T |1/3 (as noted in the proof of

Proposition 4.2). Therefore, r 6 2.

Proposition 5.6 allows us to further reduce the list of candidates for the

simple group T in Hypothesis 5.1 in the remaining cases, where r ∈ {1, 2}.
Let us first consider the case r = 2.

Corollary 5.7. If Hypothesis 5.1 holds with r = 2 then T has Lie type

A1, Aε
2, 2B2 or 2G2. In particular, T has a unique conjugacy class of

involutions.

Proof. The result is verified by straightforward calculations involving the

bound on centralizer orders imposed by Proposition 5.6, but we include the

details in Section 9.

We can now prove the HC case of Theorem 1.1.

Theorem 5.8. Suppose that Q is a thick finite generalized quadrangle

with a collineation group G that acts primitively on the point set P of Q.

Then the action of G on P does not have O’Nan–Scott type HC.

Proof. As explained above, the socle of G is a group N = T r × T r as in

Hypothesis 5.1, for some r > 2. However, Corollary 5.7 tells us that r = 2 and

that T has a unique conjugacy class of involutions. In particular, T r = T 2 has

exactly three conjugacy classes of involutions, with representatives (x, 1),

(1, y) and (x, y), where x and y are involutions in T . Now, [8, Theorem 1.1]

says that G cannot act transitively on the flags of Q, so in particular N

cannot act transitively on the flags of Q. Lemma 5.3(vi) therefore implies

that P1 must contain exactly two T 2-conjugacy classes of involutions. Hence,

without loss of generality, P1 contains the class (x, 1)T
2
. Since G acts

primitively on P, it induces a subgroup of Aut(T 2) = Aut(T ) o Sym2 that

swaps the two simple direct factors of T 2. Therefore, P1 also contains the
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class (1, y)T
2
, and so does not contain the class (x, y)T

2
. In particular, no

line ` ∈ L1 can be incident with both a conjugate of (x, 1) and a conjugate

of (1, y), because by Lemma 5.3(ii), ` would then also be incident with the

product of these elements, a conjugate of (x, y). Hence, L1 is partitioned

into two sets of lines: those incident with conjugates of (x, 1), and those

incident with conjugates of (1, y). Since G1 swaps these sets, G acts flag-

transitively, in contradiction with [8, Theorem 1.1].

For r = 1 we are left with the following list of candidates for T .

Corollary 5.9. Suppose that Hypothesis 5.1 holds with r = 1. Then T

is of Lie type A1, Aε
n with 26 n6 6, B2, C2, C3, Dε

n with 46 n6 6, or

exceptional Lie type other than E8.

Proof. By Propositions 4.2 and 5.4, T is one of the Lie type groups in the

first column of Table 2. By arguing as in the proof of Proposition 5.6 but

applying Proposition 2.5 instead of Proposition 2.4 in the first paragraph,

we conclude that one of the following conditions must also hold:

(i) every nonidentity element x ∈ T satisfies |CT (x)|< |T |94/125, or

(ii) s6 2.9701× 1015.

By choosing appropriate elements x ∈ T as in the proofs in Section 3, we

are able to use this to deduce that T does not have type Aε
7, Aε

8, B4, C4,

Dε
7, Dε

8 or E8. We rule out E8 here as an example, and include details of

the remaining cases in Section 9. If T ∼= E8(q) then (s+ 1)4 > |P|= |T |>
|E8(2)| ≈ 3.378× 1074 and hence s > |E8(2)|1/4 − 1≈ 4.287× 1018, contra-

dicting (ii), so (i) must hold. However, as noted in the proof of Lemma 3.3,

there exists x ∈ T ∼= E8(q) with |CT (x)|= q57|E7(q)| ∼ q190, while |T |94/125 ∼
(q248)94/125 < q187. Indeed, one may check that |CT (x)|> |T |94/125 for all

q > 2.

Finally, we use Lemma 5.3 to reduce the list of candidates for T in

Corollary 5.9 to those given in the first row of Table 1, thereby proving

the HS case of Theorem 1.1.

Proposition 5.10. Let Q= (P, L) be a thick finite generalized quadran-

gle admitting a collineation group G that acts primitively of type HS on P,

with socle T × T for some nonabelian finite simple group T . Then T has Lie

type Aε
5, Aε

6, B3, C2, C3, Dε
4, Dε

5, Dε
6, Eε6, E7 or F4.
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Proof. We are assuming that Hypothesis 5.1 holds with r = 1, so T

must be one of the groups listed in Corollary 5.9. It remains to show

that, moreover, T cannot have type A1, Aε
2, Aε

3, Aε
4, 2B2, 2G2, 2F4, G2

or 3D4. This follows from Lemma 5.3(v), because in each of these cases

T has at most two conjugacy classes of involutions. (This may be verified

using, for example, [17, Table 4.5.1] for odd characteristic and [18] for even

characteristic.)

Remark 5.11. Proposition 5.10 begs the obvious question of whether

we can rule out the last remaining candidates for T listed there. We are

confident that we will be able to do this, but it seems that it will require

even more new ideas and a detailed case-by-case analysis. Of course, some of

the remaining groups can be ruled out in certain cases using Lemma 5.3(v);

in particular, if T has Lie type C2, C3, F4 or Eε6 in characteristic p, then

we must have p= 2, because in odd characteristic these groups have only

two conjugacy classes of involutions. When T has exactly three conjugacy

classes of involutions, we can begin by applying Lemma 5.3(v) (because

we know from [8] that N cannot act transitively on the flags of Q), and

then the arguments in the proof of Lemma 5.3(iv)–(vi) can be extended to

deduce some restrictions on which involutions can appear in P1. However,

even with this extra information, we have thus far been unable to completely

rule out any of the remaining candidates for T . These kinds of arguments

become more difficult when T has more than three conjugacy classes of

involutions, and in any case, it seems that it will be necessary to treat each

group individually, and to use the structure of its involution centralizers in

some detail. Although not an ideal state of affairs, we therefore leave the

remaining cases for a future project.

§6. Primitive point actions of type PA

We now apply Corollary 1.5 to the case where N is the socle of a

primitive permutation group G of O’Nan–Scott type PA. The notation of

Hypothesis 6.1 coincides with that of Table 1.

Hypothesis 6.1. Let Q= (P, L) be a thick finite generalized quadrangle

of order (s, t) admitting a collineation group G that acts primitively of

type PA on P, writing T r 6G6H o Symr for some almost simple primitive

group H 6 Sym(Ω) with socle T , where r > 2.

Proposition 6.2. If Hypothesis 6.1 holds then 26 r 6 4 and every

nonidentity element of H fixes less than |Ω|1−r/5 points of Ω.
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Proof. The socle of G is N = T r and the action of H on Ω is not

semiregular, so the result follows immediately from Corollary 1.5.

To say more than this, we would like to have generic lower bounds for the

fixity f(H), namely the maximum number of fixed points of a nonidentity

element, of an almost simple primitive group H 6 Sym(Ω). This problem

was investigated in a recent paper of Liebeck and Shalev [19], who proved

that f(H)> |Ω|1/6 except in a short list of exceptions. This lower bound is

not quite large enough to force further restrictions on r in Proposition 6.2,

because to rule out r = 4 (as we did for types HC and CD) we would

need f(H) to be at least |Ω|1/5. However, Liebeck and Shalev remark

(after [19, Theorem 4]) that their |Ω|1/6 bound could potentially be improved

generically to around |Ω|1/3, which would be sufficient for this purpose.

Work in this direction is currently being undertaken by Elisa Covato at

the University of Bristol as part of her PhD research [11], with the aim

of classifying the almost simple primitive permutation groups H 6 Sym(Ω)

containing an involution that fixes at least |Ω|4/9 points. As of this writing,

the alternating and sporadic cases have been completed, and so we are able

to apply these results to sharpen Proposition 6.2 as follows.

Proposition 6.3. Suppose that Hypothesis 6.1 holds with r > 2 and T

an alternating group or a sporadic simple group, and let S 6H denote the

point stabilizer in the action of H on Ω. Then r ∈ {3, 4}, H = T ∼= Altp with

p a prime congruent to 3 modulo 4, and S ∩ T = p · (p− 1)/2.

Proof. Since r > 2, Proposition 6.2 tells us that r ∈ {3, 4}, and that the

fixity f(H) of H must be at most |Ω|1−r/5. If f(H)6 |Ω|1−3/5 = |Ω|2/5 then

Covato’s results [11] imply that either (i) T ∼= Altp with p≡ 3 (mod 4) a

prime and S ∩ T = p · (p− 1)/2, or (ii) H and S are in Table 4.

In case (i) we can at least deal with the situation where H = Symp.

Indeed, by the argument in [19, Section 6], there is an involution u ∈ S =

p · (p− 1) fixing 2(p−3)/2((p− 3)/2)! elements of Ω, which is greater than

|Ω|2/5 = (2(p− 2)!)2/5 provided that p > 7. If p= 7 then we observe that u

still fixes more than |Ω|1/3 elements. This rules out r = 4, because then 1/3>

1− r/5 = 1/5. For r = 3 we apply Proposition 2.6. We have |Ω|= 2 · 5! = 120

and hence |P|= |Ω|3 = 1203, and the only solution of 1203 = (s+ 1)(st+ 1)

satisfying s> 2, t> 2 and properties (ii) and (iii) of Lemma 2.1 is (s, t) =

(119, 121), so Proposition 2.6 implies that every nonidentity collineation of

Q fixes at most |P|7/9 points. However, the collineation (u, 1, 1) ∈G fixes
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Table 4.
Actions with small fixity in Proposition 6.3.

H S H S
Alt9 32 : SL2(3) J3.2 19.9
J1 23.7.3 O′N.2 31.15
J1 7 : 6 M23 23.11
He 72 : 2.PSL2(7) Th 31.15
He.2 72 : 2.PSL2(7).2 B 47.23
Th 25.PSL5(2)

more than |Ω|1/3|Ω|2 = |P|7/9 points, a contradiction. Therefore, if we are

in case (i) then we must have H = Altp, as per the assertion.

Now suppose that H and S are in Table 4. First consider the six cases on

the left-hand side of the table. In each of these cases, f(H) is at least |Ω|1/5,

so r = 4 is ruled out. For r = 3, we apply Proposition 2.6 as above. Since

f(H)> |Ω|1/5, we have in particular f(H)> |Ω|1/6. Choose u ∈H fixing

at least |Ω|1/6 elements of Ω, and consider the collineation (u, 1, 1) ∈G,

which fixes at least |Ω|1/6+2 = |Ω|13/6 = |P|13/18 points of Q. Since the only

solutions of |Ω|3 = (s+ 1)(st+ 1) satisfying s> 2, t> 2 and properties (ii)

and (iii) of Lemma 2.1 are those with t= s+ 2, Proposition 2.6 provides a

contradiction. Now consider the five cases on the right-hand side of Table 4.

The actions of J3.2, O′N.2 and Th all have fixity greater than |Ω|1/6 [19,

Lemma 5.3], so these are ruled out for both r = 3 and r = 4 by the same

arguments as above. Now consider the action of M23. Here |Ω|= 40320, and

for r = 4 there are no solutions of |Ω|r = (s+ 1)(st+ 1) satisfying s> 2,

t> 2 and properties (ii) and (iii) of Lemma 2.1. If r = 3, the only such

solution is (s, t) = (40319, 40321). By [19, Lemma 5.3], we have f(H) = 5,

realized by an element u of order 11, and so we can construct a collineation

θ = (u, 1, 1) ∈G ofQ fixing 5|Ω|2 = 8128512000 points. However, s= t− 2<

t+ 3, so the final assertion of Lemma 2.2 implies that |Pθ|6 (s+ 1)(s+ 3) =

1988752683< 8128512000, and we have a contradiction. Finally, consider

the given action of B, for which |Ω|= 3843461129719173164826624000000.

For r = 4, there is no solution of |Ω|r = (s+ 1)(st+ 1) satisfying s> 2, t> 2

and properties (ii) and (iii) of Lemma 2.1. For r = 3, the only such solution

is (s, t) = (|Ω| − 1, |Ω|+ 1), and so the final assertion of Lemma 2.2 implies

that any nonidentity collineation ofQ fixes at most (|Ω|+ 1)(|Ω|+ 3) points.
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However, [19, Lemma 5.3] tells us that f(H) = 22, so we can construct a

collineation with 22|Ω|2 points to yield a contradiction.

Remark 6.4. Further improvements to Proposition 6.2 will be made in

a future project. In the first instance, we hope to use Covato’s results [11] on

fixities of Lie type groups (once available), to complete our treatment of the

cases r = 3 and r = 4. We also note that it is straightforward to handle the

case r = 2 with T a sporadic simple group, and likewise the almost simple

case with sporadic socle, computationally along the lines of [5, Section 6]

(but assuming only point primitivity and not line primitivity). However, we

omit these computations from the present paper for brevity.

§7. Proof of Theorem 1.1

Let us now summarize the proof of Theorem 1.1. If the primitive action

of G on P has O’Nan–Scott type AS or TW, then the conditions stated in

Table 1 follow immediately from Theorem 1.3. Types HS, HC and PA are

treated in Proposition 5.10, Theorem 5.8 and Proposition 6.3, respectively.

Types SD and CD are treated together in Proposition 4.3.

§8. Discussion and open problems

We feel that the results presented in this paper represent a substantial

amount of progress toward the classification of point-primitive generalized

quadrangles, but there is evidently still a good deal of work to do. We

conclude the paper with a brief discussion, and outline some open problems

that could be investigated independently and then potentially applied to

our classification program.

As discussed in Remark 5.11, we are confident that we will be able to

finish the HS case, and it is at least somewhat clear how this might be

done. However, the SD and CD cases would appear to be more difficult.

The arguments used in Section 5 do not work in these cases, because the

proof of Lemma 5.2 (and therefore Lemma 5.3) relies in a crucial way on

having k = 2 in Hypothesis 4.1, so that conjugation by an element of the

point-regular subgroup M is a collineation. We have thus far been unable

to find a way to work around this difficulty in any sort of generality. On the

other hand, a primitive (resp. quasiprimitive) group of type SD must induce

a primitive (resp. transitive) permutation group on the set of simple direct

factors of its socle T k, and it seems that it should be possible to use this extra

structure to say more about the SD and CD types, at least in the primitive

case (especially since we have already reduced the list of candidates for T to
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those in Table 1). Although we have made some preliminary investigations

along these lines, we do not yet know how to finish the SD and CD cases,

and so we leave this task for a future project.

8.1 Point-regular groups and number theory

There is, of course, a potential, but apparently extremely challenging, way

to deal with all of the types HS, SD and CD, and also with type TW, in

one fell swoop. In each of these cases, the full collineation group must have

a point-regular subgroup of the form Tm, for some m, with T a nonabelian

finite simple group. Hence, it would certainly be sufficient to show that such

a group cannot act regularly on the points of a generalized quadrangle.

However, this would appear to be a very difficult problem in light of

the (limited) existing literature. Yoshiara [27] managed to show that a

generalized quadrangle of order (s, t) with s= t2 cannot have a point-regular

collineation group, while Ghinelli [16] considered the case where s is even

and t= s, showing that such a group must have trivial center and cannot be

a Frobenius group. Beyond this, not much else seems to be known in the way

of restrictions on groups that can act regularly on the points of a generalized

quadrangle (though certainly many of the known generalized quadrangles

admit point-regular groups [4], and the abelian case is understood [12]).

Although Yoshiara [27] has an extensive suite of lemmas that one might

attempt to use to investigate (in particular) the possibility that a group of

the form Tm acts point-regularly on a generalized quadrangle Q, the bulk

of these lemmas assume that the order (s, t) of Q satisfies gcd(s, t) 6= 1.

Although this condition holds under Yoshiara’s intended assumption that

s= t2, it seems to be difficult to guarantee in general. Indeed, according

to Lemma 5.3(ii) (and perhaps not surprisingly), it must fail in our HS

case. On the other hand, one might seek a contradiction by examining

the arithmetic nature of the equation |T |m = (s+ 1)(st+ 1) subject to the

constraints imposed by Lemma 2.1, and asking when it can be guaranteed

that a solution must satisfy gcd(s, t) 6= 1. More generally, one might simply

ask whether this equation can have any such solutions at all. This motivates

the following problem.

Problem 8.1. Determine for which nonabelian finite simple groups T ,

and which positive integers m, there exist integral solutions (s, t) of the

equation

(13) |T |m = (s+ 1)(st+ 1)
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subject to the constraints

(14) s> 2, t> 2, s1/2 6 t6 s2 6 t4 and s+ t | st(st+ 1).

Failing this, determine when such a solution must satisfy gcd(s, t) 6= 1.

As noted before Proposition 4.2, there is always an “obvious” solution of

(13)–(14) when m is divisible by 3, namely (s, t) = (|T |m/3 − 1, |T |m/3 + 1),

and gcd(s, t) = 1 in this case because |T | is even. It would be useful even to

know whether this is the unique solution in this particular situation. We do

know that (13)–(14) has solutions for certain groups T when m= 1 or 2, as

demonstrated by Table 3, but we do not recall encountering any solutions

apart from the aforementioned “obvious” ones when m> 3. Moreover, it

is straightforward to run numerical computations that suggest that certain

combinations of families of T and values of m will never yield a solution of

(13)–(14). For example, if T ∼= PSL2(q) and m= 1 then there is no solution

if q < 106, but we do not see how to go about proving that there is no

solution for any q.

One might also ask about gearing Problem 8.1 toward the PA and AS

cases, by seeking solutions of (13)–(14) with |T | replaced by |H : S| for

H an almost simple group with socle T and S a maximal subgroup of H

(compare with Hypothesis 6.1, which reduces to the AS case if r is taken

to be 1). However, solutions of (13)–(14) seem to be rather more common

in this setting, and so other methods are needed to rule out cases where

solutions arise. For example, if we take H = T = McL (the McLaughlin

sporadic simple group) then there are five (classes of) maximal subgroups

S of H for which |H : S|2 = (s+ 1)(st+ 1) has a solution subject to (14):

four maximal subgroups of order 40320, for which (s, t) = (296, 5644), and

the maximal subgroup PSU4(3), for which (s, t) = (24, 126).

8.2 Fixities of primitive groups of type TW

Let us conclude with a brief discussion of the TW case. Write N = T1 ×
· · · × Tr, where T1

∼= · · · ∼= Tr ∼= T for some nonabelian finite simple group

T . A primitive permutation group G6 Sym(Ω) of type TW is a semidirect

product N o P with socle N acting regularly by right multiplication, and

P 6 Symr acting by conjugation in such a way that T1, . . . , Tr are permuted

transitively. Certain other rather complicated conditions must also hold [2],

and in particular T must be a section of P . If we intend to apply Theorem 1.1

to classify the generalized quadrangles with a point-primitive collineation

group of TW type, then we will need “good” lower bounds for fixities
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of primitive TW-type groups. Liebeck and Shalev [19, Section 4] showed

that, for every T and r, the fixity of G is at least |T |r/3. Although this

is very far away from the 4/5 exponent bound imposed by Theorem 1.1,

we would be interested to know under what conditions the exponent could

be improved to something “close” to 4/5, so that we could at least rule

out some of the subgeometries listed in Lemma 2.2 and then perhaps use

other ideas to say more. In [19, Section 4], Liebeck and Shalev considered

an involution x ∈ P (which must exist because T is a section of P and |T | is
even) and observed that x induces a permutation of {T1, . . . , Tr} that fixes

at least |T |ca+b elements of Ω≡ T r, where the induced permutation has cycle

structure (1a, 2b) and every involution g ∈Aut(T ) satisfies |CT (g)|> |T |c.
By [19, Proposition 2.4], we can take c= 1/3 independently of T , and

so because a/3 + b> (r − 2)/3 + 2/3 = r/3, it follows that x fixes at least

|T |r/3 elements. Now, c can certainly be taken larger than 1/3 in at least

some nonabelian finite simple groups T (though presumably never as large as

4/5), and if we happen to have c > 1/2 then ca+ b is maximized when b= 1

(else it is maximized when a= 0). Hence, roughly speaking, if c happens to

be somewhat large (for a given T ) and we happen to be able to guarantee

that x can be chosen with b quite small, then we might have a useful bound

on the fixity of G to work with. Bounds on c can certainly be determined

on a case-by-case basis from standard results about involution centralizers,

but in light of the rather involved necessary and sufficient conditions for P

to be a maximal subgroup of G, it is not clear to us what can be said about

the cycle structure of permutations of {T1, . . . , Tr} induced by involutions

in P . We therefore pose the following (somewhat vaguely worded) problem.

Problem 8.2. Under what conditions can it be guaranteed that a

primitive permutation group of type TW and degree d has large fixity, where

by “large” we mean, say, d3/4 or more?

§9. Additional proofs

Proof of Proposition 2.4. Suppose that we are not in case (iii). Then,

by the final assertion of Lemma 2.2, |Pθ|6 (s+ 1)(t+ 1), and we

argue as in the proof of Theorem 1.3. We must show that we are

either in case (ii), or that f(s, t) = ((s+ 1)(st+ 1))7/9 − (s+ 1)(t+ 1) is

positive. We have ∂f/∂t(s, t) = (s+ 1)(7s− h(s, t))/h(s, t), where h(s, t) =

9((s+ 1)(st+ 1))2/9. If s> 13 then (using also 26 t6 s2) we have h(s, t)6
9(14

13s)
2/9(27

26st)
2/9 6 9(189

169)2/9s8/9, so 7s− h(s, t)> s8/9(7s1/9 − 9(189
169)2/9).

The right-hand side is positive if and only if s > (9
7)9(189

169)2 ≈ 12.01> 12, and
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so it follows that f(s, t)> 0 for all s> 13, for all s1/2 6 t6 s2. If 46 s6 12

then a direct calculation shows that f(s, t)> 0 for all s1/2 6 t6 s2, so it

remains to consider s ∈ {2, 3}. If s= 2 then, by the final paragraph of the

proof of Theorem 1.3, either t= 2 and every nonidentity collineation of Q
fixes at most 7< |P|7/9 = 157/9 ≈ 8.22 points, or t= 4 and we are in case (ii).

Finally, if s= 3 then 31/2 6 t6 32, and a direct calculation shows that

f(3, t)> 0 for 31/2 6 t6 7. Moreover, Q cannot have order (s, t) = (3, 8) by

Lemma 2.1(iii). If (s, t) = (3, 9) then Q is the elliptic quadric Q−(5, 3) [21,

5.3.2], and a FinInG [3] calculation shows that (up to conjugacy) there is a

unique nonidentity collineation θ fixing 40> |P|7/9 = 1127/9 ≈ 39.25 points.

Moreover, Qθ is a generalized quadrangle of order (3, 3), and every other

nonidentity collineation of Q fixes at most 16< 1127/9 points.

Proof of Proposition 2.5. Suppose that we are not in case (ii) or (iii).

Then |Pθ|6 (s+ 1)(t+ 1) by the final assertion of Lemma 2.2. We show

that f(s, t) = ((s+ 1)(st+ 1))94/125 − (s+ 1)(t+ 1) is positive. We have

∂f

∂t
(s, t) =

(s+ 1)(94s− h(s, t))

h(s, t)
,

where h(s, t) = 125((s+ 1)(st+ 1))31/125. Let a= 2.9701× 1015. Then

s> a, so (using also 26 t6 s2) we have

h(s, t) 6 125

(
a+ 1

a
s

)31/125(2a+ 1

2a
st

)31/125

6 9

(
(2a+ 1)(a+ 1)

2a2

)31/125

s124/125,

and hence

94s− h(s, t)> s124/125

(
94s1/125 − 125

(
(2a+ 1)(a+ 1)

2a2

)31/125
)
.

The right-hand side is positive because

s> a >

(
125

94

)125((2a+ 1)(a+ 1)

2a2

)31

≈ 2.97009× 1015,

and it follows that f(s, t)> 0 for all s> a, for all s1/2 6 t6 s2.
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Proof of Proposition 2.6. Since s= t− 2< t+ 3, the final assertion of

Lemma 2.2 implies that |Pθ|6 (s+ 1)(t+ 1) = (s+ 1)(s+ 3). The result

follows upon comparing this with |P|= (s+ 1)3.

Proof of Corollary 5.7. By Propositions 4.2 and 5.4, T is one of the Lie

type groups in the second column of Table 2. However, by Proposition 5.6,

we must also have |CT (x)|< |T |5/9 for all x ∈ T \ {1}. We use this to show

that T cannot have type Aε
3, B2 = C2, 2F4 or G2.

If T ∼= G2(q) then |T |= q6(q6 − 1)(q2 − 1), and we can choose

x ∈ T with |CT (x)|= q|A1(q)|= q6(q2 − 1)/gcd(2, q − 1) as in the proof of

Lemma 3.3(ii). Note also that q > 3 because G2(2) is not simple. If q is

even or q > 19 then |CT (x)|> |T |5/9, and if q ∈ {3, 5, 7, 9, 11, 13, 17, 19}
then there is no solution of |T |2 = (s+ 1)(st+ 1) satisfying s> 2, t> 2 and

properties (ii) and (iii) of Lemma 2.1. If T ∼= 2F4(q) then q = 22n+1 with n> 1

(because 2F4(2) is not simple and 2F4(2)′ was treated in Proposition 5.4),

|T |= q12(q6 + 1)(q4 − 1)(q3 + 1)(q − 1) and, as in the proof of

Lemma 3.3(ii), we can choose x ∈ T with |CT (x)|= q10|2B2(q)|
= q12(q2 + 1)(q − 1). This yields |CT (x)|> |T |5/9 for all q. If T ∼= PSp4(q)
∼= Ω5(q) then q > 3 (because PSp2(2)∼= Sym6 is not simple), |T |=
q4(q4 − 1)(q2 − 1)/gcd(2, q − 1), and taking x ∈ T with |CT (x)|=
q4(q2 − 1)/gcd(2, q − 1) as in the proof of Lemma 3.4 yields |CT (x)|>|T |5/9
for all q > 3. Finally, if T ∼= PSLε4(q) then

|T |= q6(q4 − 1)(q2 − 1)(q3 − ε)
gcd(4, q − ε)

and we can choose x ∈ T with |CT (x)|= q5|GLε2(q)|/gcd(4, q − ε) =

q6(q2 − 1)(q − ε)/gcd(4, q − ε) as in the proof of Lemma 3.4. This yields

|CT (x)|> |T |5/9 unless ε= + and q = 2, and in this case there is no solution

of |T |2 = (s+ 1)(st+ 1) satisfying s> 2, t> 2 and properties (ii) and (iii) of

Lemma 2.1.

Proof of Corollary 5.9 (continued). Now suppose that T ∼= PSLεn+1(q)

with n ∈ {7, 8}, and choose x ∈ T as in the proof of Lemma 3.4, so that (1)

holds. If n= 8 then |CT (x)|> |T |7/9 for all q > 2, so Proposition 5.6 gives a

contradiction. If n= 7 then |CT (x)|> |T |94/125 for all q > 2, so condition (ii)

must hold. That is, s6 2.9701× 1015, so

(15) |T |= |P|< (s+ 1)4 6 (2.9701× 1015 + 1)4 < 7.78188× 1061.
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This forces q 6 9, in which case there is no solution of |T |= (s+ 1)(st+ 1)

satisfying s> 2, t> 2 and properties (ii) and (iii) of Lemma 2.1.

If T ∼= PSp8(q) then

|T |= q16(q2 − 1)(q4 − 1)(q6 − 1)(q8 − 1)

gcd(2, q − 1)

and we take x ∈ T with |CT (x)|= q16(q2 − 1)(q4 − 1)(q6 − 1)/gcd(2, q − 1),

as per (2). This yields |CT (x)|> |T |94/125 for all q > 2, so again (15)

must hold. This implies that q 6 53, in which case there is no solution of

|T |= (s+ 1)(st+ 1) satisfying s> 2, t> 2 and properties (ii) and (iii) of

Lemma 2.1. Similarly, for T ∼= Ω9(q) take x ∈ T as in the proof of Lemma 3.4,

so that |CT (x)|= |SO±2n(q)|= q12(q4 ± 1)(q2 − 1)(q4 − 1)(q6 − 1) as in (3).

This yields |CT (x)|> |T |94/125 for all q > 2, so (15) must hold, and we

immediately have a contradiction because |Ω9(q)|= |PSp8(q)|.
Finally, suppose that T ∼= PΩ±2n(q) with n ∈ {7, 8}, and choose x ∈ T as

in the proof of Lemma 3.4. If n= 8 then by using (4)–(5) (for q odd) and

(7)–(8) (for q even), one may check that |CT (x)|> |T |94/125 for all q > 2.

Hence, (15) must hold, and this implies that q ∈ {2, 3}, in which case

there is no solution of |T |= (s+ 1)(st+ 1) satisfying s> 2, t> 2 and

properties (ii) and (iii) of Lemma 2.1. Now suppose that n= 7. Then (15)

holds if and only if q 6 4, and in this case there is no solution of |T |=
(s+ 1)(st+ 1) satisfying s> 2, t> 2 and properties (ii) and (iii) of

Lemma 2.1. Therefore, we must have q > 5. However, in this case |CT (x)|>
|T |94/125, so we have a contradiction. (To check this, note that |CT (x)|>
c · q42(q5 − 1)(q2 − 1)2(q4 − 1)(q6 − 1)(q8 − 1) where c= 1

2 or 1
4 according

to whether q is even or odd.)
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FinInG–Finite Incidence Geometry, Version 1.0, 2014.

[4] J. Bamberg and M. Giudici, Point regular groups of automorphisms of generalised
quadrangles, J. Combin. Theory Ser. A 118 (2011), 1114–1128.

https://doi.org/10.1017/nmj.2017.35 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2017.35


SIMPLE GROUPS, PRODUCT ACTIONS, AND GENERALIZED QUADRANGLES 125

[5] J. Bamberg, M. Giudici, J. Morris, G. F. Royle and P. Spiga, Generalised quadrangles
with a group of automorphisms acting primitively on points and lines, J. Combin.
Theory Ser. A 119 (2012), 1479–1499.

[6] J. Bamberg, S. P. Glasby, T. Popiel and C. E. Praeger, Generalised quadrangles and
transitive pseudo-hyperovals, J. Combin. Des. 24 (2016), 151–164.

[7] J. Bamberg, S. P. Glasby, T. Popiel, C. E. Praeger and C. Schneider, Point-primitive
generalised hexagons and octagons, J. Combin. Theory Ser. A 147 (2017), 186–204.

[8] J. Bamberg, T. Popiel and C. E. Praeger, Point-primitive, line-transitive generalised
quadrangles of holomorph type, J. Group Theory 20 (2017), 269–287.

[9] T. C. Burness and M. Giudici, Classical Groups, Derangements, and Primes,
Australian Mathematical Society Lecture Series 25, Cambridge University Press,
Cambridge, 2016.

[10] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, ATLAS
of Finite Groups, Oxford University Press, Oxford, 1985.

[11] E. Covato, The involution fixity of simple groups, Ph.D. thesis, University of Bristol,
2017.

[12] S. De Winter and K. Thas, Generalized quadrangles with an abelian Singer group,
Des. Codes Cryptogr. 39 (2006), 81–87.

[13] W. Feit and J. G. Thompson, Solvability of groups of odd order, Pacific J. Math. 13
(1963), 775–1029.

[14] D. Frohardt and K. Magaard, Fixed point ratios in exceptional groups of rank at most
two, Comm. Algebra 30 (2002), 571–602.

[15] The GAP Group, GAP–Groups, Algorithms, and Programming, Version 4.7.8, 2015.
[16] D. Ghinelli, Regular groups on generalized quadrangles and nonabelian difference sets

with multiplier −1, Geom. Dedicata 41 (1992), 165–174.
[17] D. Gorenstein, R. Lyons and R. Solomon, The Classification of the Finite Simple

Groups, Number 3, Mathematical Surveys and Monographs 40, American Mathe-
matical Society, Providence, 1998.

[18] M. W. Liebeck and G. M. Seitz, Unipotent and Nilpotent Classes in Simple Algebraic
Groups and Lie Algebras, Mathematical Surveys and Monographs 180, American
Mathematical Society, Providence, RI, 2012.

[19] M. W. Liebeck and A. Shalev, On fixed points of elements in primitive permutation
groups, J. Algebra 421 (2015), 438–459.

[20] L. Morgan and T. Popiel, Generalised polygons admitting a point-primitive almost
simple group of Suzuki or Ree type, Electron. J. Combin. 23 (2016), P1.34.

[21] S. E. Payne and J. A. Thas, Finite Generalized Quadrangles, Pitman, London, 1984.
[22] C. E. Praeger, C.-H. Li and A. C. Niemeyer, “Finite transitive permutation groups

and finite vertex-transitive graphs”, in Graph Symmetry, (eds. G. Hahn and G.
Sabidussi) Kluwer, 1997, 277–318.

[23] N. Spaltenstein, Caractères unipotents de 3D4(Fq), Comment. Math. Helv. 57 (1982),
676–691.

[24] M. Suzuki, On a class of doubly transitive groups, Annals Math. 75 (1962), 105–145.
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