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Abstract
Several real-world optimization problems are dynamic and involve a number of objectives. Different researches
using evolutionary algorithms focus on these characteristics, but few works investigate problems that are both
dynamic and many-objective. Although widely investigated in formulations with multiple objectives, the evolu-
tionary approaches are still challenged by the dynamic multiobjective optimization problems defining a relevant
research topic. Some models have been proposed specifically to attack them as the well-known DNSGA-II and
MS-MOEA algorithms, which have been extensively investigated on formulations with two or three objectives.
Recently, the D-MEANDS algorithm was proposed for dynamic many-objective problems (DMaOPs). In a previ-
ous work, D-MEANDS was confronted to DNSGA-II and MS-MOEA solving dynamic many-objective scenarios
of the knapsack problem: up to six objectives with five changes or four objectives with ten changes. In this work,
we evaluate the behavior of such algorithms in instances up to eight objectives and twenty environmental changes.
These enabled us to better understand D-MEANDS weak points which led us to the proposition of D-MEANDS-
MD. The proposal offers a better balance between memory and diversity. We also included a more recent MOEA
in this comparison: the DDIS-MOEA/D-DE. From the results obtained using 27 instances of the dynamic multi-
objective knapsack problem, D-MEANDS-MD showed promise for solving discrete DMaOPs compared with the
others.

1. Introduction
Since the seminal propositions of the evolutionary search methods in 60’s and 70’s years, one of the
main applications of these algorithms lies in optimization problems. Aiming to get these applications
closer to solve relevant real-world tasks, optimization problems with multiple objectives turned out a
hot topic in evolutionary optimization research in the last decades (Aghdasi et al., 2019; Coello, 1999;
Guliashki et al., 2009; Kakde, 2004). They are called multiobjective optimization problems (MOPs).
On the other hand, dynamic optimization problems have also been broader investigated in the con-
text of evolutionary computation field. However, the vast majority of these works were focused on
mono-objective formulations, so they can be called as Dynamic Single-objective Optimization Problems
(DSOPs) (Jin and Branke, 2005). Recently, the dynamic nature of MOPs has been further investigated
(Azzouz et al., 2017), enabling the cross-fertilization of the ideas employed in both multiobjective and
dynamic optimization evolutionary strategies. Therefore, when an MOP has also a dynamic facet it is
called a Dynamic Multiobjective Optimization Problem (DMOP). Taking DMOPs into account, the set
of objectives or constraints changes over time. This characteristic makes DMOPs more challenging than

Cite this article: T. F. de Queiroz Lafetá, L. G. A. Martins and G. M. B. Oliveira. D-MEANDS-MD: an improved evolutionary
algorithm with memory and diversity strategies applied to a discrete, dynamic, and many-objective optimization problem. The
Knowledge Engineering Review 39(e9): 1–33. https://doi.org/10.1017/S0269888924000079

C© The Author(s), 2024. Published by Cambridge University Press. This is an Open Access article, distributed under the terms of the Creative
Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution and reproduction,
provided the original article is properly cited.

https://doi.org/10.1017/S0269888924000079 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888924000079
https://orcid.org/0000-0003-1466-4660
mailto:fialhot@gmail.com
https://doi.org/10.1017/S0269888924000079
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S0269888924000079&domain=pdf
https://doi.org/10.1017/S0269888924000079


2 T. F. de Queiroz Lafetá et al.

MOPs and DSOPs, since the objective space modifies along the evolutionary search (Deb and Karthik,
2007) and involves multiple objectives at the same time.

Evolutionary algorithms (EAs) are especially suited for multiobjective optimization problem as they
deal with a population of points in the search space rather than a single problem solution. The EA
framework is characterized by a population of candidates for solutions and the reproduction process
allows the combination of existing candidates to generate new ones. This allows the evolutionary search
to find several members of the Pareto Optimal in a single run, instead of performing a series of separate
runs, which is the case with some of the conventional stochastic processes (Horn et al., 1993). Moreover,
EAs can be adapted easily to different problems, regardless of how their objectives and constraints are
represented. This flexibility is even more important when dealing with dynamic problems, as these
characteristics—objectives and constraints—may change over time. The strategies for building a new
population at each environment change in a DMOP are based on two principles (Hatzakis and Wallace,
2006): (i) inserting diversity to explore unreachable regions in the new environment; (ii) use information
from the previous environment to guide the search in the new environment. These two characteristics
fit well with the genetic algorithm (AG), since it optimizes several solutions simultaneously, making it
possible to reuse the information from an environment to another, while allowing for the maintenance
of diversity from the introduction of unexplored points of the search space.

Although works investigating multiobjective evolutionary algorithms (MOEAs) applied to dynamic
problems have gained a lot of strength in recent years (Azzouz et al., 2017), it is still common to find
DMOPs that are limited to two or three objectives in the literature. The greater the number of objec-
tives involved in an MOP, the greater the challenge for the EAs. The main reason to this is because the
increment in the number of objectives causes a significant increase in the number of nondominated solu-
tions, decreasing the selective pressure of the search (Ishibuchi et al., 2008). Formulations using four
or more objectives characterizes the many-objective optimization problems (MaOPs). In two recent
papers (Lafetá and Oliveira, 2020a; Lafetá and Oliveira, 2020b), the authors worked with the Dynamic
Multiobjective Knapsack Problem (DMKP) (Farina et al., 2004) using formulations with more than
three objectives.

Some EAs found in the literature and proposed for dynamic MOPs were evaluated in (Lafetá and
Oliveira, 2020a), for DMKP instances with 4, 6, and 8 objectives. The EAs investigated were: Dynamic
Nondominated Sorting Genetic Algorithm II (DNSGA-II) (Deb and Karthik, 2007), Multi-strategy
Ensemble MOEA (MS-MOEA) (Wang and Li, 2010), and Multiobjective Evolutionary Algorithm with
Decomposition with Kalman Filter (MOEA/D-KF) (Muruganantham et al., 2016). The Nondominated
Sorting Genetic Algorithm III (NSGA-III) (Deb and Jain, 2014) was proposed to deal with static
many-objective problems. Therefore, a variation of the NSGA-III was also proposed in (Lafetá and
Oliveira, 2020a) adapting it to DMOPs called DNSGA-III. The multiobjective metrics employed were
hypervolume-ratio (Zitzler and Thiele, 1999) and IGD∗ (Wang and Li, 2009). Experimental results have
shown that the MS-MOEA algorithm, which uses an evolutionary strategy based on memory, obtained
the best multiobjective solutions in the adopted metrics and overcame the other MOEAs both in conver-
gence and in diversity. However, it demands a much longer execution time than the other investigated
algorithms. DNSGA-II was in second place, even surpassing DNSGA-III and MOEA/D-KF, but with a
much shorter execution time than MS-MOEA. An additional evaluation was introduced in (Lafetá and
Oliveira, 2020a), comparing MS-MOEA with a proposed variation of DNSGA-II, in which an external
file was incorporated to the framework, similar to the strategy used by MS-MOEA. This proposal was
called DNSGA-II∗, which showed a better performance when compared with DNSGA-II. However, even
with this refinement, it did not achieve the convergence results of MS-MOEA. Few environment changes
were applied during the evolutionary experiments in (Lafetá and Oliveira, 2020a), limiting them to one
or two modifications in one of the objectives. Besides the DMKP instances involves a set of 30 or 50
items to be packaged in the knapsack.

MOEAs were also applied to the DMKP in a subsequent work (Lafetá and Oliveira, 2020b). The
investigated DMKP instances involve sets of 30 or 50 items and the number of environment changes was
increased to 5 and 10 modifications, turning it possible to investigate MOEAs behavior in more dynamic
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scenarios. However, due the intrinsic increment in the complexity of these new scenarios, just formula-
tions using four and six objectives were analyzed, being that ten environment changes was possible to
analyze just using 4 objectives. Moreover, the authors also presented a new version of the Many-objective
Evolutionary Algorithm Based on Nondominated Decomposed Sets (MEANDS) (Lafeta et al., 2016),
that was originally proposed for static MaOPs, in which an evolutionary strategy based on memory was
incorporated to the basic MEANDS framework to solve DMOPs. This proposition was called Dynamic
Many-objective Evolutionary Algorithm Based on Nondominated Decomposed Sets (D-MEANDS) and
it was proposed to solve DMaOPs. A performance analysis compared its results with the two most
promising algorithms in the earlier work: MS-MOEA and DNSGA-II∗. In general, D-MEANDS out-
performed the other two MOEAs in all the multiobjective metrics used. However, it was observed that as
the instances of the problem become more complex, the execution time increases significantly compared
with other algorithms, mainly when 6 objectives are used in the formulation.

In the present work, we promote a deeper investigation of the adaptation of the MOEAs to dynamic
optimization environments. The problem at hand is also the DMKP (Farina et al., 2004). However, more
complex DMKP instances are employed here: sets of 30, 50 and 100 items subject to formulation using
4, 6, and 8 objectives. Moreover, the environment are subject to more modifications, from 10 to 20
changes, enabling us to investigate more dynamic scenarios. One of the main limitations in the previous
works (Lafetá and Oliveira, 2020a; Lafetá and Oliveira, 2020b) to investigate more complex and dynamic
instances of DMKP was due to the employment of parametric metrics, which depend on the computation
of Pareto approximations, as they demand a high computational cost. On the other hand, non-parametric
metrics are employed here: density and hypervolume. It enabled us to use more challenging instances
and to increase the number of generations compared with the previous works.

We started our analysis using the same algorithms investigated in (Lafetá and Oliveira, 2020b):
DNSGA-II∗ (Lafetá and Oliveira, 2020a), MS-MOEA (Wang and Li, 2010) and D-MEANDS (Lafetá
and Oliveira, 2020b). In addition, we propose an adaptation of D-MEANDS in which an additional
diversity strategy is incorporated, impacting both on convergence and diversity. This new version is
called Dynamic Many-objective Evolutionary Algorithm based on Nondominated Decomposed Sets
with Memory and Diversity (D-MEANDS-MD). Moreover, we included a recent MOEA proposed for
dynamic MOPs in our comparison: the DDIS-MOEA/D-DE (Liu et al., 2020), which uses differential
evolution as its underlying evolutionary search framework and a diversity introduction strategy to deal
with dynamical MOPs. All algorithms investigated here use dynamic strategies based on diversity and
memory. In previous work (Lafetá and Oliveira, 2020a), a prediction-based algorithm was evaluated
for solve DMKP and presented a significant lower performance than the other MOEAs based on diver-
sity and memory. For this reason, we will address in this work only these two strategies (diversity and
memory).

According to the authors in (Helbig et al., 2016), one of the key challenges for solving DMOPs would
be the adaptation of many-objective optimization algorithms to dynamic problems. They also postulated
that “no work on dynamic many-objective optimization has been published” until that time. We also per-
formed a carefully research on the literature seeking for papers investigating dynamic optimization from
a many-objective perspective and to the best of our knowledge the first published works on this thematic
are (Lafetá and Oliveira, 2020a; Lafetá and Oliveira, 2020b), which are the basis from where we start
this investigation. The present work is the first that deepened in this question involving scenarios with
several objectives (up to 8) and a considerable number of environment changes (up to 20). Furthermore,
we present a new proposal of MOEA which achieved the best hypervolume and diversity on the instances
of a discrete DMOP.

The rest of this paper is organized as follows. Section 4 The MOEAs used in this work, including the
novel algorithm D-MEANDS-MD. Section 2 introduces the concept of dynamic multiobjective opti-
mization problems (DMOPs) and presents our formulation to a dynamic version of the Multiobjective
Knapsack Problem (DMKP). Section 3 reviews related work on the MOEAs applied to DMOPs.
Section 5 depicts the experiments performed to evaluate the dynamic MOEAs and the results achieved.
Finally, Section 6 presents some conclusions and briefly describes ongoing and future work.
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2. Problem formulation
MOPs are characterized by having more than one objective to be optimized. Unlike mono-objective
optimization, MOPs usually have more than one optimal solution to be found, since their objectives may
be in conflict (Radulescu et al., 2020), that is, to improve one objective the search depreciates another
one. However, it is still possible to define whether one solution is better than another in the search space
for an MOP considering the concept of dominance proposed by Pareto (Mannion et al., 2018). We can
determine that a solution x dominates another solution y (x ≺ y in a minimization problem) if x is better
than y in at least one objective and is not surpassed in the others. When one solution is not dominated
by any other in the entire search space, it belongs to the set of the best solutions of the MOP, which is
called Pareto Optimal (P∗). Therefore, the purpose of a multiobjective evolutionary algorithm is to find
P∗ or at least a set of solutions close to it (Pareto approximation).

Consider a problem P with m objectives and � the set of all possible solutions of P (search space).
An MOP to minimize the objectives of P is mathematically formulated as:

min f (x) = {f1(x), f2(x), ..., fm(x)}, where g(x) > 0, h(x) = 0 (1)

where x is a solution of the search space (x ε �); fi(x) refers to the value of the i-th objective for x
(i = 1, ..., m); and functions g(x) and h(x) represent respectively the set of constraints of inequality and
equality of the problem. In this context, we can say that x dominates y (x ≺ y) if and only if:

fi(x) < fi(y), for any i ε {1, ..., m}; and (2)

fj(x) ≤ fj(y), for all j ε {1, ..., m} and j �= i (3)

Although the DMOPs maintain the same concept of dominance used in its static version, they are
characterized by dealing with changes in the environment (objectives and constraints of the problem)
over time. These changes impact in the objective space, modifying the Pareto Front. Therefore, MOEAs
used in dynamic optimization must have a fast convergence to a good approximation of the Pareto
Optimal whenever the environment changes. A DMOP can be formally defined as:

min f (x, t) = {f1(x, t), ..., fm(x, t)}, where x ε �, g(x, t) > 0, h(x, t) = 0 (4)

where, t represents the time or dynamic nature of the problem. That is, the mathematical formulation in
Equation (1) is adapted so that its functions consider changes in the environment at time t.

Two other concepts related to dynamic problems are severity and frequency of the change (Richter,
2013). The severity of the change means how strong it is in terms of magnitude, that is, as greater is
the change as greater is its impact on the space of objectives. The frequency of change determines how
often the environment changes. When changes occur very quickly, the evolutionary algorithm may not
have enough generations to converge on a reasonable Pareto approximation.

Given a knapsack that supports a certain weight limit Q and a set of all available items I , each one
with its respective weight wi and value vi (i ε I), the Knapsack Problem (KP) (Kellerer et al., 2004)
consists of choosing a subset I∗ of items I in order to maximize the total value of the collected items.
However, the sum of the weights of these items cannot exceed the weight limit of the knapsack (Q).
In the multiobjective version of Knapsack Problem (MKP) (Ishibuchi et al., 2013), each item i ε I has
a value of vi,j and a weight of wi,j for an objective j. The purpose of the algorithm is to find a subset
of items I∗ (I∗ ⊆ I), respecting the weight constraint of each objective (Qj), while maximizing their
respective values. This multiobjective problem is formulated as:

m∑
j=1

[(
max

n∑
i=0

vi,j ∗ xi

)
;

(
n∑

i=0

wi,j ∗ xi ≤ Qj

)]
(5)

Consider a set of items I , where i = 0, ..., n and a set of objectives J, where j = 1, ..., m; xi is a binary
value that receives 1 when item i is in the knapsack and 0 otherwise; Qj is the maximum weight for an
objective j.
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The DMKP is an extension of the MKP, where the objectives and/or constraints are modified in each
environment change (Branke, 2001). Different instances were generated for the DMKP, varying the
number of environmental changes (10, 15, and 20 changes), items (30, 50 and 100 items) and objectives
(4, 6, and 8 objectives). Therefore, the experiments were performed using 27 instances of the problem.
For each instance, we first built a static MKP configuration to represent the initial environment, which is
modified progressively after the changes emerge. The initial environment is built based on the procedure
described in (Martello and Toth, 1990) and refined in (Franca et al., 2018): a set of objective functions
was generated containing the value and weight of each item and the maximum weight that the knapsack
can support for that objective. In (Martello and Toth, 1990) random instances were generated using the
interval of [0, 100] for the value and weight of each item. Following the same idea, we generate our
instances using the interval [0, 1000]. We believe that the interval [0, 100] is small considering the
number of items we use in each instance (instances with up to 100 items were generated), as it could
generate repeated values between items frequently as the values are integers. Besides, Martello suggested
calculating the knapsack capacity constraint by summing the weights of all the items and multiplying
it by 0.5 (Martello and Toth, 1990); according to him, this guarantees that half of the items would be
in the knapsack of the best solution. In our experiments, we multiply the weights sum by 0.6 to have
more items in the non-dominated solutions, that is, in general 60% of the possible items are allocated
in the knapsack regarding the non-dominated solutions. We believe that using more diversity related
to the best solutions, we could generate problems where the Pareto Optimal has more non-dominated
solutions. This makes the comparison of algorithms more effective since we deal with more complex
instances. The same procedure was applied to (Franca et al., 2018).

In our formulation of the DMKP, we adopted a low severity of change, in which only one objective
is modified per environmental change (Lafetá and Oliveira, 2020a; Lafetá and Oliveira, 2020b). At each
change of environment (CE), one of the set of items is changed, altering the search space and the related
Pareto Optimum. Starting from the initial environment the changes will be applied after a fixed inter-
val of generations. Changing an objective means modifying the values and weights of the set of items
associated with that objective. Changes in constraint consist of using knapsacks with different capacities
(weight limit associated to each objective) Although changes are made directly to the set of items for the
objective chosen to be modified (Farina et al., 2004), a change of the value of the Qj capacity constraint
(maximum weight) associated to same objective is also promoted. The weights are modified when new
items are generated in the interval [0, 1000] and the value of Qj is recalculated multiplying the sum of
the weights of all items by 0.6. In that way, although the absolute value of the constraint is modified for
one objective, this change keeps the proportion of items around 60% of the total set. In that way, we are
able to modify the Qj value without promoting a big impact on the selective pressure of the search space.
By modifying in each environmental change just one set of n items associated to one of the m objectives
we are able to perform a more controlled experiment, in which the severity of change is not high and
we could choose the number of objectives to be modified (one in each time) in a complete execution.
On the contrary, the adoption of a high severity of change could considerably modify the Pareto set in a
such way that would be better to start the search again from scratch (Branke, 2001).

The knapsack problem (KP) is one of the most studied combinatorial problems in the literature
(Farina et al., 2004; Ishibuchi et al., 2013; Kellerer et al., 2004; Lafetá and Oliveira, 2020a; Mannion
et al., 2018). Instances of this problem—including KP, MKP, and DMKP variations- appear in real-world
decision-making processes related to different areas. For example, in the financial field, selecting assets
to build portfolios can be considered as a KP instance. In this case, the financial advisor must select
which investments and holdings current available in the market—such as stocks, bonds, mutual funds,
commodities, cryptocurrencies, and cash—should be allocated in a personal portfolio to maximize the
return. Besides, this selection is subject to some constraints including the total amount of money to
invest and liquidity needs. One may model this optimization problem as the simplest version of KP,
considering a static market and a single objective function to evaluate the portfolio under construction.
This scalar assessment is often performed using a weighted sum of relevant factors to be considered,
such as risk, return objectives, and time horizon. However, in the real-world application, the best setting
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of these factor weights is difficult to determine. Therefore, modeling this application by a multiobjective
approach could be better since the objectives are individually manipulated and the investor could choose
the best portfolio from a set of possibilities generated by a multiobjective optimizing tool. Additionally,
the financial market is a dynamic environment where the indices related to each asset fluctuate frequently
throughout the day. Therefore, this decision-making process is best modelled as a DMKP instance.

In fact, several real-world decision-making processes are best modelled as instances of dynamic,
many-objective optimization problems. However, they are more difficult to handle by optimization
methods in general. Multiobjective evolutionary approaches are also challenged by this class of prob-
lems since the employment of many objectives imposes a very high selection pressure and the intrinsic
dynamism imposes the need to update the set of approximate Pareto solutions as new changes emerge.
This work intends to advance in the optimization of dynamic and many-objective problems through the
development of new EAs.

3. Related work
This work focus on the application of EAs to solve DMOPs. In this section, we review some of the major
studies from the literature that proposed evolutionary approaches to solve multiobjective problems in
general. We organized this session into two subsections. Subsection 3.1 presents works dedicated to the
investigation of MOEAs to handle static MOPs, which are more common on the specialized literature.
Subsection 3.2 discusses studies that proposed MOEAs for dynamic MOPs.

3.1. MOEAs proposed for Multiobjective Optimization Problems (MOPs)
In the early 1960s, Rosenberg proposed an evolutionary algorithm (EA) to solve MOPs. However, just
from 1980s that evolutionary multiobjective optimization (EMO) and MOEAs have become a hot topic
in the evolutionary computing research. (Mao-Guo et al., 2009).

Multiobjective optimization methods based on EAs can be grouped into three research stages. In the
first MOEAs (1993-1998), such as MOGA (Fonseca and Fleming, 1993), NPGA (Horn et al., 1994),
and NSGA (Srinivas and Deb, 1994), the selection method was formally based on non-dominance clas-
sification and the population diversity strategies adopted a fitness sharing mechanism. Works developed
around 1995–2002 focused in the refinament of the MOEAs, proposing selection methods based on
external archiving strategies and different approaches for the individuals ranking of the population in
a non-dominant environment. NSGA-II (Deb et al., 2002), SPEA (Zitzler and Thiele, 1999), SPEA-
II (Zitzler et al., 2001), and PAES (Knowles and Corne, 1999) are some examples of this category of
algorithms.

Since then, several multiobjective algorithms have emerged, most investigating problems with 2–3
objectives. Among them, we can mention ParEGO, one of the first and simplest extensions of the EGO
algorithm for MOPs (Knowles, 2006). ParEGO sequentially scales the multiobjective problem with
weights that are iteratively updated to explore the Pareto front. In 2007, Zhang and Li (2007) proposed a
Decomposition-based MOEA (MOEA/D) combining traditional mathematical programming methods
with EAs. Ho and Tay (2007) presented an efficient approach to solve the flexible multiobjective job-shop
combining evolutionary algorithm and guided local search. In 2010, an improved GA based on the prin-
ciple of immunity and entropy is used to solve the multiobjective flexible job-shop scheduling problem
proposed by (Wang et al., 2010). Pizzuti proposed in 2011 the Multiobjective Genetic Algorithms for
Networks (MOGA-Net) to discover communities in networks using genetic algorithms (Pizzuti, 2011).
The method optimizes two objective functions introduced in 2009 for Lancichinetti et al. (2009), that
proved to be effective in detecting modules in complex networks. The first objective function employs
the concept of community scoring to measure the quality of a network’s community division. The sec-
ond function defines the concept of capability of nodes belonging to a module and iteratively locates the
modules with the highest sum of capability of the node, hereinafter referred to as community capability.
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In 2012, a method that creates projections of current solutions and propagates equidistant interpolations
in a non-dominant environment was presented by (Gu et al., 2012) and demonstrated to obtain uniformly
distributed optimal Pareto solutions. A new opposition self-adaptive hybridized differential evolution
algorithm was proposed by Chong and Qiu (2016) (Chong and Qiu, 2016) to deal with continuous
MOPs. Bradford et al. (2018) (Bradford et al., 2018) proposed an algorithm to approximate Pareto sets
in a small number of function evaluations. The algorithm extends the well-known Thompson sampling
(TS) method from the multi-armed bandit community (Thompson, 1933) to continuous multiobjective
optimization. The algorithm was named ‘Thompson Sampling Efficient multiobjective Optimization’
(TSEMO).

The increase in the number of objectives brought an additional challenge, since the Pareto Fronts
also increased in size. Therefore, it was common for EAs to find clusters of solutions in the search
space that belonged to the same Front. Thus, problems with 4 or more objectives started to be clas-
sified as many-objective problems. Algorithms such as NSGA-II and SPEA2 presented difficulties in
finding the best solutions for this type of problem and several algorithms and approaches have been pro-
posed to solve many-objective problems. One of the most successfully used indicator-based MOEAs is
the S-Metric-Selection EMOA (SMS-EMOA) (Emmerich et al., 2005). SMS-EMOA invokes the non-
dominated classification, which is used as a ranking criterion. Then it uses the hypervolume indicator as a
selection mechanism to rule out the individual contributing the smallest hypervolume (the worst ranked).
Deb and Saxena (2006) (Deb and Saxena, 2006) proposed the Principal Component Analysis-NSGA-II
algorithm called PCA-NSGA-II. This algorithm combines a reduction technique with NSGA-II to deal
with the redundance of objectives in MaOPs. In fact, many real-world problems have M objectives,
while the true Pareto front is smaller than M-dimensions, that is, some of the objectives are redun-
dant. herefore, the authors use the PCA method to determine the true Pareto optimal. In 2007, Sato
et al. (2007) proposed a method to control the area of dominance of solutions in order to induce the
proper classification of solutions for the problem in question, improving the selection and the perfor-
mance of MOEAs in combinatorial optimization problems. The proposed method can control the degree
of expansion or contraction of the dominance area of the solutions using a user-defined S parameter.
In their experiments, the authors used the NSGA-II to solve MKP instances with five objectives. In
order to solve large-scale problems, Garza-Fabre et al. proposed three different ways to rank solutions
of the same Pareto front, which were called Global Detriment (GD), Profit (Pf) and Distance to the
Best known solution (GB). Aiming to evaluate their proposal, the authors used a generic multiobjec-
tive GA (Garza-Fabre et al., 2009). Said et al. (2010) (Said et al., 2010) proposed a new dominance
relationship called r-dominance (dominance based on reference solution) that creates a strict partial
order between equivalent Pareto solutions and is able to differentiate between partially non-dominated
solutions based on a solution provided by user aspiration level vector. In ther experiments, the authors
implemented r-dominance in the NSGA-II and evaluated it on problems from 2 to 10 objectives. Singh
et al. (2011) (Singh et al., 2011) presented the Pareto Evolutionary Singing Algorithm (PCSEA). The
authors proposed a new approach that identifies a reduced set of objectives rather than dealing with the
true dimensionality of true MaOP. Furthermore, the PCSEA does not approach the entire Pareto front,
but seeks a specific set of non-dominated solutions. More specifically, the authors suggested using Pareto
front limits called corner solutions to predict the dimensionality of the true Pareto front. Many-Objective
Meta-heuristic Based on the R2 Indicator (MOMBI) (Gómez and Coello, 2013), is an algorithm pro-
posed in 2013, that produces an non-dominated classification scheme based on utility functions. The
main idea is to cluster solutions that optimize the set of utility functions and give them the first ranking.
These solutions will then be removed and a second rank will be identified in the same way. The process
will continue until all members of the population are classified. Asafuddoula et al. (2013) proposed
the Decomposition Based Evolutionary Algorithm for Many-Objective Optimization with Systematic
Sampling and Adaptive Epsilon Control (DBEA-Eps) (Asafuddoula et al., 2013). This algorithm is based
on decomposition generating a structured set of reference points, which uses an adaptive epsilon com-
parison to managing the balance between convergence and diversity, and adopting an adaptive epsilon
formulation to deal with constraints. Deb and Jain (2014) (Deb and Jain, 2014) proposed a variation
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of the NSGA for many-objective optimization (NSGA-III), which was later extended to solve generic
constrained many-objective optimization problems (Jain and Deb, 2014). Elarbi et al. (2016) (Elarbi
et al., 2016) proposed a new dominance relation called TSD-dominance to deal with many-objective
problems and introduced it in NSGA-II. TSD-NSGA-II represents a new version of many-objective
NSGA-II, where Pareto dominance is replaced by TSD dominance. It was considered highly competi-
tive in the treatment of both restricted and unrestricted problems. In Cheng et al. (2016) (Cheng et al.,
2016) a reference vector-driven evolutionary algorithm for many-objective optimization was presented
that balances convergence and diversity of solutions in a high-dimensional objective space. Lafetá et al.
(2016) (Lafeta et al., 2016) proposed MEANDS, an evolutionary algorithm for many-MOPs based on
sub-populations, which represent sets of non-dominated solutions for different instances of subprob-
lems, combining from two to all objectives. Lafetá and Oliveira (2019) (Lafeta and Oliveira, 2019)
present a new version of MEANDS, the MEANDS-II, which adapts to many-MOPs with a very large
search space. In 2017, Elarbi et al. (2017) proposed the RPD-NSGA-II, an algorithm that integrates a
new form of dominance, called RP-dominance, and NSGA-II. RP-dominance assigns penalties to some
solutions, so it can classify solutions from the same front. Li et al. (2019) (Li et al., 2019) proposed an
efficient objective reduction method called ORSAP. The method is divided into two steps: initially, it
uses a sampling algorithm to collect points that can represent objectives, calculating the improvements
to the objectives. Then affinity propagation is adopted to cluster the objectives so that redundant ones
can be grouped. Therefore, only the centroid objectives are kept in the non-redundant set. Li et al. (2020)
(Li et al., 2020) proposed the Dividing-based Many-objective Evolutionary Algorithm for large-scale
Feature Selection (DMEA-FS). The algorithm models the variables to adjust the solutions to a new
search space that is more organized and easier to select the most promising solutions.

3.2. MOEAs proposed for Dynamic Multiobjective Optimization Problems (DMOPs)
Different strategies have been proposed to adapt traditional EAs to deal with DMOPs. Each strategy
behaves differently when it comes to changing the environment (modifying the objectives and con-
straints of the problem). The most intuitive strategy would be to restart the population of MOEAs at
each change of environment, but it proved to be a weak approach in (Branke, 2001). The majority of
the methods proposed for DMOPs in the literature use the knowledge of the population from the previ-
ous environment to streamline the search in the new environment (Jin and Branke, 2005). The strategies
employed during the change of environment usually concern with boosting convergence and diversity for
the new environment. Three main types of strategies can be observed in the related work (Azzouz et al.,
2017): (i) introduction of diversity (Deb and Karthik, 2007); (ii) forecast (Koo et al., 2010); and (iii)
memory (Cámara et al., 2007). Some of the most relevant MOEAs proposed for DMOPs are presented
following, where they are grouped for each kind of strategy.

(i) Introduction of diversity: Deb and Karthik (2007) extended the well-known NSGA-II algorithm
to deal with DMOPs, introducing diversity with each detection of change. This extension was named
DNSGA-II and it is described in the next section since it is one of the MOEAs investigated in the
experiments of Section 5. The DOMOEA algorithm (Orthogonal multiobjective EA for DMOP) was
introduced in (Zeng et al., 2006), where two types of crossovers were used to improve diversity and
intensify convergence: orthogonal crossover (Zeng et al., 2006) and linear crossover (Wright, 1991). In
2007, Zheng et al. (Zheng, 2007) proposed a MOEA adapted for DMOPs called DMOEA. Basically,
when a change of environment happens, DMOEA selects a set of the best individuals to mutate using
hypermutation (Cobb, 1990) and the rest of the population is replaced by new individuals generated at
random. In 2009, Chen et al. (2009) proposed to explicitly maintain genetic diversity, considering it as an
additional objective in the optimization process. They presented the Individual Diversity MultiObjective
Optimization Evolutionary Algorithm (IDMOEA), which uses a new method for assessing the preser-
vation of diversity, called Individual Diversity Evolutionary Method (IDEM). The purpose of IDEM
is to add a useful selective pressure aimed at Pareto Front and to maintain diversity. An adaptation
of the DNSGA-II was proposed by Azzouz et al. (2015) in 2015 to deal with dynamic constraints,
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replacing the constraint handling mechanism used with a more elaborate and self-adaptive penalty func-
tion. The resulting algorithm is called Dynamic Constrained NSGA-II (DC-NSGA-II). A new strategy
for introducing diversity was proposed by Liu et al. (2020) in 2020, thus generating a MOEA called
DDIS-MOEA/D-DE. In this proposal, the information generated during the evolution is recorded in
preparation to assess the intensity of the change. Two strategies for introducing diversity are used to
maintain the balance between convergence and diversity when an environmental change is detected. An
improved inverse modeling is used for the drastic changes, while random initialization of partial solu-
tions is used for the light changes. In 2020 Lafetá and Oliveira (2020a) proposed DNSGA-II∗; another
adaptation of DNSGA-II, where an external archive (Bosman and Thierens, 2003) was introduced. A
variation of the NSGA-III (Deb and Jain, 2014) was also proposed in (Lafetá and Oliveira, 2020a)
adapting it to dynamic MOPs and it was called DNSGA-III.

(ii) Forecast: Hatzakis and Wallace (2006) presented in 2006 a forecasting technique called feed-
forward prediction strategy in order to estimate the location of the Pareto Optimal. Then, an anticipated
population (named forecast set) is used to accelerate the discovery of the next set of solutions. In 2007,
Zhou et al. (2007) proposed the prediction of the new locations of various Pareto solutions in the deci-
sion space once a change is detected. Then, individuals in the reinitialized population are generated
around these predicted points. The method called Dynamic Multiobjective Evolutionary Algorithm with
Predicted Re-Initialization (DMEA/PRI) works with two strategies to reinitialize the population. The
first strategy predicts the locations of new individuals, based on changes from previous points. The
population is then partially or completely replaced by the new individuals generated based on this fore-
cast. The second strategy includes a predicted Gaussian noise to the population, where the variation is
estimated according to previous changes. In 2008, Roy and Mehnen (2008) proposed an adaptation of
DNSGA-II (Deb and Karthik, 2007) that uses prediction and convenience functions. While in DNSGA-
II, the diversity is introduced by adding random solutions, the parent population in this proposition is
discarded and only the children are reevaluated before the algorithm is restarted. The objective func-
tions are transformed using preference functions (Mehnen et al., 2007) in order to guide the search
toward the most interesting parts of the Pareto Front, according to the preferences of an expert or deci-
sion maker. In 2010, Koo et al. (2010) proposed a new evolutionary approach based on prediction to
be applied during the change of environment. Based on the historic of previous solutions, the approach
attempts to predict the direction and magnitude of the next environment change using the weighted
average of these solutions. Updated individuals will remain in the vicinity of the new Pareto Front Pool
and will help the rest of the population to converge. The algorithm known as population prediction
strategy (PPS) (Zhou et al., 2014) was presented in 2014 for continuous DMOPs. It tries to predict the
entire population instead of forecasting some isolated points. It consists of dividing the set of solutions
into two parts: central point and collectors. When the environment changes, the next central point is
predicted using the sequence of central points found during the search, and the previous collectors are
used to predict the next collectors. Thus, the PPS initializes the population by combining the central
points and the collectors. Muruganantham et al. (2016) proposed in 2015 a dynamic multiobjective
evolutionary algorithm that uses the Kalman filter (Zai et al., 1992) as a prediction model. When the
environment changes, the Kalman filter is applied to the population directing the search to the new
Pareto Front in the objective space. This algorithm is based on the MOEA with Decomposition based
on Differential Evolution (MOEA/D-DE) (Li and Zhang, 2008) and is called the Kalman Filter pre-
diction based DMOEA (MOEA/D-KF). In 2019, Cao et al. (2019) presents a new prediction model
combined with a MultiObjective Evolutionary Algorithm based on Decomposition (MOEA/D) (Zhang
and Li, 2007) to solve DMOPs. In this model, the movement of the Pareto set over time is represented
with respect to the translation of the centroid, and the other solutions are considered to have the same
movement as the centroid. A prediction model is built based on the historic locations of recent centroids,
which is used to estimate the centroid movement in the next environment change. Then, the new loca-
tions of the other solutions are also predicted based on their current locations. According to the authors,
the model proposed in (Cao et al., 2019) is based on two other works previously cited here (Koo et al.,
2010; Zhou et al., 2014).
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(iii) Memory: An algorithm was proposed in 2009 by Wang and Li (2009) to solve dynamic mul-
tiobjective problems. It was called the multi-strategy ensemble MOEA (MS-MOEA) and it is one of
the MOEAs investigated in the present work. In this algorithm, convergence is accelerated using a
new generation dependency mechanism based on adaptive genetics and differential operators. It uses
a Gaussian mutation and a memory-like strategy to reinitialize the population. In 2017, Azzouz et al.
(2017) presented an algorithm to deal with DMOPs with very severe changes. They introduced an adap-
tive hybrid population management strategy using memory and a random method to deal efficiently with
dynamic environments. The Dynamic MultiObjective Evolutionary Algorithm Based on a Dynamic
Evolutionary Environment model (DEE-DMOEA) was proposed by Zou in 2019 (Zou et al., 2019).
The algorithm records the evolutionary information generated to guide the search process. When the
environment changes, the algorithm assists in the adaptation of the population to the new environment,
building a dynamic evolutionary model that increases the diversity of the population. In 2020, Hu et al.
(2020) presented a new evolutionary algorithm based on the Intensity of Environmental Change (IEC).
The algorithm divides each individual into two parts based on the feedback of the evolutionary informa-
tion of the Pareto sets in the current and previous environments. The micro and macro-change decision
components are implemented considering different scenarios, in order to build an efficient information
exchange between dynamic environments.

The majority of DMOP algorithms are based on single-population frameworks. However, some
multi-populational MOEAs have also been investigated. Goh and Tan (2009) presented in 2009 a co-
evolutionary multiobjective algorithm based on competitiveness and cooperation to solve DMOPs.
Aiming to overcome the difficulty of the decomposition problem and the interdependencies of the sub-
components resulting from co-EAs, the problem is decomposed into several subcomponents along the
decision variables. These subcomponents are optimized by different sub-populations in the iterative pro-
cess that involves competitiveness and cooperation. The algorithm is known as dynamic Competitive
Cooperative EA (dCOEA). In 2013, Shang et al. (2013) proposed the quantum immune clonal co-
evolutionary algorithm (QICCA) to solve DMOPs. QICCA is a multi-population algorithm using the
strategies Immune Clonal Function and Clonal Selection generally applied to artificial immune sys-
tems (Shang et al., 2005). The relationship of competitiveness and cooperation are used to improve
the exchange of information between populations, encouraging a better diversity in the search process.
D-MEANDS (Lafetá and Oliveira, 2020b) is one of the MOEAs investigated in this paper and it is
described in next section. It is a multi-population model based on MEANDS (Lafeta et al., 2016), pre-
viously proposed for static MOPs, which employs both introduction to diversity and memory strategies
to deal with environmental changes.

D-MEANDS-MD is a variation of D-MEANDS proposed in the present paper and it can also be
classified as a multipopulational MOEA using introduction to diversity and memory strategies whenever
a environmental change happens. As we have pointed in the introduction, the present work and the
previous ones (Lafetá and Oliveira, 2020a; Lafetá and Oliveira, 2020b) are, to the best of our knowledge,
the first that investigate EAs for dynamic many-objective problems (DMaOPs). However, it is worth to
say that the authors in (Koo et al., 2010) investigated test functions with 2 and 5 objectives. But, on
the contrary of the present work, their investigation were totally based on a traditional multiobjective
perspective and they did not stick to particular aspects of problems with many-objective formulations.

4. Investigated MOEAs
All the algorithms used in the experiments reported in Section 5 are briefly described here and the new
proposal D-MEANDS-MD is also presented.

4.1. DNSGA-II∗

The Dynamic Nondominated Sorting Genetic Algorithm II (DNSGA-II) (Deb and Karthik, 2007) is an
adaptation of the well-known NSGA-II algorithm proposed by Deb and colleagues (Deb et al., 2002).
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This variation was adapted in (Deb and Karthik, 2007) for dynamic problems using a strategy to intro-
duce diversity whenever the environment used to evaluate the solutions faces some perturbation. The
typical evolutionary behavior of NSGA-II was kept for DNSGA-II, except when an environment change
happens. It consists of dividing the population into hierarchical fronts, where a solution from an upper
front has a better fitness than another solution from a lower front. The fronts are classified based on the
concept of Pareto dominance, where a solution that is not dominated by any other would be classified
on the uppermost front. They are called the nondominated solutions of the current population and the
goal is to approximate this uppermost front to the Pareto Optimum at the end of any arbitrary run. The
other solutions are classified in a hierarchy of fronts where the solutions of an upper front dominates
the solutions of lower fronts. The crowding distance metric is used to differentiate the solutions of the
same front. This distance gives a better fitness for the solutions that are more isolated in the front.

In the DNSGA-II framework, a percentage of the current population is modified to promote diversity
whenever the environment changes. Two strategies for this modification were evaluated in DNSGA-
II (Deb and Karthik, 2007) defining different versions of this algorithm. The first version was called
DNSGA-II-A, where a percentage of the population is kept intact for the next generation after the envi-
ronment change (a kind of elitism) and other new individuals are generated at random replacing the
worst solutions. The second version was called DNSGA-II-B, where the elitism was also used to keep
a percentage of the best solutions while the new individuals that replace the worst ones are generated
by applying mutation over the elite. The strategy used in the works (Lafetá and Oliveira, 2020a; Lafetá
and Oliveira, 2020b) was DNSGA-II-A. Moreover, Lafetá and Oliveira proposed in (Lafetá and Oliveira,
2020a) a change in DNSGA-II, where an external archive (Bosman and Thierens, 2003) was introduced.
The external archive stores all the nondominated solutions found in the population until the current gen-
eration, but it does not participate in the genetic operators selection. On that way, any nondominated
solution is kept to end of the run, even if it disappears from the upper front due to size limit of the
population. This strategy is very usual in different multiobjective models, like the MOEA/D (Zhang and
Li, 2007). This variation of the DNSGA-II algorithm was called DNSGA-II∗. It was clear in (Lafetá and
Oliveira, 2020a) that DNSGA-II∗ outperforms DNSGA-II, with a little extra processing time.

4.2. MS-MOEA
The evolutionary process of the Multi-strategy Ensemble MOEA (MS-MOEA) (Wang and Li, 2010) is
based on the concept of nondominance, as its population tends to maintain nondominated solutions and
discards those that are dominated. Because the population has a fixed size, at the beginning of the search
it is normal that not all individuals are nondominated. New nondominated descendants may be generated
along the search and they replace the dominated individuals of the population. On the other way, if the
current population does not have dominated individuals, the substitution is made at random. Since some
nondominated solutions can be removed from the population, the algorithm stores all nondominated
solutions found during the search in an internal archive. As this archive participates in the evolutionary
process providing solutions to some matings, it is not considered an external archive like the one applied
to DNSGA-II∗. At ever change of environment some solutions stored in the archive suffer mutation and
the new individuals are inserted in the population for the next environment. However, only a part of the
population is made using mutation of the nondominated solutions found in the previous environment.
The rest of the population of the new environment is generated randomly.

4.3. DDIS-MOEA/D-DE
The MOEA/D based on differential evolution and dynamic diversity introduction strategy (DDIS-
MOEA/D-DE) (Liu et al., 2020) is an algorithm for dynamic multiobjective problems that uses the
same evolutionary process as MOEA/D-DE (Li and Zhang, 2008), proposing a dynamic adaptive
strategy according to the severity of change. MOEA/D-DE is an evolutionary multiobjective algo-
rithm that decomposes the problem into several subproblems, which are evolved simultaneously. The
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decomposition is made by a scalarization function, which has the role of transforming each individ-
ual in a single scalar value (fitness). The current population is made up of the best solutions for each
subproblem. The neighborhood of each subproblem is defined based on the distances between their
weighting coeficient vectors. It is very important to highlight that the MOEA/D-DE uses differential
evolution operators. The operators for genetic algorithms used in this paper were proposed (Tasgetiren
et al., 2015). Tasgetiren et al. (2015) proposed a model of differential evolution operators for the DMKP
using a probability model based on the sigmoid function inspired by (Wang and Zheng, 2013). The
main idea is to employ variable mutation strategies combined with a uniform crossover to generate a
trial individual. The DDIS-MOEA/D-DE uses two strategies to create population during the change of
environment. The first strategy occurs when the severity of change is high, so the algorithm takes advan-
tage of the population from the previous environment and replaces part of the population with random
individuals. However, when the severity of change is small, the algorithm keeps the population of the
previous environment and applies a mutation in part of this population. In the experiments, the environ-
ment changes are controlled to keep the severity of change as low as possible, so the second strategy is
always used. The number of individuals that mutate during the change of environment is equivalent to
20% of the population, as used in (Liu et al., 2020).

4.4. D-MEANDS
DMEANDS is strongly based on its predecessor MEANDS. The Many-objective Evolutionary
Algorithm Based on Nondominated Decomposed Sets (MEANDS) (Lafeta et al., 2016) was proposed
aimed at discrete and static MaOPs. The MEANDS framework manipulates several sub-populations
(or subsets) of nondominated solutions. Each sub-population assesses the nondominance of individuals
based on a subset of objectives. MEANDS initializes its population by generating a sample of random
individuals of size A and verifying the dominance relation to insert the nondominated solutions into each
subset considering the group of objectives related to each subpopulation. The insertion and removal pro-
cess of individuals in each subset are independent because each subpopulation uses a different group of
objectives. Each subset stores only nondominated solutions extracted from the random sample. For that,
each individual x of the sample is sequentially evaluated and it is inserted in the subset when it is not
dominated by any other individuals. Besides, if x dominates some other solution y previously inserted
in the subset, then y is removed from this subpopulation. Therefore, during the population initialization,
despite starting this process by generating a sample with A individuals, not all of them will survive. Each
subset stores the current Pareto Front related to its group of objectives and the algorithm works with only
first front solutions found for the subproblem related to these objectives. Each new individual generated
by crossover is tested to be inserted into all the subsets. For each subset, the dominance is evaluated
to decide the inclusion (or not) according to the respective group of objectives. This is the main reason
that MEANDS generates only one individual per generation. Besides, each subset is scored according to
its contribution to the search process (convergence score). The highest-scoring subsets participate more
often in the crossover process. The convergence score is reset at each 100 generations to avoid stagna-
tion. The parent selection has two steps, choosing two subsets and then choosing an individual from
each one. The subset is selected by a tournament based on the convergence score and the individual is
selected at random from each selected subset. The size of each subset is unlimited and it does not allow
to insert duplicate individuals. Figure 1 shows the flowchart of the MEANDS algorithm.

The Dynamic Many-objective Evolutionary Algorithm Based on Nondominated Decomposed Sets
(D-MEANDS) (Lafetá and Oliveira, 2020b) was later proposed to deal with dynamic many-objective
problems (DMaOPs). The adaptation made to manipulate dynamic MOPs is that, in the occurrence of
changes in the environment, the individuals in the subset related to the set of all objectives - known as
archive - are used to repopulate the new subsets. Note that not all individuals extracted from the archive
of the previous environment will be reinserted in the new subsets. It depends on the nondominance of
each old solution related to the subset of objectives considered in each sub-population. Besides, random
individuals are also generated to repopulate the subsets considering the new environment objectives.
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Figure 1. Flowchart: evolutionary strategy of MEANDS

4.5. D-MEANDS-MD
The Dynamic Many-objective Evolutionary Algorithm Based on Nondominated Decomposed Sets with
Memory and Diversity (D-MEANDS-MD) uses the basic framework of MEANDS (Lafeta et al., 2016),
including the repopulation strategy used in D-MEANDS (Lafetá and Oliveira, 2020b) when the envi-
ronment faces some change. Therefore, D-MEANDS-MD employs a subjacent structure of subsets (or
sub-populations) of nondominated solutions. Each sub-population stores the nondominated solutions
found by evolutionary process when just a related subset of objectives is considered. For example, in
a problem with 4 objectives, each nondominated set is related to one of the possible combinations of
a subset of objectives (two by two and three by three) and the last one considers all the 4 objectives.
The dominance in each subset is based on the set of objectives for what it refers. The current popula-
tion corresponds to the union of the nondominated solutions stored in all these sub-populations. The
population is initialized with a sample of random individuals of size A, where each individual could be
inserted in each subset depending to the nondominance in respect to the current solutions. The individ-
uals with the worst genetic information probably will not be included in any subset. The set that uses
all the objectives to define the dominance relation is called archive, because it has a behavior similar
to the external archive used in several MOEAs. However, the archive participates of the evolutionary
process.

D-MEANDS-MD employs a crossover based on the degree of convergence (Lafeta et al., 2016),
which generates a single child. In each generation, only one crossover occurs and each descendant gen-
erated is tested to be stored in each subset, depending on the respective dominance relation. During
the attempt to insert the new descendant, if it is a nondominated solution for the respective subset, it
removes the solutions that are dominated by it. In this way some current individuals can be removed
during the insertion of a new one. Each sub-population has no size limitation and is classified by a score
called the degree of convergence, where the best classified subsets have evolved more than other sets.
That is, the sub-populations that have received more inclusions of new individuals in the last genera-
tions will receive a greater grade named degree of convergence. This degree is used in the crossover
process divided in two stages. First, it selects two distinct sub-populations, where the selection of each
one is based on the tournament-4 using the degree of convergence. Second, a parent individual is ran-
domly selected in each subset. In order to prevent the algorithm from becoming biased in choosing the
same group of subsets, the degree of convergence is restarted every 100 generations. Figure 2 shows the
pseudocode of the proposed D-MEANDS-MD.
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Figure 2. Pseudocode of D-MEANDS-MD

Similar to the adaptation incorporated in D-MEANDS (Lafetá and Oliveira, 2020b) to deal with
dynamic optimization problems, when the environment faces any change, the population will be reini-
tialized but not exclusively at random. When the environment change happens, the individuals in the
current archive, which considers all the objectives in the dominance relation, are used to repopulate all
subsets of the new population. Therefore, this restocking strategy applied to the event of changes can
be seen as a memory strategy, as it conserves part of the old population to start a new one. However, to
inject some diversity into such changes, random individuals are also generated to repopulate the subsets
considering the new environmental objectives. The number of random individuals is equal to the initial
sample size A minus the number of nondominated solutions extracted from the previous environment.

In the previous D-MEANDS (Lafetá and Oliveira, 2020b) the diversity is applied only when the
population resumes right after a disturbance of the environment. However, after our initial experiments
using D-MEANDS reported in Section 5.1, it was possible to observe that when a high number of
environment changes is employed, the convergence of the population based on the memory of the pre-
vious environment could not be as fast as the more dynamic problems need. In such cases, it proved
important to inject some randomness over the generations between two changes. The new variation
called D-MEANDS-MD employs a crossover with some degree of randomness, driven by a new bal-
ance parameter called as BMD. Each crossover has a BMD percentual chance of being employed exactly
like D-MEANDS. Otherwise, a new individual is built at random to be the second parent of crossover.
All the experiments in this paper uses BMD=90%. Therefore, the proposed MOEA employs both memory
and diversity strategies to balance the power of pre-existing nondominated individuals with the diversity
of totally new individuals aiming to extract the best performance of the evolutionary search. Section 5.5
presents some experimental results showing the difference obtained when employing this degree of ran-
domness (DMEANDS vs DMEANDS-MD). The percentual used in this balance (10% randomness and
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90% memory) was empirically adjusted for the instances of the problem in tackle (DMKP). However,
BMD can be tunned for new scenarios or even for new dynamic problems.

5. Experiments
All the experiments reported here investigate the dynamic version of the multiobjective knapsack prob-
lem (DMKP), using formulations with 4–8 objectives. For each formulation, three instances of DMKP
were evaluated, by varying the number of items to be packed. First, the behavior of the three pub-
lished algorithms DNSGA-II∗, MS-MOEA, and D-MEANDS was analyzed using dynamic scenarios
that involve 10, 15 and 20 environments changes (ECs). The results and analysis over these experiments
led us to propose the D-MEANDS-MD algorithm. Later, the performance of this novel algorithm was
also analyzed. In order to evaluate the performance of the different MOEAs solving DMKP, two metrics
were used: density (AD) and hypervolume (HV). Both are described as follows.

Density (AD) (Zhang and Qian, 2011): can be used to measure all the distribution performance of
the nondominated solutions obtained by the MOEA in the environments. The lower the value of the
metric, the better the distribution of the solutions.

AD = 1

EC

EC∑
t=1

√√√√ 1

|At| − 1

|At |∑
j=1

(d̄t − dt
j)2 (6)

Where,

dt
j = min

k �=j,1≤k≤|At |

{||f (xj) − f (xk)||, (xj, xk) ∈ At
}

, d̄t = 1

|At|
|At |∑
j=1

dt
j (7)

Consider At the Pareto found in the environment t; EC the number of environment changes; dt
j represents

the distance between j solution and another distinct solution in the population that is as close as possible
in the environment t;

Hypervolume (HV) (Zitzler and Thiele, 1998): The hypervolume measures the volume of the region
covered between the points of the Pareto solutions found and a reference point. Mathematically, for each
solution i belonging to the Pareto found, a hypercube is built according to a reference point W0. The
sum of the volume of these hypercubes returns the hypervolume. The point W0 used in this work is the
point of origin of the dimensions. The metric evaluates convergence and diversity. The algorithm with
the highest HV value indicates better convergence and diversity than the other algorithms.

After analyzing the results of the two metrics, it was possible to observe that they approximate to a
Gaussian distribution. In addition, we apply a sample size of 100 tests in all experiments. Thus, a hypoth-
esis test T (Mankiewicz, 2000) was used to assess the significant difference between the performance
of the algorithms. In addition, we evaluate the execution time of them.

We used 27 DMKP instances in the experiments, which are divided by the number of items, objec-
tives and environment changes (EC). In the present paper, we used 30, 50 and 100 items with 4, 6, and
8 objectives. The changes in environments ranged from 10, 15, and 20. We use the following parame-
ters for the DNSGA − II∗ and MS-MOEA: 500 generations, 100% crossover, 10% mutation, population
size = 100. For DNSGA − II∗, 20% of the population has been replaced at each environment change. In
MS-MOEA, at each change of environment, 20% of the population is made up of individuals from the
archive that has been mutated and 80% are random individuals. Since D-MEANDS performs only one
crossover per generation, its parameters were chosen to perform the same number of crossovers as the
other algorithms, which are: 50 000 generations, 10% mutation and 1000 individuals used to initialize
the population. Each algorithm was executed 100 times for each instance. Graphs show the average and
standard deviation of these 100 executions considering each performance metric and execution time.
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Figure 3. Density results (AD). The figures from (1) to (9) are the results of 4 objectives. The figures
from (10) to (18) are the results of 6 objectives. The figures from (19) to (27) are the results of 8 objectives

All algorithms were implemented here using the JAVA language and they were executed on the same
machine with the following configuration: Dell Inspiron 3647 microprocessor; CPU: Intel Core i5 (4th
generation); RAM: 8GB DDR3 1600MHz; OS: Windows 8.1.

5.1. Experiments using DNSGA − II∗, MS-MOEA and D-MEANDS
In this section, the performance of the three algorithms investigated in (Lafetá and Oliveira, 2020b) are
evaluated using a number of environment changes and a number of objectives higher than that previously
used. Lafetá and Oliveira showed that the increase in the number of environment changes made DNSGA-
II considerably improves its results compared with the other two algorithms. However, the instances were
limited to only 4 objectives when 10 environment changes were employed. This limitation was made
mainly due to the employment of parametric metrics that greatly increased the computational cost. On
the other hand, since non-parametric metrics are used in the present work, it enabled us to analyze
the behavior of these algorithms in more complex scenarios up to instances with 8 objectives and 20
environment changes.

Figure 3 shows the results of the AD metric for all the 27 scenarios. As can be noted, D-MEANDS
has the best values in almost all instances. The exceptions are three scenarios with 30 items: one involv-
ing 6 objectives (EC=15) and two with 8 objectives (EC=15 and EC=20). Even in these 3 scenarios
D-MEANDS found results similar to the best found by MS-MOEA. By comparing MS-MOEA and
DNSGA − II∗, the second outperforms the first in some instances (eight of them), but MS-MOEA is
better than DNSGA − II∗ in the most of the 27 scenarios. Based on AD results, it is possible to conclude
that D-MEANDS finds more distributed sets of solutions.

Figure 4 shows the HV metric results. In 9 out of the 27 instances, the DNSGA − II∗ outperforms the
other algorithms. These scenarios use 4 or 6 objectives. However, in the majority of scenarios (including
all the 9 scenarios with 8 objectives), D-MEANDS achieved the best performance. It was possible to
notice that the increased number of objectives highlights D-MEANDS performance. On the other hand,
it can also be observed that the increased number of environment changes decays D-MEANDS metrics
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Figure 4. Hypervolume results (HV). The figures from (1) to (9) are the results of 4 objectives. The
figures from (10) to (18) are the results of 6 objectives. The figures from (19) to (27) are the results of 8
objectives

in respect to the other MOEAs. Moreover, the increment of items to be packed also contributes to the
decay on D-MEANDS performance. Comparing MS-MOEA and DNSGA − II∗, the first outperforms
the later in most HV results.

The T-test (Mankiewicz, 2000) was used to assess the significance of the D-MEANDS performance
compared with the others and the results are shown in Tables 1, 2, and 3. This hypothesis test was done
with 99% confidence. Each row of the tables represents the comparison of D-MEANDS with other
algorithm and that the column indicates the metric. Green cells show that D-MEANDS was significantly
higher and red cells show it was significantly lower. In white, there was no significant difference. We can
see the results in Table 1 for instances with EC=10. Tables 2 and 3 show similar results for EC=15 and
EC=20, respectively. The hypothesis test confirms that there are significant evidences of the superiority
of D-MEANDS in AD metric in almost all scenarios and that, in general, D-MEANDS returns a better
performance in HV metric.

The execution time of the algorithms is shown in Figure 5. Clearly, the DNSGA − II∗ processing time
is much lower than the other algorithms. This observation becomes more evident with the increasing
complexity of the instances. D-MEANDS has an execution time close to that of DNSGA − II∗ in the
instances of 4 objectives, but as the number of objectives increases, its execution time increases much
more than DNSGA − II∗. D-MEANDS processing time is shorter than that of MS-MOEA in all instances
of 4 and 6 objectives but they are close when formulations with 8 objectives were used (D-MEANDS is
still faster in about half of scenarios).

D-MEANDS found better AD and HV results in most instances. It also scales better when the number
of objectives is increased up to 8. However, as we increase the number of environment changes (EC) and
the number of items to be packed, which represents more difficult instances, D-MEANDS performance
decays when compared with the other algorithms. On the other hand, DNSGA − II∗ proved to be very
competitive in some instances demanding a lower execution time, even when the number of objectives
is increased.
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Table 1. Hypothesis test T of the instances with EC=10. Comparing D-MEANDS vs All algorithms
DNSGA-II* MS-MOEAObjectives Metrics 30 items 50 items 100 items 30 items 50 items 100 items

HV > < < > = =4 AD < < < < < <
HV > > < > > >6 AD < < < < < <
HV > > > > > >8 AD < < < < < <

Table 2. Hypothesis test T of the instances with EC=15. Comparing D-MEANDS vs All algorithms
DNSGA-II* MS-MOEAObjectives Metrics 30 items 50 items 100 items 30 items 50 items 100 items

HV > < < > = <4 AD < < < < < <
HV > > < > > >6 AD < < < < < <
HV > > > > > >8 AD < < < = < <

Figure 5. Time Execution. The figures from (1) to (9) are the results of 4 objectives. The figures from
(10) to (18) are the results of 6 objectives. The figures from (19) to (27) are the results of 8 objectives
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Table 3. Hypothesis test T of the instances with EC=20. Comparing D-MEANDS vs All algorithms
DNSGA-II* MS-MOEAObjectives Metrics 30 items 50 items 100 items 30 items 50 items 100 items

HV > < < < < <4 AD < < < < < <
HV > > < < > <6 AD < < < > < <
HV > > > > > >8 AD < < < > < <

Table 4. D-MEANDS and D-MEANDS-MD parameters

Parameter D-MEANDS D-MEANDS-MD
Population size Unlimited Unlimited
Number of generations 50 000 50 000
Mutation rate 10% 10%
Number of individual in initialize the population 1000 1000

5.2. Experiments including D-MEANDS-MD
We investigated the possible causes for D-MEANDS performance decay when the number of envi-
ronment changes are increased. It was possible to observe that in such scenarios, the convergence of
this MOEA is not so fast as needed mainly because there is a severe decay in the variability of the
nondominated solutions, since the basic MEANDS and D-MEANDS frameworks discard all the infor-
mation of dominated solutions. Therefore, it becomes clear the need of a new mechanism to inject some
randomness what led us to the proposition of D-MEANDS-MD explained in Section 4.5.

In this session, the proposal D-MEANDS-MD is confronted with the other MOEAs. From the pre-
vious section, we repeat the values of DNSGA − II∗ and D-MEANDS metrics to investigate the impact
of the implemented modification in respect to the two best MOEAs, being that DNSGA-II has been
evidenced by its lower computational time while D-MEANDS returned the best performance in AD
and HV metrics. Moreover, we also implemented a variation of DNSGA − II∗ called here DNSGA − II+

where the same diversity mechanism proposed for D-MEANDS-MD was incorporated. That is, 10% of
crossover matings in DNSGA − II+ use a random parent. In Table 4 we can see the parameters used by
D-MEANDS and D-MEANDS-MD.

Figure 6 shows the results related to AD metric: D-MEANDS-MD performed better than all the other
algorithms, followed by the original D-MEANDS performance. DNSGA − II+ showed no improvement
compared with DNSGA − II∗. Analyzing the results of the HV metric in Figure 7, D-MEANDS-MD
overcame all the other algorithms, followed by D-MEANDS performance. As observed with the other
metric, DNSGA − II+ showed no improvement compared with DNSGA − II∗.

Therefore, the introduction of a randomness mechanism is DNSGA − II∗ did not return any significant
improvement. On the other hand, this mechanism had a positive robust impact on D-MEANDS. The D-
MEANDS-MD proposal improved the results of all instances in both metrics. As a consequence, the
new algorithm overcame all the other algorithms.

The T-test was used to assess the significance of D-MEANDS-MD results compared with the others.
This hypothesis test was done with 99% confidence and one can see the results in Tables 5, 6, and
7 for instances with EC=10, EC=15, and EC=20, respectively. Each row of the table represents the
comparison of D-MEANDS-MD with other algorithm and the column indicates the metric. It is possible
to observe that the proposal D-MEANDS-MD significantly outperforms all the other algorithms in all
27 investigated instances.
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Figure 6. Diversity results (AD). The figures from (1) to (9) are the results of 4 objectives. The figures
from (10) to (18) are the results of 6 objectives. The figures from (19) to (27) are the results of 8 objectives

Figure 7. Hypervolume results (HV). The figures from (1) to (9) are the results of 4 objectives. The
figures from (10) to (18) are the results of 6 objectives. The figures from (19) to (27) are the results of 8
objectives
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Table 5. Hypothesis test T of the instances with EC=10. Comparing D-MEANDS-MD vs All
algorithms

DNSGA-II* D-MEANDSObjectives Metrics\ Items 30 50 100 30 50 100 30 50 100
HV > > > > > > > > >4 AD < < < < < < < < <
HV > > > > > > > > >6 AD < < < < < < < < <
HV > > > > > > > > >8 AD < < < < < < < < <

DNSGA − II+

Table 6. Hypothesis test T of the instances with EC=15. Comparing D-MEANDS-MD vs All
algorithms

DNSGA-II* D-MEANDSObjectives 30 50 100 30 50 100 30 50 100
HV > > > > > > > > >4 AD < < < < < < < < <
HV > > > > > > > > >6 AD < < < < < < < < <
HV > > > > > > > > >8 AD < < < < < < < < <

DNSGA − II+

Metrics\ Items

Table 7. Hypothesis test T of the instances with EC=20. Comparing D-MEANDS-MD vs All
algorithms

DNSGA-II* D-MEANDSObjectives 30 50 100 30 50 100 30 50 100
HV > > > > > > > > >4 AD < < < < < < < < <
HV > > > > > > > > >6 AD < < < < < < < < <
HV > > > > > > > > >8 AD < < < < < < < < <

DNSGA − II+

Metrics\ Items

Figure 8 shows the processing time related to each investigated MOEA. D-MEANDS and D-
MEANDS-MD were faster than the DNSGA − II∗ and DNSGA − II+ in some instances using 4
objectives. But when using formulations with 6 or 8 objectives, DNSGA − II∗ and DNSGA − II+ are
clearly faster. The increase in the number of objectives shows that D-MEANDS-MD takes a longer
processing time than D-MEANDS. However, D-MEANDS-MD execution time proved to be similar to
D-MEANDS: it has a much greater increase in processing time than the two algorithms DNSGA − II∗

and DNSGA − II+ as we increase the number of objectives. Therefore, although D-MEANDS-MD
showed the best performance in terms of multiobjective metrics, it is as time expensive as its precursor
D-MEANDS.

Additionally, we speculated if DNSGA − II∗ would achieve better results than D-MEANDS and D-
MEANDS-MD if have extra time to perform its evolutionary search. Aiming to answer this question we
ran extra experiments, in which we increased the number of generations of DNSGA − II∗. For instances
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Figure 8. Time Execution. The figures from (1) to (9) are the results of 4 objectives. The figures from
(10) to (18) are the results of 6 objectives. The figures from (19) to (27) are the results of 8 objectives

of 30 items, we multiply by 5 the number of generations of DNSGA − II∗, for 50 items we multiply by
10 and for 100 items we multiply by 40. With such increased number of generations, in all instances
DNSGA-II∗ surpassed the execution time of the other two algorithms. We redid the experiments of
this section comparing DNSGA − II∗ with D-MEANDS and D-MEANDS-MD, while the parameters
of D-MEANDS and D-MEANDS-MD are kept fixed. Due to lack of space, we did not include these
new results here. However, we could confirm that DNSGA − II∗ did not surpass D-MEANDS and D-
MEANDS-MD in AD and HV metrics even using extra processing time.

5.3. Experiments including DDIS-MOEA/D-DE
Aiming at comparing D-MEANDS-MD and a more recent algorithm in the literature, a new experiment
was carried out. The DDIS-MOEA/D-DE presented in Section 4.3, uses the same evolutionary strategy
as the MOEA/D-DE with a dynamic strategy based on diversity. The chosen algorithm was proposed
recently and according to the authors in (Liu et al., 2020) has returned good results in a controlled
and continuous dynamic environment. The following parameters were used in DDIS-MOEA/D-DE:
500 generations, 100% crossover, 10% mutation, population size = 100, and 20% of its population
mutates during the change of environment. DNSGA − II+ and D-MEANDS were also maintained in
order to compare the performance of DDIS-MOEA/D-DE with another algorithm that uses dynamic
strategy based on diversity (DNSGA − II+) and the precursor of D-MEANDS-MD (D-MEANDS). In
this experiment, only instances with EC=20 were considered.

Figure 9 shows the AD metric achieved by each DMOEA in the investigated scenarios. DDIS-
MOEA/D-DE presents worse results than DNSGA − II∗, DMEANDS and DMEANDS-MD in all
instances. In Figure 10 we can see the results of the HV metric, where the DDIS-MOEA/D-DE also
presents the worst results in all instances compared with the other algorithms. The execution time of the
algorithms is shown in Figure 11. As observed in the last section, D-MEANDS and D-MEANDS-MD
significantly worsen their execution time as the number of objectives increases. For 4 and 6 objectives,
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Figure 9. Diversity performance for instances with EC=20. Graphs from (1) to (3) show the results for
4 objectives. Graphs from (4) to (6) show the results for 6 objectives. Graphs from (7) to (9) show the
results for 8 objectives

Figure 10. Hypervolume performance for instances with EC=20. Graphs from (1) to (3) show the
results for 4 objectives. Graphs from (4) to (6) show the results for 6 objectives. Graphs from (7) to (9)
show the results for 8 objectives

Figure 11. Time Execution performance for instances with EC=20. Graphs from (1) to (3) show the
results for 4 objectives. Graphs from (4) to (6) show the results for 6 objectives. Graphs from (7) to (9)
show the results for 8 objectives

both algorithms get a shorter time than DDIS-MOEA/D-DE, but they demand more processing time with
8 objectives. Thus, we can see that DDIS-MOEA/D-DE presents a better behavior than DMEANDS and
DMEANDS-MD in respect to the execution time as the number of objectives increases. However, when
compared with DNSGA − II∗ it demands more processing time in all instances. Therefore, we can see
that between the two algorithms that use dynamic strategy based on diversity, DNSGA − II∗ performed
better in DMKP.

Although not presented in the present paper, similar experiments were performed using the execution
time as stop criteria (instead of number of generations). In such experiments, each execution stopped
for a time limit of 30 seconds. The main conclusions were: (i) D-MEANDS-MD performed better in
HV and AD metrics than the other MOEAs and (ii) D-MEANDS-MD and DNSGA − II∗ outperforms
DDIS-MOEA/D-DE. However, in these supplementary experiments, we could not guarantee that all the
algorithms were submitted to exactly the same number of environmental changes. In future investiga-
tions, we intend to implement a new framework for experiments where it will be able to compare the
MOEAs with the same execution time and the same number of environmental changes.
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Table 8. Hypothesis test T of the instances with EC=20. Comparing D-MEANDS-MD vs All
algorithms

DDIS-MOEA/D-DE D-MEANDSObjectives 30 50 100 30 50 100 30 50 100
HV > > > > > > > > >4 AD < < < < < < < < <
HV > > > > > > > > >6 AD < < < < < < < < <
HV > > > > > > > > >8 AD < < < < < < < < <

DNSGA − II*
Metrics/ Items

The T-test was used to assess the significance of D-MEANDS-MD performance compared with the
other investigated algorithms. The test was done with 99% confidence and the results are presented in
Table 8 for instances with EC=20. Each column of the table represents the comparison of D-MEANDS-
MD with other algorithm with respect to number of the items, and the row indicates the metric and
number of objectives considered. It is possible to note that the D-MEANDS-MD is significantly superior
to the other algorithms in all instances.

5.4. Analyzing the dominance of the final set of solutions
In the experiments reported in the last sections, the MOEAs were evaluated regarding AD and HV
metrics, which give absolute values to make a comparison among several algorithms. These metrics
translate some characteristics of the Pareto approximation found by a specific algorithm, such as diver-
sity and convergence to Pareto Optimum, to numerical values that make these multiple comparison
possible. However, its is common in multiobjective investigation, to perform a direct comparison of two
algorithms regarding the quality of the set of solutions found by each one. In this section, the Coverage
of two Sets (CS) metric is used to perform a direct comparison between the algorithms with the best
performances on the last experiments:DNSGA − II∗, D-MEANDs and D-MEANDS-MD.

CS definition: (Zitzler, 1999): Consider two Pareto sets X and Y . Function F evaluates the dominance
relationship of Pareto X to Y , returning a value between 0 and 1. If F = 1 means that all solutions of
Y are dominated by some point of X, while F = 0 means that no solutions of Y are dominated by X.
Note that it does not mean that there is some point of Y that dominates a solution of X. Formally, the
CS metric is calculated as follow:

F(X, Y) = |yεY|∃xεX : x 
 y|
|Y| (8)

This experiment was performed using the scenarios with the higher number of changes, that is, using
only EC=20 instances. Each result represents the mean of 100 comparisons between the Pareto set of
two algorithms (X and Y ). Tables 9, 10, and 11 present the values of the CS metric achieved using the
DMOEAs in scenarios with 30, 50, and 100 items, respectively. The row represents the Pareto set X and
the column represents the set Y . As closer the value is to 1, as more solutions of the column algorithm (Y )
are dominated by solutions of the row algorithm (X). Each algorithm was represented by a lowercase
letter: a=DNSGA − II∗, b=D-MEANDS and c=D-MEANDS-MD. We can see in Table 9 (instances
of 30 items), DNSGA − II∗ finds very few solutions that dominate the solutions of D-MEANDS and
D-MEANDS-MD. On the other hand, about 70% of the DNSGA − II∗ solutions are dominated by the
DMEANS and D-MEANDS-MD solutions. Regarding D-MEANDS-MD and D-MEANDS the CS dif-
ference is not so evident (between 2% and 4%). However, in all scenarios D-MEANDS-MD have more
solutions dominated by D-MEANDS than the opposite. In the instances of 50 (Table 10) and 100 items
(Table 11), as the number of items increases, as more solutions of DNSGA − II∗ are dominated by the
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Table 9. CS metric in instances of 30 items and EC=20, using a=DNSGA − II∗; b=D-MEANDS;
c=D-MEANDS-MD algorithms

Items 30
Objectives 4 6 8

X\Y a b c a b c a b c

a – 0.04 0.05 – 0.02 0.03 – 0.01 0.01

b 0.65 – 0.22 0.72 – 0.26 0.73 – 0.24

c 0.64 0.2 – 0.70 0.22 – 0.72 0.21 –

Table 10. CS metric in instances of 50 items and EC=20, using a=DNSGA − II∗; b=D-MEANDS;
c=D-MEANDS-MD algorithms

Items 50
Objectives 4 6 8

X\Y a b c a b c a b c

a – 0.02 0.02 – 0.01 0.01 – 0 0

b 0.82 – 0.33 0.83 – 0.3 0.82 – 0.27

c 0.81 0.28 – 0.82 0.25 – 0.81 0.22 –

Table 11. CS metric in instances of 100 items and EC=20, using a=DNSGA − II∗; b=D-
MEANDS; c=D-MEANDS-MD algorithms

Items 100
Objectives 4 6 8

X\Y a b c a b c a b c

a – 0 0 – 0 0 – 0 0

b 0.95 – 0.34 0.92 – 0.31 0.89 – 0.29

c 0.94 0.27 – 0.91 0.24 – 0.87 0.21 –

other two algorithms (around 80% and 90% in all instances of 50 and 100 items, respectively). The
performances of the D-MEANDS and D-MEANDS-MD are similar to that observed with 30 items.
The difference in CS is not so evident between both D-MEANDS versions (up to 8% of difference).
However, in all scenarios this slight difference favours D-MEANDS.

The CS metric compares two multiobjective algorithms and gives us an idea of which one presents
a better convergence to the Pareto Optimum. This is a relative result because it does not quantify the
magnitude of this difference on convergence. Nevertheless, one can see that D-MEANDS presents a
better convergence to Pareto than D-MEANDS-MD. Therefore, a question arose after obtaining these
results: why is D-MEANDS-MD better in the HV metric than D-MEANDS, as showed in Section 5.2,
if CS results show that D-MEANDS has a better convergence? We believe that the answer is related
to the D-MEANDS-MD mechanism to increase diversity in the population (and indeed diversity is of
great importance to dynamic problems). On the other hand, the hypervolume is influenced by both
convergence and diversity, being that the greater the convergence and diversity of an algorithm, the
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Figure 12. Parallel coordinates of the solutions found by D-MEANDS-MD (black dots and lines) and
DDIS-MOEA/D-DE (blue) in their best runs (out of 100). DMKP instance with 4 objectives, 100 items
and EC=20. The reference W0 used for HV calculus is also represented in red

better the value of HV. Therefore, we conclude that D-MEANDS-MD presents a better diversity and
a worse convergence than D-MEANDS. However, we speculate that the difference in diversity is more
significant than the difference on convergence, at least for their contribution to HV calculus, resulting
in significant higher values of HV when using the new version of D-MEANDS proposed in the present
work. Although the hypervolume is the most widely metric used to evaluate multiobjective algorithms
(because it is non-parametric and gives this mixed perspective of diversity and convergence), in the
future, it could be interesting to use other convergence metrics to have an absolute measure of how much
D-MEANDS convergence is higher than D-MEANDS-MD. For example, by calculating the convergence
metric discussed in (Deb and Jain, 2002).

5.5. Deeping the hypervolume analysis
Sections 5.2 and 5.3 show the superiority of D-MEANDS-MD over the other algorithms regarding the
hypervolume metric when submitted to the same number of fitness evaluations. In this section we will
continue to analyze the hypervolume but using other information to deeper evaluate these numerical
results. Figures 12 and 13 show parallel coordinates graphs, which are commonly used to visualize
set of solutions in multiobjective problems with many objectives (more than 3). Figure 12 shows two
sets of final solutions: the black lines and points represent the final Pareto approximation found by D-
MEANDS-MD in the best run in respect to HV, and the light blue lines and points represent the final
set found by the best run of DDIS-MOEA/D-DE. They were obtained in the DMKP instance with 4
objectives, 100 items and EC=20. Besides, the graph also represents the reference solution (in red) used
for HV calculus: w0=(0,0,0,0). Each line represents one evolved solution and it links the four values
found in each objective. The axis X, Y, W, and Z represent the dimensions of the four objectives involved
in the problem. The hypervolume calculated for the set found by D-MEANDS-MD is HV=4.4738E+7,
while for the DDIS-MOEA/D-DE is HV=2.0549E+7. Corroborating that their hypervolumes are very
different (D-MEANDS-MD value is much higher), it is clear to observe in the graph of Figure 12 the
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(a) (b)

(c) (d)

(e) (f)

Figure 13. Parallel coordinates of the solutions found by (a)(c)(e) D-MEANDS-MD and (b)(d)(f)
D-MEANDS in their best runs (out of 100). DMKP instance with 100 items and EC=20. The graphs (a)
(b) refer to the instance of 4 objectives, (c) (d) of 6 objectives and (e) (f) of 8 objectives

differences between the two Pareto approximations. It also makes clear that, despite the numerical values
of the hypervolume, the set found by D-MEANDS-MD is clear better than the other.

However, when we try to visualize closer results, the analisys is not so clear, because the solutions
from the two sets may mix in the graph. It was what happened when we try to compare the sets of solu-
tions found by D-MEANDS-MD and D-MEANDS in the same instance of DMKP: 4 objectives, 100
items and EC=20. The hypervolume calculated for the set found by D-MEANDS is HV=3.9697E+7
(for D-MEANDS-MD, as pointed early, is HV=4.4738E+7). Therefore, the results are plotted in sepa-
rate graphs, Figure 13(a) for D-MEANDS-MD and Figure 13(b) for D-MEANDS. Moreover, we noticed
that when including w0=(0,0,0,0) in such graphs, the comparison of the final sets are more difficult to
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30 items 50 items 100 items

(a) (b) (c)

Figure 14. Average of the HVs of the start and end of each environment of 100 executions of D-MEANDs
and D-MEANDS-MD in the instance of 6 objectives 30, 50 and 100 items with EC=20

do. The inclusion of w0 causes the graphs scales to mix the solutions embarrassing the comparison.
Therefore, w0 was not included in Figure 13.

Comparing the sets of solutions in Figure 13(a) and (b) it is possible to observe that in x and w
dimensions, both sets appear to occupy a similar interval of objective values. However, considering the
z dimension, the set found by D-MEANDS-MD (Figure 13(a)) stands out with a much higher values than
the other (Figure 13(b)). On the other hand, considering the y dimension, the D-MEANDS-MD tends
to occupy a little slower interval than the other, but the difference is not significant as the observed in
dimension z. Therefore, the difference in dimension z was more preponderant in the HV calculus result-
ing in a higher value for the set of solutions found by D-MEANDS-MD. It is also important to highlight
that the set found by D-MEANDS-MD presents points more distributed in the axis. This spreading of
points causes the hypervolume to be higher, once HV calculus also represents the diversity of the final
solutions, because this decreases the overlapping area of the hypercubes. This observation combined
with the verification in the last subsection (by using CS metric) that in general D-MEANDS-MD does
not dominate more solutions of D-MEANDS make us to conclude that both version of DMEANDS algo-
rithm have similar convergence to the Pareto Front but the D-MEANDS-MD presents a better diversity
which makes higher values of HV and AD metrics. This is a direct consequence of the new strategy of
diversity included in D-MEANDS-MD.

Increasing the number of objectives returns a set of non-dominated solutions of high cardinality,
making it difficult to visually analyze the graphs. However, the graphs with 6 and 8 (Figure 13) objectives
were presented only for a better understanding of the shape of the curves in these other spaces. Overall,
the two approaches are similar, making it difficult to visually determine which was superior. However,
the HV metric shows that DMEANDS-MD performed better than its predecessor.

A final analysis was performed to investigate the change promoted by the insertion of the diversity
strategy in D-MEANDS-MD considering the intervals between consecutive environmental changes. In
Section 5.2, it is said that the modification implemented in D-MEANDS-MD causes the convergence
to sets with better solutions in the evolutionary process observed from one EC to the other. A final
experiment was designed to show that this MOEA is able to find populations with higher hypervolume
in the interval between two ECs. Figure 14 presents three graphs comparing D-MEANDS-MD and D-
MEANDS hypervolume performance relative to three DMKP instances with 6 objectives, where the
number of items are 30, 50, and 100, respectively. Each algorithm was performed 100 times. Each
run has a total of 100 generations and one environmental change was applied at each 25 generations,
resulting in three ECs referred here as C25, C50, and C75. The hypervolume for the current population
was calculated in some points of the evolutionary search: (a) at the start of the run (initial population);
(b) before the occurrence of each EC; (c) after the reinitialization of the population; and (d) at the end
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of the run (final solution). It results in eight control points where HV was calculated in each run. The
graphs in Figure 14 present the average of HV calculated in each of these eight control points for each
MOEA.

Considering the first graph (DMKP instance with 30 items), both algorithms start from similar val-
ues of HV (P1) but at the end of the first environment (P2), after 25 generations, its is possible to
observe that the HV related to the D-MEANDS-MD solutions are higher (in average). After the first
change (C25) and reinicialization (P3) in both MOEAs the HV value decays, as expected. However,
in general, D-MEANDS-MD tends to generate a population with a slight higher HV at the beginning
of the next environment, since it departs from a better set before the EC occurrence. For this reason
D-MEANDS-MD reinitializes in point P3 generating populations with a slight higher HV value (com-
pared to D-MEANDS value). In the other ECs the behavior is similar: in the points P4 and P6 (after 25
generations from the previous EC) the HV value achieved in D-MEANDS-MD is clearly higher than
D-MEANDS. Moreover, after C50 and C75 changes in points P5 and P7, D-MEANDS-MD departs from
sets of solutions with higher HV than D-MEANDS population. As a consequence, at the end of the run
(P8), D-MEANDS-MD population in average has HV values higher than D-MEANDS. Similar obser-
vations can be done for the other two graphs in Figure 14 (50 and 100 items). Since in all intervals of
evolution between consecutive ECs, D-MEANDS-MD found solution sets with higher HV than those
found by D-MEANDS, we can point that D-MEANDS-MD strategy exhibits a better convergence to
fronts with higher HD at each environment.

6. Conclusions
The problem investigated in this work is the DMKP (Farina et al., 2004), which is a dynamic and discrete
MOP. We deepened the investigation started in (Lafetá and Oliveira, 2020a; Lafetá and Oliveira, 2020b)
observing the behavior of the DNSGA − II∗ (Deb and Karthik, 2007; Lafetá and Oliveira, 2020a), MS-
MOEA (Wang and Li, 2010) and D-MEANDS (Lafetá and Oliveira, 2020b) algorithms in more complex
instances than they were submitted to in the previous works. Two non-parametric metrics used to eval-
uate DMOPs were used for the performance evaluation: Hypervolume (HV) and Density (AD). The
processing time of each algorithm was also evaluated. Formulations with 4, 6, and 8 objectives were
applied to instances of DMKP with 30, 50, and 100 items in the comparative analysis. Experiments
were carried out by applying 10, 15, and 20 environment changes (ECs) along the evolutionary search,
were the ECs were uniformly distributed over the generations.

Analyzing the metrics HV and AD, D-MEANDS outperforms other algorithms in most instances,
specially when using instances of 8 objectives. However, the increase in changing environments (EC)
highlights that the D-MEANDS performance decays in relation to the others algorithms. It is worth to
note that our experiments show that by increasing the complexity of the instances makes D-MEANDS
processing time to relatively increase more than the others. This cost increase is due to the D-MEANDS
characteristic of not having a population limit in all the subsets of nondominated solutions. In instances
of 4 objectives, D-MEANDS is the faster option, close to DNSGA − II∗ time processing. However,
with the increase in the number of objectives, DNSGA − II∗ proves to be much faster than the other
algorithms.

A proposal for a new algorithm was made in this work. This uses a simple mechanism to insert
diversity into the main population of the MOEA. The use of such mechanism was evaluated in D-
MEANDS and DNSGA − II∗, proposing the algorithms D-MEANDS-MD and DNSGA − II+. However,
after a new series of experiments comparing the behavior of the new propositions for DNSGA − II∗ and
D-MEANDS and their original versions, it was clear that this mechanism was very effective for D-
MEANDS-MD, while it does not improve DNSGA − II+ in respect to DNSGA − II∗. A recent MOEA
was also included in this comparative analysis: the DDIS-MOEA/D-DE (Liu et al., 2020), which uses
differential evolution as the underlying evolutionary search strategy. The proposal D-MEANDS-MD
surpassed all the other algorithms in all the 27 instances of DMKP when the performance multiobjective
metrics HV and AD are taken in account. However, its processing time is similar to D-MEANDS and it
takes the longer execution time, except for the instances with 4 objectives.
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Based on the experiments performed, we could conclude that D-MEANDS-MD is a very promising
MOEA for dynamic and many-objective optimization problems as the DMKP. However, it is clear that
the time processing is a bottleneck to employ this algorithm if a high number of objectives, - starting
from 8 - is used. This limitation is related to the basic structure of MEANDS (Lafeta et al., 2016), the
precursor method of D-MEANDS-MD, which was proposed for static MaOPs. In both algorithms, the
number of sub-populations manipulated in a single run increases exponentially with the increment of
the number of objectives, causing this severe extra demand in processing time.

Therefore, we intend to investigate how to modify D-MEANDS and D-MEANDS-MD to surpass
this limitation. A similar effort was made to turn the precursor MEANDS to be viable for static prob-
lems defined for continuous spaces proposing the algorithm MEANDS2 (Lafeta and Oliveira, 2019).
However, the strategies used for static problems did not shown efficient for dynamic problems and we
discarded the use of MEANDS2 as the subjacent framework for discrete DMOPs. We intend to investi-
gate other strategies to limit the sub-populations grouth to enable the application of D-MEANDS-MD in
dynamic problems with a high number of objectives (> 8). Moreover, we plan to apply D-MEANDS-MD
to other problems, such as the dynamic multicast routing, where MEANDS was previously applied to its
static version (Lafeta et al., 2016). In addition, we intend to expand our set of non-parametric metrics,
with focus on evaluating both convergence and diversity. Another future investigation is to investigate
how to adapt D-MEANDS for continuous and dynamic MaOPs.

Regarding the comparative analysis of MOEAs performance in dynamical problems, it is important
to ensure that all algorithms were submitted to the same number of environmental changes in each exe-
cution. Our test environment was configured to apply a new change at each fixed interval of generations.
Therefore, all the investigated MOEAs have to use the same total of generations to face the same changes
in each run. Besides, at each change occurrence, the metrics (HV, IGD, etc) are calculated, being that
the average of these metrics are computed at the end of the run and the mean values of the metrics
are used to compare MOEAs performance. Therefore, this stopping condition allows us to control the
amount of environment changes in the executions independently of the MOEA applied. Furthermore,
the stopping condition based on the number of generations together with the control of the number of
crossovers per generation is widely used in the evolutionary computing literature because it allows one
to make a fair comparative evaluation of two or more algorithms assuring that they compute the same
number of fitness evaluations in a run, that is, the same number of points of the search space is explored
in a single run. Moreover, it makes this comparison more independent of the personal implementation
of the algorithm, which can turn it lower or faster depending on the programmer’s coding. However, we
agree that the stopping condition based on the total time would have a more practical perspective for a
real-world problem. Therefore, as a future work, we are planning to construct a new test environment
not only stopping the execution by a limiting time but also applying the changes by each time interval.
In this way, we will also have a controlled environment to compare different MOEAs where their pro-
cessing time efficiency will also affect their convergence to a good Pareto. In such case we will use the
number of explored solutions to evaluate the efficacy of each approach.
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