
BULL. AUSTRAL. MATH. SOC. 11E25, 11A55

VOL. 71 (2005) [75-79]

A NEW APPROACH TO JACOBI'S THEOREMS
VIA RAMANUJAN'S CONTINUED FRACTIONS

CHANDRASHEKAR ADIGA AND JUNG HUN HAN

In this paper, we show that Jacobi's two-square and two-triangular number theorems
axe immediate consequence of Ramanujan's continued fraction identities.

1. INTRODUCTION

Let rk(n) denote the number of ways the positive integer n can be represented as
a sum of k squares, with representations arising from different signs and from different
orders being regarded as distinct. Geometrically, rk(n) counts the number of lattice
points on the A;-dimensional sphere x\ -f • • • + x\ — n. Let

4>{q) =

Then the generating function for rk(n) is

n=0

A triangular number is a number of the form k(k + l)/2 for some non-negative
integer k. Let tk(n) denote the number of representations of n as a sum of k triangular
numbers. Geometrically, 2ktk(n) counts the number of lattice points on the A;-dimensional
sphere centred at ( -1 /2 , . . . , -1/2) with radius y/2n + fc/4. Let

n=0

Then the generating function for tk(n) is

n=0
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One of the main problems is to find formulae for determining rk(n), in terms of
simple arithmetical functions such as divisor functions. Jacobi's two-square and two-
triangular-number theorems state that

(1.1) r 2 (n)=4[d 1 (n) -d 3 (n) ]

and

(1.2) t2(n) = di(4n + l)

where d,-(m) is the number of divisors of m congruent to i modulo 4. Many authors gave
proofs of (1.1) and (1.2) using ^-series identities. Hirschhorn [8] and Ewell [6] have used
Jacobi's triple product identity to obtain (1.1). Askey [3], Adiga [1], Bhargava and Adiga
[4], Fine [7] and, Cooper and Lam [5] have employed Ramanujan's i^i summation for-
mula to derive (1.1) and (1.2). We show that (1.1) and (1.2) are immediate consequences
of two continued fraction identities of Ramanujan.

Ramanujan's general theta function and its special cases are defined as follows:

(1.3) f(a,b):=

(1-4) *(?):=

(1-5) i>{q) := f(q,<l3) =

oo

where (a; ?)«, := f] (1 - aqn).
n=0

<f>(q) and ip(q) have been used for a long time in the theory of elliptic functions and
modular forms. The main purpose of this note is to establish continued fractions for
(j>2{q) and ip2{q2), and to employ them to derive Jacobi's two-square and two-triangular
number theorems.

THEOREM

(2.1)

where

1 . JT|g| < 1

1-

2. MAIN

, then

1- 4>2(q) = £•
6X4

RESULTS

- 62+ 63

ax = 2,a,2 = -2q, a3 = (q - q2)2,...,

an = (-I)n-3qn-3(q + ( -1 )""V" 1 ) 2 ,« > 3, and
bi - 1, b2 - 1 + q, b3 = 1 + q\ ..., bn = 1 + q2n~3, n > 3.
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PROOF: From ([2, p. 14, Entry 11]), we have

(-a)oo(b)00-(a)o0(-b)oo = a-b (a-bq)(aq-b) q(a - 6g2)(ag2 - b)

(-a)ccWoc + ( a U - 6 ) o o 1 - 9 1 - q3 + 1 - <?5 + '

This continued fraction identity may be rewritten as

(-6)oo 1 - 1 - 9 1 - ?3 1 - <75

Changing q to — q, a to q and 6 to — q in the above continued fraction identity and
using (1.4), we complete the proof. D

THEOREM 2 . If \q\ < 1, then

(2.2) 2 + = + + ̂  +

where an and 6n are as deGned in Theorem 1.

P R O O F : Let Pn/Qn denote the n-th convergent of the continued fraction
a, /b\ + a2/b2 + a3/b3 + • • • . Then

Qi = 1, Q 2 = (1 - q), Q3 = (1 + <Z3)(1 -q) + {q- q2f = (1 - g)( l + q2) and

Qn - bnQn-i + OnQn-2-

By induction on n, we can show that

We have

Pn

010203 _ (-1)"+Ia1a2a3 • • .

Q Q ""Qi<3o Q2Q1 Q3Q2
2 4? 4 9

3 4 9
6 4?1 0

+ += T + 1 ^ TTq1 T^ + TTq1 + '" + 4

Letting n —> 00, we obtain the required result.

THEOREM 3 . Jacobi's two-square theorem.

r2(n) = 4[dM(n) - d3)4(n)].

P R O O F : From (2.1) and (2.2), we have

-l)n(n-l)/2 n(n+l)/2' 4
,471-3
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on summing by the column-row method. Now, comparing the coefficients of qn on both
sides of (2.3), we obtain Jacobi's two-square Theorem. D

THEOREM 4. If\q\<i,then

( 2 4 )

PROOF: From ([2, p. 17, Entry 12]), we have

(aY;g4)oo(6Y;q4)oo= 1 (a-bq){b-aq) (a - bq3)(b - aq3)
^ q*)^ (1 - ab)(l + q<)

Putting a = b — ^/q in the above identity and using (1.5), we obtain (2.4).

THEOREM 5 . If \q\ < l, then

n=0

P R O O F : Let Pn/Qn denote the n-th convergent of the continued fraction (2.5).
Then

Qi = 1 - Q, Q2 = (1 - <?)2(1 + Q2) + 9(1 - 1? = (1 - <7)2(1 + q + q2) = (1 - ?)(1 - <73)-

By induction on n, one can show that

Then we have

Pn

QkQk-x

axa2 aia2a3 t (- l)n + 1aia2a3. . .an

QiQo Q2Q1 Q3Q2 QnQn-

= _i ?_,_£L_ - (-irv-1

l - g l - ? 3 l - g 5 1 - 92"-1 '

Letting n —> 00, we complete the proof of Theorem 5.

THEOREM 6 . Jacobi's two-triangular number Theorem.

h{n) = dx{An +1) - d3(4n + 1).

PROOF: From (2.4) and (2.5), we have

n=0
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Changing q to — q in (2.6) and adding the resulting identity to (2.6), we obtain

n=0 " * n=0 ' q

Changing 9 to q1?2 in (2.7), we deduce

I _ 04n+l 1
n=0 y n=0

00 00

+3m+3n+2\ ' Amn+m+n \ •" 4mn

n,m=0 n,m=O
00 c»

((4m+3)(4n+3)-l)/4(2.8) = \ ^ g((4m+l)(4n+l)-l)/4 _ V^ g

n,m=0 n,m=O

By comparing the coefficients of qn on both sides of (2.8), we obtain the Jacobi's two-
triangular number Theorem. D
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