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Abstract

The Brownian bridge or Lévy–Ciesielski construction of Brownian paths almost surely converges
uniformly to the true Brownian path. We focus on the uniform error. In particular, we show constructively
that at level N, at which there are d = 2N points evaluated on the Brownian path, the uniform error and
its square, and the uniform error of geometric Brownian motion, have upper bounds of order O(

√
ln d/d),

matching the known orders. We apply the results to an option pricing example.
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1. Introduction

For t ∈ [0, 1], let B(t) = B(ω)(t) denote the standard Brownian motion on a probability
space (Ω,F , P). That is, for each t ∈ [0, 1], B(t) is a zero-mean Gaussian random
variable, and for each pair t, s ∈ [0, 1] the covariance is E[B(t)B(s)] = min(t, s).

In this paper we are concerned with the Lévy–Ciesielski (or Brownian bridge)
construction of the Brownian paths. The Lévy–Ciesielski construction expresses the
Brownian path B(t) in terms of a Faber–Schauder basis {η0, ηn,i : n ∈ N, i = 1, . . . , 2n−1}
of continuous functions on [0, 1], where η0(t) := t and

ηn,i(t) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
2(n−1)/2

(
t − 2i − 2

2n

)
, t ∈

[2i − 2
2n ,

2i − 1
2n

]
,

2(n−1)/2
( 2i
2n − t

)
, t ∈

[2i − 1
2n ,

2i
2n

]
,

0, otherwise.
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582 B. Brown, M. Griebel, F. Y. Kuo and I. H. Sloan [2]

For a proof that this is a basis in C[0, 1], see [9, Theorem 2.1(iii)] or [10]. In this
construction, the Brownian path corresponding to the sample point ω ∈ Ω is given by

B(t) := X0(ω) η0(t) +
∞∑

n=1

2n−1∑
i=1

Xn,i(ω) ηn,i(t), (1.1)

where X0 and all the Xn,i, i = 1, . . . , 2n−1, n ∈ N, are independent standard normal
random variables. For N ∈ N we define the truncated Lévy–Ciesielski expansion by

BN(t) := X0(ω) η0(t) +
N∑

n=1

2n−1∑
i=1

Xn,i(ω) ηn,i(t). (1.2)

Then BN(t) is for each ω ∈ Ω a piecewise-linear function of t coinciding with B(t) at
special values of t: we easily see that B(0) = BN(0) = 0, B(1) = BN(1) = X0 and

B
(2� − 1

2N

)
= BN

(2� − 1
2N

)
, � = 1, . . . , 2N−1,

because the terms in (1.1) with n > N vanish at these points.
The Lévy–Ciesielski construction has the important property that it converges

almost surely to a continuous Brownian path (see the original works [2, 4] or [8]).
The precise statement is that, almost surely,

‖B − BN‖∞ := supt∈[0,1]|B(t) − BN(t)| → 0 as N → ∞.

The convergence rate for the expected uniform error of the Lévy–Ciesielski
expansion was obtained in [6, Theorem 2]: in the language of this paper,

E[‖B − BN‖∞] ∼
√

ln d
2d

, (1.3)

where d := 1 +
∑N

n=1 2n−1 = 2N is the dimension of the Faber–Schauder basis to
level N.

The meaning of the expected value E will be made precise in Section 2. The
asymptotic notation α(x) ∼ β(x) means that limx→∞ |α(x)/β(x)| → 1. Thus, (1.3) gives
the precise leading term for the expected uniform error of the Lévy–Ciesielski
expansion. Actually, Ritter [6] shows also that the Lévy–Ciesielski approximation is
optimal among all constructions that use information at d points and Wiener measure.
Müller-Gronbach [5] provides results for more general problems.

The main result of this paper is Theorem 1.1 below which gives upper bounds of
the same order as (1.3), with a slightly worse constant which is larger by a factor
of 2 +

√
2 ≈ 3.41421. We prove this constructively in Section 3 using a different line

of argument than [6], namely extreme value statistics.

THEOREM 1.1. Let B be the Lévy–Ciesielski expansion of the standard Brownian
motion (1.1) and let BN be the corresponding truncated expansion (1.2). Then, with
d = 2N,
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[3] The Lévy–Ciesielski construction 583

E[‖B − BN‖∞] ≤ (2 +
√

2)

√
ln d
2d

(
1 + O

( 1
√

ln d

))
,

√
E[‖B − BN‖2∞] ≤ (2 +

√
2)

√
ln d
2d

(
1 + O

( 1
√

ln d

))
.

Geometric Brownian motion is the solution S(t) = S(ω)(t) at time t of the stochastic
differential equation

dS(t) = S(t)(rdt + σdB(t)), t ∈ [0, 1], (1.4)

for given initial data S(0), where r > 0 is the drift, σ > 0 is the volatility and B(t) is
the standard Brownian motion. The solution to (1.4) is given explicitly by

S(t) = S(0) exp((r − 1
2σ

2)t + σB(t)). (1.5)

Let SN be the approximation defined by

SN(t) := S(0) exp((r − 1
2σ

2)t + σBN(t)), (1.6)

where BN is the truncated Lévy–Ciesielski approximation of B given by (1.2). Then we
prove in Section 4 the following corollary to Theorem 1.1.

COROLLARY 1.2. Let S be the geometric Brownian motion (1.5) and let SN be the
truncated approximation (1.6). Then, with d = 2N,

E[‖S − SN‖∞] = O
(√ ln d

d

)
,

where the implied constant depends only on r and σ.

Section 5 gives an application to the problem of pricing an arithmetic Asian option.

2. The expected value as an integral over a sequence space

In this section we show that the expected value in Theorem 1.1 can be expressed as
an integral over a sequence space. We remark that we will sometimes find it convenient
to use interchangeably the language of measure and integration or alternatively that of
probability and expectation.

Recall that the Lévy–Ciesielski expansion (1.1) expresses the Brownian path B(t) in
terms of an infinite sequence X(ω) = (X0, (Xn,i)n∈N,i=1,...,2n−1 ) of independent standard
normal random variables. In the following we will denote a particular realisation of
this sequence X by

x = (x0, (xn,i)n∈N,i=1,...,2n−1 ) = (x0, x1, x2, x3, . . .) ∈ R∞,

where we will switch freely between the double-index labelling (x0, x1,1, x2,1, x2,2, . . .)
and a single-index labelling (x0, x1, x2, x3, . . .) as appropriate, with the indexing
convention that xn,i becomes x2n−1−1+i for n ≥ 1 and 1 ≤ i ≤ 2n−1.
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584 B. Brown, M. Griebel, F. Y. Kuo and I. H. Sloan [4]

It is clear from (1.1) that, for t ∈ [0, 1] and a fixed ω ∈ Ω,

|BN(t)| ≤ |X0| +
N∑

n=1

(
max

1≤i≤2n−1
|Xn,i|

) 2n−1∑
i=1

ηn,i(t) ≤ |X0| +
N∑

n=1

max
1≤i≤2n−1

|Xn,i|2−(n+1)/2, (2.1)

where in the last step we used the fact that for a given n ≥ 1 the disjoint nature of the
Faber–Schauder functions ensures that at most one value of i contributes to the sum
over i, and also that the ηn,i for i = 1, . . . , 2n−1 have the same maximum value 2−(n+1)/2.

Motivated by the bound (2.1), and following [3], we define a norm of the sequence
x = (x0, (xn,i)n∈N,i=1,...,2n−1 ) by

‖x‖X := |x0| +
∞∑

n=1

max
1≤i≤2n−1

|xn,i| 2−(n+1)/2,

and we define a corresponding normed space byX := {x ∈ R∞ : ‖x‖X < ∞}. It is easily
seen that X is a Banach space.

Each choice of x ∈ X corresponds to a particular ω ∈ Ω (but not vice versa, since
there are sample points ω ∈ Ω corresponding to sequences x for which the norm ‖x‖X
is not finite). Hence, to each x ∈ X there corresponds a particular Brownian path via
(1.1), or expressed in terms of x,

B(x)(t) = x0 η0(t) +
∞∑

n=1

2n−1∑
i=1

xn,i ηn,i(t), t ∈ [0, 1]. (2.2)

That the resulting path is continuous on [0, 1] follows from the observation that the
path is the pointwise limit of the truncated series

BN(x)(t) = x0 η0(t) +
N∑

n=1

2n−1∑
i=1

xn,i ηn,i(t), t ∈ [0, 1], (2.3)

which is uniformly convergent since

‖BN‖∞ ≤ |x0| +
∞∑

n=1

max
1≤i≤2n−1

|xn,i|2−(n+1)/2 = ‖x‖X < ∞ for x ∈ X,

so that (2.2) does indeed define a continuous function for x ∈ X.
We define AR∞ to be the σ-algebra generated by products of Borel sets of R (see

[1, page 372]). On the Banach space X, we now define a product Gaussian measure
ρ(dx) := ⊗∞j=0φ(xj)dxj (see [1, page 392 and Example 2.35]), where φ is the standard

normal probability density φ(x) := exp(−x2/2)/
√

2π.
We next show that the space X has full Gaussian measure, that is,

P

(
|X0| +

∞∑
n=1

max
1≤i≤2n−1

|Xn,i|2−(n+1)/2 < ∞
)
= 1.
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This fact is the basis of the classical proof that the Lévy–Ciesielski construction almost
surely converges uniformly to the Brownian path. For a brief explanation, we define

Hn(ω) :=

⎧⎪⎪⎨⎪⎪⎩|X0(ω)| for n = 0,
max1≤i≤2n−1 |Xn,i(ω)|2−(n+1)/2 for n ≥ 1.

As a consequence of the Borel–Cantelli lemma, one can construct a sequence (βn)n≥1
of positive numbers such that

∞∑
n=1

βn < ∞ and P(Hn(·) > βn infinitely often) = 0.

We now define Ω̃ to be the subset of Ω consisting of the sample points ω for which
Hn(ω) > βn for only finitely many values of n. Then Ω̃ is of full Gaussian measure and
for each ω ∈ Ω̃ there exists N(ω) ∈ N such that Hn(ω) ≤ βn for n > N(ω), giving

∞∑
n=1

Hn(ω) ≤
N(ω)∑
n=1

Hn(ω) +
∞∑

n=N(ω)+1

βn < ∞ for ω ∈ Ω̃.

Thus, P(
∑∞

n=0 Hn < ∞) = 1 as claimed and X is of full Gaussian measure.
We now study integration on the measure space (X,AR∞ , ρ) and we denote the

integral, or the expected value, of a measurable function f by E[ f ] :=
∫
X f (x)ρ(dx).

3. Expected uniform error of standard Brownian motion

We devote this section to proving Theorem 1.1. We have, from (1.1) and (1.2),

|B(t) − BN(t)| =
∣∣∣∣∣
∞∑

n=N+1

2n−1∑
i=1

Xn,iηn,i(t)
∣∣∣∣∣ ≤

∞∑
n=N+1

(
max

1≤i≤2n−1
|Xn,i|

) 2n−1∑
i=1

ηn,i(t).

Using the same disjoint support argument as in (2.1), we conclude that

‖B − BN‖∞ ≤
∞∑

n=N+1

max
1≤i≤2n−1

|Xn,i|2−(n+1)/2 =
∑

�=2N ,2N+1,2N+2,...

M�
2
√
�

,

where we introduced new random variables

M� := M2n−1 := max
1≤i≤2n−1

|Xn,i| for � = 2n−1 and n ≥ 1.

Thus,

E[‖B − BN‖∞] ≤
∑

�=2N ,2N+1,2N+2,...

E[M�]

2
√
�

, (3.1)
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and since M� and M�′ are independent random variables for � � �′,

E[‖B − BN‖2∞] ≤
∑

�,�′=2N ,2N+1,2N+2,...

E[M�M�′]

2
√
� · 2
√
�′

=
∑

�=2N ,2N+1,2N+2,...

E[M2
� ]

2
√
� · 2
√
�
+

∑
�,�′=2N ,2N+1,2N+2,...

���′

E[M�]E[M�′]

2
√
� · 2
√
�′

. (3.2)

Now we are in the territory of extreme value statistics. It is known that the
distribution function of the maximum of the absolute value of � independent and
identical Gaussian random variables converges (after appropriate centring and scaling,
as below) to the Gumbel distribution. A first step is to obtain an explicit expression
for the distribution function of M�. Because Xn,1, Xn,2, . . . , Xn,� are N(0, 1) random
variables, for x ∈ R+ and i = 1, . . . , �, we have

P(Xn,i ≤ x) =
∫ x

−∞
φ(t) dt =: Φ(x),

where φ is the standard normal density. Similarly,

P(|Xn,i| ≤ x) =
∫ x

−x
φ(t) dt = Φ(x) − Φ(−x) = 2Φ(x) − 1.

Therefore (since Xn,1, Xn,2, . . . , Xn,� are independent random variables),

P(M� ≤ x) = P(|Xn,1| ≤ x and |Xn,2| ≤ x and · · · and |Xn,�| ≤ x) = (2Φ(x) − 1)�.

Thus, the distribution function of M� is

Ψ�(x) := (2Φ(x) − 1)�, x ∈ R+. (3.3)

We now define a new random variable Y� for � ≥ 1, which is a recentred and rescaled
version of M�:

Y� :=
M� − a�

b�
, or equivalently, M� = a� + b�Y�, a� > 0, b� > 0. (3.4)

It is known (see below) to be appropriate to take a� and b� to satisfy

a� =
√

2 ln � + o(1) and b� =
1
a�

. (3.5)

More precisely, for later convenience we will define a� to be the unique solution of

1
�
=

√
2
π

e−a2
� /2

a�
=: g(a�). (3.6)

We now show that (3.6) implies (3.5).

LEMMA 3.1. Equation (3.6) for � ≥ 1 has a unique positive solution of the form
a� =

√
2 ln � + o(1). Moreover, for � ≥ 3 we have a� ∈ (1,

√
2 ln �).
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PROOF. The fact that any solution of (3.6) is positive is immediate. Now observe that
g in (3.6) is monotonically decreasing from +∞ to 0 on R+. It follows immediately that
there is a unique solution a� ∈ (0,∞) for (3.6). Moreover,

a� > 1⇔ 1
�
<

√
2
π

e−12/2

1
=

√
2
πe
= 0.484 . . . ,

which holds if and only if � ≥ 3. Now observe that (3.6) is equivalent to

a� =

√
2
(
ln � − ln

(√
π

2
a�

))
. (3.7)

For � ≥ 3 we have a� > 1 and hence ln(
√
π/2 a�) > ln(

√
π/2) > 0, so from (3.7) we have

a� <
√

2 ln �. In turn it follows that

a� >

√
2 ln � − 2 ln

(√
π

2

√
2 ln �

)
.

Thus, for � ≥ 3 we have 1 ≤ a� =
√

2 ln � + o(1) ≤
√

2 ln �, completing the proof. �

It is well known that the distribution function of Y� converges in distribution to a
random variable with the Gumbel distribution exp(−e−y). For later convenience we
state this as a lemma and give a short proof.

LEMMA 3.2. The random variable Y� defined in (3.4), with a� defined by (3.6) and
b� = 1/a�, converges in distribution to a random variable Y with Gumbel distribution
function P(Y ≤ y) = exp(−e−y).

PROOF. The proof is based on the asymptotic version of Mill’s ratio [7],

1 − Φ(x) ∼ φ(x)
x

, x→ +∞,

where, as in the Introduction, ∼ means that the quotient of the two sides converges
to 1. From this it follows that for y ∈ R,

P(Y� ≤ y) = P(M� ≤ a� + b�y) = (2Φ(a� + b�y) − 1)� = (1 − 2[1 − Φ(a� + b�y)])�

∼
(
1 −

√
2
π

exp(− 1
2 (a� + b�y)2)

a� + b�y

)�
∼

(
1 −

√
2
π

exp(− 1
2 a2
� − a�b�y)
a�

)�
= (1 − exp(−y)/�)� ∼ exp(−e−y) as � → ∞,

where in the second step we dropped a higher-order term, and in the second last step
we used (3.6) and a�b� = 1, thus proving the lemma. �

A deeper result, which we need, is that Y� converges in expectation to the limit Y.
This is proved in the following lemma.
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LEMMA 3.3. The random variable Y� defined in (3.4), with a� defined by (3.6) and
b� = 1/a�, converges in expectation to a random variable Y with Gumbel distribution
exp(−e−y), thus

lim
�→∞
E[Y�] = E[Y] =

∫ ∞

−∞
y exp(−y − e−y) dy = γ,

where γ is Euler’s constant.

PROOF. For a sequence of real-valued random variables Y1, Y2, . . . converging in
distribution to a random variable Y, it is well known that a sufficient condition for
convergence in expectation is uniform integrability of the Y�. In turn a sufficient
condition for uniform integrability is that for sufficiently large �,

P(Y� ≥ y) ≤ Q(y) for y > 0 and P(Y� ≤ y) ≤ R(y) for y < 0,

where Q(y) is integrable on R+ and R(y) is integrable on R−.
First assume y > 0. From (3.3),

P(Y� ≥ y) = P(M� ≥ a� + b�y) = 1 − P(M� ≤ a� + b�y)

= 1 − (2Φ(a� + b�y) − 1)� = 1 − (1 − 2[1 − Φ(a� + b�y)])�

≤ 1 −
(
1 − 2

φ(a� + b�y)
a� + b�y

)�
= 1 −

(
1 −

√
2
π

exp(− 1
2 (a� + b�y)2)

a� + b�y

)�

≤ 1 −
(
1 −

√
2
π

exp(− 1
2 a2
� − a�b�y)
a�

)�
,

where we used the upper bound form of Mills’s ratio [7],

1 − Φ(x) <
φ(x)

x
, x ∈ R+,

and dropped harmless terms in both the denominator and the exponent in the
numerator. Using now (3.6) and also a�b� = 1,

P(Y� ≥ y) ≤ 1 −
(
1 − exp(−y)

�

)�
≤ exp(−y) =: Q(y), (3.8)

where we used the fact that the function (1 − c/x)x is increasing on [1,∞) for c ∈ [0, 1],
and hence takes its minimum at x = 1. It follows that∫ ∞

0
P(Y� ≥ y) dy ≤

∫ ∞

0
exp(−y) dy = 1.

Now we consider y < 0. Note first that M� = a� + b�Y� takes only nonnegative
values, thus we may restrict y to y ≥ −a�/b�. We have

P(Y� ≤ y) = P(M� ≤ a� + b�y) = (2Φ(a� + b�y) − 1)�.

Now for t > 0 the standard normal distribution Φ has negative second derivative,

Φ′′(t) = φ′(t) < 0 for t > 0,
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and first derivative Φ′(t) = φ(t), from which it follows that

Φ(a� + b�y) ≤ Φ(a�) + b�y φ(a�) for y ≥ −a�/b�.

Thus, on using b� = 1/a�, we obtain

P(Y� ≤ y) ≤ (2Φ(a�) + 2a−1
� yφ(a�) − 1)�

≤ (1 − 2a−1
� φ(a�)(1 − y − a−2

� ))� =
(
1 − 1
�

(1 − y − a−2
� )

)�
,

where in the second step we used the lower bound form of Mills’s ratio (see
[7, page 44]),

1 − Φ(t) ≥ φ(t)
t

(1 − t−2) for t > 0,

and in the last step we used (3.6). If we now take � ≥ L then

P(Y� ≤ y) ≤
(
1 − 1
�

(1 − y − a−2
L )

)�
≤ exp(−(1 − y − a−2

L )) = exp(−(1 − a−2
L )) exp(y) =: R(y), (3.9)

since the convergence in the last limit is monotone increasing. The function R(y) so
defined is integrable on R−, completing the proof that Y� converges in expectation.

It then follows from Lemma 3.2 that the limit of E[Y�] is precisely E[Y] = γ. �

Since Lemma 3.3 establishes the convergence of E[Y�] as � → ∞, it can be inferred
that there exists a positive constant c such that

E[Y�] ≤ c and hence E[M�] ≤ a� + b�c ≤ a� + c, (3.10)

where we used b� = a−1
� ≤ 1 for � ≥ 3. We then conclude from (3.1) that

E[‖B − BN‖∞] ≤
∑

�=2N ,2N+1,2N+2,...

a� + c

2
√
�

. (3.11)

It only remains to estimate the sum in (3.11). Using Lemma 3.1 with N ≥ 2 (and
hence � ≥ 3), we have a� <

√
2 ln �, and on setting � = 2N+j,

∑
�=2N ,2N+1,2N+2,...

a�√
�
≤
∞∑

j=0

√
2(ln 2)(N + j)
√

2N+j
= 2−(N−1)/2

√
ln 2

∞∑
j=0

√
N + j
2j/2 .

≤ 2−(N−1)/2
√

ln 2
√

N (2 +
√

2) (1 + O(N−1/2)),

where in the final step we used
√

N + j ≤
√

N +
√

j and
∑∞

j=0 1/2j/2 = 2 +
√

2, while
noting that

∑∞
j=0
√

j/2j/2 is finite and independent of N. Moreover, by a similar argument
we conclude that

∑
�=2N ,2N+1,2N+2,... c/

√
� = O(2−N/2). Thus, altogether we obtain from

(3.11) that
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E[‖B − BN‖∞] ≤ 1
2 · 2

−(N−1)/2
√

ln 2
√

N (2 +
√

2)(1 + O(N−1/2))

= (2 +
√

2)

√
N ln 2
√

2 · 2N
(1 + O(N−1/2)) = (2 +

√
2)

√
ln d
√

2d

(
1 + O

( 1
√

ln d

))
,

which proves the first bound in Theorem 1.1.
To prove the second bound in Theorem 1.1, we need first to bound E[M2

� ]. With Y�
and Y defined as above, for v > 0,

P(Y2
� ≥ v) = P(Y� ≥

√
v) + P(Y� ≤ −

√
v)

→ P(Y ≥
√

v) + P(Y ≤ −
√

v) = P(Y2 ≥ v) as � → ∞, (3.12)

while for v < 0 we have P(Y2
� ≥ v) = P(Y2 ≥ v) = 1. Thus, by Lemma 3.2, Y2

� converges
in distribution to Y2, where Y is the Gumbel distribution. To prove convergence in
expectation, we use (3.12) with (3.8) and (3.9) to give, for � ≥ L and v > 0,

P(Y2
� ≥ v) ≤ exp(−

√
v) + exp(−(1 − a−2

L )) exp(−
√

v),

which is integrable on R+, proving E[Y2
� ]→ E[Y2] < ∞. In turn it follows that there

exists c′ > 0 such that E[Y2
� ] ≤ c′, and together with (3.10),

E[M2
� ] ≤ a2

� + 2 a� b� c + b2
� c′ ≤ a2

� + 2 a� c + c′ ≤ (a� + c′′)2,

where we used b� = a−1
� ≤ 1 for � ≥ 3 and introduced c′′ := max(c,

√
c′). Now from

(3.2),

E[‖B − BN‖2∞] ≤
∑

�=2N ,2N+1,2N+2,...

(a� + c′′)2

2
√
� · 2
√
�
+

∑
�,�′=2N ,2N+1,2N+2,...

���′

(a� + c′′)(a�′ + c′′)

2
√
� · 2
√
�′

=

( ∑
�=2N ,2N+1,2N+2,...

a� + c′′

2
√
�

)2
,

which is the square of the right-hand side of (3.11), with c replaced by c′′. The second
bound in Theorem 1.1 then follows.

4. Expected uniform error of geometric Brownian motion

We can now give a proof of Corollary 1.2. From (1.5) and (1.6), S(t) − SN(t) =
S(0)e(r−σ2/2)t (exp(σB(t)) − exp(σBN(t))), and thus

‖S − SN‖∞ ≤ S(0) e|r−σ
2/2|‖ exp(σB) − exp(σBN)‖∞. (4.1)

In turn it follows that

‖S − SN‖∞ ≤ S(0) e|r−σ
2/2| ‖ exp(σBN)(exp(σ(B − BN)) − 1)‖∞

≤ S(0) e|r−σ
2/2| exp(σ‖BN‖∞)(exp(σ‖B − BN‖∞) − 1).
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Using |exp(x) − 1| ≤ |x| exp(|x|) for x ∈ R and ‖BN‖∞ ≤ ‖B‖∞ for N ∈ N, we have

‖S − SN‖∞ ≤ S(0) e|r−σ
2/2| exp(σ‖BN‖∞)σ‖B − BN‖∞ exp(σ‖B − BN‖∞)

≤ S(0)e|r−σ
2/2|σ exp(3σ‖B‖∞)‖B − BN‖∞,

where we used ‖B − BN‖∞ ≤ ‖B‖∞ + ‖BN‖∞ ≤ 2‖B‖∞. By the Cauchy–Schwarz
inequality,

E[‖S − SN‖∞] ≤ S(0) e|r−σ
2/2|σ

√
E[exp(6σ‖B‖∞)]

√
E[‖B − BN‖2∞].

It is well known that E[exp(α‖B‖∞)] < ∞ for every α > 0. Hence, the result now
follows from the second bound of Theorem 1.1.

5. Application to option pricing

Now we consider a continuous version of a path-dependent call option with strike
price K in a Black–Scholes model with risk-free interest rate r > 0 and constant
volatility σ > 0. Recall that the asset price S(t) at time t is given explicitly by (1.5). The
discounted payoff for the case of a continuous arithmetic Asian option with terminal
time T = 1 is therefore

P : = e−rT max
( 1
T

∫ T

0
S(t) dt − K, 0

)

= e−r max
(
S(0)

∫ 1

0
exp

((
r − σ

2

2

)
t + σB(t)

)
dt − K, 0

)
. (5.1)

The pricing problem is then to compute the expected value E(P).
We use the Lévy–Ciesielski expansion (2.2) and (2.3) for B(t) and BN(t), and define

PN := e−r max
(
S(0)

∫ 1

0
exp

((
r − σ

2

2

)
t + σBN(t)

)
dt − K, 0

)
. (5.2)

We are interested in estimating how fast E[|P − PN |] converges to 0 as N → ∞.

COROLLARY 5.1. For P and PN defined by (5.1) and (5.2),

E[|P − PN |] = O
(√ ln d

d

)
,

where d = 2N and the implied constant is independent of d.

PROOF. It can be easily verified that

|max(α − K, 0) −max(β − K, 0)| ≤ |α − β|.

https://doi.org/10.1017/S0004972723000850 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972723000850


592 B. Brown, M. Griebel, F. Y. Kuo and I. H. Sloan [12]

Thus,

|P − PN | ≤
∣∣∣∣∣e−rS(0)

∫ 1

0
e(r−σ2/2)t(exp(σB(t)) − exp(σBN(t))) dt

∣∣∣∣∣
≤ e−rS(0)e|r−σ

2/2|
∫ 1

0
|exp(σB(t)) − exp(σBN(t))| dt

≤ e−rS(0) e|r−σ
2/2|‖exp(σB) − exp(σBN)‖∞,

where the last upper bound differs from the upper bound (4.1) on ‖S − SN‖∞ only by a
factor of e−r. Hence, the result follows from Corollary 1.2. �
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