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Abstract

Population connectivity has a fundamental role in metapopulation dynamics with important
implications for population persistence in space and time. Oceanic islands, such as Easter
Island (EI) and the Salas & Gómez Island (SG), are ideal for the study of population connect-
ivity because they are separated by 415 km and isolated from other islands in the Pacific
Ocean by >2000 km. Considering that the dispersal process could play a critical role in the
persistence of their populations, we evaluated the connectivity pattern of the endemic gastro-
pod Monetaria caputdraconis between EI and SG using population genetics and biophysical
modelling. Eleven microsatellite loci did not show differences in the allelic frequency of indi-
viduals located in EI and SG, suggesting the presence of one genetic population. Historical
reciprocal migration implies that 0.49% of the recruits in EI come from SG and 0.37% in
SG come from EI. Considering year-round larval release and a larval development of 2
weeks in the plankton, a Lagrangian experiment based on a regional oceanic simulation indi-
cated a weak population connectivity with a high rate of self-recruitment. Interestingly, self-
recruitment showed both monthly and interannual variation ranging from 1 to 45% of
returned larvae, with lower values estimated in SG compared to EI. The results suggest that
few larvae/individuals arrive at each other’s island, possibly due to stochastic events, such
as rafting. Overall, our results indicate that both islands maintain population connectivity des-
pite their distance; these findings have implications for designing conservation strategies in
this region.

Introduction

Marine population connectivity, understood as the exchange of individuals among geograph-
ically separated groups (Cowen et al., 2007; Pineda et al., 2007; Cowen and Sponaugle, 2009) or
discrete populations (Lowe and Allendorf, 2010), plays a fundamental role in the spatial con-
figuration of species, their persistence over time, maintenance of genetic diversity, and, finally,
in determining their evolutionary fates (Lowe and Allendorf, 2010). Despite the importance of
knowledge regarding marine species connectivity, it is difficult to assess connectivity in species
with benthic adults and planktonic larvae as the main dispersal element. For these species hav-
ing planktonic larval development, a large number of produced larvae per individual during
reproductive events and the small larval size make it almost impossible to directly survey larval
movement between populations (Levin, 2006; Cowen et al., 2007; McQuaid, 2010).

Different approaches have been developed to quantify this process, including the use of
genetic variability (Palumbi, 2003; Hellberg, 2009; Lowe and Allendorf, 2010; Gagnaire
et al., 2015; Veliz et al., 2021, 2022) and biophysical modelling (Lett et al., 2008). The use
of genetic markers allows to describe the extent of the marine populations (Cowen and
Sponaugle, 2009), the dispersal potential of the species (Kinlan and Gaines, 2003), and the
asymmetry of the migrant interaction between pairs of groups (e.g., Meerhoff et al., 2018).
Biophysical modelling studies estimate the number of larvae exchanged among populations
based on the trajectories inferred from the model velocity field (e.g., Endo et al., 2019), the
importance of populations in releasing and receiving larvae (e.g., Crochelet et al., 2020),
and also enable an estimation of auto-recruitment (e.g., Santos et al., 2018).

Due to their isolation, oceanic islands and their endemic fauna are interesting models for
quantifying connectivity (Andrade and Feng, 2018). First, it is possible to obtain samples for
the entire geographical range of these species; thus, the noise produced by unsampled popula-
tions (see Excoffier and Heckel, 2006) is reduced to zero, although recirculation patterns at the
fine scale (sub to mesoscale) nearby the island can be influenced by the island itself (i.e., island
mass effect) (Barton, 2001).
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The easternmost islands in Polynesia are composed of Eastern
Island (EI) and Salas & Gomez (SG), the first inhabited and the
second not inhabited by humans. The Chilean government created
Motu Motiro Hiva Marine Park (150,000 km2) close to SG, repre-
senting the largest fishing exclusion zone in the Americas
(Friedlander et al., 2013). These islands are separated by 415 km
from each other (Zylich et al., 2014); the next closest islands are
the Desventuradas (2000 km east) and Pitcairn (2600 km west)
Islands. Both islands share most marine fauna, comprising 30–34%
of endemic species (Fernandez et al., 2014; Swearer et al., 2019); in
the case of molluscs, 42% of the species have been found to be
endemic to these two islands (Rehder, 1980), and the oceanographic
patterns of the area show circulation corresponding to the anticyc-
lonic rotation of the South Pacific, conditioned by a system of flows-
counterflows and the average geostrophic current in the zone
(Pollock, 1992; Rivera and Mujica, 2004). Near the coast of EI, the
geostrophic flow includes vertical and horizontal shears, which, com-
bined with the vertical migration behaviour of fishes larvae, promote
larval retention (Meerhoff et al., 2017).

These islands are inhabited by the endemic cowry gastropod
Monetaria caputdraconis (Melvill, 1888), which has cultural and
economic importance, referred to as ‘pure’ by the islanders.
This species is abundant in shallow areas, where it has ecological
significance as a herbivore (Osorio et al., 1993). M. caputdraconis
is a dioecious species with internal fertilisation; eggs are deposited
in capsules attached to rocks, and planktonic veliger larvae then
develop after 7 days of incubation (Osorio and Gallardo, 1992);
these planktonic larvae last approximately two weeks in the
plankton (Osorio, personal communication). M. caputdraconis
has historically been under exploitation both as a food resource
and as an ornamental object (Seaver, 1986), leading to a signifi-
cant decrease in its abundance (Rivera, 2003; Aburto et al., 2015).

Considering that M. caputdraconis is exploited on EI but not
in SG Island where the Motu Motiro Hiva Marine Park is located,
it is important to know about the degree of connectivity by
migrants between these islands and the importance of this park
in the species conservation. Here, the connectivity ofM. caputdra-
conis between EI and SG was estimated using both genetic and
biophysical modelling approaches. Whereas the variability of
11 microsatellite loci was used to infer the population structure
and historical reciprocal migration between islands, a biophysical
modelling procedure was employed to model larval transport
between the two islands using biological and oceanographic infor-
mation. Both genetic and biophysical modelling data are useful
for determining the connectivity of M. caputdraconis populations
in the entire geographical distribution of the species.

Materials AND Methods

Sampling, DNA extraction and microsatellite loci amplification

Seventy-seven specimens of M. caputdraconis were obtained from
the intertidal zone by hand from EI (27°7′S; 109°22′W), and
twenty-eight individuals of M. caputdraconis were collected in
SG Island (SG, 26°28′S; 105°28′W) (Figure 1). Samples were
stored in 95% ethanol, and a small piece of the muscular foot
(approximately 1 mg) was used for DNA extraction with the
Wizard Genomic DNA Purification Kit (Promega). DNA quan-
tities were measured with a Nanodrop Spectrophotometer
(Thermo Fisher). Eleven polymorphic microsatellite loci
described for this species were amplified following the procedure
of Vega-Retter et al. (2016). Briefly, cycling conditions for all loci
consisted of an initial denaturing step of 2 min at 95°C, followed
by 35 cycles of 30 s at 95°C, 1 min at 55°C, 1 min at 72°C, and a
final elongation step at 72°C for 3 min. We used three multiplexes
to amplify the microsatellite loci with primers containing different

fluorescent dyes (NED, FAM, VIC, or PET). The first plate amp-
lified the following microsatellites: Pure7 (NED), Pure45 (NED),
Pure18 (FAM), and Pure34 (FAM), the second plate: Pure33
(NED), Pure46 (NED), Pure31 (PET), Pure48 (PET), Pure47
(VIC), and Pure28 (FAM); and the third plate: Pure1 (FAM),
Pure50 (FAM), Pure3 (VIC), Pure19 (VIC), Pure42 (PET), and
Pure15 (NED). The polymerase chain reaction contained 2 μl
template DNA (100 ng), 1 μl of each primer, and 10 ml of
Type-it Microsatellite PCR Kit (Qiagen, Canada). PCR products
were genotyped in the sequencing core at the Pontificia
Universidad Católica, Chile, using the internal size standard LIZ
500 (Applied Biosystems) and with the reverse primers of each
microsatellite locus marked with a fluorescent dye.

Population genetic structure

The number of alleles per locus and the expected (HE) and
observed (HO) heterozygosity were estimated using Genetix soft-
ware (Belkhir et al., 2000); the allelic richness and genetic diver-
sity with FSTAT software (Goudet, 1995). Using Genetix,
linkage disequilibrium was tested using 5000 permutations on
monolocus genotypes and departures from Hardy Weinberg
Equilibrium (HWE) using 5000 allele permutations. To avoid
related individuals in the population genetic analysis, we used
the Identix software (Belkhir et al., 2002) to estimate the rxy
relatedness index described by Queller and Goodnight (1989).

Testing for a possible population genetic structure between the
two islands was carried out using three approximations. First, the
FST index (Weir and Cockerham, 1984) was calculated with
GENETIX (Belkhir et al., 2000) with a statistical significance esti-
mated with 10,000 permutations. Second, the G”ST index was cal-
culated using GenAlEx 6.5 software (Peakall and Smouse, 2012),
and the statistical significance was estimated using 9999 permuta-
tions. This last estimator is not influenced by the heterozygosity of

Figure 1. Location of Easter Island (EI) and Salas & Gómez (SG) Island where
Monetaria caputdraconis inhabits. Rectangles located in EI and SG correspond to lar-
val release/recruitment areas (1–4) for coupled simulations of the regional oceanic
modelling system (ROMS). MMH: Motu Motiro Hiva Marine Park. The figure includes
ventral and dorsal views of a specimen of Monetaria caputdraconis from Rapa Nui.
Length size = 2.46 cm.
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the samples and is not biased when the number of populations is
low (Meirmans and Hedricks, 2011). Third, STRUCTURE soft-
ware (Pritchard et al., 2000) was used to estimate the most prob-
able number of populations or clusters within the universe of
samples. This analysis was performed using both admixture and
correlated allele frequency models. The procedure was run five
times for each K estimation (from K = 1 to K = 3) with a burn-in
of 100,000 and then 200,000 MCMC each. Finally, a principal
coordinate analysis (PCoA) was performed to summarise the
variation within the data set using the package adegenet
(Jombart and Ahmed, 2011) in R software (R Core Team, 2021).

Estimating the reciprocal migration rate

To estimate the migration pattern of M. caputdraconis between EI
and SG, the historical migration rate (MH) was assessed using
Migrate software (Beerli and Felsenstein, 2001). This software
employs a coalescent approach to estimate mutation-scaled
migration rates (M ) for each group over the last 4NE generations.
The default settings were used except for the following run
options: (i) the Bayesian inference module using the Brownian
motion mutation model; (ii) one single long run utilising heating
with temperatures of 1.0, 1.5, 3.0, and 10,000 [see Beerli (2008)
for more information about temperatures]; (iii) sampling ten
replicates from each set of 400,000 at intervals of 100; and (iv) dis-
carding the first 100,000 visits. The uniform prior distributions
ranging from 0 to 100 with a delta of 10 were used for both muta-
tions scaled by population size for theta (Θ) and M. The historical
migration rate was calculated as MH =M × μ, where M = the his-
torical gene flow rate scaled by the mutation rate and μ = the
mutation rate. For this analysis, a mutation rate of μ = 2 × 10−3

was used, as in other gastropods (Gow et al., 2005). The analysis
was replicated four times and the effective number of migrants
(Nm) was estimated as Nm = (Θ ×M )/4. Migration analyses
were performed at the National Center for High Performance
Computing (NHLPC) of the Facultad de Ingeniería,
Universidad de Chile.

Biophysical model for larval connectivity

The larval connectivity or exchange of individuals among islands
was studied through a spatially explicit individual-based model
(IBM) of larval transport that was coupled to the hydrodynamic
output of a 3-D interannual configuration of the regional oceanic
modelling system (ROMS) for the period 2011–2014 and at
approximately 3 km resolution across the study area. The ocean
model simulation setup is detailed in Meerhoff et al. (2018),
who also analysed the connectivity between the two islands
based on an IBM approach. The IBM was implemented with
the Ichthyop code (Lett et al., 2008), and the larval connectivity
between and within islands was calculated for larvae that success-
fully reached a recruitment area. The following features were used
for the analysis:

a. Release/recruitment areas. Four areas were defined: three
zones at EI following the morphology of the coast and one
at SG (Figure 1). We used three areas in EI following the
morphology of the island expecting different current circula-
tion among these areas. We do not define different release
areas in SG due to the size of the island.

b. Number of virtual larvae released. Due to computational lim-
itations, a total of 250,000 virtual larvae were released from
the release areas in each simulation.

c. Timing of larval release. Considering that the reproductive
activity ofM. caputdraconis occurs year round, with increased
activity during spring and summer (Osorio and Gallardo,

1992), the analysis considered 250,000 virtual larvae liberated
each month for three years: 2011, 2012, and 2013.

d. Depth of larval release. Because most species from the Family
Cypraeaidae inhabit waters less than 30 m in depth (Kay,
1985), the release areas were defined at 0–50 m following
information regarding the adults’ distribution.

e. Planktonic larval duration: there is no published information
about the pelagic larval duration of M. caputdraconis; hence,
the model was evaluated for 14 days, following field observa-
tion performed by Osorio (personal communication).

For the analysis, a passive horizontal transport (forward Euler
method, with a time step of 0.75 h) was implemented to run
the model. A successful larva reached (or was found within) the
‘recruitment area’ at the end of its planktonic larval duration.
Recruitment areas coincided with adult spawning areas (release
areas).

Results

Population genetic analysis

The 11 loci were polymorphic at both islands; the allelic richness
per locus varied from 1.92 (locus Pure50) to 11.86 (Pure18) at EI
and from 1.62 (locus Pure 50) to 11.59 (locus Pure18) at SG
(Supplementary Information S1). Genetic diversity (EI = 0.701,
SG = 0.665) and allelic richness (EI = 7.213, SG = 6.974) were
similar in both islands. Significant departures from HWE were
detected consistently in one locus (Pure19); therefore, this micro-
satellite was not used in most of the analysis (Supplementary
Information S1). Further, relatedness analysis performed with
Identix software not detected related individuals (full or half-sibs)
in the samples.

The three methods employed to determine the population
structure suggested that M. caputdraconis of EI and SG belong
to the same genetic population. The FST and G”ST indexes
(FST = 0.004, P = 0.128 and G”ST = 0.078, P = 0.101) did not
detect a significant difference between EI and SG. The values of
Ln(K) obtained from STRUCTURE showed a maximum likeli-
hood value at K = 1 (Figure 2). The PCoA results demonstrated
that most individuals shared the same space in the three main
principal coordinates axis (Figure 3).

Measures of convergence and robustness of the four runs of
Migrate software showed similar values (Supplementary Material
S2); the effective sample sizes were in order of thousands as
expected for robust analyses (see Beerli et al., 2019). Further,

Figure 2. Population structure of M. caputdraconis inferred using the software
STRUCTURE for K = 1 to K = 3 of the 105 individuals analyzed with ten microsatellites
loci. A vertical bar represents each individual, and each colour represents the prob-
ability of belonging to one of the K genetic clusters.
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histograms of Θ showed an unimodal distribution (Supplementary
Material S3), describing a correct runtime used for the analyses.
The results of the four independent runs of the Migrate software
are in Table 1. The mean mutation-scaled historical migration
rates (M ) were MSG→EI = 2.441 (SD = 0.927) and MEI→SG =
1.837 (SD = 0.163); the estimates of Θ were 9.68 (SD = 1.842) for
EI and 3.826 (SD = 0.393) for SG. Using a mutation rate of 2 ×
10−3, the migration rates between localities were MHSG→EI =
0.49% and MHEI→SG = 0.37%. The mean for self-recruitment
(estimated as 1− the total immigration rate) was 99.51% at EI
and 99.63% at SG. The estimated Nm were NmSG→EI = 5.91
and NmEI→SG = 1.76 per generation.

Population connectivity according to the biophysical model

No larval connectivity or transport between islands was detected
through the biophysical model for the 14 days of evaluated plank-
tonic larval development (see Figure 4). The results were consist-
ent for larvae released every month for 3 years. However, it is
interesting to highlight that 1–45% of the total released larvae
were self-recruited in EI (Figure 5). The maximum self-
recruitment observed in EI was for larvae released in July 2012.
However, self-recruitment was lower in SG and only occurred
during some months (April and May 2012, Figure 5).

Discussion

The results of the genetic variability and biophysical model
obtained for the gastropod M. caputdraconis showed a clear pat-
tern of low connectivity between EI and SG. Whereas the number
of migrant estimations obtained with genetic data showed an
exchange of <1% between the islands, the biophysical model did
not detect particles that moved between the islands at both
monthly and annual timescales. These observations suggest that
the length of pelagic larval duration and/or movement of the
water would not allow a continuous flow of larvae between the
islands.

It is known that the time of permanence of larvae in the water
column is one of the best predictors of genetic connectivity of
marine benthic organisms (Shanks, 2009; Modica et al., 2017).
Empirical data confirmed that the longer the pelagic larval dur-
ation, the higher the probability of reaching remote zones and,
thus, of having a distant connectivity. For example, Melarhaphe
neritoides presents a pelagic development of 4–8 weeks

Figure 3. PCoA plot for Monetaria caputdraconis samples using ten microsatellites. (a) PC1 vs PC2, (b) PC1 vs PC3. Individuals were coloured by their sampling
locality; circles represent 95% of the variance from the centroid. PCoA axes are labelled with the variance that they represent; scree plots of eigenvalues represent
variation explained by additional axes.

Table 1. Result of the migration analysis performed with Migrate software.
Mean and standard deviation were calculated using data of each
independent run

Mutation-scaled migration
rate M (individuals per

generation)

Mutation-scaled
effective population
size Θ (number of

individuals)

MSG→EI MEI→SG Θ EI Θ SG

Run 1 1.262 2.009 8.052 3.265

Run 2 3.321 1.921 9.317 4.184

Run 3 2.195 1.782 12.321 3.939

Run 4 2.985 1.636 9.031 3.917

Mean 2.441 1.837 9.680 3.826

SD 0.927 0.163 1.842 0.393
Figure 4. Particle trajectories obtained for particle released in (a) 2011, (b) 2012, and
(c) 2013. The figure shows the final position after 14 days of simulations.
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(Johannesson, 1992), and its populations have a large geographic
extension in Europe (Fourdrilis and Backeljau, 2019). In Chile,
the muricid Concholepas concholepas has a planktonic larval
development of up to 3 months (Disalvo, 1988) and shows genetic
populations with large geographic extensions (>500 km)
(Cárdenas et al., 2016). However, gastropod species with shorter
larval development have shown a smaller distance of connectivity
between populations. For example, Patella ferrugínea presented
genetic differences in populations separated by more than 100
km in the island of Sardinia (Casu et al., 2006). P. ferrugínea
has a larval development with a similar length to M. caputdraco-
nis, suggesting that the planktonic larval duration of M. caputdra-
conis is not sufficient to regularly connect EI and SG. Overall,
gastropod species with short larval dispersal are candidates for
low connectivity and endemism (Meyer, 2003; Meyer et al., 2005).

Among the physical factors that could influence the larval
movement between populations, the wind velocity (Bertness
et al., 1996), internal waves (Shanks, 1986), mean direction of cur-
rents (Ellien et al., 2004), eddies (Adams and Flierl, 2010), upwell-
ing zones (Roughgarden et al., 1988), and other mesoscale
processes (Wing et al., 1998; Shulzitski et al., 2018) are the
main drivers. Perhaps, the most documented are the geographic
breaks produced by changes in the oceanic currents flow, which
prevent the passage of larvae from one region to another. Some
breaks have been described in California (Pelc et al., 2009) and
Chile (Haye et al., 2014). In the case of the EI and SG system,
there are no geographic breaks, and the mean surface currents
are <6 cm s−1 between both islands (Chaigneau and Pizarro,
2005; Meerhoff et al., 2018), which considering an approximate
distance between the island of 400 km yields an average transit
time of ∼77 days at such speed (6 cm s−1). EI and SG are located
in the east-central South Pacific gyre (von Dassow and
Collado-Fabbri, 2014), a typical gyre that circles around large
areas of essentially stationary, calm water (Constantin and
Johnson, 2017). Hence, the mean water flow between the islands
is relatively weak compared to other zones in the south-oriental
Pacific Ocean. For example, surface currents measured between
Juan Fernández and Desventuradas islands (Chaigneau and
Pizarro, 2005) and surface geostrophic velocities in the coast off
Chile are up to 20 cm s−1 (Letelier et al., 2009). Overall, water cur-
rents between EI and SG may be too slow to promote larval move-
ment between these islands. In addition, eddy activity around EI is
relatively marked (Dewitte et al., 2021; their Figure 3b) and, thus,
may act as a barrier for the connectivity through producing cha-
otic mesoscale recirculations.

The few migrants detected for M. caputdraconis through gen-
etic data, but the lack of migrants obtained through the biophys-
ical model shows that an alternative mechanism could be involved
in the connectivity between the islands. One such mechanism

might be the movement of adults through rafting. It is known
that some gastropods can perform rafting to cross oceans. For
example, it is suggested that Diloma nigerrima crossed the
Pacific Ocean, from New Zealand to Chile, using macroalgae
that drift with the currents (Donald et al., 2011). This mechanism
has also been suggested for other gastropod species that do not
have free-swimming larvae but present populations with large
geographic extensions (González-Wevar et al., 2018). It is possible
that the rafting is involved in the movement of the juvenile or
adult M. caputdraconis, as suggested by Valencia et al. (2021)
for the fish K. sandwicensis between the same islands.
Additionally, Rech et al. (2020) found that molluscs are frequently
rafting taxa in anthropogenic debris in this area. However, it is
important to consider that genetic analyses may be influenced
by the limited number of loci employed to estimate population
genetic structure, as well as the use of the same mutation rate
for all microsatellites in the Migrate software. This limitation
could impact the accuracy of the reciprocal migration rates calcu-
lation, as it may lead to an under or overestimation of the effective
number of migrants between the islands. Overall, it is necessary to
perform more studies to understand the importance of the num-
ber of loci used, debris, and the water circulation between the
islands in the population connectivity of marine benthic species.

The self-recruitment of modelled M. caputdraconis larvae was
higher in EI and presented interannual and monthly variability in
both islands. It has been postulated that near the coast of EI, the
geostrophic flow includes vertical and horizontal shears, which,
combined with the vertical migration behaviour of the larvae, pro-
mote larval retention (Meerhoff et al., 2017). In addition, this
hydrodynamic pattern that promotes larval retention is consistent
with the high abundance of ichthyoplankton and insular ichthyo-
plankton species reported for the south coast off EI (Castro and
Landaeta, 2002; Landaeta et al., 2003). Meanwhile, for the SG
islands, more studies are required to understand the factors that
explain the restricted periods of self-recruitment to a few months
of the year.

What do we know from the EI and SG system until now?

These two islands share most of the endemic species (Friedlander
et al., 2013). Hence, some degree of connectivity between their
populations is expected. Although there are few species studied
in the system, previous studies showed a similar pattern, with
no genetic differentiation between the groups inhabiting both
islands but with a low level of connectivity. In the case of the
endemic lobster Panulirus pascuensis, a low but asymmetric con-
nectivity, with considerably more flow from SG to EI, between the
islands with both the genetic data and the biophysical model was
detected (Meerhoff et al., 2018). This species presents a larva that

Figure 5. Time series of M. caputdraconis self-recruitment in both islands (monthly mean from three replicates is presented).
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exceeds 10 months of planktonic life, which could explain the
connectivity detected. On the other hand, for the rudderfish
Kyphosus sandwicensis which has a larval stage of 1 month, it
was not possible to detect particles migrating between both
islands, but a historical migration rate of 0.15% from EI to SG
and 0.2% from SG to EI was found (Valencia et al., 2021). The
authors suggested that stochastic processes such as rafting could
be involved in the connectivity of K. sandwicensis between these
islands.

Thus, the distance between the islands, the relatively weak cur-
rents between the islands, and the larval development length
would explain the low connectivity of M. caputdraconis. In this
context, the Motu Motiro Hiva Marine Park located at SG
Island could be a reservoir of M. caputdraconis conservation;
however, larval export may not enough to replenish Easter
Island population in the case of overexploitation. Other evidence
also showing low connectivity has been reported between marine
protected areas (MPAs) from Brazil and compromises the conser-
vation of reef fishes by these MPAs (Endo et al., 2019). These ele-
ments are important for understanding how populations of the
species remain connected; therefore, they must be considered in
the conservation plans proposed for different species with conser-
vation goals.

Finally, in a global warming context, it is expected that there
will be an overall increase in south-easterly trade winds of the
South-eastern Pacific that are likely to increase the connectivity
pattern between Juan Fernandez and Desventuradas islands and
along the SG ridge, through increasing wind-driven mean ocean
currents (Dewitte et al., 2021). However, in addition to changes
in wind, it should be considered that plankton communities of
the South Pacific sub-tropical gyre are also threatened by ocean
acidification (Doney et al., 2012), and larvae of marine gastropods
are particularly vulnerable to this process (Bogan et al., 2019),
with possible impacts on larval survival and connectivity.

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/S0025315423000437
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