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MANUFACTURING SEQUENCES FOR
THE ECONOMIC LOT SCHEDULING PROBLEM

JAMES M. FITZ-GERALD AND ELIZABETH J. BILLINGTON

In the basic Economic Lot Scheduling problem, a production

schedule is required to manufacture sequentially a number of

products on a single machine, with the schedule chosen to

minimize set-up and inventory costs. The products suffer

continuous demand, and no shortfall is allowed. A recent

approach involves repetitions of a production cycle (such as

ABCBC for three products A, B and C , with manufacturing

times chosen to prevent shortage occurring); an exhaustive

search is performed over a large set of possible cycles to

discover the optimal schedule.

This paper discusses the question "How many such cycles need be

examined?", since the answer is very relevant to practical

application of the method. The case of three products is

considered. Complete information is obtained for cycles up to

length 12 (that is, 12 production switch overs), and partial

results for longer ones. An estimate, apparently reasonable, is

obtained for cycles of any length. The major trend to emerge is

that surprisingly few cycles are involved.

1. Introduction

In the simplest form of the Economic Lot Scheduling problem, a single

machine is used to manufacture a number of different products, at known,

and in general different, rates of production. Each product has a
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continuous, steady demand. Only one product can be manufactured at a time,

so that during the time in which product A is being produced, enough

inventory must be accumulated (production must obviously exceed demand) to

meet demand during the time interval until the next production run of A .

Machine capacity is sufficient to cope with demand for all products, and

there may in fact be slack time.

Each time that a change-over occurs, a set-up cost is incurred,

suggesting that long production runs are preferable. On the other hand,

storage costs are incurred for holding inventory that are proportional to

the level of stock and the time for which it is held. This suggests that

short production runs are more economical. The Economic Lot Scheduling

problem is to determine the sequencing of manufacture in order to minimize

total costs.

It is well known that for a single product the optimal schedule is to

produce cyclically, alternately accumulating and consuming, with a constant

period determined by the "square root law" from the set-up and holding

costs. In theory, the optimal multi-product solution would be a super-

position of the independent "best" cycles; in practice, unless some

remarkable coincidences exist, overlapping of the production runs will

occur, rendering the scheme infeasible. However, the independent-cycle

solution provides a lower cost bound on the optimal feasible solution.

The simplest feasible solution is the corrmon cycle schedule. Products

are made in strict rotation, with a common period. Individual manu-

facturing times are selected to cope with demands, and the period is chosen

to minimize costs over this very restricted class of solutions. It is not

difficult to show that the existence of a common cycle solution guarantees

sufficient machine capacity and vice versa. Clearly, the best common cycle

solution provides an upper cost bound on the optimal feasible solution.

Better feasible solutions have been sought for over thirty years.

Virtually all published work has used the "basic period" approach or its

extensions. This class of solutions requires that each product has a

strictly periodic schedule, with equally-spaced manufacturing periods of

equal length, but that each product may have its own period. All such

periods must, however, be integral multiples of a basic period, to avoid

infeasibility due to overlap. The hope is that each period may be made

reasonably close to the independent "best" value. What is found, if such a
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solution is available (and discoverable!) is an overall cycle, of period

equal to the least common multiple of the individual periods, in which each

product appears at least once.

Considerable ingenuity is required to find multipliers which allow the

manufacturing intervals to be "fitted-in" to the schedule. Almost

invariably, some version of a dynamic programme is used, as for example in

Bomberger [/]. Decision rules, often heuristic, provide for cost

minimization over the limited family of schedules found. It is clear that

these methods optimize over a restricted class of feasible solutions, and

that the restrictions become severe as the machine approaches its capacity

limit, when little slack time is available to allow fitting-in adjustments.

Furthermore, the computing requirements of such a search-and-modify

technique are likely to be high. A review of work along these lines has

been given by Elmaghraby [2].

Recently Fitz-Gerald [3] introduced the concept of the repetitive

multiple period cycle, most easily explained in terms of an example.

Suppose three products A, B and C are to be manufactured. A cycle is

any sequence in which each of A, B and C appears at least once, and no

immediate repetitions occur. Thus ABC, ABCBC, ACABCB are all cycles,

while BCBC and ABBAC are not. A cycle is repetitively feasible for a

cycle time T if, by manufacturing in the order specified, it is possible

to satisfy product demands for the period T , without leaving shortages or

requiring overlaps of production, and without requiring production for

longer than T . The cycle is thus self-contained, and a schedule

consisting of repetitions of the cycle provides a feasible solution to the

Economic Lot Scheduling problem. Such a schedule is called a repetitive

multiple period cycle solution. The "multiple period" refers to the fact

that each appearance of a product in the cycle will involve a manufacturing

time different from those for other appearances of that product. There

will be periodic behaviour associated with each appearance, all of period

T , and hence multiply-periodic behaviour for the collection of all

appearances of any product.

Fitz-Gerald [3] has shown that if the common cycle solution is

feasible, all possible cycles are repetitively feasible. If set-up is

instantaneous, any cycle time may be used; if set-up time is required, a

lower limit is placed on the range of available cycle times for a given
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cycle. If slack time is available, and a basic-period type solution

exists, such a solution will be included among the repetitive multiple

period cycle solutions (and will represent the optimal distribution of

slack time for that cycle). Clearly, for a given number of products, all

cycles may be listed, with an enumeration procedure based on cycle

complexity.

The modus operandi for a practical problem is to evaluate

systematically the optimal cost per unit time for all cycles in the list.

For the case of no slack time, each evaluation requires solution of a set

of linear equations for the manufacturing times, and substitution into a

simple formula. The order of the matrix to be inverted is the length of

the cycle (for example, 5 for the cycle ABCBC ). No search procedure is

needed. In practice, evaluation will be terminated when cycles of

impractical complexity are reached, or when the lower bound has been

sufficiently closely approximated. Some modification of the evaluation

process is needed to make efficient use of any available slack time.

The repetitive multiple period cycle approach provides access to a

very large class of solutions to the Economic Lot Scheduling problem. Its

utility is limited only by the computational effort involved, and hence by

the number of evaluations needed as the cycle length increases. This paper

examines in some detail the problem of the number of cycles for the three-

product case. Complete results are obtained for cycles up to length 12 ,

together with partial information and an estimate for more complex cycles.

2. Framework, definitions and notation

2.1. PRELIMINARY CONCEPTS

The length of a cycle, P , is the number of set-ups or places in that

cycle; for example, ABCBAC has length 6 . The repetition number n.

is the number of places occupied by A ; in the example,

n. = 2 = n., = n_ . A composition is an ordered set of repetition numbers,

(n., «„, nJ) when there are three products. A standard composition is one

in which the elements form a non-decreasing sequence; for example,
(2, 3, 5) is a standard composition with n. = 2 , nn = 3 , and rin = 5 •

A D L
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2.2. MODES

Consider a cycle ABABCB , constructed from the composition

(2, 3, 1) . This may be obtained from the related cycle BCBCAC by

applying the cyclic permutation {ACB) ; moreover, this second cycle is

constructed from a standard composition (l, 2, 3) . For purposes of

enumeration, therefore, it is necessary to consider only those cycles

constructed from standard compositions. Calculations of optimal cost and

cycle time for a cycle,from a non-standard composition may be performed by

simple permutation of cost and demand parameters on the results for the

corresponding standard form.

What constitutes "standard form"? It is clear that any cycle may be

written with an A in the first place: the cycle BCBCAC above is

equivalent to ACBCBC , obtained by restarting five places in. This leads

to the concept of a mode, defined basically as a cycle constructed from a

standard composition, beginning with an A , which cannot be obtained from

any other mode by permutation and/or restarting. Thus ACBCBC is the

(only) mode from the standard composition (l, 2, 3) .

If rij. > 2 , rules are needed to standardize the starting point.

These involve the lengths a. of the spacings between successive A's ;
Is

for ABACBCACB , a = 1 , a = 3 , a = 2 .

(a) If there is a unique smallest a. , the mode places this first;
1s

thus ABCACBCB is the mode, not ACBCBABC .

(b) If the smallest a. is repeated, the mode has these least a.

as close as possible to the front of the cycle, beginning with one of them.

(c) If necessary, further ambiguity is resolved by taking the next

smallest a. as close as possible to the front; ACACBACBACABCBCB is the
X'

mode with spacings a. equal to 1, 2, 2, 1, 5 , and not

ACABCBCBACACBACB , with spacings 1, 5, 1, 2, 2 . However, the smallest

spacings between successive A's (two of length 1 ) occur in the same

positions in both expressions here.

(d) Additional ambiguity may arise, even when the order of the

spacings between the A's has been determined, if nB = nn . Where
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necessary, t h i s i s resolved by preferring B to C as early as possible

in the cycle: ABCBC i s the (only) mode from ( l , 2 , 2) , not ACBCB .

Of course these ru les have no i n t r i n s i c s ignif icance, and are used

merely to allow standardized mode enumeration. We note in passing that

repeated applicat ion of ru le (c) may be necessary for very long, complex

cyc les .

2.3. MODE NUMBER

In the cycle-counting problem of this paper, enumeration of modes is

clearly the cornerstone, underlying all that follows. A standard

composition will in general have several associated modes. The mode number

F for a standard composition is the number of such modes. Thus for

(l, 1, 2) , F = 1 (the mode is ACBC ); for (2, 3, 3) , F = h (the

modes are ABACBCBC, ABC ABCBC, ABC ACBCB, ABCBACBC ). Finding the mode

number for a given composition is far from trivial, and is the central

theme of the succeeding sections.

2.4. PERMUTATION NUMBER

Each mode represents a collection of related permuted cycles, each

having its own optimal time and cost. In general, the permutation nwrber

G for a mode, or the number of distinct permuted cycles, is 6 .

Degeneracy occurs, and is indicated wherever necessary in the mode

discussion. For example, for the mode ACBC , G = 3 {ACBC, BACA, CBAB );

other cycles are restarts of these.

2.5. MODUS OPERANDI

The foregoing paragraphs indicate a suitable line of attack on our

basic problem: "How many different cycles are there of given length P ?"

Firstly, identify standard compositions giving cycles of length P .

Secondly, deduce the mode number for each, and count the total number of

modes. Thirdly, count the associated cycles, taking degeneracies into

account. The first theme is developed in Section 3.

3. Families of compositions

Several useful comments, some already implied, may be made about the

structure of cycles of three products. Firstly, immediate repetitions of

letters need not be considered. Such a repetition implies slack time,
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since the machine lies idle while the inventory accumulated during the

first run is consumed. Moreover, no set-up cost is involved for the second

run, so that "immediate repetition" may be discarded in favour of

"effective use of slack time".

Since sequences such as ABBC or ABACA are not valid, it is clear

that

nt < iP , i € {A, B, C}

for all repetition numbers, and hence, since n. + w_ + «„ = P , the set of

n. satisfies the triangle law.

Consider the spaces of lengths a. between successive A's . B and
Is

C must alternate in the available places, and each such space is

characterized by its leading member B or C . If a- is odd, the

leading letter appears once more in the space than the other. The

multiplicity (mode and permutation) properties of a cycle in which such a

sequence of B's and C's appears depend only on the parity of a. and

its leading member.

A principal composition is a standard composition in which n. = n_ .

Clearly n. S n~ S 2w. from the preceding remarks.

A family is a set of standard compositions characterized by a

principal composition («., n~ , n~ ) and an index m :

\n., n_ +m, n~ +m] . Thus [l, 1+m, 2+m] is the family with principal

member (l, 1, 2) , followed by (l, 2, 3), (l, 3, U) and so on. Several

properties may be mentioned.

(i) Every standard composition is a member of Just one family.

Consider any standard composition (n., ng, «_) , and define k = «_ - n. ,

n_ = n - k = n . , nr = nr - k . ThenBQ B A CQ C

(nA' nB' nC^ ~ (nA' nB **' nC +k)
0 0

and nD , nn , k are unique. Trivially, no principal composition can be
B0 C0
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a member of another family.

(ii) There are n. + 1 families involving a given n. , since all

nr between n. and 2M. inclusive are available.

(iii) Cycles constructed from all members of one family are either

all even length or all odd length, since n. + n + n_ = P has the same

parity as P = P + 2m . Hence a family is defined to be an even or odd

family depending on the parity of its principal length P .

(iv) Consider a given cycle length P . Then every family of the

same parity as P , with PQ S P , has just one member from which cycles of

length P are constructed; the index, m , of the member is %[P-P J .

How many families have principal length P ? Consider the principal

member of such a family, [n,, n., nn ) . Clearly 2n. + nn = P ,
A 0 0

«_ i n . , ŵ , 5 2w. . Hence n., n., nn must be a partition of P
C0 0 0

with one repeated integer, and

3nA ~ P '

Any n. which satisfies

f̂ Pl < n, s UPJ

will generate a principal composition of length P . The number of these

n.'s depends on the residue of P modulo 12 . Suppose P = 12k + a .

Then, for example, if a = 0 , there are fc + 1 of these n ; if a = 1 ,

there are fe of them, and so on. In fact there are k + 1 for all a

except 1,2 and 5 , for which there are k . These results are not

difficult to derive.

How many families contribute a composition of given length P ? (That

is, how many families need be considered when discussing the number of

modes of given length?) Clearly, all families of the same parity of P

https://doi.org/10.1017/S0004972700004949 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700004949


The Economic Lot Scheduling problem 413

for which P < P contribute a composition. In the range 12i to

12£ + 11 , there are 6i + k odd principal lengths and 6i + 5 even ones,

except that when i = 0 , there are only h (not 5 ) even ones. Suppose

again that P = 12k + a , a odd. Then there are

k-1
I (6i+l») = *(3*+l)
i=0

odd families with principal lengths less than or equal to 12k - 1 and k

more if a = 1 , 2k + 1 more if a = 3 , or ±(k(a+l)+a-3) more if

a > 3 . If a is even, there are

k-1

i=0
(6i+5) - 1 = - 1

even families with principal lengths less than or equal to 12k - 2 , and

k + 1 more if a = 0 , 2k + 1 more if a = 2 , or i(k(a+2)+a) if

a > 2 . A table may be constructed.

TABLE 3

Number of families contributing to given composition length

p

12k

12k + 1

12k + 2

12k + 3

12k + h

12k + 5

12k + 6

12k + 7

12k + 8

12k + 9

12k + 10

12k + 11

No. of contributing families

fc(3fc+3)
k(3k+2)

fc(3k+lt)

k(3k+3)

k(3k+5)

k(3k+U)

k(3k+6)

k(3k+5)

k(3k+7)

k(3k+6)

k(3k+8)

k(3k+7)

+ l

+ 1

+ 1

+ 2

+ 2

+ 3

+ 3

+ h

+ 1*

Thus, for example, when P = 27 there are 19 contributing families,

that is, 19 standard compositions giving rise to cycles of length 27 .

The next problem to be faced is that of finding the number of modes

available from each composition. Why consider families at all? Apart from
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making compositions simple to categorize and count, it is possible (at

least for small n. ) to produce a general result giving the mode number

for all members of a family.

4. Families with « = 1

As property (ii) of the previous section indicates, we have precisely

two families with n. = 1 : [l, 1+m, 1+m] and [1, 1+m, 2+m] . These

account for all standard compositions with n. = 1 .

The family [l, 1+m, 1+m] has the single mode ABCBC ... BC ,

consisting of A followed by BC repeated 1 + m times. Since inter-

change of B and C in this mode yields ACBCB ... CB ,•this is not

considered to be a different mode. If m > 0 , the permutation number of

the mode is 6 , because each of the six permutations on the set {A, B, C}

gives rise to a new cycle, while if m = 0 , composition (l, 1, l) has

the single mode ABC with permutation number 2 .

The family [l, 1+m, 2+m] also has only one mode, ACB ... BC ,

consisting of AC followed by BC repeated 1 + m times. This has

permutation number 6 if m > 0 , while if m = 0 the permutation number

is 3 :

Permutation

(A)(B)(C)
(AB)(C)

(AC)(B)
(ABC)

(A)(BC)
(ACB)

Cycle

ACBC
BCAC

CABA
BACA

ABCB
CBAB

}
}
}

same cycle

same cycle

same cycle

We summarise in a table.
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TABLE 4

Values of mode number, F , for n. = 1

1

2

3

I t .

;

1

1

2

1

1

3

1

1

It

1

1 1

1

Permutation number, G , is 6 , except in the cases of the modes for

(l, 1, l) and (l, 1, 2) , which have G = 2 and G = 3 respectively.

5. Families with n. = 2

In this case there are 3 distinct families, which account for all

the standard compositions with n, = 2 .

5.1. THE FAMILY [2, 2+m, 2+m]

Any mode is of the form A ... A ... , where the "gaps" between the

A's are filled with S's and C's , each 2+m times. Clearly any even

gap must be filled either with BC repeated a number of times, or with CB

repeated a number of times, while any odd gap is completed with either

CB ... BC (using one more C than B ) or BC ... CB (using one more B

than C ).

If a, and a. are odd, since n D = n_ and recalling the rules (a)

and (d) in Section 2.2, we have a 5 a , and the a -gap contains

BC ... CB while the a -gap contains CB ... BC . Thus in this case there

is the single mode A BC. ... CB A CB ... BC .
% 3: ^ '—a:—'
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If CL and ou are even, when m > 0 and OL < ou there are two

modes:

A .BC . . . BC A .BC . . . BC . a n d A .BC . . . BC A .CB . . . CB . .

? ^ ai ^

When a. = ou = 2 + m is even and m > 0 , there is a single mode:

A .BC ... BC A.CB ... CB ..
2+m 2+m

This is because the cycle A .BC ... BC A .BC ... BC . is not counted, being

2+m 2+m

two copies of the cycle ABC . .. BC of length 3 + m , arising from the

standard composition (l, i(2+m), |(2+m)) .

When m = 0 , we have the case of the principal composition

(2, 2, 2) , which has the single mode ABACBC , since the cycle ABCACB

with the permutation (ABC) applied to it produces the cycle BCABAC ,

which is the mode ABACBC once again.

Now the integer k + 2m partitions into two positive parts thus:

h + 2m = 1 + (2m+3) ,

2 + (2w+2) ,

(m+2) + (m+2) .

It follows that the mode number, F , is

|(m+3) + 2.i(m+l) if m is odd,

-(m+2) + 2.-m + 1 if m is even, m > 0 .

That is,

F =

|(3w+5) , m odd,

even, m > 0 ,

1 , m = 0 .

Permutation numbers, G , are 6 , except in the following cases:

the mode ABACBC has G = 3 ;

the modes A BC ... BC A CB ... CB (m even, m > 0) have G = 3 ;

m+2
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the modes A.BC ... CB.A.CB ... BC. (m odd) have G = 3 .
' m+2 m+2

5.2. THE FAMILY [2, 2+m, 3+m]

As in the previous section, the value of F in the case m = 0 (the

principal composition for this family) is lower than might be expected.

The composition (2, 2, 3) has modes

ACABCBC and ABCACBC ,

so F = 2 here. (The cycle ACACBCB is equivalent to the first of these

two modes under the permutation {AB)(C) , while the cycle ACBACBC is

equivalent to the second mode, also under {AB){C) .) Each of these two

modes has permutation number 6 .

When m > 0 , n., n_ and n_ are all distinct, so all modes in this

family will have permutation number 6 . Consider the mode

A ... A ... , where CL + ou = 5 + 2m , which is odd. Thus one of OL , a-

must be odd and the other one even. Since n_ = n_ + 1 , the odd "gap"

must be filled with CB BC , while the even "gap" may be completed with

either BC ... BC or CB ... CB . So for each partition of 5 * 2m into

two positive parts, we have two modes. Now

5 + 2m = 1 + (2m+10 ,

2 + (2m+3) ,

(m+2) + (m+3) .

Thus for any m > 0 , F = k + 2m for this family, while F = 2 when

m = 0 .

5.3. THE FAMILY [2, 2+m, 4+m]

In this case the spaces a and a_ between the A's must both be

odd and completed with CB ... BC , since w- = n_ + 2 . The case m = 0 ,

(2, 2, h) , has the single mode

ACACBCBC ,

which has permutation number 3 , because the cycle ACBCACBC is really

twice the cycle ACBC of length P = h instead of P = 8 .
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When m > 0 , we p a r t i t i o n 6 + 2m into two odd p a r t s :

6 + 2m = 1 + (2m+5) ,

/(ffH-3) + (m+3) i f m i s even,
\(m+2) + (m+l») i f m i s odd.

However the p a r t i t i o n 6 + 2m = {m+3) + (m+3) when m i s even contributes

no modes to the count of P , because

A CB . . . BC A CB . . . BC

m+3 m*3

i s two copies of the mode A CB . . . BC of half the length. Thus we have

' m+3 '

!

i(m+2) i f m i s even, m > 0 ,

£(m+3) i f m i s odd.

Each mode for m > 0 has permutation number ff = 6 .

5.4. SUMMARY FOR n^ = 2

TABLE 5.4

Values of mode number F for n . = 2

2

3

U

5

6

7

8

9

10

2

1

3

2

k

h

1

6

5

5

2

8

7

6

2

10

8

7

3

12

10

8

3

lU

11

9

k

16

13

10

k

18

lU

11

5

20
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In Table 5-1*, permutation number, G , is 6 , except for the modes for the

principal compositions (2, 2, 2) and (2, 2, 1+) , which have G = 3 , and

one mode for each of the compositions in the family [2, 2+m, 2+m] , which

also have G = 3 .

6. Families with nA = 3

6.1.

Of the four families [3, 3+m, 3+m], [3, 3+m, h+m], [3, 3+m, 5+m] and

[3, 3+m, 6+m] , we shall deal in detail with the first, and merely state

results for the remaining three. In all cases, our general mode is of the

form

TTT
where a + a + a = w_ + «_, . Thus we are interested in partitions of

nB + nC ^nt o th1"66 non-zero parts. It is straightforward to show, using

generating functions, that the number of partitions of n into three non-

zero parts, pAn) , is:

jfi if n = 0 (mod 6) ;

-^(n2-l) if n = 1, 5 (mod 6) ;

•i(n2-!*) if n E 2, h (mod 6) ;

7J (" +3) if n = 3 (mod 6) .

However we do not use this result until the next section, because in

practice to find the number of modes for standard compositions with

n. = 3 , more detail is required about the partitions: whether the a.
H X,

are all distinct or two are equal, how many are odd, and so on.

6.2. THE FAMILY [3, 3+m, 3+m]

Consider partitions of 6 + 2m into a + a + a . Either all three

parts will be even, or two will be odd and one even- When a , a and a

are even and distinct, there are four modes that may be constructed:
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A BC . . . BC ABC . . . BC A BC . . . BC. ;

0C 01 01
1 2 3

ABC . . . BCA BC . . . BC.A.CB . . . CB. ;

BC . . . BC,i4 C5 . . . CB.A BC . . .

A BC ... BC.ACB ... CB.i4,Cg ..,, Cfl. .

^ ^ S3

Similarly, taking the gaps between A's in the order a., a_, a2 gives

rise to another four such modes. Moreover, if a. = Op # a_ and OL , a^ ,

a are all even, we have four modes, and if a = (*„ = a, , even, we have

only one mode.

When two of the a. are odd and the third is even, we have modes of
if

the form (with a. even):

A, BC . . . BC. A. BC v . CB. A.CB . . . BC.

^ « 2 03

A. BC ,_. . BC. A, CB v . BC. A. BC . . . CB. .
ai a2 a 3

If the two odd numbers are distinct we obtain two more such modes by

re-ordering the par t i t ion: two from o , a , a and two from o , a , a .

The following result was found by ad hoc methods but is most easily

verified by induction on m .

PROPOSITION 6.2.1. The family [3, 3-wi, 3+m] has the following mode

number:

\{'ym +2lOT+2l) when m = 0 (mod 3) , m > 0 ;

I(5w2+21m+22) when m = 1, 2 (mod 3) ;

3 when m = 0 .

Proof. We use induction on m , in steps of size 3 . The case
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m = 0 f a i l s t o f i t the "pat tern"; i t has modes

ABACACBCB , with permutation number 2 ,

ABABCACBC , with permutation number 6 ,

ABACBCABC , with permutation number 6 .

The cases m = 1 , 2,*3 begin the induction.

Case m = 1 , (3 , 4, 4) . Par t i t ions of 8 are : 1 , 1, 6;

1, 2, 5; 1 , 3 , h ; 2 , 2 , U ; 2, 3, 3 . Thus we have

F = 2 + U + U + l| + 2 = l 6 = |(5+21+22) .

Case m = 2 , (3, 5, 5) . Partitions of 10 are: 1, 1, 8 ;

1, 2, 7 ; 1, 3, 6 ; l, U, 5 ; 2, 2, 6 ; 2, 3, 5 ; 2, U, U ; 3, 3, U .

Thus

F = 2 + I* + lt + U + U + U + U + 2 = 28 = |(5-U+21.2+22) .

Case m = 3 , (3, 6, 6) . In the same manner, using partitions of

12 , we obtain F = k3 (noting that the partition k + k + k yields mode

number 1 ), and U3 = ̂ (5.9+21.3+21) , as required.

Now consider the inductive step. Increasing m by 3 increases

nB + nC t y ^ ' f r o m ^ + ^ t o 12 + 2m . Partitions of 12 + 2m into

three parts, each of size at least 3 , arise from all partitions of

6 + 2m into three parts by adding 2 to each of the three partition

members. Thus we need only consider partitions 12 + 2m = ot + a + a

where a. = 1 or a = 2 . These are:

1 + 1 • (2m+10) ; 2 + 2 + (2m+8) ;

1 + 2 + {2m+9) ; 2 + 3 + (.2m+7) ;

1 + (w+5) + (m+6) ; 2 + (m+5) + (m+5) .

If m is even, these partitions contribute the following to F :

[2+h(m+k)) + (i(m-2).U+2) + (U+|(m+2).8) = 10m + 36 .

Similarly if m is odd, they contribute the following to F -.

[2+Hmk)) + (i(w*3).U) + (l»+U+£(ffH-l).8) = 10m + 36 .

How by the inductive hypothesis, when m = 0 (mod 3) , m > 0 , the family

[3, 3+(m+3), 3+(w+3)] has F equal to
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|(5w2+2lm+2l) + 10m + 36 = •j(5(m+3)2+2l(m+3)+2l) ,

and when m = 1 or 2 (mod 3) , it has F equal to

I(5mZ+2U7i+22) + 10m + 36 = ±(5(m+3)2+2l(m+3)+22) .

The result follows.

6.2.2 PERMUTATION NUMBERS. The case m = 0 has already been dealt

with above. In all other cases, only the permutation (A)(BC) which

interchanges B and C could give rise to a mode which has already

occurred, since nr> ~ nn > nA ' However, inspection of the mode types

shows that they all have G = 6 .

6.3. THE REMAINING FAMILIES WITH w^ = 3

We state the following results without proof; they may all be proved

by induction along the lines of the proof of Proposition 6.2.1.

PROPOSITION 6.3.1. (i) The family [3, 3+m, h+m] has mode number

|(m+3)(5m+12) if m > 0 ,

10 if m = 0 .

(ii) All •permutation numbers for the above modes are 6 , except for

the modes

ACACABCBCB and ABCACBACBC ,

in the case m = 0 j these each have permutation number 3 .

PROPOSITION 6.3.2. (i) The family [3, 3+m, 5+m] has mode number

m2 + 7m + 12 if m > 0 ,

6 if m = 0 .

(ii) All permutation numbers for the above modes are 6 .

PROPOSITION 6.3.3. (i) The family [3, 3+m, 6+m] has mode number

±(m+k)(m+5) if m $ 0 (mod 3) ,

|(m+3)(m+6) if m = 0 (mod 3) , m > 0 _,

2 if m = 0 .

(ii) All permutation numbers for the above modes are 6 t except for

the following mode in the case m = 0 , which has G = 3 :
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ACACACBCBCBC .

TABLE 6.4

Values of F when n.

Y
"B\

3

U

5

6

7

8

9

10

11

3

3

It

10

16

5

6

3U

28

6

2

20

55

It3

7

5

30

81

62

8

7

It2

112

8U

9

9

56

1U8

109

10

12

72

189

138

11

15

90

235

170

12

18

110

286

7. An estimate for general nA

7.1. THE FORM OF THE ESTIMATE

Although detailed discussion of cycles with n. > 3 is possible, the

analysis will become very involved as n. increases. We now obtain an

estimate, almost certainly an over-estimate, for the total number of modes

with prescribed cycle length P and number of A's , n. .

First, we note that placement of the n, i4's , starting with an A ,

leaves P - n. positions to be occupied by B's and C's . These P - n.

positions are divided into n. pieces of lengths a , a , ..., a , which
A 1 2 nA

appear in some order. As mentioned in Section 6, the a. form a partition
1

of P - nA into n^ pieces; there are Pn such partitions.

Next, these pieces can be arranged in at most [n.-i)\ ways,
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remembering that we always begin vith the least a. , or a specified least

one (see Section 2.2) . Some of these (n^-l) ! arrangements wil l not

produce dis t inct modes. Reshuffling repeated ot. will not give a

different mode, while some arrangements will violate requirement (b) or (c)

of Section 2.2. Hence the approximation p (?-«/,) • ("̂ -l) ' as the number

nA A A

of mode-generating placements of the n. A's is an overestimate of the

actual number.

Next, let us consider the number of ways that B's and C's can

occupy the remaining positions, subject always to the proviso »^ S n» .
Only the leading letter of a piece of length a. need be considered.

Suppose a partition a , a , , a consists of X odd numbers and V
L d nA

even numbers, so X + p = n. . Discussion in earlier sections shows that

any even length piece may begin with B or C , and up to half the odd

length pieces may begin with B . Two cases arise.

(a) X is odd. B may be the first letter in 0, 1 or

(X-l)/2 of the odd pieces. Thus B may begin 0 of these in 1 way, 1

of these in ( ) ways, and so on, with a total number for the odd pieces of

|(X-l) x

Y. (v) • Moreover, the number of ways of beginning the even pieces is
i=0

2 . Thus the total number of ways of inserting B's and C's in this

case is

2^ i ( E l } (J) - 2y • i • I Cj) . -nee X is odd,
i=0 i=0

= 2 .

(b) X is even. A similar argument leads to a number of ways of

inserting B's and C's equal to
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i=0

V1
For this case, the approximation 2 as the number of ways of placing

5's and C's is an under-estimate, although the proportional error

decreases quickly as A increases.

Finally, the estimate for the number of modes with prescribed P and

nA is

E(P,nA)

Although it is not completely clear whether this is an over or under-

estimate, we conjecture that the possibilities for duplication in placing

of A's outweigh the cases lost in the estimate for placing of B's and

C's , particularly for larger n. . Further conjectures on the accuracy

and usefulness of the estimate will be made after comparison with the

actual figures for n^ equal to 2 and 3 . Trivially, E(P, l) = 1 ,

and this is exact, because only one mode exists when n. = 1 .

7.2. PERFORMANCE FOR n. = 2

When n. = 2

P2(P-2) =
f|(P-3) , P odd,

(|(P-2) , P even.

Thus

E(P, 2) =
P-3 , P odd,

P-2

The actual number of modes, say A{P, 2) , also depends on the parity of

P . Suppose P is even. Then the modes will be made up of contributions

from the families [2, 2+m , 2-Hn ] , m = |(P-6) , and [2, 2-Hn2,
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m- = ~(P-8) . Clearly m and m have opposite parities, and the

results of Section 5 show that

A(P, 2) = P - 3 ,

unless P = 6 , when A(6, 2) = 1 ; this corresponds to the exceptional

case m = 0 .

If P is odd, a similar argument shows that again A(P, 2) = P - 3 ,

unless P = 7 , when 4(7, 2) = 2 . Table 7.1 shows the comparison between

actual and estimated values.

TABLE 7.1

Actual and estimated mode numbers for n. = 2 , with estimation errors

P A{P, 2) E{P, 2) Error e

even P P - 3 P - 2 1

odd P P - 3 P - 3 0

Several points are worth noting. Firstly, the estimate E(P, 2) is

linear in P , and the error e is constant; so the error in the estimate

is one order lower in P than the estimate. Thus the proportional error

decreases as P increases. Secondly, the estimate is excessive for values

of P such that early exceptional behaviour occurs in the contributing

families. This exceptional behaviour arises from degeneracy; for these

marginal values, here 6 and 7 , the estimate for a value of n. one

smaller (namely n.=l) is better. Thirdly, the estimate for n. = 2 is

a reasonable one for the total number of all modes for n. 5 2 . This is

related to the first comment above. These points are amplified in the next

section.

7.3. PERFORMANCE FOR n^ = 3

Using the remark from Section 6 concerning p,(«) , we obtain
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i(2P2-12P+2U) , P = 0 (mod 6) ,

i(2P2-12P+l8) , P = 3 (mod 6) ,
, 3) = „

i(2P*-12P+l6) , P = 2, U (mod 6) ,

|(2P2-12P+10) , P = 1, 5 (mod 6) .

Combining the family results from Section 6, by an argument similar to

that above for n. =%2 , we obtain general results for A(P, 3) .

Exceptional values occur when families make their first contributions.

Table 7.2 (see p. 1*28) summarises the results.

Again, there are several features of interest. The general estimate

is quadratic in P with a linear error, one order lower as before.

E(P, 3) provides a reasonable estimate for the sum of all actual values

for n. £ 3 • Bad proportional over-estimates occur for early values,

where exceptional behaviour arises as families first make their

contribution. Moreover,' not all the families contribute until P = 12 ,

when the estimate takes the general form, and the error is extremely close

to the general expression. It is worth noting also that the most severe

degeneracy occurs for the most symmetrical family [3, 3+m, 3+m] , when

P = 9 and m = 0 . As before, the one-smaller estimate E(9, 2) is

better (ff(9, 2) = 6 whereas 5(9, 3) = 2U) , since only a small

contribution from families with n. = 3 has arisen at that stage.

7.4. AN HEURISTIC IMPROVEMENT

It appears that the estimate E[P, n.) is good provided that n. is

such that new families are not involved. Particularly for the case where

P = 2>n. , the estimate is much too great. In this case, earlier evidence

suggests that the estimate using n. - 1 is much better; as P increases

to the level 3n^ + n. , when all families are contributing (recall that

the last family to contribute, [M., n *m, 2n.+m~\ , is only slightly

degenerate for m = 0 ), E[P, n.) is usable, and appears to give a

reasonable estimate for the total number of modes with n. and fewer

A's .
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Various heuristic sliding scale schemes have been considered, to

"phase in" use of #(P, n^) over E[P, n^-l) , where n^ is

Observations made in the cases n. = 2 and 3 indicate that a better

estimate is obtained by involving E[P, n.) on a linear sliding scale.

This "phasing in" gives reasonable results if E[P, n^j is not considered

at all until P = 3n. + 1 , and finally when P = knA , the estimate taken

is solely E(P, M.) . For example, when P = 7 >

j£(7, 1) + |ff(7, 2) =2.5 gives a reasonable estimate, noting that F = 3

when P = 7 . And when P = 10 , §£(10, 2) + -E(lO, 3) = 16 , while

F = 18 when P =. 10 . Other estimated values are given in Table 7-3, for

P from 3 to 12 . ("The mode number for the composition (U, U, k) can

be shown to be 13 .)

TABLE 7.3

Comparison between actual total number of modes and estimated number,

using an heuristic sliding scale for the estimate

P max n. F Estimate

3 1 1 E(3, 1) = 1

k 1 1 E{k, 1) = 1

5 1 1 E(5, 1) = 1

6 2 2 l . £ ( 6 , 1) + 0.£(6, 2) = 1

7 2 3 |ff(7, 1) + \E{1, 2) = 2.5

8 2 6 0.£(8, 1) + l . £ ( 8 , 2) = 6

9 3 10 l . £ ( 9 , 2) + O.E(9, 3) = 6

10 3 18 §£(10, 2) + \E{\0, 3) = 16

11 3 31 f £ d l . 2) + §£(11, 3) = 29.3

12 k 59 O.E(12, 2) + 1.£(12, 3) = 56

8. Practical considerations

The above discussion highlights perhaps the most important

contribution made by this paper: for three products, the number of cycles

that need to be considered in an exhaustive search for optimal cost is much

smaller than one might anticipate. A naive (and apprehensive!) estimator

P-l
might suggest 3.2 cycles of length P exist, since any letter can be
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followed by either of the other two. Thus for P = 12 , he might estimate

6,ll*U cycles, compared with an actual figure of less than 6 times 59

(less than, since some permutations are degenerate).

Similarly, even for P as high as 17 , our sliding heuristic

estimate gives 2515 modes, and indeed fewer than 5000 modes, 30,000

cycles, for P less than or equal to 17 , for all possible n.'s . Such

a search would be well within the capabilities of even a modest computing

facility. Even better, in practice one would have a good idea of the upper

limit for n. , given P , from information about the independent cycle

solutions, limiting still further the number of calculations required to

ensure a close to optimal result. We comment, finally, that the heuristic

estimate has not been checked against sufficient actual values to justify

its practical use, although we suspect that it is still a fairly high over-

estimate for larger P . Table 8 shows values of the estimated number of

modes with cycle length P, E*{P) , and E*iP) , the total number of
CUM

modes (rounded) for cycles of length less than or equal to P , using the

estimate.

TABLE 8

Estimate, and cumulative estimate for cycle length up to 20

P EHP) E*cm(P)

13

11*

15

16

17
18

19
20

120

256

1(20

1 3 ^

2515-2

1(358.1*

15061+

32000

2l»0

1*96

916

2260

1*775

9133

21*197

56197
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