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Abstract
We study a natural model of a random 2-dimensional cubical complex which is a subcomplex of an n-dimensional
cube, and where every possible square 2-face is included independently with probability p. Our main result exhibits
a sharp threshold 𝑝 = 1/2 for homology vanishing as 𝑛 → ∞. This is a 2-dimensional analogue of the Burtin and
Erdoős–Spencer theorems characterising the connectivity threshold for random graphs on the 1-skeleton of the
n-dimensional cube.

Our main result can also be seen as a cubical counterpart to the Linial–Meshulam theorem for random 2-
dimensional simplicial complexes. However, the models exhibit strikingly different behaviours. We show that if
𝑝 > 1 −

√
1/2 ≈ 0.2929, then with high probability the fundamental group is a free group with one generator for

every maximal 1-dimensional face. As a corollary, homology vanishing and simple connectivity have the same
threshold, even in the strong ‘hitting time’ sense. This is in contrast with the simplicial case, where the thresholds are
far apart. The proof depends on an iterative algorithm for contracting cycles – we show that with high probability,
the algorithm rapidly and dramatically simplifies the fundamental group, converging after only a few steps.

Contents

1 Introduction 2
1.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Overview and organisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Preliminaries 6
2.1 The edge-path group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Star notation and the parallel relation . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 The sizes of the components of 𝑄(𝑛, 𝑝) . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4 The threshold for maximal 1-faces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Parallel homotopy algorithm 11
3.1 Stage 1: Explosive growth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 Stage 2: Only local defects remain . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.3 Stage 3: The final squeeze . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4 Structure theorem for general p 17
5 Below the threshold for maximal edges 21

© The Author(s), 2021. Published by Cambridge University Press. This is an Open Access article, distributed under the terms of the Creative
Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in
any medium, provided the original work is properly cited.

https://doi.org/10.1017/fms.2021.64 Published online by Cambridge University Press

doi:10.1017/fms.2021.64
https://orcid.org/0000-0003-4156-6687
https://orcid.org/0000-0002-4788-8225
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/fms.2021.64&domain=pdf
https://doi.org/10.1017/fms.2021.64


2 Matthew Kahle et al.

Acknowledgments 23
References 23

1. Introduction

Denote the n-dimensional cube by 𝑄𝑛 = [0, 1]𝑛 and the set of vertices of the n-dimensional cube by
𝑄𝑛

0 . In other words, 𝑄𝑛
0 = {0, 1}𝑛, which is the set of all n-tuples with binary entries. More generally,

let 𝑄𝑛
𝑘 denote the k-dimensional skeleton of 𝑄𝑛. For example, 𝑄𝑛

1 is the graph with vertex set 𝑄𝑛
0

and an edge (i.e., a 1-dimensional face) between two vertices if and only if they differ by exactly one
coordinate. Define the random 2-dimensional cubical complex 𝑄2(𝑛, 𝑝) as having 1-skeleton equal to
𝑄𝑛

1 , and where each 2-dimensional face of 𝑄𝑛 is included with probability p, independently.
The random complex 𝑄2(𝑛, 𝑝) is a cubical analogue of the random simplicial complex 𝑌2 (𝑛, 𝑝)

introduced by Linial and Meshulam in [22], whose theory is well developed. The random complex
𝑌2 (𝑛, 𝑝) is defined by taking the complete 1-skeleton of the n-dimensional simplex Δ𝑛 and including
each 2-face independently and with probability p. In this way, 𝑄2 (𝑛, 𝑝) is constructed in exactly the
same way as 𝑌2 (𝑛, 𝑝), except that the underlying polytope Δ𝑛 is replaced by 𝑄𝑛.

The random complex 𝑄2(𝑛, 𝑝) is also the 2-dimensional analogue of the random cubical graph; see
[21] for a 1992 survey. To make the connection precise and review some of the history, let 𝑄(𝑛, 𝑝)
denote the random subgraph of the n-cube defined by including all vertices of 𝑄𝑛, and including each
edge in 𝑄𝑛

1 independently with probability p.
Burtin [6] and later Erdoős and Spencer [14] studied the threshold for connectivity in the random

cubical graph:

Theorem 1.1 (Burtin [6], Erdoős and Spencer [14]). For 𝑄 ∼ 𝑄(𝑛, 𝑝) and for any fixed 𝑝 ∈ [0, 1],

lim
𝑛→∞
P[𝑄 is connected] =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 if 𝑝 < 1/2,
𝑒−1 if 𝑝 = 1/2,
1 if 𝑝 > 1/2.

(1)

Let 𝑓𝑛 (𝑝) = P[𝑄 ∼ 𝑄(𝑛, 𝑝) is connected]. It is easy to see that if 𝑝 < 1/2, then lim𝑛→∞ 𝑓𝑛 (𝑝) = 0.
Burtin showed that this is sharp; if 𝑝 > 1/2, then lim𝑛→∞ 𝑓𝑛 (𝑝) = 1.

Erdoős and Spencer refined this argument to show what happens at 𝑝 = 1/2 exactly. They also
showed that near 𝑝 = 1/2, the only connected components of 𝑄(𝑛, 𝑝) are isolated vertices and a giant
component. Then it is straightforward to show that the number of isolated vertices has a limiting Poisson
distribution with mean 1, and as a consequence

P[𝛽0 (𝑄(𝑛, 1/2)) = 𝑘 + 1] → 𝑒−1/𝑘!

for every integer 𝑘 ≥ 0, where 𝛽0 denotes the number of connected components.
This picture strongly parallels what is seen in Erdoős–Rényi graphs𝐺 ∼ 𝐺 (𝑛, 𝑝). Let 𝑝 = (log 𝑛+𝑐)/𝑛

with 𝑐 ∈ R fixed. Then

lim
𝑛→∞
P[𝐺 is connected] = 𝑒−𝑒

−𝑐

(see [13] or [5]). Letting 𝑐 → ±∞, the probability tends to 0 or 1.
The proofs share a strong similarity, in that the method is to enumerate potential cut sets and show

that they are rare by making a first moment estimate of the number of cut sets.
It is therefore perhaps reasonable to speculate that the topological phenomenology of the higher-

dimensional process 𝑄2 (𝑛, 𝑝) mirrors that of𝑌2 (𝑛, 𝑝) after appropriately adjusting how p is chosen as a
function of n. We shall show, however, that there are major differences between 𝑄2 (𝑛, 𝑝) and 𝑌2 (𝑛, 𝑝).
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Before discussing our results and illustrating these differences, we introduce some standard termi-
nology. Our focus is on typical behaviour of random objects for large values of n. So we will say that a
sequence of statements P𝑛 holds with high probability (abbreviated ‘w.h.p.’) if

lim
𝑛→∞
P[P𝑛] = 1.

We will make use of the Landau notations 𝑂, 𝑜, 𝜔,Ω,Θ in the asymptotic sense, so that 𝑓 = 𝑂 (𝑔)
means 𝑓 /𝑔 is eventually bounded above as 𝑛 → ∞ and 𝑓 = 𝑜(𝑔) means 𝑓 /𝑔 → 0 as 𝑛 → ∞. Also,
𝑓 = 𝜔(𝑔) means 𝑔 = 𝑜( 𝑓 ) and 𝑓 = Ω(𝑔) means 𝑔 = 𝑂 ( 𝑓 ). Finally, we will use 𝑓 = Θ(𝑔) to mean
𝑓 = 𝑂 (𝑔) and 𝑓 = Ω(𝑔). We occasionally display parameters like 𝑂𝑎,𝑏,𝑐 (·), emphasising that the
implied constants depend on 𝑎, 𝑏, 𝑐.

We will also make use of the notion of thresholds. A function 𝑓 = 𝑓 (𝑛) is said to be a threshold for a
property P of a sequence of random objects 𝐺 = 𝐺𝑛,𝑝 if 𝑝 = 𝜔( 𝑓 ) implies 𝐺 ∈ 𝑃 w.h.p. and 𝑝 = 𝑜( 𝑓 )
implies 𝐺 ∉ 𝑃 w.h.p. Such a threshold is defined only up to n-independent scalar multiples. If there is a
function 𝑔 = 𝑜( 𝑓 ) such that 𝑝 ≥ 𝑓 + 𝑔 implies 𝐺 ∈ 𝑃 w.h.p. and 𝑝 ≤ 𝑓 − 𝑔 implies 𝐺 ∉ 𝑃 w.h.p., the
threshold is said to be sharp.

In this paper we study the fundamental group 𝜋1 (𝑄) for 𝑄 ∼ 𝑄2 (𝑛, 𝑝). The fundamental group
can be given a purely combinatorial representation for a space such as 𝑄2(𝑛, 𝑝), which we discuss in
Section 2.1. Our first result establishes the threshold for 𝜋1 (𝑄) = 0 – that is, for 𝑄 ∼ 𝑄2 (𝑛, 𝑝) to be
simply connected. Here we formulate the theorem for p fixed independently of n.

The 2-dimensional analogues of isolated vertices are maximal 1-faces. It is not hard to see that
the threshold for maximal 1-faces is 𝑝 = 1/2, and that for any fixed 𝑝 ≤ 1/2, there are maximal 1-
dimensional faces w.h.p. If there are any maximal 1-faces, then any loop passing through such an edge
is not contractible, so 𝜋1 (𝑄) ≠ 0. Most of our work is to prove the following:

Theorem 1.2. If 𝑄 ∼ 𝑄2 (𝑛, 𝑝) and 𝑝 > 1/2, then w.h.p., 𝜋1 (𝑄) = 0.

This theorem marks a substantial difference between the behaviours of the random cubical complex
𝑄 ∼ 𝑄2(𝑛, 𝑝) and the random simplicial complex 𝑌 ∼ 𝑌2 (𝑛, 𝑝). The threshold for 𝜋1 (𝑌 ) = 0 is roughly
𝑝 = 𝑛−1/2 [4]. The threshold is sharpened by Luria and Peled in [25]. There is a sharp threshold for
𝐻1 (𝑌 ) = 0 vanishing at 𝑝 = 2 log 𝑛/𝑛. This is due to Linial and Meshulam [22], for the statement with
Z/2Z coefficients. This was extended by Meshulam and Wallach [26] to all finite coefficient rings, and
finally to Z coefficients by Łuczak and Peled [24]; see also [28] for the extension of the Z-coefficients
result to higher dimensions. In summary, there is a big gap between the thresholds for 𝜋1 (𝑌 ) = 0 and
𝐻1 (𝑌 ) = 0, but Theorem 1.2 implies that the thresholds for 𝜋1 (𝑄) = 0 and 𝐻1 (𝑄) = 0 (with any
coefficients) coincide.

For 𝑝 > 1−(1/2)1/2, we characterise the structure of the fundamental group 𝜋1 (𝑄) for𝑄 ∼ 𝑄2(𝑛, 𝑝)).
For the following statement, recall that in a simplicial complex, a maximal 1-face is a 1-face which is
not contained in any 2-face.

Theorem 1.3. For 𝑝 > 1 −
(

1
2

)1/2
, with high probability, for 𝑄 ∼ 𝑄2 (𝑛, 𝑝),

𝜋1 (𝑄) � 𝐹𝑁 ,

where 𝐹𝑁 denotes a free group on N generators and N denotes the number of maximal 1-dimensional
faces in Q.

Hence, just below the 𝑝 = 1/2 threshold, only maximal 1-faces contribute to the fundamental group.
Again, this is in contrast with the corresponding story for 𝜋1 (𝑌 ). The fundamental group of the random
2-dimensional simplicial complex 𝜋1 (𝑌 ) is known to have property (T) with high probability once
𝑝 ≥ (2+ 𝜖) log 𝑛/𝑛 [19], and this precludes it being a nontrivial free group or even having any nontrivial
free quotients.
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Theorem 1.3 has the following corollary, a limiting Poisson distribution for the Betti number 𝛽1:

Corollary 1.4. If 𝑐 ∈ R is fixed and

𝑝 =
1
2

(
1 +

log 𝑛 + 𝑐

𝑛

)
,

then

P[𝛽1 (𝑄2 (𝑛, 1/2)) = 𝑘] →
𝑒𝑐𝑘𝑒−𝑒

−𝑐

𝑘!
.

Here 𝛽1 represents the dimension of homology 𝐻1 (𝑄,R). It is also the number of generators of the
free group 𝜋1 (𝑄). This all follows from Theorem 1.3, together with showing that the number of maximal
1-faces is Poisson distributed with mean 𝑒−𝑐 .

It is also possible to formulate a process version of this statement. Here one couples all 𝑄2(𝑛, 𝑝)
together for all 𝑝 ∈ [0, 1] in a monotone fashion, so the 2-faces of 𝑄2(𝑛, 𝑝1) are a subset of 𝑄2 (𝑛, 𝑝2)
whenever 𝑝1 ≤ 𝑝2. Let

(
𝑄𝑝 : 𝑝 ∈ [0, 1]

)
have this distribution, and let 𝑁𝑝 be the number of maximal

1-faces in 𝑄𝑝 . Then we can formulate the stopping times 𝑇𝑠𝑐 and 𝑇2𝑑 as

𝑇𝑠𝑐 = inf
{
𝑝 : 𝜋1

(
𝑄𝑝

)
= 0

}
, 𝑇2𝑑 = inf

{
𝑝 : 𝑁𝑝 = 0

}
.

We have the following:

Corollary 1.5. 𝑇𝑠𝑐 = 𝑇2𝑑 w.h.p.

Theorem 1.3 characterises the structure of 𝜋1 (𝑄) for 𝑄 ∼ 𝑄2 (𝑛, 𝑝) and

1 −

(
1
2

)1/2
< 𝑝 <

1
2
.

For smaller p, we are not able to completely describe the structure of the fundamental group, but we
give a partial characterisation in terms of its free factorisation.

For a finitely presented group H, we say that H is indecomposable if whenever H is written as a free
product of two groups 𝐻 � 𝐻1 ∗ 𝐻2, either 𝐻1 or 𝐻2 is a trivial group. It is well known that a finitely
presented group G be may be written as a free product

𝐺 = 𝐺1 ∗ 𝐺2 ∗ · · · ∗ 𝐺ℓ ,

where every 𝐺𝑖 is indecomposable. Moreover, this free-product factorisation is unique, up to isomor-
phism types of the factors and reordering.

Definition 1.6. For a cubical subcomplex T of 𝑄𝑛, let 𝑒(𝑇) denote the number of edges in T. Let 𝒯𝑝
be the set of pure 2-dimensional strongly connected cubical complexes T that are subcomplexes of (the
2-dimensional skeleton of) 𝑄𝑛 for some n and such that 1 − (1/2)1/𝑒 (𝑇 ) > 𝑝.

While we do not characterise all the free factors, we are able to characterise some of them. Essentially,
we show that everything that can happen will happen, somewhere, with high probability.

Theorem 1.7. For 𝑝 ∈ (0, 1) fixed and 𝑄 ∼ 𝑄2(𝑛, 𝑝), let the free-product factorisation of 𝐺 = 𝜋1 (𝑄)

be given by

𝐺 � 𝐺1 ∗ 𝐺2 ∗ · · · ∗ 𝐺ℓ .

With high probability, for every 𝑇 ∈ 𝒯𝑝 with nontrivial fundamental group, 𝜋1 (𝑇) appears as a free
factor – that is, we have 𝜋1 (𝑇) � 𝐺 𝑗 for some 1 ≤ 𝑗 ≤ ℓ.
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Indeed, every finitely presented group G can appear as a free factor (see Section 5 for details). One can
also ask the extremal topological combinatorial question: For given homotopy classes of 2-dimensional
complexes T, what is the smallest 𝑒(𝑇) attainable? Furthermore, one can ask what is the threshold for
specific groups to appear as a free factor in G. In Section5, we give some examples of specific complexes
which we believe to be minimal – the torus, the projective plane and the Klein bottle.

Using the case of the projective plane, when 0 < 𝑝 < 1 −
(

1
2

)1/40
≈ 0.017179 and 𝑄 ∼ 𝑄2(𝑛, 𝑝),

we show that 𝜋1 (𝑄) has a Z/2Z free factor with high probability (see Corollary 5.4). This shows in
particular that 𝐻1(𝑄;Z) has torsion elements for small enough fixed 𝑝 > 0. The question of whether
torsion ever appears in 𝐻1 (𝑌 ;Z) is an open one, although it appears that there is almost always a short
burst of enormous torsion [20].

Conjecture 1.8. For 𝑝 > 1 −
(

1
2

)1/40
and 𝑄 ∼ 𝑄2(𝑛, 𝑝), 𝜋1 (𝑄) is torsion free with high probability.

We further believe it is possible that for p above this threshold, 𝜋1 (𝑄) is free with high probability.
For the case of 𝜋1 (𝑌 ) with 𝑌 ∼ 𝑌2 (𝑛, 𝑝), the sharp threshold is found by Newman in [27], improving on
previous work of [7].

1.1. Discussion

We have not addressed many results about the fundamental group of 𝜋1 (𝑌 ) for𝑌 ∼ 𝑌2 (𝑛, 𝑝), which may
have interesting analogues in 𝑄2 (𝑛, 𝑝) that could further elucidate what appear to be deep differences
between simplicial and random cubical complexes. As the body of literature on 𝑌2 (𝑛, 𝑝), is substantial,
we discuss possible directions of interest for questions about 𝑄2 (𝑛, 𝑝).

Many interesting topological phases of 𝜋1 (𝑄) are likely to exist when 𝑝 → 0 at an appropriate rate
as 𝑛 → ∞. For𝑌2 (𝑛, 𝑝), a particularly rich regime of p is when the mean degree of an edge 𝑛𝑝 tends to a
constant. We would expect this regime to be similarly rich for 𝑄2(𝑛, 𝑝) and to name a few transitions that
should appear in this regime: the collapsibility threshold [2], the threshold for a giant shadow [23] and
the threshold for 𝜋1 (𝑄) to have an irreducible factor in its free-product factorisation with growing rank.

A natural direction is to consider higher-dimensional complexes 𝑄𝑑 (𝑛, 𝑝) built in an analogous way
to𝑌𝑑 (𝑛, 𝑝). For 𝑄𝑑 (𝑛, 𝑝), it may be possible to analyse the higher homotopy groups in a similar fashion
to what is done here.

In a different direction, we mention that all of the results we present are about the 𝑛 → ∞ limit,
but also have some content for some large n. These could provide useful results for understanding 2-
dimensional percolation on a sufficiently high-dimensional lattice Z𝑛. There are some recent related
results for such higher-dimensional cubical percolation [12, 18, 17].

1.1.1. Multiparameter generalisations
In the literature on random cubical graphs, there is a 2-parameter model 𝑄(𝑛; 𝑝0, 𝑝1) (see [21] for a
survey of some results). First we take a random induced subgraph of the n-cube, where every vertex
has probability 𝑝0 independently. Then we include each of the remaining edges with probability 𝑝1
independently. Bond percolation on the hypercube is the random cubical graph where 𝑝0 = 1 and 𝑝1
varies, and site percolation is where 𝑝1 = 1 and 𝑝0 varies.

It seems natural to form a higher-dimensional generalisation of this model 𝑄2 (𝑛; 𝑝0, 𝑝1, 𝑝2). Indeed,
Costa and Farber [8, 9, 10] have made a detailed study of the analogous model 𝑌2 (𝑛; 𝑝0, 𝑝1, 𝑝2),
including many interesting results on the fundamental group. (See also [15], wherein new questions
about the fundamental group are discussed for this multiparameter model.) Our discussion has been
about the special case where 𝑝0 = 𝑝1 = 1 and 𝑝2 varies.

For 𝑄2 (𝑛; 𝑝0, 𝑝1, 𝑝2), it is natural to ask if there is a critical surface for homology 𝐻1 vanishing
in the unit cube. The case of setting 𝑝1 = 𝑝2 = 1 and letting 𝑝0 vary looks particularly interesting,
analogous to the site-percolation model. Higher homology is no longer monotone, as in, for example,
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a random clique complex or a Vietoris–Rips complex. Are there separate thresholds for 𝐻0 vanishing,
𝐻1 appearing, 𝐻1 vanishing and 𝐻2 appearing?

1.2. Overview and organisation

We begin with Section 2, where we define some key notions for working with 𝑄2(𝑛, 𝑝), and make some
elementary estimates about it. In Section 2.1 we give a combinatorial definition of 𝜋1. In Section 2.2 we
introduce notation to work with subcomplexes of 𝑄𝑛 and we introduce the notions of the random cubical
complex 𝑄2 (𝑛, 𝑝) and the random graph 𝑄

(
𝑛, 𝑝4) . In Section 2.3 we summarise some estimates from

[14] that we need about the random graph 𝑄(𝑛, 𝑝). In Section 2.4 we make estimates for the existence
of maximal 1-faces and use these to deduce Theorem 1.2 from Theorem 1.3.

In Section 3 we introduce an algorithm for identifying contractible 4-cycles in 𝜋1. This algorithm
reduces the analysis of 𝜋1 to determining the topology of small subcomplexes. We also finish the proof
of Theorem 1.2 and give a proof of Theorem 1.3.

In Section 4 we show a general structure theorem that describes the free-product factorisation of
𝜋1 (𝑄2 (𝑛, 𝑝)), and we then prove Theorem 1.7. In Section 5 we construct specific complexes which
show that certain interesting free factors appear.

2. Preliminaries

2.1. The edge-path group

For subcomplexes Q of 𝑄𝑛, the fundamental group 𝜋1 (𝑄) has a nice combinatorial definition as the
edge-path group, which we now define.

Say that two edges (1-faces) of 𝑄𝑛 are adjacent if they intersect at a vertex. An edge path in 𝑄𝑛 is
defined to be a sequence of edges in which every consecutive pair are adjacent.

In 𝑄𝑛, any 2-face has a 4-cycle as its boundary. Conversely, every 4-cycle in 𝑄𝑛 is the boundary of a
2-face. Hence, any two adjacent edges are contained in a unique 2-face and therefore in a unique 4-cycle
in 𝑄𝑛.

Two edge paths in Q are said to be edge-equivalent if one can be obtained from the other by
successively doing one of the following moves:

1) Replacing two consecutive adjacent edges by the two opposite edges of the 4-cycle x that contains
them, if the 2-face that bounds x is in Q

2) Replacing one edge contained in a 4-cycle x with the other three consecutive edges in x, if the 2-face
that bounds x is in Q

3) Replacing three consecutive edges in a 4-cycle x with the complementary edge in x, if the 2-face
that bounds x is in Q

4) Removing an edge that appears twice consecutively or adding an edge that appears twice consecu-
tively

Define 0 to be the vector with only zero entries in 𝑄𝑛
0 . An edge loop at 0 is an edge path starting

and ending at 0. The edge-path group 𝜋1 (𝑄) of a complex 𝑄 ⊂ 𝑄𝑛 (for any 𝑛 ≥ 1) is defined as the set
of edge-equivalence classes of edge loops at 0 (with product and inverse defined by concatenation and
reversal of edge loops).

For random cubical complexes 𝑄 ∼ 𝑄2 (𝑛, 𝑝), we explore first the extremal cases. If 𝑝 = 0, then any
𝑄 ∼ 𝑄2 (𝑛, 𝑝) is equal to 𝑄𝑛

1 – that is, with a probability of 1, the complex Q has not a single 2-face
included. Observing that in any graph G the number of independent generators in 𝜋1 (𝐺) is equal to
𝐸 (𝐺) −𝑉 (𝐺) + 1, in the case of an element 𝑄 ∼ 𝑄2 (𝑛, 𝑝) we get

𝐸 (𝐶) = 2𝑛−1𝑛, 𝑉 (𝐺) = 2𝑛, (2)
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which implies that the number of independent generators in 𝜋1 (𝑄) will be at most 2𝑛−1 (𝑛 − 2) + 1.
Thus, when 𝑝 = 0 we have that 𝜋1 (𝑄) is a free group with 2𝑛−1 (𝑛 − 2) + 1 independent generators, and
this is the maximum number of independent generators that the edge-path group of a random 2-cubical
complex can attain. This number of independent generators is less than the total number of 4-cycles in
𝑄𝑛, which is 2𝑛−3𝑛(𝑛 − 1). If 𝑝 = 1, then any 𝑄 ∼ 𝑄2 (𝑛, 𝑝) will have all the 2-faces included, which
implies that 𝜋1 (𝑄) = 0 with a probability of 1.

2.2. Star notation and the parallel relation

In 𝑄𝑛, the four vertices belonging to a 4-cycle have 𝑛 − 2 equal entries and two coordinate entries
that are not equal in all of them. Denote these nonequal coordinate entries as i and j; then we can
uniquely represent a 4-cycle using an n-tuple with 𝑛 − 2 fixed binary values and two ∗s. One ∗ will
be located on coordinate i and the other will be located on coordinate j. As an example, the 4-
cycles of 𝑄3 are {(0, ∗, ∗), (∗, 1, ∗), (∗, ∗, 1), (∗, 0, ∗), (1, ∗, ∗), (∗, ∗, 0)}, with, for instance, (∗, ∗, 0) =
{(1, 1, 0), (1, 0, 0), (0, 1, 0), (0, 0, 0)}.

For dice, physical realisations of the cube 𝑄3, we have a physical intuitive notion of parallel faces;
there are three pairs of parallel faces, and if the die is fair, each pair should add up to 7. Using the ∗

notation of 4-cycles just introduced, we extend this notion of parallel faces to 𝑄𝑛:

Definition 2.1. Two 4-cycles in 𝑄𝑛 are parallel if they have the two ∗s in the same entries, and if their
Hamming distance is 1.

Thus, in 𝑄3 (the cube), there are three pairs of parallel 4-cycles: (0, ∗, ∗) and (1, ∗, ∗), the 4-cycles
(0, ∗, ∗) and (1, ∗, ∗), and the 4-cycles (0, ∗, ∗) and (1, ∗, ∗). With this parallel notion, we are able to
define a binary relation in the set of 4-cycles of a random 2-cubical complex.

We represent a 3-dimensional cube in 𝑄𝑛 with a vector with n entries, three of which have a fixed ∗

and the rest of which are binary numbers. If we have two parallel faces x and y that have ∗ in the i and
j coordinates and differ (only) in the binary value of the k coordinate, then the cube that contains them
is represented by a vector with the three fixed ∗s in entries 𝑖, 𝑗 , 𝑘 and with the rest of the 𝑛 − 3 entries
equal to the entries of x (which are also equal to the entries of y).

Observe that the other four 4-cycles of the cube will have all the entries that are not i, j, or k equal to the
entries of x, two ∗s in positions either {𝑖, 𝑘} or { 𝑗 , 𝑘} and a binary number in the remaining coordinate.
Also, given two parallel 2-faces in 𝑄𝑛, there is a unique 3-dimensional cube in 𝑄𝑛 that contains them.

Definition 2.2. Given a subcomplex Q of 𝑄𝑛, two parallel 4-cycles 𝑥, 𝑦 ∈ 𝑄 are related if the (unique)
3-dimensional cube that contains them has a 2-face attached to each one of the other four 4-cycles in
the cube. We represent this by 𝑥 ‖ 𝑦.

Lemma 2.3. If two 4-cycles x and y are related (𝑥 ‖ 𝑦), then they are edge-equivalent.

Definition 2.4 (Graph of parallel related 4-cycles). Given a subcomplex Q of 𝑄𝑛, we define its graph of
parallel cycles, which we represent by 𝐺 [𝑄], as the graph with set of vertices 𝑉𝑛 whose elements are
all the the 4-cycles in 𝑄𝑛 (there are 2𝑛−3𝑛(𝑛− 1) 4-cycles), and an edge between two of them if they are
related by ‖.

Observe that ‖ is reflexive but not transitive. This implies, for instance, that 𝐺
[
𝑄𝑛

2
]

(remember that
𝑄𝑛

2 is the 2-skeleton of 𝑄𝑛) is not the complete graph. We can completely characterise 𝐺
[
𝑄𝑛

2
]
.

Lemma 2.5. The graph 𝐺
[
𝑄𝑛

2
]

has
(𝑛
2
)

components, and each one of these components is isomorphic
to a 𝑄𝑛−2

1 graph.

Proof. Fix an 𝑛 > 0. By definition of the relation ‖, a necessary condition for two 4-cycles to be related
is to have their two ∗s in the same position. There are

(𝑛
2
)

ways of choosing the positions of two ∗s in a
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vector of size n, which implies that there are at most
(𝑛
2
)

components in 𝐺
[
𝑄𝑛

2
]
. This gives us a partition

of the set of vertices, which we represent by

𝑉𝑛 =
(𝑛2)⋃
𝑖=1

𝑉𝑛𝑖 .

Set 1 ≤ 𝑖 ≤
(𝑛
2
)
; in what follows we prove that the induced subgraph of 𝑉𝑛𝑖 in 𝐺

[
𝑄𝑛

2
]

is isomorphic
to 𝑄𝑛−2

1 . Any element in 𝑉𝑛𝑖 has the two ∗s in the same position, and the rest of the 𝑛 − 2 entries have
all possible binary entries. This implies that

��𝑉𝑛𝑖 �� = ��𝑄𝑛−2
0

��. Let 𝜙 : 𝑉𝑛𝑖 → 𝑄𝑛−2
0 be the natural bijection

between these two sets of vertices. It is clear from Definition 2.3 that two 4-cycles x and y in 𝑉𝑛𝑖 are
connected in 𝐺

[
𝑄𝑛

2
]

if and only if the Hamming distance of 𝜙(𝑥) and 𝜙(𝑦) is 1. This implies that
𝐺

[
𝑉𝑛𝑖

]
≡ 𝑄𝑛−2

1 . �

In this paper we restrict ourselves to complexes 𝑄 ∼ 𝑄2 (𝑛, 𝑝), and thus the graphs 𝐺 [𝑄] that we
analyse are always subgraphs of 𝐺

[
𝑄𝑛

2
]
. We say that a vertex in 𝑉𝑛 is coloured if the 4-cycle that it

represents has its 2-face present in Q, and we say that it is not coloured otherwise. We use the previous
established partition of 𝑉𝑛 in

(𝑛
2
)

sets to denote accordingly the induced subgraphs 𝐺1, . . . , 𝐺 (𝑛2)
of the

graph 𝐺
[
𝑄𝑛

2
]
. For a 𝑄 ∼ 𝑄2 (𝑛, 𝑝), this partition defines

(𝑛
2
)

random subgraphs, which we represent
by 𝐺1 [𝑄], . . . , 𝐺 (𝑛2)

[𝑄]. Then the edges that are included in 𝐺𝑖 [𝑄], for 1 ≤ 𝑖 ≤
(𝑛
2
)
, depend on the

2-faces included in Q. The next lemma characterises the probability distribution of each 𝐺𝑖 [𝑄]:
Lemma 2.6. Set 𝑝 ∈ (0, 1) and let 𝑄 ∼ 𝑄2 (𝑛, 𝑝). Then for 1 ≤ 𝑖 ≤

(𝑛
2
)
, each random graph 𝐺𝑖 [𝑄] is

a random graph on 𝑄𝑛−2
1 , with each edge included independently with probability 𝑝4 and each vertex

coloured independently with probability p. Moreover, the vertex colourings are independent of the edge
set. Using the notation established in the Introduction, the uncoloured graph 𝐺𝑖 [𝑄] has the same
distribution as 𝑄

(
𝑛 − 2, 𝑝4) for all 1 ≤ 𝑖 ≤

(𝑛
2
)
.

Proof. Set 𝑄 ∼ 𝑄2 (𝑛, 𝑝). From Lemma 2.5, we know that each 𝐺𝑖 [𝑄] is a random graph on 𝑄𝑛−2
1 .

Let x and y be two vertices in 𝐺𝑖 [𝑄] that are connected in 𝐺 [𝑄𝑛
2 ], and represent this edge by 𝑥𝑦. This

implies in particular that x and y are 4-cycles that have, with the previously defined star notation, the ∗

in the same entries and Hamming distance equal to 1. Let 𝑐𝑥𝑦 ∈ 𝑄𝑛 be the unique 3-dimensional cube
that contains x and y.

The probability of 𝑥𝑦 being an edge in 𝐺𝑖 [𝑄] is equal to the probability of the other 4-cycles in 𝑐𝑥𝑦
being covered by 2-faces in Q. This event happens with probability 𝑝4 because in 𝑄2 (𝑛, 𝑝) each 2-face
is added independently with probability p.

Moreover, observe that any of these 4-cycles in 𝑐𝑥𝑦 are not vertices in 𝐺𝑖 [𝑄], because they do not
have the two ∗s in the same location as x (or y). This implies the independence between the colouring
of the vertices and the inclusion of the edges in 𝐺𝑖 [𝑄].

Let C be the set of all 3-dimensional cubes 𝑐𝑥𝑦 with x and y varying among all unordered pairs of
vertices in 𝐺𝑖 [𝑄] that are connected in 𝐺

[
𝑄𝑛

2
]
. Then, by the uniqueness of the cube 𝑐𝑥𝑦 ∈ 𝑄𝑛, we have

that |C| is equal to the number of edges in 𝐺𝑖 [𝑄]. Finally, edges in 𝐺𝑖 [𝑄] are added independently with
probability 𝑝4 because each 4-face in a cube in C appears in only one 3-dimensional cube in C. �

Remark. Even if the edges within each subgraph 𝐺𝑖 [𝑄] of the graph 𝐺 [𝑄] are included independently
with probability 𝑝4, this independence does not extend to events related to edges selected from two
or more of the subgraphs 𝐺𝑖 [𝑄]. An illustrative example of this dependence can be easily seen in the
3-dimensional cube where there is only one cube containing all the 4-cycles.

2.3. The sizes of the components of 𝑄(𝑛, 𝑝)

For a given 𝑝 ∈ (0, 1), we want to understand the sizes of the components of 𝑄(𝑛, 𝑝). We will require an
argument from [14] that rules out components of small sizes. Because we slightly adapt those lemmas,
we include proofs.
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Denote by 𝒬𝑠 the set of all subsets of vertices in 𝑄𝑛 which are connected and have cardinality s.
Given a subset S of vertices in 𝑄𝑛 that are connected, define

𝑏(𝑆) = |{(𝑢, 𝑣) ∈ 𝑄𝑛 | (𝑢, 𝑣) is an edge in 𝑄𝑛, 𝑢 ∈ 𝑆, and 𝑣 ∉ 𝑆}|. (3)

Let

𝑔(𝑠) =
∑
𝑆∈𝒬𝑠

(1 − 𝑝)𝑏 (𝑆) . (4)

Then from a union bound, 𝑔(𝑠) is an upper bound for the probability of the existence of a connected
component on s vertices appearing in 𝑄(𝑛, 𝑝).

Lemma 2.7. We have

𝑔(𝑠) ≤ 2𝑛 (𝑛𝑠)𝑠 (1 − 𝑝)𝑠(𝑛−
log2 (𝑠)�) . (5)

Proof. Set 𝑠 ≥ 1; then for any 𝑆 ∈ 𝒬𝑠 we have (from [16])

𝑏(𝑆) ≥ 𝑠(𝑛 − 
log2(𝑠)�). (6)

Also, using the fact that the degree of each vertex of 𝑄𝑛 is at most n,

|𝒬𝑠 | ≤ 2𝑛 (𝑛) (2𝑛) (3𝑛) · · · ((𝑠 − 1)𝑛) ≤ 2𝑛 (𝑛𝑠)𝑠 . (7)

Hence,

𝑔(𝑠) ≤
∑
𝑆∈𝒬𝑠

(1 − 𝑝)𝑠(𝑛−
log2 (𝑠)�) ≤ 2𝑛 (𝑛𝑠)𝑠 (1 − 𝑝)𝑠(𝑛−
log2 (𝑠)�) . (8)
�

Lemma 2.8. For any 𝑝 ∈ (0, 1), there is a number 𝑇𝑝 ∈ N and there exist 𝛿, 𝜖 > 0 such that∑
𝑠

𝑔(𝑠) < 2−𝛿𝑛 (9)

with the sum over all s such that 𝑇𝑝 ≤ 𝑠 ≤ 2𝜖 𝑛.

Proof. Let 𝑇𝑝 be defined by

𝑇𝑝 = inf
𝑇 ∈N

{
2 · (1 − 𝑝)𝑇

}
< 1.

Then for 𝑠 ≤ 2𝜖 𝑛, by Lemma 2.7,

𝑔(𝑠) ≤ 2𝑛 (𝑛𝑠)𝑠 (1 − 𝑝)𝑠(𝑛−
log2 (𝑠)�) ≤ 2𝑛 (1 − 𝑝)−2𝜖 𝑛 (𝑛2𝜖 𝑛 (1 − 𝑝)𝑛)𝑠

for all n sufficiently large. Then


2𝜖 𝑛 �∑
𝑠=𝑇𝑝

𝑔(𝑠) ≤ 2𝑛 (1 − 𝑝)−2𝜖 𝑛
∞∑

𝑠=𝑇𝑝

(𝑛2𝜖 𝑛 (1 − 𝑝)𝑛)𝑠

≤ 2𝑛 (1 − 𝑝)−2𝜖 𝑛 (𝑛2𝜖 𝑛 (1 − 𝑝)𝑛)𝑇𝑝 (1 + 𝑜(1)),

provided 𝜖 is chosen so that 2𝜖 (1 − 𝑝) < 1 and n is taken large. Taking 𝜖 sufficiently small,

𝛼 = 21+𝜖𝑇𝑝 (1 − 𝑝)𝑇𝑝−2𝜖 < 1.
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Hence, in terms of 𝛼,


2𝜖 𝑑�∑
𝑠=𝑇𝑝

𝑔(𝑠) ≤ 𝛼𝑛𝑛𝑇𝑝 (1 + 𝑜(1)) ≤ 2−𝛿𝑛

for some 𝛿 > 0 sufficiently small and all n sufficiently large. �

2.4. The threshold for maximal 1-faces

Any element 𝑄 ∼ 𝑄2(𝑛, 𝑝) has 2𝑛−1𝑛 edges, which we represent by

𝑒1, 𝑒2, . . . , 𝑒2𝑛−1𝑛,

with each one of these edges being in 𝑛 − 1 different 4-cycles. We represent by 𝐼𝑖 the indicator function
of the event that the edge 𝑒𝑖 is maximal – that is, that none of the (𝑛 − 1) 4-cycles that contain 𝑒𝑖 has an
attached 2-face. Then

E[𝐼𝑖] = (1 − 𝑝)𝑛−1.

Let I(𝑄) be the random variable that counts the number of maximal edges in Q:

I =
2𝑛−1𝑛∑
𝑖=1

𝐼𝑖 .

Then

E[I] = 2𝑛−1𝑛(1 − 𝑝)𝑛−1. (10)

Observe that if 𝑝 = 1/2, then E[I] = 𝑛.
We now prove that Theorem 1.2 follows from Theorem 1.3:

Proof of Theorem 1.2. We first establish that for 𝑝 > 1
2 , I = 0 w.h.p., and for 𝑝 ≤ 1

2 , I ≥ 2 w.h.p. For
the first claim, the expectation (10) tends to 0. For the second, again from equation (10), if (1− 𝑝) ≥ 1/2
for a random 2-cubical complex, 𝑄 ∼ 𝑄2 (𝑛, 𝑝), then

E[I] = 2𝑛−1𝑑 (1 − 𝑝)𝑛−1 ≥ 𝑛.

Thus E[I] → ∞ as 𝑛 → ∞. Now, we use a second moment argument (see [1, Corollary 4.3.5]) to prove
that P[I ≥ 2] → 1 as 𝑛 → ∞.

Fix an edge 𝑒𝑖 . Any other edge 𝑒 𝑗 such that 𝐼 𝑗 is not independent from 𝐼𝑖 – we represent this
nonindependent relation between edges 𝑒𝑖 and 𝑒 𝑗 by 𝑗 ∼ 𝑖 – will be an edge of one and only one of the
(𝑛− 1) 4-cycles that contain 𝑒𝑖 . There are 3(𝑛− 1) such edges and P

[
𝐼 𝑗 | 𝐼𝑖

]
= (1− 𝑝)𝑛−2. If we define

Δ∗
𝑖 =

∑
𝑗∼𝑖 P

[
𝐼 𝑗 | 𝐼𝑖

]
, then

Δ∗
𝑖 =

∑
𝑗∼𝑖

P
[
𝐼 𝑗 | 𝐼𝑖

]
= 3(𝑛 − 1) (1 − 𝑝)𝑛−2.

Thus Δ∗
𝑖 = 𝑜(E[𝐼𝑛]), which implies that P[I > 𝑛/2] → 1 as 𝑛 → ∞.

Hence from Theorem 1.3, we have that for 𝑝 > 1
2 , 𝜋1 (𝑄2 (𝑛, 𝑝)) = 0 with high probability, and for

any 𝑝 < 1
2 , 𝜋1 (𝑄2 (𝑛, 𝑝)) = 𝐺 ∗Z∗Z for some group G with high probability. The event that 𝑄2(𝑛, 𝑝) has

such a free factorisation is a decreasing event, in that for any complex Q that satisfies 𝜋1 (𝑄) = 𝐺 ∗Z ∗Z
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for some group G, removing any 2-face (i.e., removing relations from 𝜋1 (𝑄)) yields a complex 𝑄 ′ so
that 𝜋1 (𝑄

′) = 𝐺 ′ ∗ Z ∗ Z for some other group 𝐺 ′. It follows that for any 𝑝 ≤ 1
2 ,

P[∃ 𝐺 : 𝜋1 (𝑄2 (𝑛, 𝑝)) = 𝐺 ∗ Z ∗ Z] ≥ P
[
∃ 𝐺 : 𝜋1

(
𝑄2

(
𝑛, 1

2

))
= 𝐺 ∗ Z ∗ Z

]
→ 1

as 𝑛 → ∞, which completes the proof. �

3. Parallel homotopy algorithm

In this section, we introduce a simple iterative algorithm for finding contractible 4-cycles. For 𝑄2 (𝑛, 𝑝)
with 𝑝 > 0, this algorithm rapidly and dramatically simplifies the fundamental group to its nontrivial
parts.

We begin by introducing the algorithm. We have defined 𝑉𝑛 as the set of all 4-cycles in 𝑄𝑛
1 . For any

subset 𝑉 ⊂ 𝑉𝑛, we define the graph of parallel related 4-cycles denoted by 𝐺 (𝑉) in a similar fashion to
Definition 2.4: the vertex set of 𝐺 (𝑉) is given by the 𝑉𝑛, and two 4-cycles x and y are connected if they
have ∗s in the same positions and are contained in a 3-cube c and all other 4-cycles in c are in V. That
is, two 4-cycles x and y are connected in 𝐺 (𝑉) if they are connected in 𝐺 [𝑄], with Q being the cubical
complex 𝑄 ⊂ 𝑄𝑛

2 such that the 2-faces included in Q are exactly those corresponding to the 4-cycles
that are in V.

Given a 𝑄 ∼ 𝑄2 (𝑛, 𝑝), we denote by 𝑉𝑛1 the subset of 𝑉𝑛 which contains the boundaries of 2-faces
in Q. We then iteratively run the following procedure, with 𝑡 ∈ N:

Stage t: Build the graph of parallel related 4-cycles 𝐺
(
𝑉𝑛𝑡

)
. Define the set of 4-cycles 𝑉𝑛𝑡+1 as the set

of 4-cycles that are in a component in 𝐺
(
𝑉𝑛𝑡

)
that contains a 4-cycle in 𝑉𝑛𝑡 .

The algorithm stops at the first t for which 𝑉𝑛𝑡+1 = 𝑉𝑛𝑡 . This will happen, in particular, if there exists
a t such that 𝑉𝑛𝑡 = 𝑉𝑛, in which case all 4-cycles of 𝑄𝑛 are in a component of 𝐺

(
𝑉𝑛𝑡

)
that contains a

4-cycle in 𝑉𝑛𝑡 . Thus, Theorem 1.2 follows from the following result:

Theorem 3.1. For 𝑝 > 1/2,

lim
𝑛→∞
P

[
𝑉𝑛3 = 𝑉𝑛

]
= 1.

3.1. Stage 1: Explosive growth

For any set of 4-cycles𝑉 ⊂ 𝑉𝑛, say that a set of vertices S in 𝐺 (𝑉) is a quasicomponent if S is connected
in 𝐺 (𝑉𝑛) and S is disconnected from its complement in 𝐺 (𝑉).

Theorem 3.2. Set 𝑄 ∼ 𝑄2 (𝑛, 𝑝). For any 𝑝 ∈ (0, 1), there exists an integer 𝑇𝑝 so that w.h.p. there is no
quasicomponent of 𝐺

(
𝑉𝑛1

)
bigger than 𝑇𝑝 that is disjoint from 𝑉𝑛1 .

Proof. The proof will follow from two key steps. Let 𝐴𝑠 be the event that a quasicomponent of size s in
𝐺

(
𝑉𝑛1

)
exists.

(Step i) For any 𝑝 ∈ (0, 1), there exist an integer 𝑇𝑝 and 𝜖, 𝛿 > 0 such that for all n sufficiently large,

P

[
∪2𝜖 𝑛

𝑠=𝑇𝑝 𝐴𝑠

]
< 2−𝛿𝑛. (11)

(Step ii) For any 𝜖 > 0, the probability that there exists a component of 𝐺
(
𝑉𝑛1

)
bigger than 2𝜖 𝑛 with

no vertex in 𝑉𝑛1 tends to zero with n.

We show first how to complete the proof from this point. We now suppose that there is no quasi-
component of 𝐺

(
𝑉𝑛1

)
of size between 𝑇𝑝 and 2𝜖 𝑛 for some integer 𝑇𝑝 and some 𝜖 > 0, and we further

suppose that there is no component of 𝐺
(
𝑉𝑛1

)
of size 2( 𝜖 /2)𝑛 with no vertex in 𝑉𝑛1 .
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Let X be a minimal quasicomponent of 𝐺
(
𝑉𝑛1

)
which is bigger than 𝑇𝑝 and which is disjoint from

𝑉𝑛1 , if it exists. Then the size of X must be at least 2𝜖 𝑛. As it is so large (in particular larger than
2( 𝜖 /2)𝑛), it cannot be that X is connected. So we must be able to remove a connected component (say
by building a spanning tree in 𝐺 (𝑉) of X by connecting spanning trees of its components and removing
a component which contains a leaf) to form a smaller quasicomponent 𝑋 ′. The component we remove
must be smaller than 2( 𝜖 /2)𝑛, and so for all n sufficiently large, we conclude that 𝑋 ′ is a strictly smaller
quasicomponent of 𝐺

(
𝑉𝑛1

)
which is bigger than 𝑇𝑝 and which is disjoint from 𝑉𝑛1 – a contradiction.

We turn to proving Step (i). For any s, we have P[𝐴𝑠] ≤ 𝑔(𝑠) (recalling g from equation (4)), as 𝑔(𝑠)
is the expected number of quasicomponents of size s in 𝑄2 (𝑛, 𝑝), and hence from a union bound,

P

[
∪2𝜖 𝑛

𝑠=𝑇𝑝 𝐴𝑠

]
≤

∑
𝑠

𝑔(𝑠),

with the sum over all 𝑇𝑝 ≤ 𝑠 ≤ 2𝜖 𝑛. The existence of 𝜖, 𝛿, 𝑇𝑝 such that formula (11) holds is then a
direct consequence of Lemma 2.8.

We turn to showing Step (ii). Let W be the event that there exists a component in 𝐺
(
𝑉𝑛1

)
of size

greater than or equal than 2𝜖 𝑛 that does not intersect 𝑉𝑛1 . We show in what follows that P[𝑊] → 0 as
𝑛 → ∞. First, we observe that 𝐺

(
𝑉𝑛1

)
= 𝐺 [𝑄] and that the vertices in 𝑉𝑛1 are precisely the coloured

vertices in 𝐺 [𝑄], which by Lemma 2.6 are coloured independently with probability equal to p. For
1 ≤ 𝑖 ≤

(𝑛
2
)
, define 𝑊𝑖 as the event that there exists in 𝐺𝑖 [𝑄] a component of size greater than or equal

to 2𝜖 𝑛 that has all its vertices uncoloured. Thus, by Lemma 2.6,

𝑊 =
(𝑛2)⋃
𝑖=1

𝑊𝑖 . (12)

Set 1 ≤ 𝑖 ≤
(𝑛
2
)
. Conditioned on knowing 𝐺𝑖 [𝑄] – in particular on knowing that there are exactly l

components with uncoloured vertices and with sizes 𝑠1, 𝑠2, . . . , 𝑠𝑙 greater than 2𝜖 𝑛 in 𝐺𝑖 [𝑄] – we get

P[𝑊𝑖 | 𝐺𝑖] ≤

𝑙∑
𝑘=1

(1 − 𝑝)𝑠 𝑗 . (13)

Observing that 𝑠1 + 𝑠2 + · · · + 𝑠𝑙 ≤ 2𝑛−2, it has to be the case that 𝑙 ≤ 2𝑛−2, and because (1 − 𝑝) < 1,
we have (1 − 𝑝)𝑠𝑘 ≤ (1 − 𝑝)2𝜖 𝑛 for all 1 ≤ 𝑘 ≤ 𝑙. Thus from formula (13) we get

P[𝑊𝑖 | 𝐺𝑖] ≤

𝑙∑
𝑘=1

(1 − 𝑝)2𝜖 𝑛
≤ 2𝑛−2 (1 − 𝑝)2𝜖 𝑛

. (14)

This implies that E[P[𝑊𝑖 | 𝐺𝑖]] ≤ 2𝑛−2 (1 − 𝑝)2𝜖 𝑛 , and thus

P[𝑊𝑖] ≤ 2𝑛−2 (1 − 𝑝)2𝜖 𝑛
(15)

for all 1 ≤ 𝑖 ≤
(𝑛
2
)
. Finally, by a union bound argument on equation (12) and inequality (15), we have that

P[𝑊] ≤

(
𝑛

2

)
2𝑛−2 (1 − 𝑝)2𝜖 𝑛

, (16)

with

lim
𝑛→∞

(
𝑛

2

)
2𝑛−2 (1 − 𝑝)2𝜖 𝑛

= 0. (17)
�

https://doi.org/10.1017/fms.2021.64 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2021.64


Forum of Mathematics, Sigma 13

3.2. Stage 2: Only local defects remain

Let F be the event that there is no quasicomponent of 𝐺
(
𝑉𝑛1

)
bigger than 𝑇𝑝 that is disjoint from 𝑉𝑛1 .

This event was shown to hold w.h.p. by Theorem 3.2.

Lemma 3.3. In the event F, any 4-cycle v with at least 𝑇𝑝 neighbors in 𝐺
(
𝑉𝑛2

)
is in 𝑉𝑛3 . Likewise, any

4-cycle v with at least 𝑇𝑝 neighbors in 𝐺
(
𝑉𝑛1

)
is in 𝑉𝑛2 .

Proof. Suppose F holds, and let v be any 4-cycle. Suppose that v has at least 𝑇𝑝 neighbors in 𝐺
(
𝑉𝑛1

)
.

Then the connected component of v in 𝐺 (𝑉𝑛1 ) has at least 𝑇𝑝 neighbors, and therefore this connected
component intersects 𝑉𝑛1 . It follows by the definition of 𝑉𝑛2 that 𝑣 ∈ 𝑉𝑛2 .

Suppose now that v has at least 𝑇𝑝 neighbors in 𝐺
(
𝑉𝑛2

)
. We would like to show that at least one of

these neighbors is also in 𝑉𝑛2 , for then in the next step of the parallel transport algorithm, we would have
𝑣 ∈ 𝑉𝑛3 . We may also suppose that v is not in a component of 𝐺

(
𝑉𝑛1

)
that intersects 𝑉𝑛1 , for if it is, then

𝑣 ∈ 𝑉𝑛2 and we are done.
Suppose by way of a contradiction that none of the neighbors of v is in 𝑉𝑛2 , which implies that

each is in a component of 𝐺
(
𝑉𝑛1

)
disjoint from 𝑉𝑛1 . Hence the union of these components and the

component of 𝐺
(
𝑉𝑛1

)
containing v is a quasicomponent of 𝐺

(
𝑉𝑛1

)
that is disjoint from 𝑉𝑛1 . Moreover,

it is a quasicomponent which is larger than 𝑇𝑝 , which is disjoint from 𝑉𝑛1 . This does not exist in F, and
therefore v has a neighbor in 𝑉𝑛2 . Hence 𝑣 ∈ 𝑉𝑛3 . �

We will show that as a consequence of Lemma 3.3, in Stage 2 all those 4-cycles whose every
constituent edge has a high enough degree will be collapsed. For any p, define

𝑀𝑝 = inf
𝑀>0
P

(
Binomial

(

𝑀/4�, 𝑝3

)
< 𝑇𝑝

)
<

(
1
2

)1/4
. (18)

For any 1-face f in 𝑄𝑛, define deg( 𝑓 ) as the number of 2-faces in Q containing f. Call a 1-face of
𝑄 ∼ 𝑄2(𝑛, 𝑝) light if its degree is less than or equal to 𝑀𝑝; otherwise, call it heavy. We show that
4-cycles made from heavy edges are contracted in the second stage of the algorithm:

Lemma 3.4. For any 𝑝 ∈ (0, 1), with probability tending to 1 as 𝑛 → ∞, every 4-cycle whose every
1-face is heavy is contained in 𝑉𝑛3 .

We will introduce some additional notation for working with faces of Q. For two disjoint sets
𝑈,𝑊 ⊂ [𝑛], let

(
𝑈∗,𝑊1) denote the |𝑈 |-dimensional face of Q with ∗s in the positions given by U and

1s exactly in the positions given by W.
Using symmetry, it will be enough to analyse the 4-cycle

(
{1, 2}∗, ∅1) . With 𝑀𝑝 from equation (18),

define E as the event that all the 1-faces in the 4-cycle
(
{1, 2}∗, ∅1) are heavy – that is,

E =
{
deg

((
{1}∗, ∅1

))
> 𝑀𝑝 , deg

((
{1}∗, {2}1

))
> 𝑀𝑝 ,

deg
((
{2}∗, ∅1

))
> 𝑀𝑝 , deg

((
{2}∗, {1}1

))
> 𝑀𝑝

}
.

To prove Lemma 3.4, it suffices to show the following:

Lemma 3.5. For any 𝑝 ∈ (0, 1), there is an 𝜖 > 0 such that

P

[
E ∩ F ∩

{
the degree of

(
{1, 2}∗, ∅1

)
in 𝐺

(
𝑉𝑛2

)
is less than 𝑇𝑝

}]
≤ 𝑛𝑂 (1)2−(1+𝜖 )𝑛.
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Proof. The possible neighbors of
(
{1, 2}∗, ∅1) in 𝐺 (𝑉𝑛) all have the form

(
{1, 2}∗, { 𝑗}1) for some

3 ≤ 𝑗 ≤ 𝑛. To have an edge between these 4-cycles in 𝐺
(
𝑉𝑛2

)
, we must have

(
{1, 𝑗}∗, ∅1

)
∈ 𝑉𝑛2 ,

(
{1, 𝑗}∗, {2}1

)
∈ 𝑉𝑛2 ,(

{2, 𝑗}∗, ∅1
)
∈ 𝑉𝑛2 ,

(
{2, 𝑗}∗, {1}1

)
∈ 𝑉𝑛2 .

In the event F, we must only lower-bound the degree of these 4-cycles in 𝐺
(
𝑉𝑛1

)
to ensure that they are

in 𝑉𝑛2 . Hence, define

𝑌1 𝑗 = 1
{
deg

((
{1, 𝑗}∗, ∅1

))
≥ 𝑇𝑝

}
, 𝑌2 𝑗 = 1

{
deg

((
{1, 𝑗}∗, {2}1

))
≥ 𝑇𝑝

}
,

𝑌3 𝑗 = 1
{
deg

((
{2, 𝑗}∗, ∅1

))
≥ 𝑇𝑝

}
, 𝑌4 𝑗 = 1

{
deg

((
{2, 𝑗}∗, {1}1

))
≥ 𝑇𝑝

}
.

(19)

Here, ‘deg’ refers to the degree of the 4-cycle in 𝐺
(
𝑉𝑛1

)
. We would like to show that there are at least

𝑇𝑝 choices j for which all 𝑌ℓ 𝑗 , ℓ ∈ {1, 2, 3, 4}, are 1.
In the event E, there are four disjoint sets 𝑅ℓ ⊂ {3, 4, . . . , 𝑑} for ℓ ∈ {1, 2, 3, 4} of size

⌊
𝑀𝑝/4

⌋
such

that (
{1, 𝑘}∗, ∅1

)
∈ 𝑉𝑛1 for 𝑗 ∈ 𝑅1,

(
{1, 𝑘}∗, {2}1

)
∈ 𝑉𝑛1 for 𝑗 ∈ 𝑅2,(

{2, 𝑘}∗, ∅1
)
∈ 𝑉𝑛1 for 𝑗 ∈ 𝑅3,

(
{2, 𝑘}∗, {1}1

)
∈ 𝑉𝑛1 for 𝑗 ∈ 𝑅4.

Observe that the possible neighbors of
(
{1, 𝑗}∗, ∅1) , 𝑗 ∈ {3, 4, . . . , 𝑛}, are given by

(
{1, 𝑗}∗, {𝑘}1)

for 𝑘 ∉ {1, 𝑗}. For simplicity, we will also discard the case 𝑘 = 2. To have this edge in 𝐺
(
𝑉𝑛1

)
, we would

need (
{1, 𝑘}∗, ∅1

)
∈ 𝑉𝑛1 ,

(
{1, 𝑘}∗, { 𝑗}1

)
∈ 𝑉𝑛1 ,(

{ 𝑗 , 𝑘}∗, ∅1
)
∈ 𝑉𝑛1 ,

(
{ 𝑗 , 𝑘}∗, {1}1

)
∈ 𝑉𝑛1 .

In particular, for 𝑘 ∈ 𝑅1 the first of these requirements is guaranteed. Hence we can define

𝑍1 𝑗𝑘 = 1
{(
{1, 𝑘}∗, { 𝑗}1

)
∈ 𝑉𝑛1 ,

(
{ 𝑗 , 𝑘}∗, ∅1

)
∈ 𝑉𝑛1 ,

(
{ 𝑗 , 𝑘}∗, {1}1

)
∈ 𝑉𝑛1

}
,

and define

𝑍1 𝑗 =
∑
𝑘∈𝑅1

𝑍1 𝑗𝑘 .

Then 𝑍1 𝑗 is a lower bound for deg
( (
{1, 𝑗}∗, ∅1) ) , and so if 𝑍1 𝑗 is at least 𝑇𝑝 , then 𝑌1 𝑗 = 1.

We do a similar construction for ℓ ∈ {2, 3, 4}, making appropriate modifications. We list them for
clarity:

𝑍2 𝑗𝑘 = 1
{(
{1, 𝑘}∗, {2, 𝑗}1

)
∈ 𝑉𝑛1 ,

(
{ 𝑗 , 𝑘}∗, {2}1

)
∈ 𝑉𝑛1 ,

(
{ 𝑗 , 𝑘}∗, {1, 2}1

)
∈ 𝑉𝑛1

}
,

𝑍3 𝑗𝑘 = 1
{(
{2, 𝑘}∗, { 𝑗}1

)
∈ 𝑉𝑛1 ,

(
{ 𝑗 , 𝑘}∗, ∅1

)
∈ 𝑉𝑛1 ,

(
{ 𝑗 , 𝑘}∗, {1}1

)
∈ 𝑉𝑛1

}
,

𝑍4 𝑗𝑘 = 1
{(
{2, 𝑘}∗, {1, 𝑗}1

)
∈ 𝑉𝑛1 ,

(
{ 𝑗 , 𝑘}∗, {1}1

)
∈ 𝑉𝑛1 ,

(
{ 𝑗 , 𝑘}∗, {1, 2}1

)
∈ 𝑉𝑛1

}
.

In terms of these, we set 𝑍ℓ 𝑗 =
∑
𝑘∈𝑅ℓ

𝑍ℓ 𝑗𝑘 .
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Let 𝐽 = {3, 4, . . . , 𝑑} \
(
∪4

1𝑅ℓ
)
. Then the family

{
𝑍ℓ 𝑗𝑘 : ℓ ∈ {1, 2, 3, 4}, 𝑗 ∈ 𝐽, 𝑘 ∈ 𝑅ℓ

}
is independent random variables. Moreover, for any ℓ ∈ {1, 2, 3, 4} and 𝑗 ∈ 𝐽, from equation (18)
we have

P
(
𝑍ℓ 𝑗 < 𝑇𝑝

)
< P

(
Binomial

( ⌊
𝑀𝑝/4

⌋
, 𝑝3

)
< 𝑇𝑝

)
≤

(
1
2

)1/4
.

It follows that with

𝑍 =
∑
𝑗∈𝐽

4∏
ℓ=1

1
{
𝑍ℓ 𝑗 ≥ 𝑇𝑝

}

and with 𝑞 = P
(
𝑍ℓ 𝑗 ≥ 𝑇𝑝

)4
> 1

2 , we have

P
(
𝑍 < 𝑇𝑝

)
≤ P

(
Binomial

(
𝑛 − 3 − 𝑀𝑝 , 𝑞

)
< 𝑇𝑝

)
= 𝑛𝑂 (1) (1 − 𝑞)𝑛,

which completes the proof. �

3.3. Stage 3: The final squeeze

In this section, we draw conclusions on what remains noncontracted in the complex in the third stage.

3.3.1. The simply connected regime, 𝑝 > 1
2

We begin by showing that for 𝑝 > 1/2, there are simply no light 1-faces. Hence in fact for 𝑝 > 1
2 ,

𝑉𝑛3 = 𝑉𝑛 with high probability (proving Theorem 3.1).

Lemma 3.6. For any 𝑝 > 1/2, there is an 𝑀𝑝 > 0 such that with probability tending to 1 with n, for
every 1-face f of 𝑄 ∼ 𝑄2(𝑛, 𝑝), deg( 𝑓 ) > 𝑀𝑝 .

Proof. The degree of a 1-face is distributed as Binomial(𝑛 − 2, 𝑝). For 𝑝 > 1
2 , the probability that this

is less than any fixed constant M is 𝑛𝑂 (1) (1 − 𝑝)𝑛. Hence by a union bound, the lemma follows. �

3.3.2. Completely shielded 1-faces
Call a 1-face 𝑓 ∈ 𝑄 ∼ 𝑄2(𝑛, 𝑝) completely shielded if every 3-face 𝑐 ∈ 𝑄𝑛 that contains f contains only
heavy 1-faces of Q, besides possibly f. Completely shielded 1-faces modify the fundamental group of
Q in a simple way, contributing a free factor of Z if f is maximal.

To see this we begin with the following definition:

Definition 3.7. Let f be any 1-face of 𝑄𝑛. Define the n-bubble around f to be the subcubical complex
of 𝑄𝑛 given by the union of the complete 1-skeletons of all 3-faces containing f and every 2-face on
this skeleton which does not contain f.

An n-bubble has fundamental group Z.

Lemma 3.8. For any 𝑛 ≥ 3 and any n-bubble X around f,

𝜋1 (𝑋) � Z.

Furthermore, the complex 𝑋 \ { 𝑓 } and the complex 𝑋 ∪ {𝑒}, where e is any 2-face containing f, are
simply connected.
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Proof. Without loss of generality, suppose that f is the face
(
{1}∗, ∅1) . The 3-faces containing f all have

the form
(
{1, 𝑖, 𝑗}∗, ∅1) , and so the 1-skeleton of X is

{(
{𝑖}∗, 𝐴1

)
: 𝐴 ⊂ {1, 2, . . . , 𝑛}, 𝑖 ∉ 𝐴, |𝐴 ∪ {𝑖}| ≤ 3

}
.

We claim that all the 4-cycles containing f are homotopic. As all other 4-cycles are contractible from
the definition of X, the statements in the lemma follow.

The 4-cycles that contain f are boundaries of the 2-faces of 𝑄𝑛 of the form{(
{1, 𝑖}∗, ∅1

)
: 2 ≤ 𝑖 ≤ 𝑛

}
.

For any 2 ≤ 𝑖 < 𝑗 ≤ 𝑛, the 3-face 𝑐 = ({1, 𝑖, 𝑗}∗, ∅) intersected with X contains four 2-faces. Moreover,
the 2-faces ({1, 𝑖}∗, ∅) and ({1, 𝑗}∗, ∅) are adjacent in this cube. Hence, these cycles can be deformed
through c to one another. As this holds for any such i and j, the proof follows. �

Lemma 3.9. For any 𝑝 ∈ (0, 1), let 𝑄̂ be the cubical complex that results from deleting from 𝑄 ∼

𝑄2 (𝑛, 𝑝) every completely shielded 1-face f and any 2-face of Q containing f. Then with high probability,

𝜋1 (𝑄) � 𝜋1

(
𝑄̂
)
∗ (Z ∗ Z ∗ · · · ∗ Z)︸��������������︷︷��������������︸

𝑁

,

where N denotes the number of completely shielded 1-faces in Q that are isolated.

Proof. From Lemma 3.4, all 4-cycles whose every 1-face is heavy are contractible. In particular, we do
not modify the fundamental group of Q if we include all those 2-faces into Q whose boundary is in 𝑉𝑛3 .
Let 𝑄̂ be this cubical complex.

We now remove completely shielded 1-faces from 𝑄̂ one at a time, tracking the changes to the
fundamental group. We will show what happens after removing the first. It will be clear that by using
induction, a similar analysis would give the claim in the lemma.

Let f be a completely shielded 1-face of 𝑄̂. Let 𝑄1 be the complex that results after removing f from
𝑄̂ and any 2-face containing f, and let 𝑄2 be the union of all the complete 2-skeletons of all 3-faces that
contain f. Then 𝑄2 contains an n-bubble, and it is exactly an n-bubble if f is isolated.

As 𝑄2 ∪𝑄1 = 𝑄̂ and 𝑄1 ∩𝑄2 is open and path-connected (compare Lemma 3.8, as this complex is
an n-bubble with its central 1-face deleted). Moreover, every 4-cycle in 𝑄1 ∩𝑄2 is contractible, and so
𝜋1 (𝑄1 ∩𝑄2) is trivial. From the Siefert–van Kampen theorem, we therefore have

𝜋1

(
𝑄̂
)
� 𝜋1 (𝑄1) ∗ 𝜋1 (𝑄2).

If f is maximal, then from Lemma 3.8 the fundamental group 𝜋1 (𝑄2) is isomorphic Z. �

3.3.3. The velvety bubble phase

For 𝑝 > 1 −
(

1
2

)1/2
≈ 0.292893, we further show that the fundamental group completely reduces to

its maximal 1-faces. In this phase, while light 1-faces may exist in 𝑄2(𝑛, 𝑝) (for 𝑝 ≤ 1
2 ), they are well

separated.

Lemma 3.10. For 𝑝 > 1−
(

1
2

)1/2
, with high probability, there are no 3-faces 𝑐 ∈ 𝑄𝑛 that contain more

than one light 1-face of 𝑄 ∼ 𝑄2 (𝑛, 𝑝).

Proof. For a fixed c and a fixed choice of two 1-faces 𝑓1, 𝑓2, the degrees of 𝑓1 and 𝑓2 are both light with
probability at most 𝑛𝑂 (1) (1− 𝑝)2𝑛−1. Hence for any p as in the statement of the lemma, there is an 𝜖 > 0
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such that the probability that this occurs is 2−(1+𝜖 )𝑛+𝑂 (log 𝑛) . As there are 2𝑛𝑛𝑂 (1) many ways to pick a
3-face with two designated edges, the lemma follows from a first moment estimate. �

We now give the proof of Theorem 1.3, which we recall for convenience:

Theorem 3.11. For 𝑝 > 1 −
(

1
2

)1/2
, with high probability, for 𝑄 ∼ 𝑄2 (𝑛, 𝑝),

𝜋1 (𝑄) � (Z ∗ Z ∗ · · · ∗ Z)︸��������������︷︷��������������︸
𝑁

,

where N denotes the number of maximal 1-faces in Q.

Proof. From Lemma 3.4, with high probability every 4-cycle containing only heavy 1-faces is in 𝑉𝑛3 .
From Lemma 3.10, with high probability no 3-faces 𝑐 ∈ 𝑄𝑛 contain more than one light face. Hence
taking 𝑄̃ as Q together with all 2-faces bounded by some element of 𝑉𝑛3 (so that 𝜋1

(
𝑄̃
)
= 𝜋1 (𝑄)), every

light 1-face f of 𝑄̃ is completely shielded in 𝑄̃. Moreover, every 4-cycle of 𝑄̃ either intersects a light
1-face or is the boundary of a 2-face. Hence in the notation of Lemma 3.9, 𝜋1

(
𝑄̂
)
= 0. It follows that

from Lemma 3.9 we have a free group on 𝑁 ′ generators, with 𝑁 ′ the number of completely shielded
maximal 1-faces. As every light 1-face is completely shielded w.h.p., it follows that 𝑁 ′ = 𝑁 with high
probability. �

4. Structure theorem for general p

In this section, we prove Theorem 1.7. For convenience, we recall some definitions from the introduction.
Recall Definition 1.6:

Definition 4.1. For a cubical subcomplex T of any cube 𝑄𝑛, let 𝑒(𝑇) denote the number of edges in T.
Let 𝒯𝑝 be the set of pure 2-dimensional strongly connected cubical complexes T that are subcomplexes

of 𝑄𝑛
2 for some n and such that (1 −

(
1
2

)1/𝑒 (𝑇 )

) < 𝑝.

We will prove Theorem 1.7, which we recall:

Theorem 4.2. For any 𝑝 ∈ (0, 1) and for 𝑄 ∼ 𝑄2(𝑛, 𝑝), let the free-product factorisation of 𝜋1 (𝑄) be
given by

𝜋1 (𝑄) � 𝐹 ∗ 𝜋1 (𝑋1) ∗ 𝜋1 (𝑋2) ∗ · · · ∗ 𝜋1 (𝑋ℓ),

with F a free group. With high probability, any 𝑇 ∈ 𝒯𝑝 appears as a factor 𝜋1
(
𝑋 𝑗

)
for some 1 ≤ 𝑗 ≤ ℓ.

Our main technical tool will be the following:

Definition 4.3. For a cubical subcomplex T of a cubical complex 𝑊 ⊂ 𝑄𝑛, denote by ℎ(𝑇) the minimal
cubical subcomplex of W such that

1. the 1-skeleton of ℎ(𝑇) is the 1-skeleton of a k-dimensional hypercube,
2. every 2-face of W that is incident to T is contained in ℎ(𝑇) and
3. every 2-face of 𝑄𝑛

2 with 1-skeleton in ℎ(𝑇) which is not incident to T is in ℎ(𝑇).

Also denote by 𝐻 (𝑇) ⊂ 𝑊 a complete 2-skeleton of a k-dimensional hypercube which is parallel to
ℎ(𝑇), so that any 2-face that has an edge in ℎ(𝑇) \ 𝑇 and another edge in 𝐻 (𝑇) is contained in W.

We emphasise that T need not be connected in any sense and that 𝐻 (𝑇) is not unique; we just need
to choose one.

Lemma 4.4. For any 𝑝 ∈ (0, 1), with 𝑄 ∼ 𝑄2 (𝑛, 𝑝), there exists a number 𝑘 𝑝 such that w.h.p., every( (
𝑀𝑝 + 2

)
× 𝑘 𝑝

)2-dimensional cube in 𝑄𝑛 contains fewer than 𝑘 𝑝 light edges of Q.
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Proof. We argue by a first moment estimate. For any ℓ, the number of ℓ-dimensional cubes in 𝑄𝑛 is
given by 2𝑛−ℓ

(𝑛
ℓ

)
. The probability that any such cube contains k light edges is 𝑂𝑘,ℓ, 𝑝

(
(1 − 𝑝)𝑛𝑘

)
. Hence

taking ℓ =
( (
𝑀𝑝 + 2

)
𝑘
)2, if we pick k sufficiently large that (1 − 𝑝)𝑘 < 1

2 , then the expected number of
ℓ-dimensional cubes containing more than k light edges tends to 0 exponentially in n. �

Lemma 4.5. Set 𝑝 ∈ (0, 1) and let ℓ ∈ N be fixed; then w.h.p., for 𝑄 ∼ 𝑄2 (𝑛, 𝑝), every ℓ-dimensional
cube X has a parallel cube Y that has no light edges in Q and for which there are no light edges in Q
between X and Y.

Proof. This is similar to Lemma 4.4. We argue by a first moment estimate. For any ℓ, the number of
ℓ-dimensional cubes in 𝑄𝑛 is given by 2𝑛−ℓ

(𝑛
ℓ

)
. For a fixed ℓ-dimensional cube 𝑋 ⊂ 𝑄𝑛, the probability

that every parallel ℓ-dimensional cube Y contains either

(i) at least one light edge or
(ii) the endpoint of a light edge between X and Y

is at most (
(ℓ + 2)2ℓ−1

)𝑛−ℓ
(1 − 𝑝)𝑛(𝑛−ℓ) = 𝑜

(
𝑛ℓ2−𝑛

)
.

Hence from a first moment estimate, for any fixed ℓ and any 𝑝 ∈ (0, 1), w.h.p. every ℓ-dimensional cube
X has a parallel cube Y that contains no light edges of Q and shares no endpoint of a light edge between
X and Y. �

Theorem 4.6. Set 𝑝 ∈ (0, 1) and 𝑘 𝑝 as in Lemma 4.4, and 𝑄 ∼ 𝑄2 (𝑛, 𝑝). Let 𝑄 be Q with all the 2-faces
bounded by 4-cycles having no light edges. With high probability, there are disjoint cubical complexes
{𝜏1, 𝜏2, . . . , 𝜏ℓ } in Q such that

(i) the union of 1-faces over all
{
𝜏𝑗 : 1 ≤ 𝑗 ≤ ℓ

}
is the set of all light 1-faces;

(ii) for each 1 ≤ 𝑗 ≤ ℓ, both ℎ
(
𝜏𝑗

)
and 𝐻

(
𝜏𝑗

)
exist in 𝑄; and

(iii) for each 1 ≤ 𝑖 ≠ 𝑗 ≤ ℓ, the Hamming distance between the 0-skeletons of ℎ
(
𝜏𝑗

)
and ℎ (𝜏𝑖) is at

least 2.

We need the next definition for proving Theorem 4.6:

Definition 4.7. Let X and Y be two subcomplexes of𝑄𝑛. Define 𝑋�𝑌 to be the face of smallest dimension
𝑄𝑚 such that 𝑄𝑚 ⊂ 𝑄𝑛 and 𝑋 ∪ 𝑌 ⊂ 𝑄𝑚. Observe that 𝑚 ≤ 𝑛. More generally, let 𝑋1, 𝑋2, . . . , 𝑋𝑙 be
any finite collection of subcomplexes of 𝑄𝑛 and 𝐼 = {1, 2, . . . , 𝑙}. We define

�𝑖∈𝐼 𝑋𝑖

as the face of smallest dimension 𝑄𝑚 such that 𝑄𝑚 ⊂ 𝑄𝑛 and such that

[𝑋1 ∪ 𝑋2 · · · ∪ 𝑋𝑙] ⊂ 𝑄𝑚.

In this case, 𝑚 ≤ 𝑛 as well.

Proof of Theorem 4.6. We first show that for every light 1-face e there is a cubical complex 𝜎𝑒 containing
e and having all its 1-faces light such that ℎ(𝜎𝑒) exists in 𝑄. We will then merge these ℎ(𝜎𝑒) to form
the partition claimed to exist in the theorem.

Let 𝑒1 := 𝑒 be any light edge of Q. Let 𝑇1 be the cubical complex which is the down closure of 𝑒1. Let
𝑋1 be the smallest induced complex in 𝑄 which contains 𝑇1, which contains all 2-faces of 𝑄 incident to
𝑒1 and whose 1-skeleton is a hypercube. If 𝑋1 = ℎ(𝑇1), we are finished. Otherwise, by definition, there
must be a 2-face f of 𝑄𝑛

2 with 1-skeleton in 𝑋1 but not itself in 𝑋1. Then there must be at least one light
edge 𝑒2 ∈ 𝑋1 \ 𝑇1.
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We then define 𝑇2 as the induced subcomplex of Q on edges 𝑒1, 𝑒2. Let 𝑋2 be the smallest induced
complex in 𝑄 which contains 𝑇2, which contains all 2-faces of 𝑄 incident to 𝑇2 and whose 1-skeleton is
a hypercube. Once more, if 𝑋2 = ℎ(𝑇2), we are done. Otherwise, we proceed inductively by the same
argument.

This produces a nested sequence of complexes {𝑇𝑘 } each having k edges. It also produces a sequence
of complexes {𝑋𝑘 } such that each 𝑋𝑘 ⊃ 𝑇𝑘 and each 𝑋𝑘 contains at least k light edges and such that 𝑋𝑘
has the 1-skeleton of a hypercube of dimension at most 𝑘 × 𝑀𝑝 . By Lemma 4.4, with high probability,
this sequence must terminate at some 𝑘∗ ≤ 𝑘 𝑝 . The complex 𝑋𝑘∗ = ℎ(𝑇𝑘∗ ) by definition, and we define
𝜎𝑒 = 𝑇𝑘∗ .

We define a graph G with vertex set given by the collection of 𝜎𝑒. Two vertices 𝜎𝑒1 , 𝜎𝑒2 in this graph
are connected if the Hamming distance between ℎ

(
𝜎𝑒1

)
and ℎ

(
𝜎𝑒2

)
is less than 2. Let {𝜏1, 𝜏2, . . . , 𝜏ℓ }

be the unions of the connected components in G. Then for each 1 ≤ 𝑗 ≤ ℓ, we construct the hypercube

Σ 𝑗 = �𝑒∈𝜏 𝑗 ℎ(𝜎𝑒).

It is easy to see that Σ 𝑗 = ℎ
(
𝜏𝑗

)
, which implies that ℎ

(
𝜏𝑗

)
exists and is exactly Σ 𝑗 .

The dimension of Σ 𝑗 is at most ∑
𝜎𝑒

[dim(ℎ(𝜎𝑒)) + 2], (20)

where the sum is over all 𝜎𝑒 contained in 𝜏𝑗 . Therefore by Lemma 4.4, each 𝜏𝑗 has at most 𝑘 𝑝 edges.
Hence by Lemma 4.5, each 𝐻

(
𝜏𝑗

)
exists as well. �

Lemma 4.8. Let W be a subcomplex of 𝑄𝑛
2 and T a subcomplex of W. Suppose that ℎ(𝑇) and 𝐻 (𝑇)

exist in W. Let 𝑊̂ be the complex formed by adding to W the complete 1-skeleton of ℎ(𝑇)�𝐻 (𝑇) and
any 2-face of 𝑄𝑛

2 with 1-skeleton in ℎ(𝑇)�𝐻 (𝑇). Then

𝜋1 (𝑊) � 𝜋1
(
𝑊̂

)
∗ 𝜋1 (𝑊 ∩ (ℎ(𝑇)�𝐻 (𝑇))).

Recall that for a disconnected cubical complex X, we define 𝜋(𝑋) as the free product of its connected
components.

Proof. Let 𝑇 be all the 1-faces in T and any 2-face of W incident to T. Let 𝑇 be the down closure of 𝑇 .
Let 𝑆 = 𝑊 ∩ (ℎ(𝑇)�𝐻 (𝑇)).

Let 𝑋 =
(
𝑊 \ 𝑇

)
∩ 𝑆. We claim that 𝜋1 (𝑋) � 1. The 1-faces of X that are in ℎ(𝑇) are not in T.

Therefore, by Definition 4.3, for every edge 𝑒 ∈ 𝑋 ∩ ℎ(𝑇), the unique 4-cycle connecting e to 𝐻 (𝑇) is
the boundary of a 2-face in X. Thus, every closed curve in X is homotopic to a curve in 𝐻 (𝑇). Since
𝜋1 (𝐻 (𝑇)) � 1, it follows that 𝜋1 (𝑋) � 1. Therefore, the Siefert–van Kampen theorem states that

𝜋1 (𝑊) � 𝜋1
(
𝑊 \ 𝑇

)
∗ 𝜋1 (𝑆).

We now show that 𝜋1
(
𝑊 \ 𝑇

)
� 𝜋1

(
𝑊̂

)
. Define a complex 𝑆∗ as the down closure of all 2-faces in

𝑄𝑛
2 incident to T with 1-skeleton in ℎ(𝑇)�𝐻 (𝑇), union with 𝐻 (𝑇). Any 1-face e of 𝑆∗ ∩

(
𝑊 \ 𝑇

)
that is

in ℎ(𝑇) must be in ℎ(𝑇) \ 𝑇 . In particular, there is a 2-face f containing e which has a 1-face in 𝐻 (𝑇).
Hence, any closed curve in 𝑆∗ ∩

(
𝑊 \ 𝑇

)
is homotopic to one in 𝐻 (𝑇), which is simply connected.

Therefore by the Siefert–van Kampen theorem,

𝜋1
(
𝑊̂

)
= 𝜋1

(
𝑆∗ ∪

(
𝑊 \ 𝑇

) )
� 𝜋1

(
𝑊 \ 𝑇

)
∗ 𝜋1 (𝑆

∗).

It remains to evaluate the fundamental group of 𝑆∗. Any edge in 𝑆∗ ∩ ℎ(𝑇) has a 4-cycle that has
an edge in 𝐻 (𝑇). By construction, we know that this 4-cycle has a 2-face added. Therefore, any closed
curve in 𝑆∗ is homotopic to a closed curve in 𝐻 (𝑇). Thus 𝑆∗ is simply connected, because 𝐻 (𝑇) is by
definition. �
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Lemma 4.9. Let W be a subcomplex of 𝑄𝑛
2 and T a subcomplex of W. Suppose that ℎ(𝑇) and 𝐻 (𝑇)

exist in W. Let 𝑃1, . . . , 𝑃𝑚 be all the pure 2-dimensional strongly connected components completely
contained in T, such that any 2-face adjacent to the 1-skeleton of any 𝑃𝑖 is also contained in 𝑃𝑖 . Suppose
that 𝑇 = ∪𝑚𝑖=1𝑃𝑖 . Then there is a free group F such that

𝜋1 (𝑊 ∩ (ℎ(𝑇)�𝐻 (𝑇))) � 𝜋1 (𝑃1) ∗ 𝜋1 (𝑃2) ∗ · · · ∗ 𝜋1 (𝑃𝑚) ∗ 𝐹.

Proof. Let 𝑆 = 𝑊 ∩ (ℎ(𝑇)�𝐻 (𝑇)). Suppose we fill 𝐻 (𝑇) by taking the flag cubical complex of 𝐻 (𝑇).
The fundamental group of S is unchanged, and we can contract 𝐻 (𝑇) to a point x. We denote this
complex by 𝑆. If e is an edge in T, then e forms an unfilled triangle with x in 𝑆. Let 𝑇𝑥 ⊂ 𝑆 be the union
of T, x and all the edges between T and x. Any edge 𝑓 ∈ ℎ(𝑇) which is not contained in T is the base of
a filled triangle with x in 𝑆, and so any closed curve in 𝑆 is homotopic to a closed curve in 𝑇𝑥 . Hence

𝜋1 (𝑆) = 𝜋1

(
𝑆
)
= 𝜋1 (𝑇𝑥) = 𝜋1 (𝑃1) ∗ 𝜋1 (𝑃2) ∗ · · · ∗ 𝜋1 (𝑃𝑚) ∗ 𝐹,

where F is a free group. �

Theorem 4.10. Fix 𝑝 ∈ (0, 1). For 𝑄 ∼ 𝑄2 (𝑛, 𝑝), w.h.p., if 𝜏1, 𝜏2, . . . , 𝜏ℓ are as constructed in Theorem
4.6, then with 𝑆 𝑗 = 𝐶 ∩

(
ℎ
(
𝜏𝑗

)
�𝐻

(
𝜏𝑗

) )
for all 1 ≤ 𝑗 ≤ ℓ,

𝜋1 (𝑄) � 𝜋1 (𝑆1) ∗ 𝜋1 (𝑆2) ∗ · · · ∗ 𝜋1 (𝑆ℓ).

Proof. Let 𝑄 be Q with all the 2-faces bounded by 4-cycles having no light edges. By Lemma 3.4, all
4-cycles with no light edges are in 𝑉𝑛3 w.h.p., and so 𝜋1

(
𝑄
)
= 𝜋1 (𝑄). We apply Lemma 4.8 inductively

to each of the complexes 𝜏𝑗 . As a result, we have

𝜋1

(
𝑄
)
= 𝜋1 (𝐽) ∗ 𝜋1 (𝑆1) ∗ 𝜋1 (𝑆2) ∗ · · · ∗ 𝜋1 (𝑆ℓ),

where J is the complex 𝑄 together with all 2-faces in 𝑄𝑛
2 having 1-skeleton contained in some

ℎ
(
𝜏𝑗

)
�𝐻

(
𝜏𝑗

)
for some 1 ≤ 𝑗 ≤ ℓ.

It just remains to prove that 𝜋1 (𝐽) � 1. The 1-skeleton of J is 𝑄𝑛
1 , and so it suffices to show that every

4-cycle in J is contractible. The only 4-cycles x in J that do not bound a 2-face are those that contain
a 1-face e of some 𝜏𝑗 for 1 ≤ 𝑗 ≤ ℓ but which are not contained in ℎ

(
𝜏𝑗

)
�𝐻

(
𝜏𝑗

)
. However, as e is in

ℎ
(
𝜏𝑗

)
, it has a parallel 1-face f in 𝐻

(
𝜏𝑗

)
. The unique cube 𝑐 = 𝑥�𝑒 that contains x and e has all 2-faces

except for the face bounded by x, which implies that x is contractible. �

Proof of Theorem 1.7. Let 𝑇 ∈ 𝒯𝑝 be fixed. By assumption, there is a k-dimensional cube X such that
T is a subcomplex of X, and we may choose k minimal. We do not take the full 2-skeleton for X, but
instead we choose exactly those 2-faces which either are in T or share no edge with T. Note that this
makes 𝑋 = ℎ(𝑇). Let 𝜙 be a cubical embedding of the 2-skeleton of X into 𝑄𝑛

2 . Define the event E𝜙 , for
𝑄 ∼ 𝑄2(𝑛, 𝑝):

1. The 2-faces of Q that are contained in the 1-skeleton of 𝜙(𝑋) are exactly the 2-faces of 𝜙(𝑋).
2. No other 2-face in Q contains a 1-face of 𝜙(𝑇).
3. There are no light 1-faces in 𝜙(𝑋 \ 𝑇) and no light 1-faces within Hamming distance 2𝑘 𝑝 + 2 of

𝜙(𝑇), except possibly those in 𝜙(𝑇). Here, 𝑘 𝑝 is defined as in Lemma 4.4.

We now estimate the probability of E𝜙 under the law of 𝑄2(𝑛, 𝑝). Note that this probability does
not depend on 𝜙, and so these estimates will be uniform in 𝜙. First, observe that each edge of 𝜙(𝑇) has
degree bounded independently of n on this event, so there are (𝑒(𝑇) ∗ 𝑑) −𝑂 (1) 2-faces which must be
absent for E𝜙 to hold. There are 𝑂 (1) 2-faces that must be present for E𝜙 to hold, also. There are also
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𝑂
(
𝑑2𝑘𝑝+2) 1-faces which are contained in the Hamming distance

(
2𝑘 𝑝 + 2

)
-neighbourhood of 𝜙(𝑋),

which we require to be not light. As the probability that a 1-face is light is 𝑂 ((1− 𝑝)𝑛), we conclude that

P
(
E𝜙

)
= Θ

(
(1 − 𝑝)𝑒 (𝑇 )𝑑

)
= Ω

(
2−(1−𝜖 )𝑑

)
,

for some 𝜖 > 0, where the second equality follows from Definition 1.6. So the expected number of
occurrences of E𝜙 goes to infinity exponentially fast as 𝑛 → ∞.

We can now show that some E𝜙 now occurs with high probability by using a second moment
computation (see [1, Corollary 4.3.5]). Observe that if the Hamming distance of 𝜙(𝑋) to 𝜓(𝑋) is greater
than 4, then the events E𝜙 and E𝜓 are independent. Let 𝜓 ∼ 𝜙 if E𝜙 and E𝜓 are not independent. Then

Δ∗
𝜙 =

∑
𝜓∼𝜙

P
[
E𝜓 | E𝜙

]
≤

∑
𝜓∼𝜙

1 = 𝑂
(
𝑑𝑂 (1)

)
,

which is much smaller than the expected number of E𝜙 that occur (which grows exponentially in n).
Hence, with the factorisation given by Theorem 4.10,

𝜋1 (𝑄) � 𝜋1 (𝑆1) ∗ 𝜋1 (𝑆2) ∗ · · · ∗ 𝜋(𝑆ℓ ),

where 𝑆 𝑗 = 𝑄∩
(
ℎ
(
𝜏𝑗

)
�𝐻

(
𝜏𝑗

) )
and where 𝜏𝑗 are the complexes from Theorem 4.6. For any embedding

𝜙, if E𝜙 occurs, then 𝜙(𝑋) ∈ 𝑄 is such that 𝜙(𝑋) = ℎ(𝜙(𝑇)). Moreover, 𝜙(𝑇) = 𝜏𝑗 for some j with
1 ≤ 𝑗 ≤ ℓ, as the Hamming distance of 𝜙(𝑇) to any other light 1-face is at least 2𝑘 𝑝 + 2. By Lemma
4.9, 𝜋1

(
𝑆 𝑗

)
� 𝐹 ∗ 𝜋1 (𝑇) for some free group F. �

5. Below the threshold for maximal edges

In this section, we discuss in slightly more detail the idea that everything that can happen will happen.
First we show that in terms of finitely presented groups, everything can happen. The following is

well known (see, e.g., [11, Appendix A] or [3, Section 2]):

Theorem 5.1. Let S be a finite simplicial complex with k vertices. Then S is homeomorphic to a cubical
complex. Indeed, S is homeomorphic to a subcomplex of the k-dimensional cube.

Theorem 5.1 has the following immediate corollary:

Corollary 5.2. Let G be any finitely presented group. Then there exists a number 𝑃𝐺 > 0 such that
whenever 0 < 𝑝 < 𝑃𝐺 and 𝑄 ∼ 𝑄2 (𝑛, 𝑝), we have that G exists as a free factor in 𝜋1 (𝑄) with high
probability.

We give concrete bounds on 𝑃𝐺 for a few groups G in the following. The constructions used in
Theorems 5.4 and 5.5 and Figure 1 are from joint work of Dejan Govc and the third author of this paper.

Theorem 5.3. Let 𝑇2 be the 2-dimensional torus. For 0 < 𝑝 <
(
1 − (1/2)1/25

)
≈ 0.021428, 𝜋1 (𝑇2) �

Z × Z is a free factor of 𝜋1 (𝑄) for 𝑄 ∼ 𝑄2 (𝑛, 𝑝) with high probability.

Proof. We will create a cubical complex which is a subcomplex of 𝑄4
2 and is homeomorphic to 𝑇2. Let

𝑇�1 be the minimal cubical subcomplex of 𝑄4
2 with 2-faces given by

{(∗, 0, 0, ∗), (0, ∗, 0, ∗), (∗, 1, 0, ∗), (1, ∗, 0, ∗),
(∗, 0, ∗, 1), (0, ∗, ∗, 1), (∗, 1, ∗, 1), (1, ∗, ∗, 1),
(∗, 0, 1, ∗), (0, ∗, 1, ∗), (∗, 1, 1, ∗), (1, ∗, 1, ∗),
(∗, 0, ∗, 0), (0, ∗, ∗, 0), (∗, 1, ∗, 0), (1, ∗, ∗, 0)}.
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Figure 1. Diagram of 𝑇�2 with the vertices labeled.

Observe that 𝑇�1 has 𝑒
(
𝑇�1

)
= 32. Hence, from Theorem 1.7, for 0 < 𝑝 ≠ 0, if 𝑝 <

(
1 − (1/2)1/32) ,

the fundamental group of 𝑄 ∼ 𝑄2 (𝑛, 𝑝) has a copy of Z × Z in its free-product factorisation with high
probability. �

Theorem 5.4. Let 𝑇2 be the projective plane. For 𝑝 ≠ 0, if 𝑝 <
(
1 − (1/2)1/40) ≈ 0.017179, 𝜋1 (𝑇2) �

Z/2Z is a free factor of 𝜋1 (𝑄) for 𝑄 ∼ 𝑄2 (𝑛, 𝑝) with high probability.

Proof. Let 𝑇�2 be the minimal cubical subcomplex of 𝑄5
2 with 2-faces given by

{(0, 0, 0, ∗, ∗), (0, 0, 1, ∗, ∗), (0, 0, ∗, 1, ∗), (0, 0, ∗, ∗, 1),
(0, 1, ∗, ∗, 0), (0, ∗, 0, 0, ∗), (0, ∗, 1, ∗, 0), (0, ∗, ∗, 0, 0),
(0, ∗, ∗, 1, 0), (1, 0, ∗, 0, ∗), (1, ∗, 0, 0, ∗), (1, ∗, 0, ∗, 0),
(∗, 0, 0, ∗, 0), (∗, 0, 1, 0, ∗), (∗, 0, ∗, 0, 0), (∗, 0, ∗, 0, 1),
(∗, 1, 0, 0, ∗), (∗, ∗, 0, 0, 1), (∗, 1, 0, ∗, 0), (∗, ∗, 0, 1, 0)},

so that 𝑒
(
𝑇�2

)
= 40. Hence for 𝑝 ≠ 0, if 𝑝 <

(
1 − (1/2)1/40) ≈ 0.017179, the fundamental group of

𝑄 ∼ 𝑄2(𝑛, 𝑝) has a torsion group in its free-product factorisation with high probability. �
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Theorem 5.5. Let 𝐺 =
〈
𝑥, 𝑦 | 𝑥𝑦𝑥−1𝑦

〉
be the fundamental group of the Klein bottle. If 0 < 𝑝 <(

1 − (1/2)1/56) ≈ 0.01230134 and 𝑄 ∼ 𝑄2 (𝑛, 𝑝), then with high probability, 𝜋1 (𝑄) has G as a free
factor.

Proof. Let 𝑇�3 be the minimal cubical subcomplex of 𝑄5
2 with 2-faces given by

{(∗, ∗, 1, 0, 0), (∗, ∗, 0, 0, 0), (0, ∗, ∗, 0, 0), (1, ∗, ∗, 0, 0),
(0, 1, ∗, ∗, 0), (1, 1, ∗, ∗, 0), (∗, 1, 0, ∗, 0), (∗, 1, 1, ∗, 0),
(0, ∗, ∗, 1, 0), (1, ∗, ∗, 1, 0), (∗, ∗, 1, 1, 0), (∗, 0, ∗, 1, 0),
(0, ∗, 0, 1, ∗), (1, ∗, 0, 1, ∗), (∗, 0, 0, 1, ∗), (∗, 1, 0, 1, ∗),
(∗, 1, ∗, 1, 1), (0, ∗, ∗, 1, 1), (1, ∗, ∗, 1, 1), (∗, ∗, 1, 1, 1),
(0, 0, ∗, ∗, 1), (1, 0, ∗, ∗, 1), (∗, 0, 0, ∗, 1), (∗, 0, 1, ∗, 1),
(0, 0, ∗, 0, ∗), (1, 0, ∗, 0, ∗), (∗, 0, 0, 0, ∗), (∗, 0, 1, 0, ∗)}.

Then 𝑒
(
𝑇�3

)
= 56. �
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