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This article presents our exploration into how a finite-width internal gravity wave beam
is modified by triadic resonance instability. We present both experimental and weakly
nonlinear modelling to examine this instability mechanism, in which a primary wave
beam generates two secondary wave beams of lower frequencies and shorter length scales.
Through a versatile experimental set-up, we examine how this instability evolves over
hundreds of buoyancy periods. Unlike predictions from previous zero-dimensional weakly
nonlinear theory, we find that the wave does not monotonically approach a saturated
equilibrium of triadic interactions; rather, the amplitudes and structures of the constituent
beams continue to modulate without ever reaching a steady equilibrium. To understand
this behaviour, we develop a weakly nonlinear approach to account for the spatiotemporal
evolution of the amplitudes and structures of the beams over slow time scales and long
distances, and explore the consequences using a numerical scheme to solve the resulting
equations. Through this approach, we establish that the evolution of the instability is
remarkably sensitive to the spatiotemporal triadic configuration for the system and how
part of the observed modulations can be attributed to a competition between the linear
growth rate of the secondary wave beams and the finite residence time of the triadic
perturbations within the underlying primary beam.

Key words: internal waves

1. Introduction

The meridional overturning circulation is critical in the regulation of the Earth’s climate,
and understanding the processes essential for maintaining this circulation is of key
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importance in global climate models. Munk (1966) was amongst the first to suggest that
internal gravity waves play a significant part in the deep-water vertical mixing of the
density stratification within the open ocean and, hence, the maintenance of these currents.
It is now well established that the breaking of internal waves contributes to turbulent
mixing in the ocean (Staquet & Sommeria 2002; Wunsch & Ferrari 2004), yet only
recently have the pathways by which internal waves transfer energy to smaller scales and
the eventual breaking events been examined in more detail. As noted by Dauxois et al.
(2018), our understanding of these dissipative mechanisms, as opposed to internal wave
generation, leaves several open questions.

Various key mechanisms have been cited for how large-scale internal waves cascade
energy to smaller scales. These include internal wave reflection off sloping boundaries
(Nash et al. 2004), critical angle reflection (Dauxois & Young 1999) and scattering due
to small-scale topography (Peacock et al. 2009). A review by Sarkar & Scotti (2017)
suggests that no single mechanism is responsible for the internal wave contribution to
the energy cascade, rather it is a combination of multiple linear and eventually nonlinear
processes. MacKinnon & Winters (2005) and Alford et al. (2007) suggested that (and
subsequently showed Mackinnon et al. 2013) equatorward of a critical latitude, (Richet,
Chomaz & Muller 2018) parametric subharmonic instability (PSI) plays an important role
in the energy transformation of the internal tide into higher-mode near-inertial waves. PSI
(which can be viewed a special case of triadic resonance instability (TRI)) is a weakly
nonlinear, slowly growing resonant mechanism through which a primary wave is unstable
due to infinitesimal perturbations within the flow. As the instability grows, a resonant triad
interaction forms whereby the primary wave transfers energy to two secondary waves of
lower frequency and shorter length scale (Staquet & Sommeria 2002; Dauxois et al. 2018).
Indeed, Sutherland (2013) argues that away from sea-floor boundaries, and neglecting the
distorting influence of ocean currents, PSI maybe one of the primary mechanisms for the
energy cascade in the abyssal ocean.

In the inviscid limit and under the assumption of an infinite plane wave, the frequencies
of the linearly most unstable secondary waves in the triad are equal to half of the primary
wave, motivating the traditional terminology of PSI (Fan & Akylas 2019). Although one
often makes the appropriate assumption of oceanic scales being inviscid, in the laboratory
setting (where scales are smaller), viscous effects cannot be neglected and resonant wave
frequencies deviate away from this subharmonic relationship. Moreover, for certain beam
widths, the finite-amplitude manifestation of this instability is unable to access these
subharmonic frequencies (Bourget et al. 2014). In the context of a viscous finite-width
beam it is therefore more appropriate to consider the mechanism as the more general TRI
as opposed to PSI.

The first reported experimental evidence of TRI for internal and interfacial waves was
over 50 years ago by Davis & Acrivos (1967), McEwan (1971) and McEwan & Plumb
(1977), who showed that for finite-width beams there exists an amplitude threshold that
must be surpassed for instability to occur. This threshold is not found theoretically in
the limiting case of an infinite plane wave, where infinitesimal perturbations may induce
the development of the instability (Koudella & Staquet 2006). In fact, in the special case
of a linearly stratified Boussinesq fluid, a plane waveform holds the peculiar property
of being an exact solution to the full nonlinear equations at any amplitude (e.g. Thorpe
1968; Thorpe & Haines 1986; Sutherland 2006), albeit not a linearly stable one. However,
although single monochromatic plane waves are convenient mathematically, waves will
never take this form in nature. Realistically, oceanic waves are generated from baroclinic
tides across ocean ridges and will manifest as beams confined locally in space and therefore
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broadly distributed over the wavenumber spectrum (Lamb 2004; Gostiaux et al. 2007).
The focus of analyses using plane-wave solutions has been highlighted in the review by
Dauxois et al. (2018), who argue (correctly in our view) that the effects of finite width and
envelope shape play an important, but generally overlooked role, when considering the
nonlinearities of internal waves.

In attempting to address these concerns, researchers have turned towards exploring
the dynamics of TRI in spatially localised internal wave beams. Building on the work
of Bourget et al. (2013), Bourget et al. (2014) calculate a growth rate for the instability
based on a energy balance that accounts for the role of a finite-width beam. Using direct
numerical simulations they also show that the amplitude threshold for instability decreases
as the beam width is increased. This decrease is due to any perturbations having a larger
spatial field (and hence a longer time) in which to interact with, and extract energy from,
the underlying primary beam. These findings align with the theoretical work of Karimi
& Akylas (2014), who show how the form of the carrier envelope for a finite-width
wave beam has a significant influence on its ability to become unstable based on the
wavenumber spectrum produced from the windowing. These works highlight the duality
of interpretation for finite-width beams in terms of both the physical parameters and the
spectrum in Fourier space.

Triadic resonance can arise due to the sustained spatiotemporal interactions that occur
when

φ0 = φ1 + φ2, (1.1)

where the wave phase, φp, is defined as

φp = kp · x− ωpt. (1.2)

The subscript p = (0, 1, 2) is used throughout this article to define the primary wave and
the two secondary waves, respectively. Both (1.1) and (1.2) are true for three dimensions,
but, without loss of generality we can rotate to a two-dimensional (2-D) coordinate system.
The 2-D wave vector of wave p is defined as kp = (lp, mp) with magnitude |kp| = κp,
where the components are given in Cartesian coordinates (x, z), marked in figure 1, and
ωp denotes the frequency of the wave. In order to distinguish between the three wave beams
in the triad and their corresponding parameters, we define

Bp = {ρp, Ψp;ωp, kp, Λp . . .}, (1.3)

where Bp indicates a wave beam with density perturbation ρp and stream function Ψp
fields, frequency ωp, characteristic wavenumber vector kp and beam width Λp. In our
experiments, ω0, k0 and Λ0 for the primary beam are imposed control parameters, whereas
for the secondary beams they arise from the triadic conditions and (weakly) nonlinear
dynamics. All triadic wave beams must also satisfy the dispersion relationship for internal
waves given as

ωp

N
= ± cos θp = ± |lp|√

lp2 + mp2
, (1.4)

where θp is the angle between the lines of constant phase and the vertical and lp and mp
are the characteristic wavenumber contributions from each beam. Here N is the buoyancy
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Figure 1. (a) A schematic showing the front view of the tank as would be seen by the camera. The wavemaker
is located along a 1 m section of the tank floor, 2.5 m and 7.5 m away from the left and right boundary wall,
respectively. The tank is filled with a 0.45 m salt stratification. A conductivity probe, mounted above the tank,
measures the density profile. (b) A schematic showing the side view of the tank in order to visualise the optical
arrangement for synthetic schlieren. The thermal tunnel is not shown for clarity.

frequency of the stratification given by

N =
√
− g

	0

∂ρ̄

∂z
, (1.5)

where g is the gravitational constant of acceleration. Under the assumptions of a
Boussinesq, incompressible fluid, we decompose the total density 	 as 	 = 	0 + ρ̄(z)+
ρ(x, z, t), where 	0 is the reference density, ρ̄ is the background density stratification as a
function of depth and ρ is the perturbation density. We consider the density changes from
perturbations and background stratification to be small compared to the reference density,
so that ρ̄, ρ � 	0.

Given the triadic resonant condition in (1.1), it is easy to assume that the instability
selects one particular triad, composed of three distinct frequencies and wavenumbers for
all time. More recently, our understanding of triad selection is evolving for finite-width
beams. Indeed, while examining the transient start up of the instability, Koudella &
Staquet (2006) noted that not just one triad is responsible for the initial instability, rather,
a number of triads form around the maximum linear growth rate. This is further developed
by Ghaemsaidi & Mathur (2019) who showed how the width of the peak of the growth
rate curves broadens with increased amplitude. In addition, recent work by Fan & Akylas
(2020) showed how classic TRI theory is unable to explain the instability in the context
of a thin beam due to the broadband wavenumber spectrum corresponding to the primary
beam.

The novelty of the present paper lies in the examination of the long-term evolution
of the instability. This is of key importance when we consider internal tides. As noted
by Karimi & Akylas (2017), time harmonic internal wave of locally confined profile
(such as those considered this work) naturally arise from the interaction of barotropic
flow over topography. Owing to the 11-m-long tank used in the experimental set-up,
we are able to observe the experiment for hours without interference from side wall
reflections or significant changes to the stratification. We show experimentally that, over
long time scales, the constituent triadic waves synchronously modulate in amplitude
and in the physical location of the two secondary wave beams. Further investigation
shows that part of these modulations are coincident with the growth and decay of
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separate triads, all linked through the primary wave beam. Through 2-D weakly nonlinear
modelling, we are then able to show how the evolution of the instability in a finite-width
beam is remarkably sensitive to these separate triads. This sensitivity is due to their
affect on the residence time of the secondary wave beams with the underlying primary
beam.

The outline of the remainder of this article is as follows. In § 2 we detail the experimental
set-up and processing procedure. In § 3 we then present the experimental results, looking
first at the initial observations in § 3.1 and then at the long-term evolution of the
experiments in § 3.2. Based on these observations, we present the perturbation expansion
that forms the basis of the 2-D weakly nonlinear model in § 4. In § 5 we present the results
of the model. We start with § 5.1, where we examine the weakly nonlinear interactions on
their own before moving onto § 5.2, where the results of the weakly nonlinear 2-D model
are given. Conclusions are then drawn in § 6.

2. Experimental procedure

2.1. Experimental set-up
Experiments were undertaken in an 11-m-wide, 0.48-m-deep, 0.29-m-wide Perspex
(acrylic) tank. Along a 1 m section of the tank floor, 2.5 m from the left-hand wall of
the tank, sits the Arbitrary Spectrum Wave Maker (ASWaM), also known as the ‘magic
carpet’. This flexible horizontal boundary can generate sinusoidal forcing (Beckebanze
et al. 2021; Dobra, Lawrie & Dalziel 2021, 2022) (as well as aperiodic configurations
(Dobra, Lawrie & Dalziel 2019)), with the ability to vary amplitude, frequency and
wavenumber in both the temporal and spatial domains. The wavemaker is composed of
a series of 96 computer-controlled linear actuators that sit below the tank. Each actuator is
mounted to a vertical drive rod that passes through the base of the tank and connects
to a 0.28-m-long horizontal rod that spans the tank width. These rods are spaced at
10 mm intervals along the wavemaker. A 3-mm-thick neoprene foam sheet covers the
full length and width of the wavemaker, thus interpolating between the horizontal rods to
allow smooth forcing. The lengthwise edges of the neoprene slide against the tank walls.
Provided the chosen waveforms preserve a zero-mean displacement across the length of
the flexible surface, the pressure gradient available to drive flow around the edges of the
neoprene foam is negligible. Thus, flow in either direction between the cavity and the
visualisation region may be considered negligible. A 80 mm layer of glycerol is added to
the 80-mm-deep cavity below the neoprene to largely eliminate salt water from around
the seals through which the drive rods pass. The glycerol thus helps prevent leakage
past the seals due to salt crystallising within them. When submerged in a stratified fluid,
the wavemaker can generate quasi-2-D, internal wave beams at amplitudes sufficient to
permit wave breaking at distances away from the source. For full details of ASWaM’s
construction, see Dobra (2018) and Dobra et al. (2019).

The procedure for filling the tank is as follows. First, the glycerol is gravity fed
into the wavemaker cavity. The tank is then filled over the course of 8 h with a
linear salt stratification using two computer-controlled gear pumps, (Coleparmer Ismatec
BVP-Z Analog gear pump drives fitted with Micropump L20562 A-Mount Suction
Shoe pump heads) controlled via the software DigiFlow (Dalziel et al. 2007). Each
pump draws from either a fully saturated salt water or fresh water reservoir. This
filling method allows for more precise control of the density stratification compared
with the traditional double bucket technique (Oster & Yamamoto 1963), enabling the

953 A22-5

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

91
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.914


K.M. Grayson, S.B. Dalziel and A.G.W. Lawrie

density gradient and fluid depth to be pre-determined. The depth of the stratification
is H = 0.45± 0.01 m.

To measure the density profile created by the pumps, an aspirating conductivity probe
is mounted to a linear traverse above the tank. One minute before the start and one minute
after the end of an experiment, the probe is traversed downwards through the stratification
to measure the conductivity of the saline solution passing through the probe tip. For
the experimental campaign reported here, a linear density stratification with a buoyancy
frequency N = 1.54 rad s−1 is used. As the week progresses, a mixed layer develops at the
free surface and at the bottom of the tank. This layer acts to reduce transmission from the
wavemaker but does not change the density gradient in the middle of the tank. A schematic
of the tank, as viewed from the front, can be seen in figure 1(a).

2.2. Wave visualisation
Synthetic schlieren (Dalziel, Hughes & Sutherland 2000; Dalziel et al. 2007) is used to
visualise our experiments. This non-intrusive technique takes advantage of the differential
refraction of light in a refractive index gradient and the Gladstone–Dale relationship
between refractive index and fluid density, such that light rays curve towards regions of
higher density. Internal waves cause local perturbations to the density field and, thus,
the direction of light rays passing through them will also be perturbed. The resulting
distortion of a textured background image yields a measurable signal associated with
the density perturbations. To minimise the effects of convective thermal fluctuations
on the synthetic schlieren measurements in the air between the tank and the camera, a
‘thermal tunnel’ spans from the camera lens to the perimeter of the visualisation region on
the tank.

A random dot pattern attached to an LED light bank is located 0.20± 0.04 m behind
the tank and a 12-megapixel ISVI IC-X12CXP camera with a Nikkor 35–135 mm zoom
lens is located 3.50± 0.10 m from the front. This optical arrangement is shown in the
side-view schematic in figure 1(b). The large distance between the camera and the tank
was chosen in order to reduce parallax (Thomas, Marino & Dalziel 2009).

We compute the line-of-sight mean of the gradient vector of the density perturbation
field ρ, which for convenience we non-dimensionalise according to

β = (βx, βz) = g
N2	0

(
∂ρ

∂x
,
∂ρ

∂z

)
. (2.1)

Our experiment is configured to generate and diagnose quasi-2-D internal wave structures,
up to the limit of wave breaking, the point at which the mapping of ray paths to density
perturbations is no longer an aim.

2.3. Internal wave forcing
The experimental campaign presented in this article is composed of 36 experiments. To
reduce uncertainties associated with the test conditions both within the tank and in the
laboratory ambient, the campaign was run within a 7 day period without refilling the tank,
allowing a period of 3 hours between each experiment for any residual motion to dissipate.

Following arguments laid out by Dobra et al. (2019), for all the experiments in this
campaign the vertical displacement z = h(x, t) imposed on the neoprene foam to generate
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the primary beam, B0, is

z = h(x, t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Re
(

f (t) eil0x cos2
(

x− B
8π2

))
, A < x < B,

Re( f (t) eil0x), B < x < C,

Re
(

f (t) eil0x cos2
(

x− C
8π2

))
, C < x < D,

0, otherwise,

(2.2)

where the locations A, B, C and D are 7π/|l0|, 9π/|l0|, 13π/|l0| and 15π/|l0|,
respectively, and l0 is the horizontal component of the primary wave vector k0 =
(l0, m0) = (−0.05,−0.06) mm−1. This gives a horizontal wavelength for the primary
beam of λx0 = 2π/|l0| = 125.66 mm.

As we restrict ωp > 0 (for all p, where p = (0, 1, 2) for the primary and two secondary
beams, respectively); having l0, m0 < 0 means the group velocity of the primary wave
beam is initially propagating upwards and to the left. The spatial structure of the forcing,
described by (2.2), takes the form of a beam with the inner two wavelengths reaching
maximum amplitude and the outer wavelengths being smoothed by a cosine-squared
envelope. Due to this cosine squared smoothing on the edges of the beam profile, we
do not consider the width, D− A, for energy transfer. Rather, we estimate the contribution
from one of the smoothed edges using the integral measure employed by Dalziel, Linden
& Youngs (1999), giving a horizontal beam width of

Λx0 = Λ0/ cos θ = 2λx0 + 2
∫ λx0

0
α(1− α)dx = 277.41 mm, (2.3)

where Λ0 is the full beam width and α = cos2(x/8π2) is the smoothing function on the
outer flanks of the beam profile. The temporal forcing f (t) is then described as

f (t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0, t ≤ 0 s,

A0

( t
30

)
e−iω0t, 0 ≤ t ≤ 30 s,

A0 e−iω0t, 30 s ≤ t ≤ tend − 30 s,

A0

(
tend − t

30

)
e−iω0t, tend − 30 s ≤ t ≤ tend,

(2.4)

where ω0, A0 and tend are respectively, the forcing frequency of 0.95 rad s−1, the nominal
forcing amplitude in millimetres of the primary beam and the end time of the experiment
in seconds. Experiments are captured at 1 frame per second (f.p.s.), which is more than
sufficient to capture the fast time evolution of the wave field given by the primary beam
period T0 = 2π/ω0.

The only two parameters to be varied in this experimental study are tend and A0.
The run time, tend, is either 90 or 180 min, while the non-dimensional amplitude |l0|A0
ranges between 0.175–0.225. The input amplitude threshold for the instability is achieved
at |l0|A0 ≈ 0.194, increasing by 0.013 throughout the week due to the slow growth
of a mixed layer along the bottom of the tank which reduces wave transmission (see
Sutherland & Yewchuk (2004) for a discussion on the transmission). Our focus is on the
weakly nonlinear regime, so we seek to minimise unnecessary mixing induced by wave
actuation and limit our amplitudes to those just sufficient to exceed the instability threshold
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calculated by Davis & Acrivos (1967).We do not force any wave amplitudes large enough
to permit wave breaking.

As the tank extends well beyond the field of view in both directions, internal wave
beams with typical dominant wavenumbers of k0 = (−0.05,−0.06) mm−1 reflecting off
the far left-hand wall of the tank return to the viewing region with only 2 % of their original
amplitude, due to viscous dissipation over an approximately 5 m horizontal travel distance.
We thus consider wave–wave interactions involving these reflected beams to be negligible.
We also highlight that several similar sets of experiments (not presented here) were
conducted but with a rightward propagating primary beam, resulting in approximately
15 m of horizontal travel before re-interaction. These experiments exhibited the same
behaviour as those presented in this article using a leftward propagating beam.

3. Experimental results

3.1. Initial observation and analysis
We start by examining one experiment from the set of 36 with an imposed amplitude
displacement of |l0|A0 = 0.200. Figure 2(a) shows βz over the visualisation region at
t/T0 = 83. Here, B0, representing the primary wave beam generated by the wavemaker,
propagates energy up and to the left, at its respective group velocity cg0 . The group velocity
is defined for all wave beams by

cgp =
(

∂

∂lp
,

∂

∂mp

)
ωp = Nlp

κ3
p

(mp,−lp), (3.1)

where the broadband wavenumber spectrum of each beam is approximated with a
characteristic wavenumber. The primary beam B0 reflects off the free surface, causing θ ,
and hence the vertical component of its group velocity, to change sign and the wave packets
subsequently move down and to the left. An appropriate Reynolds number for the flow is
given by Re = |cg0 |/(νκ0) = N sin θ/(νκ2

0 ), where ν = μ/	0 is the kinematic viscosity of
1 mm2 s−1. Here, |cg0 | provides the velocity scale and κ0 provides the length scale. As
described by Hazewinkel (2010), this definition of Reynolds number is chosen as wave
amplitude decays exponentially in the direction of cg0 . Using this definition, Re ≈ 170.
As the selected input amplitude displacement of |l0|A0 = 0.200 is above the instability
threshold, B0 becomes unstable, leading to the formation of two secondary beams. One
of these beams, B1, is clearly visible in figure 2(a). This beam emanates from the central
region of B0 but moves in nearly the opposite direction, with a group velocity down and
to the right. From figure 2(a), the third beam, B2, that completes the triad is not visible.
In order to understand the underlying modal structure of these beams, the flow field β, is
decomposed using dynamic mode decomposition (DMD).

DMD works by performing an eigendecomposition of a linearised representation of
the underlying evolution operator for a given flow field (Schmid 2010). The ‘dynamic
modes’ are the recurrent spatial structures that accurately describe the dominant behaviour
captured in the data sequence. Where DMD excels is in determining the frequencies and
structure of the modes from short time series where there is a discrete spectrum that
can reasonably be approximated by a combination of delta functions at slowly evolving
frequencies. The ability to extract the modes from short time series allows exploration of
the slowly evolving structure and frequency of the modes. This linear approximation for
the evolution operator is valid for the experiments shown here due to the two discrete time
scales, whereby the slow time evolution of the beam amplitude is much less than the fast
time scales ωpt.
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Figure 2. (a) The non-dimensional vertical gradient of the density perturbation βz of the flow field at
t/T0 = 83 into an experiment forced at |l0|A0 = 0.200. (b)–(d) The real part of βz for three of the dominant
frequencies produced from the DMD over 83 ≤ t/T0 ≤ 86. The black arrows overlaid indicate the orientation
of the respective wavenumber vectors kp. In panel (b) we see solely the wave field B0 with ω0/N = 0.62. In
(c) we see B1 with ω1/N = 0.23 and in (d) B2 with ω2/N = 0.39. The black box in (b) shows the spatial
averaging domain 〈〉r used for the primary beam, discussed in § 5.1.

The maximum number of dynamic modes is given by the number of input frames in the
sequence δt (in this case δt = 20 s, as we use a frame rate of 1 f.p.s., which is just greater
than the slowest period of the triad T1) and if the obtained mode is complex then it is
coupled as a conjugate pair (representing an oscillatory mode). Here, however, we are only
interested in those modes with an eigenvalue modulus very close to one, as they represent
the steady, non-decaying modes of the system. When instability occurs experimentally,
four non-decaying modes are obtained, three of which are conjugate pairs of eigenvalues.
The real part of these three modes produced over the temporal window 83 ≤ t/T0 ≤ 86 are
given in figures 2(b)–2(d). As expected from the input forcing, figure 2(b) corresponds to
the input B0 with non-dimensional frequency ω0/N = 0.62. Figure 2(c) then corresponds
to B1 with ω1/N = 0.23 and figure 2(d) to B2 (obscured behind B0 in figure 2a), which
propagates with a group velocity up and to the left, with non-dimensional frequency
ω2/N = 0.39. We sum the frequencies of the secondary beams and see that the temporal
condition for triadic resonance, ω0 = ω1 + ω2, is satisfied. We remark that this frequency
relationship is not enforced at any stage of experimental post-processing, but arises
naturally from prominent signals found in the temporal spectrum.

The fourth (non-decaying mode) corresponds to ω/N = 0 and is not shown here. This
is generated from a two-wave interaction (TWI), in which two wave beams interact to
produce a third wave beam, with a phase angle relationship

φ̌ = ±φ0 ∓ φ′0. (3.2)

In this case, φ0 = l0x+ m0z− ω0t, corresponds to the phase angle of B0, and φ′0 =
l0x− m0z− ω0t to its reflection, B′0, from the free surface. These wave beams will sum
to produce a third wave beam with wavenumber vector ǩ = (0, 2m0) aligned with the
vertical and with zero frequency. This non-propagating disturbance cannot be classed as
a wave, but instead should be treated as a forced oscillatory structure that is confined to
the interaction region of the primary beam with its reflection. If considered analytically
(Thorpe & Haines 1986) or numerically (Grisouard et al. 2013) (unfortunately, this
manuscript contained a typo in the lead author’s name when published and so may appear
elsewhere with the lead author (incorrectly) set to ‘Grisouarda’; here we have reverted to
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the correct spelling of the lead author’s name, ‘Grisouard’) in a 2-D setting, only weak
horizontal vorticity is generated (with zero Lagrangian mean flow, indicating no mass
transport), which is partially suppressed by the background stratification (Beckebanze,
Raja & Maas 2019). When considered in a three-dimensional (3-D) setting, however,
Grisouard et al. (2013) showed, both experimentally and numerically, how a stronger
slowly evolving 3-D horizontal mean flow develops from the interaction region of the
primary beam with its reflection. This flow has a vertical component to its vorticity
field and non-zero Lagrangian mean flow. Indeed, if viscous attenuation and cross-beam
variations are present, it is possible for this 3-D Lagrangian mean flow to be generated
from the wave beam interacting with itself, as shown analytically by Kataoka & Akylas
(2015) and experimentally by Bordes et al. (2012). In all of the 3-D cases cited previously,
however, the wave beam is propagating in a tank wider than the beam width. This allows
for a recirculating mean flow to develop in the transverse direction, outside of the spatial
extent of the beam. As noted by Sutherland (2006) in experiments where wave beams are
confined laterally by tank side walls, as is the case in the experiments presented here,
horizontal mean flow of this type is unable to develop. Despite this, the presence of the
lateral side walls will act to induce a mean flow in the boundary layer, as discussed by
Horne et al. (2019). They showed how a wavemaker spanning the full width of the tank
will directly force a mean flow in the lateral boundary layer, balanced by a return flow in
the interior. Due to our large tank dimensions, however, a theoretical steady state would
not be achieved until approximately 5 h (with a boundary layer thickness of ∼1 mm) and
the return flow would remain weaker than the 2-D dynamics described here. Overall, the
observed zero-frequency mode in our experiments, closely resembles the 2-D simulations
of Grisouard et al. (2013) and, although the disturbance does slowly exit the interaction
region of B0 and B′0, indicating the slow growth of a Lagrangian mean flow, its amplitude
remains small and no strong reticulation is seen to develop and as such does not affect the
evolution of TRI.

We proceed to determine the wave vectors corresponding to the primary and secondary
wave beams by taking our frequency-decomposed gradient field over the temporal window
83 ≤ t/T0 ≤ 86, the real parts of which are shown in figures 2(b)–2(d), and calculating
a 2-D power spectrum on each constituent field separately. Each image is embedded
in a zero-filled matrix in order to improve resolution and limit spatial aliasing. The
wavenumber is determined by fitting a quadratic curve to the peak of the resultant
power spectra and finding the wavenumber corresponding to the peak of the curve.
This procedure is performed on every row and column of the domain and subsequently
mean averaged over both spatial dimensions. The smallest resolvable length scale is 2
pixels, equivalent to the non-dimensional length x|l0| = 0.031, given by the ratio of pixel
resolution to region size. As the analysis performed on the horizontal density gradient βx
provides similar results to that of the vertical βz, we use only the results from the vertical
gradient for simplicity. The non-dimensional characteristic wavenumbers for the vertical
gradient fields shown in figure 2 are k0/|l0| = (−1.00,−1.32), k1/|l0| = (0.59, 2.32),
and k2/|l0| = (−1.58,−3.82). These wave vectors are shown by the blue arrows on
figure 3, where the underlying black, red and green curves provide the locus of all possible
solutions for k1 given k0, based on both the dispersion relationship (1.4) and the TRI
condition (1.1).

Although the calculated characteristic wave vectors shown in figure 3 form almost in
a closed triangle, their alignment is not perfect, potentially indicating that the spatial
triadic resonance condition k0 = k1 + k2 is not exactly satisfied. The reason for this
slight misalignment is due to three factors. First, there is the effect of inevitable
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Figure 3. The underlying solid and dashed black, red and green curves give all of the possible locations for the
tip of k1 that satisfy both the dispersion relationship (1.4) and the TRI condition (1.1) for a givenB0. The dark
blue arrows show the experimentally produced, characteristic, wavenumber vectors of the resonant triad shown
in figure 2, obtained from taking the Fourier transform in (x, z) of the gradient field. The shaded grey region
then indicates the range of wavenumber vectors obtained over the course of the experiment. The six dark blue
marks correspond to the different triad wave vector configurations T used in the weakly nonlinear modelling
and are discussed in § 5.1. The panel in the bottom right corner shows an enlarged view of the region enclosed
by the black rectangle.

experimental noise. Second, as we are considering finite-width beams as opposed to plane
waves, each beam is composed of a broadband wavenumber spectrum. By defining a single
characteristic wavenumber for the beam, taken from the peak of the Fourier spectrum, we
are therefore approximating this wavenumber distribution. Third, we are assuming that the
spatial structures of B1 and B2 are uniform over the field of view. In fact, as the experiment
progresses, significant modulations to the structures of B1 and B2 are observed, revealing
that this assumption of spatial uniformity is only an approximation.

Although it is clear that TRI was indeed being witnessed experimentally in a finite-width
beam, this in itself is not novel. In an experiment actuated by an oscillating cylinder, Clark
& Sutherland (2010) attributed the breakdown of a wave beam due to TRI, showing how
the instability evolves from infinitesimal perturbations in the flow. This work has recently
been developed further by Fan & Akylas (2020), who discussed the validity of TRI theory
in thin wave beams. Moreover Joubaud et al. (2012) and Bourget et al. (2013) clearly
showed the growth of the instability for a finite-width beam in experiments using their
sidewall wavemaker. In our work, the regime of interest is not the initial growth of the
instability, but rather the finite-amplitude unsteady modulations that occur afterwards. As
noted, the expected saturated equilibrium state for the weakly non-linear instability is not
observed, rather we witness slow modulations of the amplitudes and structures of the
constituent beams in the triad, revealing much more dynamical behaviour than anticipated.
We investigate the long-term evolution of this unsteady behaviour for the remainder of the
paper.

3.2. Long-time development
Figure 4 shows 8 instantaneous images of the experiment shown in figure 2. Figure 4(a)
(the same image shown in figure 2a) is captured at t/T0 = 83 into the experiment, just as
B0 becomes visibly unstable. By t/T0 = 180, shown in 4(b), B1 has clearly developed,
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with a group velocity propagating down and to the right. A particularly interesting feature
of the subsequent time frames is the modulation of B1 over time. Not only is its region
of generation not constant, it migrates across the full height of B0, the beam itself also
varies in both intensity and width. This migratory behaviour, along with the aperiodic
growth and decay persists for the full duration of the experiment, which lasts for over
800 periods of the primary beam. Further quantitative analysis of this peculiar behaviour
requires us to calculate the amplitude of the individual resonant wave beams B0, B1 and
B2. Decomposing by frequency into complex constituent fields using DMD, we calculate
the vertical displacement field by

ξp(x, z) =
∫

x

∫
z
β∂z∂x = g

N2
ρp

	0
, (3.3)

where ρp is the full density perturbation field found by a least squares minimisation of the
integrated horizontal and vertical components of the density gradient (Hazewinkel, Maas
& Dalziel 2011). We assume an oscillatory form ρp = ρ̃p eiφp and ξp = ξ̃p eiφp , where ρ̃

and ξ̃ are the slowly varying complex density and vertical amplitude fields, respectively,
varying on a slow time scale well separated from the oscillation period of all wave beams
in the system.

We then isolate the wave beam of interest further using a Hilbert transform, first used for
internal waves by Mercier, Garnier & Dauxois (2008). This filtering technique is applied
to isolate the quadrant of Fourier space containing the wave vectors of the beam of interest
from other signals of the same temporal frequency (e.g. separating B0 from its reflection
from the free surface, B′0). We then take the root mean square (magnitude) of the complex
output, leaving the constituent positive scalar fields |ξ̃p|, containing only the triadic wave
beam, p, of interest.

In order to have a single value for amplitude that is independent of space, we then
spatially mean average |ξ̃p| over the whole field of view denoted 〈|ξ̃p|〉w. This choice of
spatial averaging ensures that our measure of amplitude is decorrelated with the position of
a beam in space, a topic that is discussed further in § 5.1. An unavoidable consequence of
this choice, however, is that this average measure no longer represents the local amplitude
within a beam. To account for this, the other region used for spatial averaging is shown by
the black box in figure 2(b), which we denote as 〈|ξ̃0|〉r. This region is only ever used for
the primary beam and is used to compare the experimental input amplitude with the 0-D
modelling discussed in § 5.1.

Figure 5 shows the spatially averaged, non-dimensional vertical amplitude |l0|〈|ξ̃p|〉w
(wave steepness) for two experiments. In figure 5(a) we show the same experiment as
figure 4, whereas figure 5(b) corresponds to another experiment with the same forcing
amplitude (|l0|A0 = 0.200) but with a much longer run time (tend/T0 = 1633). We first
note that the growth of the secondary wave beams appears earlier in figure 5(a) than
figure 5(b) and that the maximum amplitude of the primary wave beam in figure 5(a) is
larger, despite both experiments having the same input amplitude displacement, |l0|A0,
from the wavemaker. This is due to the growth of a mixed layer at the bottom of
the tank, which results in decreased transmission from the wavemaker to B0 as the
week progresses. Despite both experiments having the same forcing amplitude, as the
experiment in figure 5(b) was conducted 2 days after the experiment in figure 5(a), the
resultant amplitude of B0 is less. As noted by Mercier et al. (2010), this emphasises the
need to use the measured wave beam amplitude as opposed to the imposed displacement
from the wavemaker.

953 A22-12

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

91
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.914


The long view of TRI in finite-width internal wave beams

0

z/
H

x/λx0

1

2 4 6 8 0

x/λx0

1

2 4 6 8

0

z/
H

1

2 4 6 8 0

1

2 4 6 8

0

z/
H

1

2 4 6 8 0

1

2 4 6 8

0

0.4

0.2

–0.4

–0.2

0

z/
H

1

2 4 6 8 0

1

2 4 6 8

βz

(a) (b)

(c) (d)

(e) ( f )

(g) (h)

Figure 4. Sequence of images showing the non-dimensional vertical gradient of the density perturbation βz,
for the same experiment shown in figure 2 with a forcing amplitude of |l0|A0 = 0.200. The timings of the
images are (a) t/T0 = 83, (b) t/T0 = 180, (c) t/T0 = 294, (d) t/T0 = 347, (e) t/T0 = 450, ( f ) t/T0 = 481, (g)
t/T0 = 628 and (h) t/T0 = 660. These timings have been chosen to correspond to interesting features in the
constituent vertical amplitude fields of the triad beams and are marked by the black dashed lines on figure 5(a).
The black lines in (c) indicate where the B1 beam changes wavenumber, evidenced by the subtle change in
wavelength in between the two lines.

Another observable feature in figure 5 is the gradual increase of the mean amplitude of
B0 over time. This behaviour is also seen in lower input amplitude (|l0|A0) experiments
that did not become unstable to TRI (not shown here). This increase is not due to
the instability, as the TRI mechanism transfers energy from the primary beam to the
two secondary wave beams, as opposed to injecting energy into the primary wave
beam. Rather, the amplitude increase is due to the peristaltic motion of the wavemaker
advecting away the mixed layer leading to a sharpening of the stratification directly
above the wavemaker. This stronger density gradient results in an increased transmission
efficiency from the wavemaker to the internal waves field and, hence, a stronger measured
signal.

The most prominent feature in figure 5 is the amplitude modulations of all the
triadic wave beams, observed in every experiment that became unstable. Although these
modulations were anticipated from qualitatively observing the experiments, quantitatively
they are found to be unexpectedly large and without obvious periodicity. In figure 5(a),
after t/T0 = 100 the amplitude of B1 (red) fluctuates by ±55 % of its mean amplitude.
This behaviour was so striking that we initially sought explanations unrelated to the
physics of the system, such as measurement errors in converting raw video footage
to density gradient fields or discrepancies that might be introduced by frequency
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Figure 5. The non-dimensional vertical amplitude |l0|〈|ξ̃p|〉w of B0 (blue), B1 (red), B2 (green) for two
experiments. The spatial averaging of each amplitude field is performed over the whole domain 〈〉w. (a) The
same experiment shown in figure 4 with run time of tend/T0 = 816 and input amplitude |l0|A0 = 0.200. The
black dashed lines mark the timings of the images in figure 4. (b) Another experiment with a longer run time
of tend/T0 = 1633 and input amplitude |l0|A0 = 0.200.

decomposition into constituent fields. After careful examination of both the raw data
and the tool chain, including replicating the harmonic analysis of Mercier et al. (2008),
a technique that relies solely on Fourier transforms to isolate waves before calculating |ξ̃p|,
we were able to discount all extraneous sources that could contribute to these structural
modulations.

In figure 5, the amplitudes of B1 (red) and B2 (green) are positively correlated; their
amplitudes are almost scaled values of each other. Meanwhile, the amplitude of B0 is
negatively correlated with B1 and B2. When B0 is at a local maximum, the amplitudes
of B1 and B2 are concurrently at a local minimum and then versa when the amplitude
of B0 is at a minimum. This coupling of the modulations in amplitude between B0 and
the secondary B1 and B2, reveals a continuous energy exchange flux between the wave
beams in the triad that does not saturate to a steady equilibrium. For these experiments,
the pattern of slow modulation appears to be independent of the primary wave beam
amplitude, as, when normalised, the amplitude ratios B1/B0 and B2/B0 are similar
across all experiments that become unstable independent of the amplitude of the forcing.
Despite the clear pattern of modulations shown in figure 5, there is sufficient randomness
that the signal does not have a clear dominant frequency in Fourier space. This observation
is common to all experiments where instability develops.

Both the physical positioning of the secondary wave beams (seen in figure 4) and
their amplitudes (shown in figure 5) undergo slow modulation. Less obvious is that the
beam frequencies and wavenumbers also simultaneously modulate. This is evidenced in
figure 4(c), where the horizontal wavelength of B1 varies between l1/|l0| = 0.48 and
l1/|l0| = 0.67 in-between the two black lines. To further understand the slow evolution of
Fourier space parameters of the secondary beam, figure 6 shows the temporal-frequency
spectrograms computed using a Fourier transform for both experiments presented in
figure 5, along with the corresponding DMD estimates of the triadic frequencies overlaid
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Figure 6. Time–frequency spectra with spectral density computed by (3.4) and normalised by the total energy
SE =

∑H
z=0 Sβz (ω)2 for each instant in time. The dominant frequencies obtained from the DMD frequency

decomposition are overlaid in white. (a) The same experiment shown in figure 5(a) (and also in figures 2 and 4)
with a run time of tend/T0 = 816 and amplitude |l0|A0 = 0.200. The white dashed lines are at the same times
of the first six in figure 5(a) and indicate the times of the wavenumber spectrograms shown in figure 8. (b) The
same experiment shown in figure 5(b), with a longer run time of tend/T0 = 1633 and amplitude |l0|A0 = 0.200.
The subplot overlaid on (b) shows a transect in time at t/T0 = 452, marked by the cyan and magenta arrows.
Here we have plotted ln(Sβz (ω)/SE) in cyan and ln(Sβz (ω0 − ω)/SE) in magenta against ω/ω0.

in white. The amplitude of the spectrograms are determined by

Sβz(ω, t) =
〈∣∣∣∣ 1

TT

∫ +∞
−∞

βz(x, z, t′) e−i2π(ωt′)W(t′ − t;TT) dt′
∣∣∣∣
2
〉

w

, (3.4)

where W(t′;TT) is a Hamming window of non-dimensional width TT/T0 = 39. For the
frame rate of 1 f.p.s., the highest resolvable frequency (shortest time period) is ω/N =
4.08. Several windowing functions were tested, and were not found to significantly affect
the spectrogram results. The angled brackets, 〈〉w, again indicate that the results are
averaged across the whole visualisation region. This underlying spectrogram, calculated
using (3.4), reveals the details about the distribution of the frequency spectra for ω1 and ω2.
In contrast, as we are only selecting the three dominant modes obtained from the DMD
over short time intervals (δt/T0 = 3), this methods approximates the underlying energy
spectrum by a series of delta functions, allowing us to clearly see the slow-time evolution
of these dominant modes.

Both spectrograms in figures 6(a) and 6(b) show a clear peak at ω0/N = 0.62 for all
time, consistent with the imposed displacement from ASWaM. Both secondary beams
emerging from the instability become visible at approximately t/T0 = 50, with peaks in
the spectra around ω1/N ≈ 0.23 and ω2/N ≈ 0.39, though subsequently these modulate
on a slow time-scale throughout the duration of an experiment. The overlaid DMD
frequency estimates match almost perfectly the three frequency peaks on the spectrogram,
following the same pattern of slow modulations. Despite this modulation, the temporal
triadic relationship ω0 = ω1 + ω2, is satisfied at all times for the frequencies obtained
from the DMD. As noted previously, the triadic requirement is not built into the DMD
analysis. Interestingly, a similar variation in frequency has been witnessed by both
Bourget et al. (2013) and Brouzet et al. (2016) in their experimental studies, however,
the phenomenon was not the focus of their work.
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Figure 7. (a) The non-dimensional vertical gradient of the density perturbation βz for the same panel shown in
figure 4( f ) at t/T0 = 481. (b)–(d) The real part of the three pairs of dominant modes extracted using DMD over
a time-window from 481 ≤ t/T0 ≤ 483. Specifically, (b)B0 with ω0/N = 0.617 (c)B1 with ω1/N = 0.211 (d)
B2 with ω2/N = 0.405. The black dashed box in (d) indicates the region of discontinuity in theB2 beam.

In addition to the triadic frequencies, there are three other distinct frequency bands found
in the time–frequency spectrograph. The band with the lowest frequency corresponds to
ω/N ≈ 0, which was also observed from the DMD and has already been discussed. The
other two frequencies ω/N ≈ 0.84 and ω/N ≈ 1 correspond to two different TWIs, given
in (3.2), between B0 and either B1 or B2, respectively.

What is perhaps most striking from these time-frequency spectra is how, at certain points
in time, there are multiple sets of B1 and B2 associated with the instability. This is shown
by the convergent ‘wisps’ on the ω1/N and ω2/N bands, where additional secondary beam
pairs appear and merge with the continuous mode. This is highlighted for t/T0 = 452
by the inset in figure 6(b). Here we have plotted ln(Sβz(ω)/SE) in cyan and ln(Sβz(ω0 −
ω)/SE) in magenta against ω/ω0. The presence of a spectrum of triadic relations here
is evidenced by the strong correlation between the two traces, indicating that the triadic
requirement ω1 + ω2 = ω0 persists across all the spectrum.

To analyse these frequency modulations further, figure 7 shows the real part of the
dynamic modes from the DMD of the experiment presented in figure 4 over frames
481 ≤ t/T0 ≤ 483 (panel ( f )). Unlike its earlier counterpart in figures 2(c) and 2(d), where
there was one distinct frequency and wavenumber pair for both B1 and B2, figures 7(c)
and 7(d) show that, at this instant in time, TRI is occurring at two different locations
over the height of the primary beam. For both of these modes, the signal is discontinuous
across a transition region where the two out-of-phase wave beams deconstructively meet,
highlighted by the black dashed rectangle in figure 7(d). Indeed, the presence of these
separate beams is confirmed by splitting the domain in half and performing the DMD
analysis separately on the two halves. For the upper half of the domain ω1/N = 0.211 and
ω2/N = 0.406, while in the bottom half of the domain ω1/N = 0.214 and ω2/N = 0.403.

The spatial dependence of the instability is highlighted further in figure 8, where the 3-D
surface plots shows the horizontal components of the wave vectors l1 and l2 as a function
of height in the domain for six different instances in time, given by the white dashed lines
on figure 6(a). The surface is defined by

S
β

‡
z
(l, z, t) =

∣∣∣∣
∫ +∞
−∞

β‡
z (x′, z, t) e−i2πlxW(x′ − x;XX) dx′

∣∣∣∣
2

, (3.5)
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The long view of TRI in finite-width internal wave beams

where W(x′;XX) is a Hamming window of width XX = |l0|x = 60.9, spanning the full
width of the domain. Here, β

‡
z (x, z, t) corresponds to the instantaneous vertical density

perturbation gradient that has already been temporally filtered in Fourier space to remove
the signal from ω0. The surface plots show (3.5) evaluated at each height in the domain
to obtain the horizontal component of wavenumber l1 and l2. The contour plots behind
show the corresponding frequency–wavenumber spectrogram. This is obtained by the 2-D
Fourier transform (in x and t)

S
β

‡
z
(ω, l, t)=

〈∣∣∣∣ 1
TT

∫ ∫ +∞
−∞

β‡
z (x′, z, t′) e−i2π(lx′+ωt′)W(x′−x;XX)W(t′−t;TT)dx′ dt′

∣∣∣∣
2
〉

z

,

(3.6)

where the widths of the Hamming windows are given by TT/T0 = 39 and XX = |l0|x =
60.9, and the subscript z on the angle brackets shows that S

β
‡
z
(ω, l, t) is averaged over

the height of the domain. The region of spatiotemporal discontinuity shown in physical
space by the black dashed rectangle in figure 7(d) is clearly visible in wavenumber
space in figure 8( f ). The peak of the spectral isosurface in figure 8( f ) corresponding
to l2, around mid-height in the domain, shows a shift in both the amplitude and value
where the peak occurs. The presence of this discontinuous region indicates that two
wave beams, of slightly different frequency and wavenumber, are destructively interfering
with each other. Earlier, at t/T0 = 83 in Figure 8(a) (corresponding to figure 4a) as the
instability is developing, the triadic interaction is localised at the top of the domain,
with little signal in the lower part (as here there is very low amplitude signal for both
l1 and l2). The development of the subsequent panels in figure 8 show how the strength,
location and the local values of l1 and l2 continuously shift over time. This spatial and
temporal variation reveals that multiple resonant triads can be present in the domain
simultaneously. This continuously varying range of wavenumbers explains why the grey
region of experimentally obtained characteristic wavenumbers on figure 3 does not exactly
fit the spatial triadic conditions of the underlying green branch of the loci.

We speculate that the reason for these modulations, observed in both real and Fourier
space, is due to the finite width of the primary wave beam. As a packet of energy in
B1 or B2 exits the underlying primary beam, the energy exchange between the triad
is broken. The time taken for both these secondary beams to exit the spatial confines
of B0 is dependant on the group velocities of the beams, which are functions of their
wavenumbers, and the relative orientation of the beams determined by their frequencies.
If the secondary beams are unable to extract sufficient energy before propagating out of the
primary beam, the triad system will not be able to form a stable equilibrium and another
triadic perturbation will grow in another location. Moreover, all the triadic beams are
composed of a broadband wavenumber spectrum due to their finite width, as shown in
figure 8. This introduces a range of group velocities in the secondary beams which will
exit the underlying beam at different times, enhancing the unsteady transfer of energy.

In addition, the structure of the underlying B0 varies across the height of the domain.
As B0 propagates upwards through the tank, it decays due to viscosity, resulting in a
broadening in spatial extent and reduction in amplitude (Fan & Akylas 2020). These
combine to give considerable variation in both real and Fourier space over the height of
the domain, where different locations will favour slightly different triadic perturbations.
Indeed, as different perturbations grow, the secondary wave beams with very similar
frequencies could interact with each other nonlinearly via the primary wave beam,
generating a slow ‘beating’ effect. This interaction could cause the secondary beams to
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Figure 8. Six surface plots corresponding to the first six snapshots in figure 4 (times also marked by the
first six black lines in figure 5 and the white lines in figure 6), showing the distribution of l1 and l2 over the
non-dimensional height in the domain (z/H) calculated by (3.5): (a) t/T0 = 83, (b) t/T0 = 180, (c) t/T0 = 294,
(d) t/T0 = 347, (e) t/T0 = 450 and ( f ) t/T0 = 481. Here the βz image sequence is first temporally filtered in
Fourier space to remove the signal from B0, and thus we do not see a peak at l0. Both the surface plot colour
and the height of the peaks, show the power spectral density S

β
‡
z
(l, z). The background plot then shows l1 and

l2 at the same instant in time in the Fourier plane of horizontal wavenumber component and of frequency. This
contour plot is defined by (3.6).

decay in some locations, whereas in others it causes a growth in amplitude, amplifying the
effects of the modulations. Making the approximation that there is a single discrete set of
parameters corresponding to the secondary wave beam for the whole domain is therefore
an oversimplification that ignores the spatial variation of the instability.

4. Weakly nonlinear model construction

From the experimental results presented here, we believe that the unsteady behaviour of the
instability is a function of the finite-width Λ0 of the primary beam B0. We therefore seek
to understand this interaction in a 2-D context. We pursue this through the development
of a 2-D weakly nonlinear model, which we refer to as M2-D. The goal here is to dissect
the experiments and to isolate the dynamics that are observed experimentally, in order
to improve the understanding of the system. A computational fluid dynamics (CFD) code
would be an inappropriate choice to achieve this, as little would be learnt about the physical
mechanisms governing the behaviour. In this section we detail the perturbation expansion
used to develop the 2-D framework for the M2-D model. Details of the numerical solution
to the obtained system of equations are given in Appendix B.

Assuming a 2-D incompressible continuously stratified Boussinesq fluid in background
hydrostatic balance with constant buoyancy frequency N, the Boussinesq nonlinear
equations of motion are given by

	0
Du
Dt
= −∇p− gρẑ + μ∇2u, (4.1)

953 A22-18

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

91
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.914


The long view of TRI in finite-width internal wave beams

Dρ

Dt
= −w

dρ̄

dz
, (4.2)

∇ · u = 0, (4.3)

where p is the dynamic pressure (set through the need to satisfy the incompressiblity
condition (4.3)) and μ is the dynamic viscosity. Here, (4.1) is the momentum equation,
whereas for this incompressible Boussinesq flow without mass diffusion (infinite Schmidt
number, a reasonable approximation for salt in water) where we also neglect the transfer
of mechanical energy to internal energy through viscous dissipation, the internal energy
conservation (4.2) reduces to density being a materially conserved quantity. We note that
for thermal stratification, whether in water or air, it would be inappropriate to ignore
thermal diffusion but include viscosity.

Writing velocity in terms of the scalar stream function u = ∇ × (Ψ ŷ), this system can
be reduced to

D2

Dt2
(∇2Ψ )− D

Dt
ν∇2(∇2Ψ )+ N2 ∂2Ψ

∂x2 =
g
	0

(
∂

∂x
D
Dt
− D

Dt
∂

∂x

)
ρ, (4.4)

Dρ

Dt
= −∂Ψ

∂x
dρ̄

dz
. (4.5)

Details of the derivation of (4.4) are given in Appendix A. Here, we focus on (4.4), which
represents the nonlinear momentum balance in terms of stream function and density. We
seek the simplest form of the stream function and density that will describe the behaviour
of TRI in a finite-width beam. Specifically we define

Ψ = Ψ̃ (x, z, t) ei(k·x−ωt) + c.c., (4.6)

ρ = ρ̃(x, z, t) ei(k·x−ωt) + c.c., (4.7)

where Ψ̃ and ρ̃ are the reduced forms of the stream function and density, respectively, and
c.c. represents the complex conjugate. Both Ψ̃ and ρ̃ are given as functions of space and
time because, based on the experimental results, the behaviour of TRI in a finite-width
beam is spatiotemporally dependant.

We define the two non-dimensional parameters

ε = |l0||ξ̃00|, (4.8)

γ = (|l0|L)−1, (4.9)

where |ξ̃00| is the characteristic magnitude of the experimental amplitude associated with
the primary beam B0 and L is a characteristic length scale in the direction of |cg| over
which the amplitude of Ψ̃ changes. Here, ε can be viewed as a non-dimensional measure
of the experimental primary beam amplitude, which characterises the relative importance
of the nonlinear u · ∇ terms in the momentum and internal energy conservation equations.
The spatial parameter γ is then a non-dimensional distance over which we observe
variations in the amplitude. When L is sufficiently large, these changes depend only on
viscosity (L = ν/|cg|). In the more limiting case of small L = Λ0, (where Λ0 is the
primary beam width), we see changes occurring to secondary wave beams that are a
function of the nonlinear interactions over the finite width of the primary beam. When
considering viscous effects in oceanographic settings, γ will be orders of magnitude
smaller than ε as, at the scales of interest, the role of viscosity in the ocean can be
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considered negligible. Here, however, as experiments are inherently more viscous than
similar motion patterns at oceanic scales, we retain the leading-order effects of viscosity.
We restrict our attention to experimental parameters: low-amplitude ε ∼ 10−2 � 1,
finite-width γ ∼ 10−2 � 1, viscous beams γ ∼ 10−3 � 1 and introduce re-scaled time
and position through the four variables

τγ = γ t, ζx = γ x, ζz = γ z, τε = εt. (4.10a–d)

As we shall see, τε accounts for the ‘slow nonlinear time’ variations to the amplitude,
whereas τγ governs the ‘slow advection time’ scale, the time for a packet of energy to
cross the wave beam as opposed to the fast time associated with ω. As, for the experiments,
both ε � 1 and γ � 1, these scaled times account for change over long-time periods. The
spatial parameters ζx and ζz account for the gradual spatial variability of the wave beams
in the domain. Utilising the dimensionless amplitude ε, we rewrite the stream function in
(4.6) as

Ψ = Ψ̃ (x, z, t) ei(k·x−ωt) + c.c. = εΨ̆ (τγ , ζx, ζz, τε) ei(k·x−ωt) + c.c., (4.11)

where Ψ̃ = εΨ̆ . We therefore require |Ψ̆ | ∼ 1 as we are interested in small perturbations
to the flow. The ‘fast time’ is associated with the phase variations of the waves given by the
wave frequency and is captured by the complex exponential wave form ei(k·x−ωt) = eiφ . As
we are interested in the wave triad, we express the stream function as the summation in the
same way as McEwan & Plumb (1977), by

Ψ =
2∑

p=0

Ψp =
2∑

p=0

Ψ̃p(x, z, t) eiφp + c.c. =
2∑

p=0

εΨ̆p(τγ , ζx, ζz, τε) eiφp + c.c., (4.12)

where the subscript p indicates a locally plane-wave approximation to B0, B1 or B2.
Each wave phase eiφp therefore represents the characteristic frequency and wavenumber
contribution to Bp. A similar set of expressions can be written for ρ as a sum of ερ̆p eiφp .

The superposition in (4.12), along with the equivalent for ρ, is then substituted into the
nonlinear (4.4) where, due to the separate space and time scales, the partial derivatives in
(4.4) with respect to (x, z, t) become

∂Ψp

∂x
= ε

(
ilp + γ

∂

∂ζx

)
Ψ̆p eiφp + c.c., (4.13a)

∂Ψp

∂z
= ε

(
imp + γ

∂

∂ζz

)
Ψ̆p eiφp + c.c., (4.13b)

∂Ψp

∂t
= ε

(
−iωp + γ

∂

∂τγ

+ ε
∂

∂τε

)
Ψ̆p eiφp + c.c. (4.13c)

This substitution and following manipulations were performed with the aid of
Mathematica (Wolfram Research 2021) to ensure reliability of the lengthy algebraic
manipulations required.

We note that at first order in ε, the right-hand side of (4.4) vanishes. Therefore, as the
contributions from density on the right-hand side first appear at second order in ε, it is
valid to use the following linear relationship

ρ̆ = − l
ω

N2	0

g
Ψ̆, (4.14)

to remove density up until terms with a second order contribution from ε. The resultant
expression obtained provides the Boussinesq viscous equations of motion solely as a
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The long view of TRI in finite-width internal wave beams

function of Ψ that can be used to examine both linear and nonlinear dynamics between
a triadic set of waves simply by collecting terms at orders of ε and γ .

The expression obtained at order O(ε0γ 0) will be zero as these terms correspond to a
state of rest. At order O(ε1γ 0), we recover the linear wave solution, with the nonlinearity
in (4.4) vanishing and linear superposition applying such that the three waves propagate
independently. Extracting terms with a common factor of eiφp , leaves

ωp

N
= lp√

(l2p + m2
p)

, (4.15)

which is the linear dispersion relationship for internal plane waves. Indeed, for a single
nonlinear plane wave in the inviscid limit, the right-hand side of (4.4) vanishes whereas
the left-hand side returns the dispersion relationship for non-trivial solutions, regardless
of the wave amplitude.

We then collect terms at the next order, O(ε1γ 1). We first examine the non-dimensional
length scale γ = (|l0|Λ0)

−1, so considering spatial variations due to the finite width of
the primary beam. Again, as ε is still at first order, the nonlinear terms in (4.4) cancel.
Looking at the eiφp terms, we obtain

2εγωpκ
2
p
∂Ψ̆p

∂τγ

= 2εγ

(
lp(ω2

p − N2)
∂Ψ̆p

∂ζx
+ ω2

pmp
∂Ψ̆p

∂ζz

)
, (4.16)

which after some rearranging can be expressed as

∂Ψ̆p

∂τγ

= −(cgp · ∇ζx)Ψ̆p → ∂Ψ̃p

∂t
= −(cgp · ∇)Ψ̃p, (4.17)

where ∇ζx = (∂/∂ζx, ∂/∂ζz) and ∇ = (∂/∂x, ∂/∂z). This linear advection equation shows
that the stream function of each wave beam in the triad is advected at its respective group
velocity. It is already well known that, for small-amplitude internal waves, the group
velocity cg is the velocity at which energy is transported (e.g. Sutherland 2010). As energy
scales approximately with Ψ 2, the fact that (4.17) shows that Ψ̆ is also advected by cg is
not altogether surprising.

We next consider spatial variations due to viscous effects, so γ = (|l0|ν)|cg0 |−1. When
considering experimental parameters, this definition of γ results in ε1γ 1 < ε2. Despite
this, in both experimental and oceanographic settings the viscous decay of individual wave
beams occurs irrespective of the nonlinear interactions, making it appropriate to consider
their role in conjunction with the advection. Again, looking at terms with a common factor
eiφp , we obtain the term−εγ κ4

p |cg0 |Ψ̆p/|l0|. Combining this term with (4.16) we obtain the
viscous advection equation at O(ε1γ 1)

∂Ψ̃p

∂t
= −(cgp · ∇)Ψ̃p − ν

2
κ2

p Ψ̃p, (4.18)

which shows that the viscous decay of each beam scales as κ2
p . This advection equation

in (4.18) is critical in providing the 2-D general framework in which we can examine
the spatial effects of a finite-width beam. This equation forms the basis of our M2-D
model and details of how it is solved and its numerical implementation are addressed in
Appendix B.
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We next consider terms at order O(ε2γ 0). Here, nonlinearity enters the problem and
terms are no longer only associated with eiφp , but are also composed of cross-terms from
u · ∇ operator in (4.4) and have the form ei(φq+φr) when expressed in Fourier modes
(where p, q and r are permutations of 0, 1 and 2). We consider a triad of wave beams
satisfying resonance conditions (1.2). Using (4.14) to eliminate ρ̆ from (4.4), at order
O(ε2γ 0) we recover the nonlinear interactions found as ordinary differential equations
(ODEs) in Bourget et al. (2013) (although in our work the viscous decay has already been
considered at O(ε1γ 1)). Specifically, for the nonlinear interactions we obtain

ε2 ∂Ψ̆0

∂τε

= ε2I0Ψ̆1Ψ̆2 → ∂Ψ̃0

∂t
= I0Ψ̃1Ψ̃2, (4.19a)

ε2 ∂Ψ̆1

∂τε

= ε2I1Ψ̆0Ψ̆
∗
2 →

∂Ψ̃1

∂t
= I1Ψ̃0Ψ̃

∗
2 , (4.19b)

ε2 ∂Ψ̆2

∂τε

= ε2I2Ψ̆0Ψ̆
∗
1 →

∂Ψ̃2

∂t
= I2Ψ̃0Ψ̃

∗
1 , (4.19c)

where an asterisk indicates the complex conjugate and the interaction term is given as

Ip = lqmr − mqlr
2ωpκ2

p

[
ωp(κ

2
q − κ2

r )+ lpN2
(

lq
ωq
− lr

ωr

)]
. (4.20)

Although is possible to extend this expansion to examine the higher order O(ε2γ 1), this
model captures the essence of the observed experimental behaviour and so inclusion of
higher-order terms has not been pursued. By combining nonlinear interactions given in
(4.19) with the advection equation (4.18), we have developed a framework for examining
TRI that incorporates the 2-D spatial variation of a finite-width beam via the advection
equation obtained at order O(ε1γ 1). This general framework is reassuringly consistent
with the special case considered by Bourget et al. (2013), where the instability is only
considered as a function of time. This special case is first discussed in § 5.1. We then
consider the results from the full the M2-D model in § 5.2.

5. Weakly nonlinear behaviour

5.1. Zero-dimensional model results
As just highlighted, the coupled nonlinear interactions of (4.19) along with viscous
attenuation can be recovered as a set of ODEs by considering the form Ψ̃p(t) eiφp in (4.4),
where the slowly evolving reduced stream function is considered solely as a function of
time. Indeed, this zero-dimensional (0-D) theory was first proposed by McEwan & Plumb
(1977) and further developed by Koudella & Staquet (2006) and Bourget et al. (2013).

Although the 0-D theory considers the ‘slow-time’ development of the amplitude of
the beams, as noted by Sutherland (2013), it is still based upon the assumption that the
waves are monochromatic in space and time. In the case of a finite-width beam becoming
unstable to TRI, the secondary wave beams have a finite time with which to interact with
the underlying primary beam. This limitation was addressed by Bourget et al. (2014), who
adapted the coupled ODEs of the 0-D theory to examine the energy flux across a finite
region of the primary wave beam. Using an energy balance, they define a 2-D control
volume of width W0-D and length L0-D over which the resonant beams can interact with
the primary. Accounting for the energy fluxes in (from B0) and out (from all beams) of
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the control volume, the nonlinear interactions and viscous attenuation, the the 0-D theory
becomes

dΨ̃0

dt
= I0Ψ̃1Ψ̃2 − ν

(
κ2

0
2

)
Ψ̃0 + T, (5.1a)

dΨ̃1

dt
= I1Ψ̃0Ψ̃

∗
2 −

(
νκ2

1
2
+ |cg1 · ek0 |

2W0-D

)
Ψ̃1, (5.1b)

dΨ̃2

dt
= I2Ψ̃0Ψ̃

∗
1 −

(
νκ2

2
2
+ |cg2 · ek0 |

2W0-D

)
Ψ̃2, (5.1c)

where Ip is given in (4.20), ek0 is a unit vector in the direction of k0 and the forcing
term T = |cg0 |(Ψ̃ ∗inΨ̃in − Ψ̃ ∗0 Ψ̃0)/(2L0-DΨ̃ ∗0 ) in (5.1a), represents the energy flux for the
primary wave beam through the control area with an incoming amplitude of Ψ̃in. We
convert this input amplitude to the non-dimensional measure (|l0|2|Ψ̃in|)/ω0 = |l0|A0. The
terms on the end of (5.1b) and (5.1c) represent the viscous decay within, and flux of energy
out of, the control area. For the remainder of this article, we refer to the above set of
spatially 0-D ODEs in (5.1), which we use to describe the energy exchange in TRI in the
context of a finite-width beam, as the 0-D model M0-D.

The M0-D model is numerically integrated to examine its prediction for the
development of the triad. To match the experimental set-up, the width W0-D and length
L0-D of the interaction region are set to Λ0 (defined in (2.3)) and 2Λ0, respectively (see
Bourget et al. (2014) for details). The parameters for B0 are also kept consistent with the
experimental ones. In the limit of M0-D, B0 reduces to

B0 = {ω0/N = 0.62, k0/|l0| = (−1,−1.32)}. (5.2a,b)

We are curious to see how varying the wavenumbers and frequencies of the secondary
wave beams impact the evolution of the instability described by the M0-D. This is
achieved by defining a resonant triad as TΦ = {B0,B1Φ ,B2Φ }, where the subscript Φ

corresponds to a specific triadic configuration, obtained by changing the characteristic
frequencies and wavenumbers of the secondary wave beams. We require that all the triadic
configurations satisfy both the resonant condition (1.1) and dispersion (1.4), meaning all
of the configurations lie exactly on the green curve in figure 3. For the M0-D model,
we consider configurations Ta and Td, marked by the blue circle and star on figure 3,
respectively, with parameters listed in table 1.

The results of the numerical integration for the M0-D model are given in figure 9(a) and
(b) for Ta and Td, respectively, across a range of five non-dimensional input amplitudes
for the primary beam 0.053 ≤ |l0|A0 ≤ 0.105. We note that these input amplitudes are
about half of the input amplitudes from the wavemaker used in the experiments. This is
because in the experiments there is a thin mixed layer, approximately |l0|D = 0.5 thick
(where D is the depth in millimetres), which reduces the transmission of the waves by
∼50 % (Sutherland & Yewchuk 2004). As this layer is not present in either the M0-D or
M2-D model, the input amplitudes required for instability in the models are considerably
lower. When comparing amplitudes between the experiments, the M2-D model and the
M0-D model, it is therefore best to compare the resultant beam amplitudes. One caveat
of this, is that the M0-D model is not a function of space, so the amplitude measure on
the vertical axis on figure 9 (|l0||ξ̃p|, where p = (0, 1, 2)) is not directly comparable to the
vertical axes of the experimental results shown in figure 5, |l0|〈|ξ̃p|〉w. To account for this
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Triad configurationTΦ ω1/N ω2/N l1/|l0| l2/|l0| m1/|l0| m2/|l0|
Ta 0.198 0.419 0.332 − 1.371 1.645 −2.970
Tb 0.206 0.411 0.388 −1.427 1.842 −3.167
Tc 0.222 0.395 0.528 −1.567 2.320 −3.645
Td 0.227 0.390 0.584 −1.623 2.507 −3.832
Te 0.231 0.386 0.640 −1.679 2.693 −4.018
Tf 0.239 0.378 0.752 −1.791 3.060 −4.385

Table 1. The input parameters of B1Φ and B2Φ for each TΦ = {B0,B1Φ ,B2Φ }, used in the M0-D and
M2-D model. The wave vector locations of each secondary wave beam pair can be seen by the blue marks on
figure 3. The corresponding non-dimensional frequency of the primary beam is ω0/N = 0.617.
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Figure 9. Results of the M0−D model by Bourget et al. (2014) given in (5.1) across a range of input amplitudes
0.053 ≤ |l0|A0 ≤ 0.105. (a) Triad configuration Ta and (b) triad configuration Td . The parameters for these
configurations are given in table 1.

Dimensional
amplitude
(mm)

Non-dimensional
amplitude

Experimental
(E) 0-D Model
(M0D) 2-D
Model (M2-D)

Description

A0 |l0|A0 E &M2-D&M0-D Input amplitude from the wavemaker
〈|ξ̃p|〉w |l0|〈|ξ̃p|〉w E &M2-D Spatially mean averaged measure of

Bp, where p = (0, 1, 2), over the whole
domain

〈|ξ̃0|〉r |l0|〈|ξ̃0|〉r E &M2-D Spatially mean averaged measure of B0
over region shown in figure 2(b)

|ξp| |l0||ξ̃p| M0-D Resultant amplitudes of all triad beams
from the M0-D model which is not a
function of space

Table 2. Details of the different non-dimensional measures of amplitude for clarity.

we introduce |l0|〈|ξ̃0|〉r, the experimental amplitude of B0 averaged over the black domain
〈〉r in figure 2(b), to allow for comparison between the amplitudes of primary beam in the
experiments and the M0-D model. Details of the different amplitude are listed in table 2.

We first consider the general behaviour of the M0-D model, consistent between both
figures 9(a) and 9(b). For the lowest input amplitude of |l0|A0 = 0.053, no instability
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The long view of TRI in finite-width internal wave beams

occurs, so |l0||ξ̃1| (red line) and |l0||ξ̃2| (green line) remain zero whereas |l0||ξ̃0| (blue
line) remains at a constant amplitude of 0.046, after the initial growth period. There
then exists a critical amplitude of the primary beam, above which TRI is observed. For
Ta (figure 9a) this occurs when |l0||ξ0| ≥ 0.052, whereas for Td (figure 9b), instability
occurs when |l0||ξ0| ≥ 0.047. Although both of these limits are considerably lower than
the experimental limit of |l0|〈|ξ̃0|〉r ≥ 0.095, the M0-D still captures the fact that there
exists an amplitude threshold that must be surpassed before a finite-width beam exhibits
TRI. We next note that, for all solutions where TRI is observed, the amplitude of |l0||ξ̃0|
always decays to the same asymptotic value, whereas the amplitudes of |l0||ξ̃1| and |l0||ξ̃2|
asymptote at higher values as the input amplitude |l0|A0 is increased. Upon investigation,
the asymptotic amplitude of |l0||ξ̃0| after the initial decay is equal to the amplitude
threshold for instability. Interestingly, for the larger input amplitudes, the approach to the
equilibrium state takes the form of an underdamped nonlinear oscillator, shown by a small
oscillation after the initial onset of the instability.

The difference between how the triad configurations Ta and Td affect the evolution
of the instability is subtle. On inspection, figure 9(b) shows a quicker growth of the
secondary beams for the same input amplitude as Ta, a result that agrees with Td having
the lower amplitude threshold for instability. Strangely, despite this quicker growth, the
resultant amplitudes of the secondary wave beams are smaller than in figure 9(a). This
is counter-intuitive, as one would expect that a larger decay of the primary beam would
result in larger amplitudes of the secondary beams. As the viscous decay along a beam
scales with κ2, this lower value of the secondary beams might be due to greater viscous
dissipation in Td, due to κd > κa. Indeed, when viscosity was turned off in the model
(leaving only the inherent numerical dissipation), the amplitude of the secondary beams
in Td were found to have a larger resultant amplitude than those of Ta.

Comparing figure 9 with the experimental results in figure 5, we see remarkably
different behaviour in the evolution of the instability. For the M0-D model results, larger
forcing engenders a significant decay in amplitude of the primary wave beam. This
large decay of the primary beam is not observed experimentally, where the amplitude
of the primary beam oscillates around a mean value comparable with that set by the
forcing from the wavemaker. The most obvious difference between the two then arises
in their description of the long-term development. The M0-D model results predict that
after the initial instability, the energy exchange between the triad saturates to a steady
equilibrium, set by the nonlinear interaction term I. This is clearly not the case for the
experimental results. The slow synchronous amplitude modulations seen experimentally
reveal a continuous fluctuation in the energy exchange between the primary and the two
secondary beams. As the M0-D model does not consider the triadic interaction as a
function of space, it is unable to describe the modulations witnessed experimentally.

5.2. Two-dimensional model results
We now consider the results from the M2-D model, where in each calculation we
provide three domains, one for each triadic beam, with input parameters chosen to satisfy
the triadic condition (1.2) and dispersion relation (1.4). Six triad configurations TΦ =
{B0,B1Φ ,B2Φ } (where Φ = a, b, . . . , f ) are considered, with wavenumber vectors
distributed across the solid green loci branch in figure 3 and parameters given in table 1.
The parameters for B0 (common to all six triads), match the experiments and are given in
(5.2a,b). Figure 10 shows the results of 36 calculations, where subplots (a)–( f ) correspond
to triad configurations Ta to Tf , respectively, each shown with six input amplitudes,
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Figure 10. Amplitude plots generated using the 2-D weakly nonlinear M2-D model: (a) Ta, (b) Tb, (c) Tc,
(d) Td , (e) Te and ( f ) Tf . Each subplot shows a range input amplitudes for B0 between 0.053 ≤ |l0|A0 ≤
0.105. The difference between each subplot is the parameters for the secondary wave beams in each triad,
given in table 1. The run time is tend/T0 = 816. The resultant non-dimensional amplitudes are averaged over
the whole visualisation window |l0|〈|ξ̃p|〉w.

|l0|A0. Looking at all of the plots in figure 10, it is relatively easy to categorise three
different patterns of behavioural evolution for the triads. The first evolutionary pattern of
behaviour, observed for all the calculations using triad configurations Ta and Tb (shown
by the blue circle and cross on figure 3), is when no growth of the secondary wave beams
occur and the system remains as a single stable primary beam. The reason for this is
twofold: both triad configurations satisfy (or nearly satisfy in the case of Tb) κ1/κ0 ≤ 1
and both correspond to the smallest values of ω1 considered. Indeed, for input amplitudes
that caused the other triadic configurations to become unstable, we found that no pairs
with κ1/κ0 < 1 generated TRI for the M2-D model. This observation is further reinforced
by our experiments: the grey shaded region on figure 3 shows that all observed triadic
combinations of wave vectors satisfy κ1/κ0 > 1. When κ1/κ0 < 1, we have the condition
κ1 < κ0 < κ2. Thus, energy transfers to both the larger length scale (κ1) and the smaller
(κ2). This is discussed in Bourget et al. (2014), who show that the theoretical linear growth
rate for the M0-D model is larger for the κ1/κ0 < 1 configuration, only when Λ0 > 7λ0.
For wave beams narrower than this threshold (as in our experiments where Λ0 ≈ 3λ0), it
is the triad configuration with κ1/κ0 > 1 that is selected. The effect of having a smaller
value of ω1 is discussed further in the following.
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The long view of TRI in finite-width internal wave beams

The second behaviour seen in figure 10, is when TRI occurs and the amplitudes of all
beams undergo coupled modulations, similar to those seen experimentally in figure 5. This
behaviour is observed for many of the calculations using triad configurations Tc to Tf .
For these configurations, we see that an amplitude threshold must be surpassed before
instability can occur. We note a very close agreement in the amplitude threshold between
M2-D and the experimental values. For the triad configurations Tc to Tf , instability
occurred when |l0|〈|ξ̃0|〉w ≥ 0.028, whereas experimentally |l0|〈|ξ̃0|〉w ≥ 0.029 triggered
instability. We compare the resultant beam amplitudes as opposed to the input amplitudes
|l0|A0 as, due to the mixed layer present in the experiments, the input amplitude required
for instability is higher experimentally. We also note that for all of the calculations that
become unstable, as we increase |l0|A0, not only do the secondary wave beam amplitudes
increase, but also their growth also occurs at earlier times. This observation is consistent
with the M0-D model. We can measure this initial linear growth using the growth rate σ ,
of the form eσ t, to characterise how quickly the instability develops. This growth rate term
will prove useful later.

Focusing on a specific calculation with coupled amplitude modulations, we consider
triadic configuration Td, forced at a non-dimensional input amplitude of |l0|A0 = 0.092
(figure 10d). Figure 11 shows six instantaneous images from this calculation obtained by
the superposition of the three domains multiplied by their respective fast time and short
length scales eiφp . Here we see the initial development of B1 occurring at the top of B0,
where it grows in strength. (We note that the same calculation performed in a larger domain
showed the generation region of B1 occurring at the same location, demonstrating that its
growth is not due to boundary effects.) As with the experimental images in figure 4, due
to the similar alignment and direction of k0 and k2, B2 is not obvious in this visualisation
region as it propagates within the confines of B0. Over time, B1 grows in both amplitude
and width before decaying in a quasi-periodic manner. Unlike the experimental results,
however, its generation region remains approximately fixed and does not traverse the height
of B0. By construction, ω1 and ω2 also remain fixed.

The final behavioural evolution seen in figure 10, most obvious for the largest input
amplitude using Tf , is when the triadic system reaches a stable equilibrium, closely
resembling the steady-state results from M0-D shown in figure 9. Here, the amplitudes
of the triadic beams do not exhibit any modulations and the triad quickly reaches a stable
equilibrium, after a large, smooth decay in amplitude of the primary beam.

The only parameters being varied across these calculations in figure 10 are the
frequencies and wavenumbers of the secondary beams in the triad and the amplitude of the
primary beam. Consequently, this varying behavioural evolution of the triadic beams must
be due to these changing parameters. Based on the dispersion relationship (1.4), a greater
value of ω1 results in a B1 beam with closer alignment to B0. This steeper angle leads
to a greater spatial region over which a packet of energy propagating in B1 can extract
energy from B0 and consequently an increased distance over which B1 can grow. This is
shown schematically in figure 12. We define the lengths of these interaction regions for
B1 and B2 as δ1 and δ2, respectively. Figure 13(a) shows the relationship between δ1 and
ω1, together with the relationship between δ2 and ω2. The grey shading in the background
marks the range of frequencies obtained experimentally.

As ω1 increases, not only does δ1 increase, |cg1 | also decreases, as shown in figure 13(b).
A decrease in |cg1 | also causes B1 to remain within the spatial confines of B0 for longer
and hence increases the time in which it can extract energy. The red and green shaded
regions on figure 13(b), associated with |cg1 | and |cg2 |, respectively, mark the range of
non-dimensional group velocities contained within the secondary beams due to their
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Figure 11. Sequence of images showing the superposition of the three domains in the model, using triad
configuration Td . Each domain is multiplied by its respective short length and fast time scales eiφp and cast in
terms of βz to allow for comparison with figure 4. The input amplitude forB0 is |l0|A0 = 0.092. The spatially
averaged amplitude of each wave beam over time is shown in figure 10(d). The timing of each image is (a)
t/T0 = 121, (b) t/T0 = 184, (c) t/T0 = 258, (d) t/T0 = 547, (e) t/T0 = 601 and ( f ) t/T0 = 721. These timings
have been chosen to correspond to peaks and troughs in the amplitude modulation of the triad. The black line
in ( f ) marks the length δ1, which defines the spatial distance over whichB1 can extract energy fromB0.
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Figure 12. Schematic showing the effect of different ω1 and ω2 combinations on δ1 (red) and δ2 (green), the
distances over which the secondary wave beams can extract energy with the primary beam before exiting the
boundary.

broadband spectrum. Although there is only one wavenumber vector k1 at each ω1 that
can satisfy both dispersion (1.4) and the triadic resonant condition (1.2) (shown by the loci
on figure 3), both B1 and B2 are beams that are broadly distributed over the wavenumber
spectrum due to their finite width and so there will be exact triads selected from this
distribution. A wavenumber distribution was clearly shown experimentally in figure 8,
where a spectrum of l1 and l2 were observed, changing in both the physical location and
duration of the experiment. As |cg1 |, defined in (3.1), is a function of wavenumber, this
spectrum strongly impacts the range of group velocities present in the beam. The strength
of the shading in figure 13(b) corresponds to the amplitude of the power spectrum for
each wavenumber, obtained from Fourier transforming each secondary wave beam profile.
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Figure 13. (a) The non-dimensional interaction length of both B1 and B2 with B0, as a function of
non-dimensional frequency. The grey region in the background highlights the range of experimentally obtained
frequencies. (b) The non-dimensional group velocity of both B1 (red) and B2 (green) as a function of
non-dimensional frequency. The red and green shaded regions corresponds to the range of |cg| possible for
a fixed frequency due to a broadband wavenumber spectrum. Details of how these ranges are calculated are
provided in the text. (c) The non-dimensional residence time R1/T0 (red) and R2/T0 (green) as a function of
non-dimensional frequency, along with the non-dimensional inverse linear growth rates (T0σ)−1, for most of
the calculations shown in figure 10 and many others. Some of lower forcing amplitude calculations in figure 10
are not shown as their growth rates are too small (inverse growth rates too large). The style of the growth rate
marker indicates the triad configuration tested (given in figure 3), whereas smaller solid dots are for other
calculations not shown in figure 10). The colour of the marker indicates the behaviour of the simulation,
characterised as no growth of secondary waves (magenta), amplitude modulations to the triadic beams (black)
or steady equilibrium of all amplitudes in the triad (blue). The red and green shaded regions associated with
the residence time are given from the range of |cg| shown in (b).

The analytically calculated profile assumes a sinusoid with characteristic wavenumber
given by the solid branch of the loci in figure 3 and width given by the geometry of the
triad (assuming a primary beam width Λ0), enclosed in a Gaussian envelope. Various
windowing functions were tested and were not found to significantly alter the range of
wavenumbers obtained.

The result of these two changing factors, δq and |cgq | (where q = 1 or 2), shown
in figure 13(a) and (b), respectively, are combined to form a residence time Rq =
δq/|cgq | that characterises how long each secondary wave beam spends within B0. The
non-dimensional residence time, given as a function of frequency, is shown in figure 13(c).
As ω1 increases, R1 also increases. Although an increase in ω1 results in a decrease to ω2
and therefore a shallower angle for B2, as B2 and B0 are propagating the same direction,
the residence time R2 is always greater than R1 and it is never the limiting factor in the
interaction. This is shown by the consistently larger values of R2 compared with R1.

Overlaid on figure 13(c) are the inverse of the linear growth rates σ (given by the form
eσ t), which are marked for all 36 calculations shown in figure 10 by the same TΦ marker
style as figure 3, along with many others for different calculations, marked with a solid dot.
The linear growth rates are obtained by a linear fit on a logarithmic-linear plot to the initial
growth of each simulation. The inverse growth rate can be viewed as a ‘development time’,
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that characterises how long the secondary beams take to grow. The colour of each mark
indicates which behavioural evolution the calculation corresponds to. The magenta is used
when no instability arose, the black markers represent those calculations with amplitude
modulations and the blue marks indicate the calculations that achieved steady state. The
behaviours of the calculations (shown with different style markers and larger size) can be
verified from figure 10.

Figure 13 suggests why the M2-D model is so sensitive to the secondary wave
parameters and why three different behavioural evolutions are observed across the triadic
configurations tested. For the cases where no instability occurs, marked in magenta on
figure 13(c), the development time of the secondary beams is greater than the residence
time, meaning B1 propagates out of B0 before sufficient energy transfer can occur. This
is case for all the input amplitudes shown in figures 10(a) and 10(b) using the triad
configurations Ta and Tb, where no growth of the secondary wave beams is observed.
In this case, R1σ < 1.

For the triad configurations and amplitudes that exhibited the quasi-periodic
modulations in figure 10, their development times are marked in black. The majority of
these points lie within the range of residence times for B1. For these cases, therefore, the
development time of the secondary wave beams is comparable with the time taken for
B1 to propagate across B0. The secondary beams are able to grow but have insufficient
time to saturate to a stable equilibrium, as wave perturbations will have moved out
of the interaction region before this can occur. Moreover, due to the range of group
velocities present in the beam, energy will be leaving the primary beam at different times,
enhancing the modulations. For these cases, R1σ ≈ 1. Using this R1σ measure allows us
to account for the input amplitude of the primary beam (which affects σ ). For example,
for the calculations marked with solid dots at low values of ω1, the input amplitude was
significantly increased in order to get the secondary beams to grow.

The final behavioural evolution, observed for the higher-amplitude input in figure 10(e)
and 10( f ), is when the secondary beams grow and no modulations are observed; rather
we see a smooth, rapid decay of the primary beam and the system reaching a steady state.
For these cases, where R1σ > 1, the development times (marked by the blue triangle and
cross) are sufficiently short compared with the range of residence times R1. This means B1
is able to extract sufficient energy from the primary beam to reach a steady equilibrium
(set by the value of the nonlinear interaction term Ip) before exiting the underlying B0.
This reflects how the system would act in the limit of a plane wave, where the triadic
interactions occur infinitely over space and time and the residence time is always greater
than the development time.

6. Discussion and conclusions

Novel experimental results have shown that when TRI arises in a finite-width internal
gravity wave beam, the physical regions containing the secondary wave beams continue
to move around over long time scales without reaching a steady equilibrium. By isolating
the beams of interest, we have found that the amplitudes of the triadic system fluctuate
by ±55% of their mean value. We note that as energy scales with the square of the
amplitude, these fluctuations are even more significant. Analysis using DMD and Fourier
methods further reveals fluctuations in the Fourier space parameters of the secondary
beams.

Using our M2-D model, we have isolated the weakly nonlinear dynamics of a single
triad in a generalised spatiotemporal 2-D framework and thus explained the conditions
under which certain triad configurations result in these amplitude fluctuations. The model
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reveals the sensitivity of the instability to the properties of the secondary waves and how,
in the context of a finite-width beam, the spatiotemporal configuration of the triad plays
a fundamental role in the evolution of the instability. The M2-D model shows that when
the development time has a time scale comparable to the duration of residence of a wave
packet, the secondary beams are able to grow but are unable to extract sufficient energy to
reach a saturated equilibrium state, resulting in continuous amplitude modulations. This
phenomenon is also seen experimentally, yet in the experiments there is present a whole
range of perturbations to the underlying flow. The triad configuration is dependant on the
local structure of B0 and perturbations to the background stratification and, accordingly,
preferential selection of triads is locally determined. As one triadic interaction decays,
another forms, but this time at a different physical location with new secondary beam
properties. This explains why, experimentally, modulations are observed not only in
physical space but also in Fourier space. Unlike in the experiments, in the M2-D model
calculations presented here, the interaction region of the triad does not move in physical
space, because by construction, B1 and B2 have fixed frequencies and wavenumbers and
this causes growth in a specific location. Further work (not reported here; see Grayson
(2021)) suggests that when a number of different triad configurations are present in the
M2-D model, modulations of the secondary beams are also witnessed in both physical
and Fourier space.

Although not detailed in this article, the ratios of 1.6 ≤ κ1/κ0 ≤ 3.2 and 0.3 ≤ ω1/ω0 ≤
0.4 observed in our experiments are consistent with those predicted by the theoretical
maximum growth rate for a viscous fluid, as outlined by Bourget et al. (2013). In the limit
of ν → 0 (a situation approximating the ocean where the effects of viscosity are often
neglected), the wavenumber for maximum growth rate asymptotes to infinity, whereas the
frequencies tend towards the subharmonic: ω1/ω0 ≈ ω2/ω0 ≈ ω0/2.

In this limit we may expect two things to occur. First, due to this asymptotic theoretical
growth rate, we may expect secondary beams with extremely broad-banded peaks
producing a broad spectrum of high wavenumber components. However, in their numerical
investigation into TRI for horizontally periodic modes, Sutherland & Jefferson (2020) find
that in the case of ν → 0 the bandwidths of their secondary beams are of similar width to
those found in our experiments presented here. Second, in this inviscid limit, the solution
may jump to the central branch on the loci shown in figure 3. As mentioned earlier, when
including viscous effects, Bourget et al. (2014) calculate that this transition will not occur
until approximately Λ0 > 7λ0. However, for the inviscid regime, they show that this width
limit on the primary beam reduces and secondary waves of both smaller and larger length
scales (κ2 < κ0 < κ1) may be selected. Sutherland & Jefferson (2020) do not witness this
transition due to the confined vertical geometry preventing these larger length scales from
being observed.

In the oceanographic context, rotation and nonlinear stratifications play a role in how
TRI manifests. Considering non-uniform stratifications, Gayen & Sarkar (2013) cite this
instability as a source of significant energy transfer to subharmonic motions in the upper
ocean pycnocline. Introducing rotation, Varma & Mathur (2017) demonstrate how strong
nonlinear effects are expected from triads with two modes at near-inertial frequency.
Further theoretical work by Richet et al. (2018) and observations by Mackinnon et al.
(2013) show that around the critical latitude of 29◦, triad interactions involving the primary
internal tide and two near-inertial waves are important dissipation mechanism (Karimi &
Akylas 2017). Although the evolution of this near-inertial TRI around the critical latitude
will be influenced by significantly more components than the dynamics isolated in this
work, it raises the question as to whether similar dynamics can be found due to the
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variations in the residence time and growth rates of the waves we know to occur around
these latitudes.

Although the direct applicability of our work to the ocean is limited, the implications
of the failure of a steadily forced weakly nonlinear system to reach an equilibrium state
is of profound importance. That we have demonstrated the establishment of long-lasting
aperiodic modulations of the system both experimentally and using a reduced weakly
nonlinear model is fundamental. We show that secondary waves can be produced for triads
that do not correspond to the linear maximal growth rate; rather, the nonlinear interactions
are able to pump energy into a host of alternative triad combinations. A key element of this
non-equilibrium behaviour arises when the residence time of a packet of energy within
a finite-width beam matches the inverse growth rate. This possibility of matching time
scales, which is available in a finite-width beam, is lost in the limit of a plane wave.
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Appendix A

This appendix details how (4.4) is derived. We take the curl of the 2-D momentum
equations (4.1) to eliminate pressure, leaving a form of the vorticity equation

∂

∂x

(
	0

Dw
Dt
+ ρg− μ∇2w

)
− ∂

∂z

(
	0

Du
Dt
− μ∇2u

)
= 0. (A1)

Substituting u = ∇ × (Ψ ŷ) then dividing through by 	0 and simplifying allows (A1) to
be rewritten as

D
Dt

(∇2Ψ )+ g
	0

∂ρ

∂x
− ν∇2(∇2Ψ ) = 0. (A2)

The material derivative of (A2) yields

D2

Dt2
(∇2Ψ )+ g

	0

D
Dt

∂ρ

∂x
− D

Dt
ν∇2(∇2Ψ ) = 0. (A3)

Differentiating (4.2) with respect to x and substituting for u and the buoyancy frequency
gives

g
	0

∂

∂x
Dρ

Dt
− N2 ∂2Ψ

∂x2 = 0. (A4)

As both (A3) and (A4) have a similar form for the derivatives of ρ, we equate them to
reveal

D2

Dt2
(∇2Ψ )− D

Dt
ν∇2(∇2Ψ )+ N2 ∂2Ψ

∂x2 =
g
	0

(
∂

∂x
D
Dt
− D

Dt
∂

∂x

)
ρ. (A5)
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This then forms (4.4).

Appendix B

This appendix details the development of the M2-D numerical model. We solve the
advection equation (4.18) using a monotonic second-order upwind finite volume scheme.
The finite volume method discretizes the governing equations into rectangular control
volumes around each node and the advective fluxes, F are evaluated across the upwind
faces. The advection velocity is given by the group velocity. We consider three numerical
domains, one for each beam, with fixed Fourier components. This is sufficient to
capture the amplitude modulations observed in our experiments, though it excludes
frequency and wavenumber fluctuations seen experimentally in the secondary wave
beams.

We define each domain used to advect the reduced stream function Ψ̃p in (4.18) as B̃p.
The volume flux, F, is calculated using the two upstream values of the reduced stream
function (here we drop the subscript p for clarity)

Fw = cgxΨ̃w, where Ψ̃w =

⎧⎪⎪⎨
⎪⎪⎩

Ψ̃W + ΥwW

2
(Ψ̃W − Ψ̃WW) for cgx > 0,→

Ψ̃M + ΥwM

2
(Ψ̃M − Ψ̃E) for cgx < 0,←

Fe = cgxΨ̃e, where Ψ̃e =

⎧⎪⎪⎨
⎪⎪⎩

Ψ̃M + ΥeM

2
(Ψ̃M − Ψ̃W) for cgx > 0,→

Ψ̃E + ΥeE

2
(Ψ̃E − Ψ̃EE) for cgx < 0,←

Fn = cgzΨ̃n, where Ψ̃n =

⎧⎪⎨
⎪⎩

Ψ̃M + ΥnM

2
(Ψ̃M − Ψ̃S) for cgz > 0,↑

Ψ̃N + ΥnN

2
(Ψ̃N − Ψ̃NN) for cgz < 0,↓

Fs = cgzΨ̃s, where Ψ̃s =

⎧⎪⎪⎨
⎪⎪⎩

Ψ̃S + ΥsS

2
(Ψ̃S − Ψ̃SS) for cgz > 0,↑

Ψ̃M + ΥsM

2
(Ψ̃M − Ψ̃N) for cgz < 0,↓

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(B1)

where the compass indexing is shown in the schematic in figure 14 and Υ is the flux
limiter. The form of the flux equation in (B1) is chosen based on the direction of the
group velocity in that domain. For every domain B̃p, the calculation is performed once on
the real part of Ψ̃ and once on the imaginary, with Υ common to both calculations. The
subscript on Υ indicates the direction of the flux, as the flux limiter will change depending
on the direction of flow. We use the ‘min-mod’ function (Versteeg & Malalasekera
2007)

Υ (r) = max[0, min(1, r)], (B2)

953 A22-33

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

91
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.914


K.M. Grayson, S.B. Dalziel and A.G.W. Lawrie

Im(Ψ̃)

Re(Ψ̃)

Ψ̃M Ψ̃E

�z

�x

Ψ̃S

Fw

Fn

Figure 14. Sketch outlining the numerical advection domain B̃0. The left-hand grid shows the full domain,
including the bottom boundary forcing of the wavemaker, which is given by the sinusoid envelope in (2.2). The
two outer grid layers required for the second-order scheme are shown in blue. In this domain cg0 is directed to
the north-west, meaning the advection of the complex Ψ̃0 is to the north-west, indicated by the black arrows
pointing north-west. The enlarged view panel on the right shows the close-up of one control volume. For
advection, Ψ̃0 is spilt into its real and imaginary parts. The front domain represents the real part of the flux,
whereas the back faded domain represents the imaginary part of the flux.

where r is given as the ratio of the downstream to upstream gradient. For four different
flow directions, r (following the same subscript notation as (B1) r is given as

rwW = Ψ̃M − Ψ̃W

Ψ̃W − Ψ̃WW
for cgx > 0,→

reE = Ψ̃M − Ψ̃E

Ψ̃E − Ψ̃EE
for cgx < 0,←

rnN = Ψ̃M − Ψ̃N

Ψ̃N − Ψ̃NN
for cgz > 0,↓

rsS = Ψ̃M − Ψ̃S

Ψ̃S − Ψ̃SS
for cgz < 0. ↑

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(B3)

Depending of the gradient ratio in r, 0 ≤ Υ ≤ 1. A monotonic scheme is achieved
by reducing (0 < Υ < 1) or eliminating (Υ = 0) the second-order contributions where
necessary. Equation (B2) is calculated for both the real and imaginary domain and the
most restrictive value (the one that most reduces the second-order contributions) is used
for both the real and imaginary flux calculations.

The left-hand panel in figure 14 shows the full domain B̃0. The enlarged view panel on
the right shows one finite volume, marked by the red dashed square, where the flux across
the north and west boundaries are given in (B1). The front and back grids represent the
real and imaginary parts of Ψ̃0 respectively. The value of the stream function at the central

953 A22-34

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

91
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.914


The long view of TRI in finite-width internal wave beams

node Ψ̃M is updated by

Ψ̃
†
M= Ψ̃ i

M+Δt
(
−∇ · cg0Ψ̃

i
M −

ν

2
κ2

0 Ψ̃ i
M

)
= Ψ̃ i

M+Δt
(

Fi
w−Fi

e

Δx
+ Fi

s − Fi
n

Δz
− ν

2
κ2

0 Ψ̃ i
M

)
,

(B4)
where Δt is the time-step and the superscripts i and † represent the value of Ψ̃ before and
after advection, respectively. For the scheme to remain numerically stable, we limit Δt, to
satisfy the CFL condition. To account for the complex value of Ψ̃ , (B4) is performed once
of the real part and once on the imaginary. The resulting values are recombined to produce
a full complex valued Ψ̃

†
M .

Each 242× 82 domain B̃p matches the aspect ratio of the experimental visualisation
window. The non-dimensional grid spacing, |l0|Δx = |l0|Δz = 0.25, is much finer than
the smallest wavelength considered. At every time step, random complex background
noise of magnitude 10−7δ ei(2πϑ) is added to each cell in every domain. Both δ and ϑ

are independent random numbers spanning the range [0, 1], giving a mean magnitude of
the order 5× 10−8 with a uniformly distributed phase angle. Without the addition of a
perturbation, the instability would not be triggered. For the boundaries corresponding to
outgoing waves, standard non-reflecting boundary conditions are used. For the incoming
boundaries, small-amplitude complex noise of the same structure as the background noise
is advected into the domain.

The bottom boundary forcing of the wavemaker is imposed in domain B̃0. The boundary
condition is given by the envelope of the experimental forcing, which is obtained by
removing the fast time forcing, eiφ0 , from (2.2) and (2.4). This boundary condition for
B̃0 is shown in figure 14 in blue. We implement a prescribed displacement given by the
complex-valued vertical amplitude A0 = A0 ei(2πϕ), where ϕ is a constant phase angle
within the range [0, 1]. At each time step, after each domain is advected at its respective
group velocity, the nonlinear interactions (4.19) are calculated.

The nonlinear interactions are included by converting (4.19) into the numerical format

Ψ̃ i+1
0 = Ψ̃

†
0 +ΔtI0Ψ̃

†
1 Ψ̃

†
2 , (B5a)

Ψ̃ i+1
1 = Ψ̃

†
1 +ΔtI1Ψ̃

†
0 Ψ̃

†∗
2 , (B5b)

Ψ̃ i+1
2 = Ψ̃

†
2 +ΔtI2Ψ̃

†
0 Ψ̃

†∗
1 , (B5c)

where Ψ̃p corresponds to every cell in domain B̃p and † and i+ 1, respectively, represent
the values of Ψ̃p in each domain after advection (B4) and at time t +Δt after the nonlinear
interactions are calculated. As the interaction coefficient is applied to the whole domain,
there is no need to distinguish here the different cells using compass indexing.
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