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Abstract

Different methods are used to show that a finite or countable product of Lindelof scattered spaces is
Lindeldf. Also, a technique of Kunen is modified to yield results concerning the Lindelof degree of the
G5 and G,-topologies on the countable product of compact scattered spaces.
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Introduction

Since 1947, when R. H. Sorgenfrey [7] gave an example of a Lindelof space whose
cartesian product with itself was not normal, numerous questions have arisen
concerning the products of Lindelof spaces. We examine here the products of
Lindelof scattered spaces. Telgarsky [9] has shown that the product of a Lindelof
C-scattered space with a Lindelof space is Lindelof. We show by a different
method that the finite product of Lindelof scattered spaces is Lindelof. By
looking at %-spaces and also by examining the totally Lindelof property, we are
able to show that a countable product of Lindelof scattered spaces is Lindelof.

In Section 3 we look at the Lindelof degree of the G- and G,-topologies on
countable products of compact scattered or Lindelof scattered spaces. A tech-
nique of Kunen [3] is modified to yield some results here.
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All spaces are assumed to be Hausdorff regular. A space X is said to be
scattered if every non-empty subspace of X contains an isolated point. All ordinal
spaces are scattered. Given a space X, X; will represent the set X with the
topology generated by the Gg-sets of X. Similarly, X, will denote the set X with
the topology generated by the G -sets (sets which are the intersection of no more
than a open sets) of X. L(X) denotes the Lindeldf degree of X (see Juhasz [2]).
| X| denotes the cardinality of X. The notation p,(Y') is used for the nth projection
of Y, a subset of a product space.

2. Finite and countable products

As indicated by the following lemma, the Gstopology on a space X may be
useful in determining the Lindelof degree of the product of X with another space.

LeMMA 2.1. If L(X;) < B, then L(X X Y) < B for every Lindelof space Y.

PrOOF. Let C be an open cover of X X Y. Without loss of generality, we may
assume that every member of € is of the form G X H where G and H are open in
X and Y, respectively.

For each x € X, {x} X Y is Lindelof and hence it can be covered by a
countable subfamily C, C €. For each x € X, let G, = N{G: GX HEC}.
Since each G, is a Gy-set and L(X;) < B, there is a subfamily {G,(,,: v < B} of
{G,: x € X} which covers X. Then U{C,,: v <}B} is a subfamily of C of
cardinality no greater than 8 which covers X X Y.

Of course this result can easily be generalized to higher cardinalities:
IfL(X,)<sBand L(Y)<a, thenL(XX Y)<a-8B.

But of interest to us here is the countable case as stated in Lemma 2.1.

P. Meyer [4] showed that a compact space X is scattered if and only if Xj is
Lindelof. We give a simple proof of a strengthening in one direction of this result
without the Cantor-Bendixon decomposition type argument of Meyer.

THEOREM 2.2, If X is scattered and L( X) = w, then L(X;) = w.
PROOF. Let C be a cover of X by Gy-sets. Let U= {x € X: x € H and H open
in X implies H cannot be covered by a countable subfamily of €}. U is closed.

Suppose U # . Then U has an isolated point x and there is an open set
G C X such that G N U = {x}. Choose C(x) € € such that x € C(x). We may
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assume, without loss of generality, that C(x) = M {G(n): n < w} where, for each
n < w, G(n) is open and G(n + 1) CG(n + 1) C G(n) C G. We consider G(n)
~ G(n+1) for each n<w. Each y€(G(n) —G(n+1))CX— U has a
neighborhood H(y) which can be covered by a countable subfamily of C.
Furthermore, the family {H(y): y € G(n) — G(n + 1)} has a countable sub-
cover since L(G(n) — G(n + 1)) = w. Hence each G(n) — G(n + 1) can be
covered by a countable subfamily €(n) C €. Then {C: C € C(n), n<w} U
{C(x)} is a countable subfamily of C covering G, which contradicts x € U. Thus
U= 2.

Since U = @, there is a neighborhood H(x) of x, for each x € X, such that
H(x) can be covered by a countable subfamily of C. X is Lindelof, so { H(x):
X € X} can be reduced to a countable subcover which in turn yields a countable
subcover of C.

An extensive study of covering properties of C-scattered spaces was made by
Telgarsky [8], [9]. A space X is said to be C-scattered if every non-empty closed
subspace has a point with a compact neighborhood in that subspace. It was
shown by Telgarsky [9] that the product of a Lindelof C-scattered space with a
Lindelof space is Lindelof. By Lemma 2.1 and Theorem 2.2 we have the following
corollaries.

COROLLARY 2.3. If L(X) = L(Y) = w and X is scattered, then L(X X Y) = w.
COROLLARY 2.4. A finite product of Lindelof scattered spaces is Lindelof.

COROLLARY 2.5. If X is Lindelof and scattered and if each point of X is a G, then
| X< w.

A space X is a P-space if every Gg-set in X is open. Combining N. Noble’s [5]

results on %P-spaces with Theorem 2.2, we can give a simple proof that the
countable product of Lindelof scattered spaces is Lindelof.

THEOREM 2.6. [5] A countable product of Lindelof P-spaces is Lindelif.

COROLLARY 2.7. A countable product of Lindeldf scattered spaces is Lindelof.

PRrROOF. Let {X(n): n < w} be a family of Lindelof scattered spaces. Then by
Theorem 2.2, each (X(n)); is a Lindelof P-space. I1,.(X(n)), is Lindelof by
Theorem 2.6 and since II,..(X(n)); maps continuously onto II,.,X(n),
I, X(n) is also Lindelof.
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Another method of determining the Lindelof degree of a countable product of
Lindelof scattered spaces is by means of totally Lindelof spaces. J. E. Vaughan
has examined this property and its related properties in several papers; [10] and
[11] are primary sources. There are spaces which are Lindelof but not totally
Lindelof [10]. We begin with some definitions.

A filter base § is said to be finer than the filter base % if every member of &
contains a member of §. A filter base is said to be total [10] if each finer filter
base has an adherent point (that is, each finer filter base clusters).

A space X is totally Lindelof [11] if given a filter base % on X which is stable
under countable intersections (that is, if F(n) € % for all n < w, then there exists
F € Fsuch that F C N {F(n); n < w}), there is a filter base § on X such that

(i) § is stable under countable intersections,

(i1) § is finer than %, and

(ii1) § is total.

With the following lemma we will be able to establish a relationship between
Lindelof scattered spaces and totally Lindeldf spaces.

LEMMA 2.8. If X is the union of a countable number of subsets each of which is
totally Lindeléf, then X is totally Lindelof.

PROOF. Let X = M {A(n): n < o} where each A(n) is totally Lindelof. Let ¥ be
a filter base on X which is stable under countable intersections.

For each n < w, we define a family %(n) as follows: if there exists F € ¥ for
which F N A(n) = @, let $(n) = @; otherwise let §(n) = {F N A(n): F € ¥}.

We observe that there exists n* < w for which (n*) # @. If this were not the
case, then for each n < w, we could choose F(n) € % for which F(n) N A(n) = @.
Since ¥ is stable under countable intersections, there exists G C M {F(n); n < w}
and since X = U {A(n): n < w}, there exists m < w such that G N A(m) # &.
But (G N A(m)) C (F(m) N A(m)) = O yields a contradiction.

To see that %(n*) is stable under countable intersections, let { F(n): n < w} be
a countable subfamily of ¥(n*). For each n < w, there exists G(n) € ¥ such that
F(n) = G(n) N A(n*). Since F is stable there exists G € § such that G C
N{G(n): n < w}. Now G N A(n*) # @ and (G N A(n*)) C N{G(n) N A(n*):
n<w}= N{F(n) n<wo}

Since F(n*) is stable and A(n*) is totally Lindelof, F(n*) has a finer filter base
§(n*) which is total and stable under countable intersections. We note that §(n*)
is finer than % and thus X is totally Lindelof.

THEOREM 2.9. If X is Lindeléf and scattered, then X is totally Lindelof.
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PROOF. Suppose X is Lindelof and scattered. Let 4 = {x € X: every neighbor-
hood of x fails to be totally Lindelof}.

If X = &, we are finished because for each x € X, there is a neighborhood
N(x) which is totally Lindelof. The family {N(x): x € X} can be reduced to a
countable subcover of X and Lemma 2.8 can be applied.

If A # J, then A has an isolated point a and there exists an open set G C X
such that G N 4 = {a}. We may assume, without loss of generality, that every
point of X except a has a neighborhood which is totally Lindelof. Suppose F is a
filter base on X which is stable under countable intersections and suppose some
finer filter base §, which is stable under countable intersections, does not cluster
at a. Then there exists G € § such that a & G. If we can show that G is totally
Lindelof, then § will cluster in G and we will be finished. For each x € G, there is
a neighborhood N(x) which is totally Lindelof. Now {N(x): x € X} is an open
cover of G which is Lindelof. Hence G is a countable union of subsets each of
which is totally Lindelof and by Lemma 2.8, G is totally Lindelof.

With Theorem 2.9 and the following theorem of Vaughan, we are able to reach
our conclusion about countable products of Lindeldf scattered spaces in Theorem
2.11.

THEOREM 2.10. [11] A countable product of totally Lindelif spaces is Lindelof.

THEOREM 2.11. A countable product of Lindeldf scattered spaces is Lindelif.

3. The G;- and G,-topologies

K. Kunen [3] has shown with a most beautiful technique that the Lindelof
degree of the box product of a countable number of compact scattered spaces is
no greater than ¢, the cardinality of the continuum. This technique is modified to
reach conclusions about the cartesian product.

The Cantor-Bendixon decomposition of a space X is a non-increasing sequence
of closed sets of X defined inductively as follows: Let

X0 = X,

X@*th = {x € X™: x is not isolated in X}, and

XX = N{X®: a <A} for A a limit ordinal.

X is scattered if and only if there exists an a such that X = @, If X is
scattered and compact, then the first a for which X(® = & is a successor ordinal
a =B+ 1 and X® is finite. In this case, we say the rank of X is 8.
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THEOREM 3.1. If X(n) is compact and scattered for each n <w, then
L((Hn<wX(n))8) <c

PROOF. Let € be a cover of [I,,., X(n) by Gs-sets. Without loss of generality,
we may assume C to be a closed cover and if C € €, then C = N{G(C);: i < w)
with G(C), openinll,., X(n) for eachi < w.

Consider the tree T = U{c": ¥ < w,}. For ¢t € T, denote the domain of 7 by
dom(t) and for £ < ¢, let £ be the extension of ¢ where ré(dom(s) + 1) = & ¢ty
will denote the restriction of ¢ to y and 0 is the empty function (dom(0) = ).

We will define, by induction on dom(¢), closed Kunen sets K(¢) in such a way
that a subfamily of {K(¢): ¢t € T} refines € and since | T|= ¢, we will be finished.
Our sets K(z) will be required to satisfy conditions similar to those in Kunen’s
theorem, namely:

@) K(0) = M,,<, X(n),
and foreacht € T,

(@) K(1) € U {K(6): £ <),

(i) K (1) = N{K(t|y): Yy < dom(z)} if dom(?) is a limit ordinal, and

(iv) for each £ < c, either there exists C € € such that K(¢£) C C or there exists
n < w for which rank p,(K(z£)) < rank p,(K(r)).

If these conditions are met, then we will have our refinement. The argument is
like Kunen’s. If x € [I,, ., X(n), then by (i), (ii), and (iii), there is a functiont € T
such that x € K(¢1 v) for every y < w,. The ranks of p,(K(z! v)), for each n, are
non-increasing and thus eventually constant. So by (iv), we must eventually get
inside a covering set (that is, inside a member of the cover C).

Our modification of the Kunen technique comes in the way we define our
Kunen sets, K(t). We define K(0) = II,., X(n) and we take intersections at the
limit stages. Now suppose K(¢) has already been defined; we will define K(¢£) for
each £ <c. We let B, = rank p,(K(1)) and Z(n) = ( p,(K(2)))#. Since each
Z(n) is finite, there exists a subfamily €’ C C of cardinality ¢ such that €’ covers
[I,<, Z(n). Let § = {G: G is of the form G = G(C), for some C € €', i < w}.
The sets K(t£), £ < ¢, will list the ¢ sets K such that either (a) K = C N K(¢) for
some C € €’ or (b) K is a box, where for some n,

(D) pK) = p(K(2)) — U{p,(G): G €8’} where §’ C § is finite and Z(n) C
U{p,(G): G €8}, and

2) p.(K) = p,(K(¢)) for each m # n.

Conditions (i) and (iii) are obviously met; condition (iv) will be satisfied
because of (b) (1) of the definition. We show that condition (ii) is met by
assuming x € K(¢) and x & K(¢£) of type (b). Then for each n < w and for each
finite subfamily ' C §, Z(n) C U{p(G): G €8’} implies x(n) =p,(x) €
U {p(G): G € §’}. Furthermore, there exists z(n) € Z(n) such that for every
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G €6, z(n) € p,(G) implies x(n) € p,(G). So if C € €’ and if z(n) € p,(C) =
PAN{G(C): i <w}) = N{p(G(C),): i < w}, then x(n) € p,(C). Defining z €
[l,<, Z(n) so that p,(z) = z(n) for each n < w, we have for each C€ €,z € C
implies x € C. Thus choosing C € €’ such that z € C, we have x € C N K(¢), a
Kunen set of type (a).

The following corollary easily follows from Theorem 3.1.

COROLLARY 3.2. If X(n) is a o-compact, scattered space for each n < w, then
LM<, X(n))s) <c.

With appropriate changes in the proof of Theorem 3.1, we may further extend
the result.

THEOREM 3.3. Under GCH, if X(n) is compact and scattered for each n < w and
if a is a limit cardinal with cf(«) > w, then L((I1,,., X(n)),) < a.

Given the closed cover € of II,., X(n) by G, sets, if C €C, then C=
M{G(C)g: B <a} with G(C)g open in II, ., X(n) for each g < a. The proof
requires using the tree T = U {a”: ¥ < w,} and the Kunen sets K(¢) are defined,
by induction on dom(?) to meet the conditions (i)—(iv) of the proof of Theorem
3.1. To define the sets K(z£), for £ < a, we follow the route of that proof, but use
the family C = {G: G is of the form G = G(C)g for some C € €', B < a}.

We turn our attention now to Lindelof scattered spaces. It is known that if X is
a scattered Lindelof space and a is the first ordinal such that X(® = @, then
either

(a) cf(a) = w, or

(b) a is a successor ordinal 8 + 1 and | X®|< w.

If condition (b) is met, we may still call 8 the rank of X.

There are spaces which satisfy condition (a) but which are not Lindelof. For
example, if X = &, U w,, (the disjoint union), then « = w, and X is not Lindelof.

Question: If X(n) is Lindelof and scattered for each n < w, then what can be
said about L((Il,, .., X(n));)?

To answer this question, it may be necessary to consider several cases depend-
ing upon the type of Cantor-Bendixon decomposition each space X(n) possesses.
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