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ABSTRACT

[e.9]

Let 1 be a finite positive Borel measure on [0,1) and f(z) = >~ a,2" € H(D). For
0 < a < oo, the generalized Cesaro-like operator C, , is defined by

Conl D)2 =2 (MZ W) 2, 2€D,

where, for n > 0, u,, denotes the n-th moment of the measure y, that is, p,, = fol tdp(t).
For s > 1, let X be a Banach subspace of H(D) with A5 C X C B. In this paper, for

1 < p < oo, we characterize the measure p for which C,, , is bounded (resp. compact) from X
into the analytic Besov space B,,.
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1 Introduction

LetD = {z € C: |z| < 1} denote the open unit disk of the complex plane C and H (D) denote
the space of all analytic functions in ). > denote the set of bounded analytical functions on .
The Bloch space B consists of those functions f € H (D) for which

1 flls = [f(0)] + sztelg(l — 12P)If (2)] < .
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For 1 < p < o0, the analytic Besov space B, consists of those functions f € H(ID) such that

£l 5, = 1/ (0)] + (/D [F(2)P( - IZI)p_2dA(Z)) <o,

where dA(z) = @ is the normalized area measure on D. When p = 2, then B; is just the classic
Dirichlet space D. If 1 < p; < py < oo, then B,, C B, C B. It is known that the analytic Besov
spaces are Mdobius invariant and the Bloch space B is the largest Mobius invariant space.

The space B; consists of f € H(ID) such that

1f115, = [F(0)] + f(0)] +/D\f”(z)|dz4(2) < oo,

The space B is the smallest Mobius invariant Banach spaces of analytic function in D and B; C
H*. See [32, Chapter 5] for the theory of these spaces.
Let 0 < p < o0, the classical Hardy space H” consists of those functions f € H (D) for which

||f||p = Sup Mp(ﬁf) < 00,
0<r<1

where
1 o o 1/p
M5 = (0 [ Weras) 0 <p <o
Myo(r, f) = sup | f(2)].

|z|=r
Let1 < p < ooand 0 < a < 1, the mean Lipschitz space AZ consists of those functions
f € H(D) having a non-tangential limit almost everywhere such that w,(t, f) = O(t*) as t — 0.

Here w, (-, f) is the integral modulus of continuity of order p of the function f(e). It is known
(see [12]) that A? is a subset of H? and

AP = (feH(D):Mp(r,f’):O<%>, asr—>1>.

(I—r
The space A? is a Banach space with the norm || - ||4» given by
1fllaz = [£(0)] + sup (L —r)""*M,(r, f').
0<r<1

It is known (see e.g. [8]]) that
AN CB. 1<p<oo.

P

For f(z) =Y " a,2" € H(D), the Cesaro operator C is defined by

C(f)(z) :Z (nilzak) z", z € D.

n=0 k=0

The boundedness and compactness of the Cesaro operator C and its generalizations on various
spaces of analytic functions such as Hardy spaces, Bergman spaces, Dirichlet spaces, the Bloch
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space, (), spaces, mixed norm spaces have been widely studied. See e.g. [1, 2,10, 19,2426, 30].
We refer the reader to the recent survey [22]] for more on Cesaro operator.

Recently, Galanopoulos, Girela and Merchén [14] introduced a Cesaro-like operator C,, on
H (D), which is a natural generalization of the classical Cesaro operator C. They considered the
following generalization: For a positive Borel measure x on the interval [0, 1) they define the

operator
CNE) =Y <unz A<k>> »= [ L, 2 e,

1—-1tz
n=0 k=0
where 1, stands for the moment of order n of u, that is, u, = fol t"du(t). They studied the
operators C,, acting on distinct spaces of analytic functions (e.g. Hardy spaces, Bergman spaces,
the Bloch space, etc.).

The Cesaro-like operator C,, defined above has attracted the interest of many mathematicians.
For instance, Jin and Tang [18] studied the boundedness (resp. compactness) of C, from one
Dirichlet-type space D, into another one Dg. Bao, Sun and Wulan [4] studied the range of C,
acting on H*°. Blasco [6] investigated the operators C,, induced by complex Borel measures on
[0, 1), and extended the results of [[14] to this more general case. Galanopoulos et al. [15] studied
the behaviour of the operators C,, on the Dirichlet space and on the analytic Besov spaces B,,.
Recently, Bao et al. [3] have complectly characterized the measure x such that C, is bounded
(resp. compact) on the Dirichlet space. The reader is referred to [S, 7, (13} 128}, 29, 31] for more on
Cesaro-like operators on spaces of analytic functions.

In [4], Bao et al. introduced a more general Cesaro-like operator. Suppose that 0 < a < oo
and p is a finite positive Borel measure on [0, 1). For f(z) =Y °  a,2" € H(D), they defined

Cualf)(2) = (an %%) 2", z€D.

n=0 k=0

A simple calculation with power series gives the integral form of C,, , as follows.

o) = [ ()

For 1 < s < 00, let X be a Banach subspace of H(ID) with A5 C X C B. There are many well
known spaces located between the mean Lipschitz space A5 and the Bloch space B. In [4], the

authors investigated the range of C,, ,, acting on . They proved that if max{1, é} < 5 < 00, then
Coo(H™) C X if and only if 1 is an -Carleson measure. Zhou [31] considered the same problem
for the measure p supported on D). Guo, Tang and Zhang [17] investigated the boundedness (resp.
compactness) of C, . acting from X to weighted Bergman spaces Ag. Galanopoulos, Siskakis
and Zhao [16] characterized the measure p such that C, , is bounded from weighted Bergman
space Af to A when1 < p < g < coand 3 > —1. Sun et al. [27] studied the boundedness
(resp. compactness) of the operator C,,; acting from B, to X. It remains open to characterize the
boundedness and the compactness of C,, , from B, to B, whenp > 1 and p # 2. The Besov spaces
B, and Bloch space B are Mobius invariant and the Bloch space B can be regarded as the limit
case of B, as p — +o00. The purpose of this paper is describe the measure ;. such that the operator
C,.« 1s bounded (resp. compact) from X to B, for 1 < p < oo.
Our main results are included in the following.
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Theorem 1.1. Suppose 0 < a < 00, 1 < s < 00 and max{1, é} < p < oo. Let i be a finite
positive Borel measure on [0, 1) and X be a Banach subspace of H(D) with A5 C X C B. Then

the following statements are equivalent.

(1) The operator C,, , is bounded from X to B,
(2) The operator C,, , is compact from X to B,,.
(3) The measure | satisfies

Z(n + )PP logP (n + 2) < oo.

n=0
For p = 1, we have the following corollary.

Corollary 1.2. Suppose 1 < a < ocoand1 < s < co. Let i be a finite positive Borel measure on
[0,1) and X be a Banach subspace of H(D) with A5 C X C B. Then the following statements

are equivalent.

(1) The operator C,, , is bounded from X to B.
(2) The operator C,, , is compact from X to B;.
(3) The measure | satisfies

o0

Z(n + 1), log(n + 2) < oo.

n=0

(4) The measure |1 satisfies

1logﬁ
—du(t) < oo.
| et

When p = 2, the space B, is the classic Dirichlet space D, so we have the following corollary.

Corollary 1.3. Suppose 1 < a < ocoand1 < s < co. Let i be a finite positive Borel measure on
[0,1) and X be a Banach subspace of H(D) with A5 C X C B. Then the following statements

are equivalent.

(1) The operator C,, ., is bounded from X to D.
(2) The operator C,, ., is compact from X to D.
(3) The measure |i satisfies

o0

Z(n + 1) 2 log®(n + 2) < oo.
n=0

Throughout the paper, the letter C' will denote an absolute constant whose value depends on
the parameters indicated in the parenthesis, and may change from one occurrence to another. We
will use the notation “P < Q7 if there exists a constant C' = C'(-) such that “P < C'Q”, and
“P 2z @7 is understood in an analogous manner. In particular, if “P < ” and “P 2 @) , then
we will write “P =< ()”.
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2  Preliminaries

To prove our main results, we need some preliminary results which will be repeatedly used through-
out the rest of the paper. We begin with a characterization of the functions f € H (D) whose se-
quence of Taylor coefficients is decreasing which belong to BP. For a proof, see e.g., [11, Theorem
3.10].

Lemma2.1. Ler1 < p < coand f(z) =~ a,z" € H(D). Suppose that the sequence {a, }>°,
is a decreasing sequence of non-negative real numbers. Then f € B, if and only if

oo

g n~laf < oco.

n=1

The following lemma contains a characterization of LP-integrability of power series with non-
negative coefficients. For a proof, see [21, Theorem 1].

Lemma 2.2. Let 0 < (3, p < oo, {\,}22, be a sequence of non-negative numbers. Then

/1(1 — r)pﬁ_l (i A,ﬂ“") dr =< i?‘"”ﬂ <Z /\k>

keln
where Iy = {0}, I, = 271, 2") NN forn € N.

The following lemma is a consequence of Theorem 2.31 on page 192 of the classical mono-
graph [33]].

Lemma 2.3. (a) The Taylor coefficients a,, of the function
1 2
= ——log" —— >0 R D

have the property a,, < n°~1(log(n + 1))7.
(b) The Taylor coefficients a,, of the function

2
f(Z)ZIOgVE, ’}/>O,Z€D

have the property a,, < n~'(log(n + 1))"~1.
We also need the following estimates (see, e.g. Proposition 1.4.10 in [23]).
Lemma 2.4. Let o be any real number and z € D. Then

1 if a <1,
27 d@ _ ) ‘
0 ll—ze—i9|°‘/\ logm if a=1,
W if a>1,

The following lemma is useful in dealing with the compactness. The proof is similar to that of
Proposition 3.11 in [9]]. The details are omitted.

Lemma 2.5. Let p > 1, s > 1, X be a Banach subspace of H(D) with A C X C B. Suppose

that T' is a bounded operator from X to B,. Then T is compact if and (S)nly if for any bound-
ed sequence { f} in X which converges to 0 uniformly on every compact subset of D, we have

limgoo ||T(f)|5, = 0.
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3 Proofs of the main results

We now present the proofs of Theorem 1.1.
Proof of the implication (1) = (3)

Since the definition of the space B, is slightly different from 5, when p > 1, we split the proof
intop=1andp > 1.

Casel: p=1.

Assume that C,, , is bounded from X to B;. Let g(z) = log -~ = > 7o, % It is easy to check

that g € A5 C X. This implies that C, ,(g) € B;. For z € D, by the definition of C,, , we get

o7t = 5 (vt SRR

n=0

For 0 < r < 1, by Hardy’s inequality we have that

n=0

It follows that

12 Ml9llx 2 ICa(9)lls = / Cual9)"(2)|dA(2)

—2/ My(r, Coa(g)")rdr

n+
F<n+2_k+a) n+1
/ <n+2’un+22_;l“(a)(n+2—k)!k:)r dr

k=

n+2

'n+2—-k+a)
< Z“"“Z (@)(n+2— k)

Using the Stirling’s formula we get

”i T(n+2—k+a) v”i (n+3—k)!
p C(a)(n+2—k)k — k
For n > 1, simple estimations lead us to the following
n+2 _ [nTJrQ] n+2 _
(n+3—k)>! (n+3—k)>!
P Al DOREDD ;
k=1 k=1 k=[22]41
(252 1 1 n+2
= 1)et — 3 — k)t
(n+1) i — > (n+ )
k=1 k=[2E2]4+1
= (n+1)*log(n +2) + (n+1)*7!
= (n+1)**log(n + 2).
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Therefore,

Fn+2—-k+a)
12 ZM”+QZ::F(a)(n+2—k:)!k:

n=0 k=1
>N (n+ 1), log(n + 2).
n=0

Case 2: p > 1.
Let ¢ be the conjugate index of p, that is, ]—1) + % = 1. It is known that (B,)* & B, (see [32,
Theorem 5.24]) under the paring

(F.G) = / ()G )dA(z), F € B, G € B,
D
This means that C, , is bounded from X to B, if and only if
(Cua(F). G)| < ||F|[x||C] |, forall F € X.G € B,
Now, suppose that C,, ., is bounded from X to B,. Take g(z) = > - g(n)z" € B, and the
sequence of its Taylor coefficients is a decreasing sequence of the non-negative real numbers. Let

f(z) =log = =3, , = € X, we have that

[(Cua () 9 < N1 x N9l 5,

A simple calculation shows that

This implies that

(C, \—Zn un<ZF”_’”“>g<n>nqql<oo.

By Lemma the sequence {@\(n)n%}fle € 7. The well known duality ({9)* = [P yields that

e (S i) )

n T'(n—k+a)

Using the estimate ) ,_, T (n—k) 1k

= (n+1)*'log(n + 2) we deduce that

o0

Z(n + 1)P* 1P logP (n + 2) < oo.
n=0
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0
Proof of the implication (3) = (2) Let { f;};, be a bounded sequence in X which converges

to 0 uniformly on every compact subset of ID. Without loss of generality, we may assume that
fx(0) = 0 and sup,~, ||f||x < 1. It suffices to prove that limy,_, ||Cpa(fi)||B, = 0 by using
Lemma As before, we divide the proof into p = 1 and p > 1.

Casel: p> 1.

Assume that Y >7  (n+ 1)P*~ 12 logP(n + 1) < oo, then

Z(n + 1)P* P logP(n + 1) = Z ( Z_ (k + 1)P* 1P log? (k + 1))

n=1 n=1 \k=2n—1

2 27k, logP(2" + 1)

n=1
o0 antl_1 P
2y 2 ( S (k4 1) log(k + 1)) :
n=1 k=2n
This shows that
o0 ontl_1 p
> o) ( > (k+ 1) % log (k + 1)) < 0.
n=1 k=2n
By Lemma 2.2 we have that
1 0 p
1
/ (1—r)r2 (Z(n + 1) ? py, log(n + 1)7"") dr
0 n=0
00 2l P
=y 2l ( > (k+ 1) % i log (k + 1)) < 0.
n=0 k=2n

Therefore, for any € > 0 there exists a 0 < 7y < 1 such that

1 ° 3
/ (1—rp? (Z(n +1)° 7 g Jog (k + 1)?”") dr <e. 1

n=0

It is clear that

1Ca(fi)ll5, = (/|Z|ST0 +/To<|z|<1) Cra(f)' (2)[P(1 — [2])P77dA(2)
= Jip+ Jok.

By the integral representation of C,, , we get

) = | AR g / Mdu@). @

(1—tz) 1 —tz)ott
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Cauchy integral theorem implies that the sequence { f;}7°, is also converge to 0 uniformly on
every compact subset of ). Thus, for |z| < ry we have that

: bS] |fe(t2)|
|Cu,a<fk) (Z)| 5 ; |1 k_ tZ|a + |1 — tZ|a+1d <t>

1
1
. ———du(t
S s ()] L)) | gt
S sup (| fi(w)| + | fr(w)]) -
|lw|<ro
It follows that
Jig — 0, (k— 00).
Next, we estimate J; j.
Since X C B, we have
1
[£(2)] < log < e| and ()| § g forall k21,2 €D, 3)
— |2 — |2

By () and (3), Minkowski inequity, Lemma 2.4 we get

, ot tf,’c(trew) tfi(tre®)
Mp(ﬁ Cu,a(fk) ) - {/0 /0 (1 _ treié‘)a + (1 _ trew)a—‘rl d“<t)
27 1 1 p %
< ——du(t do
AL U o) @
IOg 1 tr P %
{/ </ |1 _ tT619|o¢+1 ’u(t)) d&}
1 o z
< [ — t
N/O 1—tr (/0 |1—trel9|pa) dp(t)
1 e 27 do %
1 ,
+/0 R (/0 11— trew\f’(a“)) dp(t)

T
de}

where .
log 1—tr 1
atl-L’ p > 57
H(t,r) (1—tr) .7
log 1—tr lf ]'
1—tr’ P=%

Lemma [2.3] yields that

My(7,Cpa(fr)) / H(t,r)du(t) Z(n—l— 1) 7 iy log(n + 1)r™.
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This together with (T)) implies
B= [ Gl RV P~ el AG)
ro<|z|<1
1
S [ =M G

0]

S / (L—r)p? (Z(n + 1)a_%un log(n + 1)7“”) dr

n=0
< e.

~

Consequently,
,}E{}o 1Cpra(fr)l|B, = 0.

Case2: p=1.
When p = 1, Lemma [2.3] shows that the condition } oo (n + 1)*~p, log(n + 2) < oo is

equivalent to fo lgi tdu(t) < oo. Hence, for any ¢ > 0 there exists a 0 < ¢y < 1 such that
! log 1%
——du(t) < e. “4)
/to (1 - t)a ( )
By the integral representation of C,, , we have
1 2 pn 2 p1 2
2" (tz) 20t f'(tz)  ala+ 1)EAf(t2)
Cualf) (2) = dp(t). 5
w07 = [ (GEeh s i 2  ae. o
For 0 < r < 1, we have
" " / o d/"L(t)
My(r, Cualfi)") S sup (Ify ()] + [fp(w)[ + [fu(w)]) | ——3
lw|<to 0 (1 - tOT)
o fi(t2)] £ (t2)] |fi(t2)]
. : du(t)do.
/ to |1 — tre“’|a |1 — tre®|otl N |1 — trei|o+2 (t)
Since { fx} C X C B, we see that
1
J < —— forall £ > 1. 6
|fk5(z)‘w (1_’2‘)2 ora - ( )

The assumption of p means that v > 1. By Fubini’s theorem, (3), (6)) and Lemma 2.4 we have

/2” el Afilre®)] L fi(tre?)]

. A du(t)do
1 |1 —tre?|> |1 —trei|atl |1 — treif|at2 u(t)

< / / K ! + ! + o8 i dOdu(t)
S S A= tr)2[I —trefe " (L —tr)[1 — trefott |1 — tret|orz ) T

L log —=<
< 2=t ().
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Hence,

/t<| <1 Cua(fi)"(2)|dA(2)

1
:2/ My (r,Cpo(fr)")rdr
to

lo
< sup (1)l + L)l + | felw / / o o

[w|<to
dr
< s (G + )+ ) + [ on S [ty
" / ! logﬁ
S s (AL )+ ) + [ G dn
S s (AL + 0]+ ) + &

The uniform convergence of { f.} on compact subsets of D implies that

/|<t 1Ca ()" (2)|dA(2) S sup (|f7(w)] + | fr(w)] + | fe(w)]) = 0, ask — 0.

|w|<to

Since f;(0) = 0, so we have that |C,, o(fx)(0)| + [C..a(fx)' (0)] < |fi(0)] = 0 as k — oo.
Therefore, we deduce that '
1 (o)l = O

Thus, the operator C,, ,, is compact from X to 5;. 0
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