This is a ``preproof'' accepted article for *Canadian Mathematical Bulletin* This version may be subject to change during the production process. DOI: 10.4153/S0008439525000402

A Cesàro-like operator from a class of analytic function spaces to analytic Besov spaces

Pengcheng Tang*,a

^a School of Mathematics and Statistics, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China

ABSTRACT

Let μ be a finite positive Borel measure on [0,1) and $f(z) = \sum_{n=0}^{\infty} a_n z^n \in H(\mathbb{D})$. For $0 < \alpha < \infty$, the generalized Cesàro-like operator $\mathcal{C}_{\mu,\alpha}$ is defined by

$$\mathcal{C}_{\mu,\alpha}(f)(z) = \sum_{n=0}^{\infty} \left(\mu_n \sum_{k=0}^n \frac{\Gamma(n-k+\alpha)}{\Gamma(\alpha)(n-k)!} a_k \right) z^n, \ z \in \mathbb{D},$$

where, for $n \ge 0$, μ_n denotes the *n*-th moment of the measure μ , that is, $\mu_n = \int_0^1 t^n d\mu(t)$.

For s > 1, let X be a Banach subspace of $H(\mathbb{D})$ with $\Lambda_{\frac{1}{2}}^s \subset X \subset \mathcal{B}$. In this paper, for $1 \leq p < \infty$, we characterize the measure μ for which $\mathcal{C}_{\mu,\alpha}$ is bounded (resp. compact) from X into the analytic Besov space B_p .

Keywords: Cesàro operator. Bloch space. Besov space.

MSC 2010: 47B35, 30H30, 30H20

1 Introduction

Let $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$ denote the open unit disk of the complex plane \mathbb{C} and $H(\mathbb{D})$ denote the space of all analytic functions in \mathbb{D} . H^{∞} denote the set of bounded analytical functions on \mathbb{D} . The Bloch space \mathcal{B} consists of those functions $f \in H(\mathbb{D})$ for which

$$||f||_{\mathcal{B}} = |f(0)| + \sup_{z \in \mathbb{D}} (1 - |z|^2) |f'(z)| < \infty.$$

^{*}Corresponding Author

Pengcheng Tang: www.tang-tpc.com@foxmail.com

For $1 , the analytic Besov space <math>B_p$ consists of those functions $f \in H(\mathbb{D})$ such that

$$||f||_{B_p} = |f(0)| + \left(\int_{\mathbb{D}} |f'(z)|^p (1-|z|)^{p-2} \mathrm{d}A(z)\right)^{\frac{1}{p}} < \infty,$$

where $dA(z) = \frac{dxdy}{\pi}$ is the normalized area measure on \mathbb{D} . When p = 2, then B_2 is just the classic Dirichlet space \mathcal{D} . If $1 < p_1 < p_2 < \infty$, then $B_{p_1} \subsetneq B_{p_2} \subsetneq \mathcal{B}$. It is known that the analytic Besov spaces are Möbius invariant and the Bloch space \mathcal{B} is the largest Möbius invariant space.

The space B_1 consists of $f \in H(\mathbb{D})$ such that

$$||f||_{B_1} = |f(0)| + |f'(0)| + \int_{\mathbb{D}} |f''(z)| dA(z) < \infty$$

The space B_1 is the smallest Möbius invariant Banach spaces of analytic function in \mathbb{D} and $B_1 \subsetneq H^{\infty}$. See [32, Chapter 5] for the theory of these spaces.

Let $0 , the classical Hardy space <math>H^p$ consists of those functions $f \in H(\mathbb{D})$ for which

$$||f||_p = \sup_{0 \le r < 1} M_p(r, f) < \infty,$$

where

$$M_p(r, f) = \left(\frac{1}{2\pi} \int_0^{2\pi} |f(re^{i\theta})|^p d\theta\right)^{1/p}, \ 0
$$M_{\infty}(r, f) = \sup_{|z|=r} |f(z)|.$$$$

Let $1 \leq p < \infty$ and $0 < \alpha \leq 1$, the mean Lipschitz space Λ^p_{α} consists of those functions $f \in H(\mathbb{D})$ having a non-tangential limit almost everywhere such that $\omega_p(t, f) = O(t^{\alpha})$ as $t \to 0$. Here $\omega_p(\cdot, f)$ is the integral modulus of continuity of order p of the function $f(e^{i\theta})$. It is known (see [12]) that Λ^p_{α} is a subset of H^p and

$$\Lambda^p_{\alpha} = \left(f \in H(\mathbb{D}) : M_p(r, f') = O\left(\frac{1}{(1-r)^{1-\alpha}}\right), \text{ as } r \to 1 \right).$$

The space Λ^p_{α} is a Banach space with the norm $|| \cdot ||_{\Lambda^p_{\alpha}}$ given by

$$||f||_{\Lambda^p_{\alpha}} = |f(0)| + \sup_{0 \le r < 1} (1-r)^{1-\alpha} M_p(r, f').$$

It is known (see e.g. [8]) that

$$\Lambda^p_{\frac{1}{p}} \subsetneq \mathcal{B}. \ 1$$

For $f(z) = \sum_{n=0}^{\infty} a_n z^n \in H(\mathbb{D})$, the Cesàro operator \mathcal{C} is defined by

$$\mathcal{C}(f)(z) = \sum_{n=0}^{\infty} \left(\frac{1}{n+1} \sum_{k=0}^{n} a_k \right) z^n, \ z \in \mathbb{D}.$$

The boundedness and compactness of the Cesàro operator C and its generalizations on various spaces of analytic functions such as Hardy spaces, Bergman spaces, Dirichlet spaces, the Bloch

space, Q_p spaces, mixed norm spaces have been widely studied. See e.g. [1, 2, 10, 19, 24–26, 30]. We refer the reader to the recent survey [22] for more on Cesàro operator.

Recently, Galanopoulos, Girela and Merchán [14] introduced a Cesàro-like operator C_{μ} on $H(\mathbb{D})$, which is a natural generalization of the classical Cesàro operator \mathcal{C} . They considered the following generalization: For a positive Borel measure μ on the interval [0, 1) they define the operator

$$\mathcal{C}_{\mu}(f)(z) = \sum_{n=0}^{\infty} \left(\mu_n \sum_{k=0}^n \widehat{f}(k) \right) z^n = \int_0^1 \frac{f(tz)}{1-tz} d\mu(t), \ z \in \mathbb{D}.$$

where μ_n stands for the moment of order n of μ , that is, $\mu_n = \int_0^1 t^n d\mu(t)$. They studied the operators C_{μ} acting on distinct spaces of analytic functions (e.g. Hardy spaces, Bergman spaces, the Bloch space, etc.).

The Cesàro-like operator C_{μ} defined above has attracted the interest of many mathematicians. For instance, Jin and Tang [18] studied the boundedness (resp. compactness) of C_{μ} from one Dirichlet-type space \mathcal{D}_{α} into another one \mathcal{D}_{β} . Bao, Sun and Wulan [4] studied the range of C_{μ} acting on H^{∞} . Blasco [6] investigated the operators C_{μ} induced by complex Borel measures on [0, 1), and extended the results of [14] to this more general case. Galanopoulos et al. [15] studied the behaviour of the operators C_{μ} on the Dirichlet space and on the analytic Besov spaces B_p . Recently, Bao et al. [3] have complectly characterized the measure μ such that C_{μ} is bounded (resp. compact) on the Dirichlet space. The reader is referred to [5, 7, 13, 28, 29, 31] for more on Cesàro-like operators on spaces of analytic functions.

In [4], Bao et al. introduced a more general Cesàro-like operator. Suppose that $0 < \alpha < \infty$ and μ is a finite positive Borel measure on [0,1). For $f(z) = \sum_{n=0}^{\infty} a_n z^n \in H(\mathbb{D})$, they defined

$$\mathcal{C}_{\mu,\alpha}(f)(z) = \sum_{n=0}^{\infty} \left(\mu_n \sum_{k=0}^n \frac{\Gamma(n-k+\alpha)}{\Gamma(\alpha)(n-k)!} a_k \right) z^n, \ z \in \mathbb{D}.$$

A simple calculation with power series gives the integral form of $C_{\mu,\alpha}$ as follows.

$$\mathcal{C}_{\mu,\alpha}(f)(z) = \int_0^1 \frac{f(tz)}{(1-tz)^{\alpha}} d\mu(t).$$

For $1 < s < \infty$, let X be a Banach subspace of $H(\mathbb{D})$ with $\Lambda_{\underline{1}}^s \subset X \subset \mathcal{B}$. There are many well known spaces located between the mean Lipschitz space $\Lambda_{\frac{1}{2}}^{s}$ and the Bloch space \mathcal{B} . In [4], the authors investigated the range of $C_{\mu,\alpha}$ acting on H^{∞} . They proved that if $\max\{1, \frac{1}{\alpha}\} < s < \infty$, then $\mathcal{C}_{\mu,\alpha}(H^{\infty}) \subset X$ if and only if μ is an α -Carleson measure. Zhou [31] considered the same problem for the measure μ supported on \mathbb{D} . Guo, Tang and Zhang [17] investigated the boundedness (resp. compactness) of $\mathcal{C}_{\mu,\alpha}$ acting from X to weighted Bergman spaces A^p_β . Galanopoulos, Siskakis and Zhao [16] characterized the measure μ such that $C_{\mu,\alpha}$ is bounded from weighted Bergman space A^p_{β} to A^q_{β} when $1 \leq p \leq q < \infty$ and $\beta > -1$. Sun et al. [27] studied the boundedness (resp. compactness) of the operator $C_{\mu,1}$ acting from B_p to X. It remains open to characterize the boundedness and the compactness of $C_{\mu,\alpha}$ from B_p to B_p when p > 1 and $p \neq 2$. The Besov spaces B_p and Bloch space \mathcal{B} are Möbius invariant and the Bloch space \mathcal{B} can be regarded as the limit case of B_p as $p \to +\infty$. The purpose of this paper is describe the measure μ such that the operator $C_{\mu,\alpha}$ is bounded (resp. compact) from X to B_p for $1 \leq p < \infty$. Our main results are included in the following

Our main results are included in the following.

Theorem 1.1. Suppose $0 < \alpha < \infty$, $1 < s < \infty$ and $\max\{1, \frac{1}{\alpha}\} \leq p < \infty$. Let μ be a finite positive Borel measure on [0,1) and X be a Banach subspace of $H(\mathbb{D})$ with $\Lambda_{\frac{1}{2}}^{s} \subset X \subset \mathcal{B}$. Then

the following statements are equivalent.

(1) The operator $C_{\mu,\alpha}$ is bounded from X to B_p . (2) The operator $C_{\mu,\alpha}$ is compact from X to B_p .

(3) The measure μ satisfies

$$\sum_{n=0}^{\infty} (n+1)^{p\alpha-1} \mu_n^p \log^p(n+2) < \infty.$$

For p = 1, we have the following corollary.

Corollary 1.2. Suppose $1 \le \alpha < \infty$ and $1 < s < \infty$. Let μ be a finite positive Borel measure on [0,1) and X be a Banach subspace of $H(\mathbb{D})$ with $\Lambda^s_{\underline{1}} \subset X \subset \mathcal{B}$. Then the following statements are equivalent.

(1) The operator $C_{\mu,\alpha}$ is bounded from X to B_1 .

(2) The operator $C_{\mu,\alpha}$ is compact from X to B_1 .

(3) The measure μ satisfies

$$\sum_{n=0}^{\infty} (n+1)^{\alpha-1} \mu_n \log(n+2) < \infty.$$

(4) The measure μ satisfies

$$\int_0^1 \frac{\log \frac{e}{1-t}}{(1-t)^{\alpha}} d\mu(t) < \infty.$$

When p = 2, the space B_2 is the classic Dirichlet space \mathcal{D} , so we have the following corollary.

Corollary 1.3. Suppose $1 \le \alpha < \infty$ and $1 < s < \infty$. Let μ be a finite positive Borel measure on [0,1) and X be a Banach subspace of $H(\mathbb{D})$ with $\Lambda^s_{\underline{1}} \subset X \subset \mathcal{B}$. Then the following statements are equivalent.

(1) The operator $C_{\mu,\alpha}$ is bounded from X to \mathcal{D} .

(2) The operator $C_{\mu,\alpha}$ is compact from X to \mathcal{D} .

(3) The measure μ satisfies

$$\sum_{n=0}^{\infty} (n+1)^{2\alpha-1} \mu_n^2 \log^2(n+2) < \infty.$$

Throughout the paper, the letter C will denote an absolute constant whose value depends on the parameters indicated in the parenthesis, and may change from one occurrence to another. We will use the notation " $P \leq Q$ " if there exists a constant $C = C(\cdot)$ such that " $P \leq CQ$ ", and " $P \gtrsim Q$ " is understood in an analogous manner. In particular, if " $P \leq Q$ " and " $P \gtrsim Q$ ", then we will write " $P \simeq Q$ ".

Preliminaries 2

To prove our main results, we need some preliminary results which will be repeatedly used throughout the rest of the paper. We begin with a characterization of the functions $f \in H(\mathbb{D})$ whose sequence of Taylor coefficients is decreasing which belong to B^p . For a proof, see e.g., [11, Theorem 3.10].

Lemma 2.1. Let $1 and <math>f(z) = \sum_{n=0}^{\infty} a_n z^n \in H(\mathbb{D})$. Suppose that the sequence $\{a_n\}_{n=0}^{\infty}$ is a decreasing sequence of non-negative real numbers. Then $f \in B_p$ if and only if

$$\sum_{n=1}^{\infty} n^{p-1} a_n^p < \infty.$$

The following lemma contains a characterization of L^p -integrability of power series with nonnegative coefficients. For a proof, see [21, Theorem 1].

Lemma 2.2. Let $0 < \beta, p < \infty$, $\{\lambda_n\}_{n=0}^{\infty}$ be a sequence of non-negative numbers. Then

$$\int_0^1 (1-r)^{p\beta-1} \left(\sum_{n=0}^\infty \lambda_n r^n\right)^p dr \asymp \sum_{n=0}^\infty 2^{-np\beta} \left(\sum_{k\in I_n} \lambda_k\right)^p$$

where $I_0 = \{0\}, I_n = [2^{n-1}, 2^n) \cap \mathbb{N}$ for $n \in \mathbb{N}$.

The following lemma is a consequence of Theorem 2.31 on page 192 of the classical monograph [33].

Lemma 2.3. (a) The Taylor coefficients a_n of the function

$$f(z) = \frac{1}{(1-z)^{\beta}} \log^{\gamma} \frac{2}{1-z}, \ \beta > 0, \gamma \in \mathbb{R}, \ z \in \mathbb{D}$$

have the property $a_n \simeq n^{\beta-1} (\log(n+1))^{\gamma}$. (b) The Taylor coefficients a_n of the function

$$f(z) = \log^{\gamma} \frac{2}{1-z}, \ \gamma > 0, z \in \mathbb{D}$$

have the property $a_n \simeq n^{-1} (\log(n+1))^{\gamma-1}$.

We also need the following estimates (see, e.g. Proposition 1.4.10 in [23]).

Lemma 2.4. Let α be any real number and $z \in \mathbb{D}$. Then

$$\int_0^{2\pi} \frac{d\theta}{|1-ze^{-i\theta}|^{\alpha}} \asymp \begin{cases} 1 & \text{if } \alpha < 1, \\ \log \frac{2}{1-|z|^2} & \text{if } \alpha = 1, \\ \frac{1}{(1-|z|^2)^{\alpha-1}} & \text{if } \alpha > 1, \end{cases}$$

The following lemma is useful in dealing with the compactness. The proof is similar to that of Proposition 3.11 in [9]. The details are omitted.

Lemma 2.5. Let $p \ge 1$, s > 1, X be a Banach subspace of $H(\mathbb{D})$ with $\Lambda_{\underline{1}}^s \subset X \subset \mathcal{B}$. Suppose that T is a bounded operator from X to B_p . Then T is compact if and only if for any bounded sequence $\{f_k\}$ in X which converges to 0 uniformly on every compact subset of \mathbb{D} , we have $\lim_{k \to \infty} ||T(f_k)||_{B_p} = 0.$

3 Proofs of the main results

We now present the proofs of Theorem 1.1.

Proof of the implication $(1) \Rightarrow (3)$

Since the definition of the space B_1 is slightly different from B_p when p > 1, we split the proof into p = 1 and p > 1.

Čase 1: p = 1.

Assume that $\mathcal{C}_{\mu,\alpha}$ is bounded from X to B_1 . Let $g(z) = \log \frac{1}{1-z} = \sum_{k=1}^{\infty} \frac{z^k}{k}$. It is easy to check that $g \in \Lambda_{\frac{1}{s}}^s \subset X$. This implies that $\mathcal{C}_{\mu,\alpha}(g) \in B_1$. For $z \in \mathbb{D}$, by the definition of $\mathcal{C}_{\mu,\alpha}$ we get

$$\mathcal{C}_{\mu,\alpha}(g)''(z) = \sum_{n=0}^{\infty} \left((n+2)(n+1)\mu_{n+2} \sum_{k=1}^{n+2} \frac{\Gamma(n+2-k+\alpha)}{\Gamma(\alpha)(n+2-k)!k} \right) z^n.$$

For 0 < r < 1, by Hardy's inequality we have that

$$M_1(r, \mathcal{C}_{\mu, \alpha}(g)'') \gtrsim \sum_{n=0}^{\infty} \left((n+2)\mu_{n+2} \sum_{k=1}^{n+2} \frac{\Gamma(n+2-k+\alpha)}{\Gamma(\alpha)(n+2-k)!k} \right) r^n.$$

It follows that

$$1 \gtrsim ||g||_X \gtrsim ||\mathcal{C}_{\mu,\alpha}(g)||_{B_1} = \int_{\mathbb{D}} |\mathcal{C}_{\mu,\alpha}(g)''(z)| dA(z)$$

= $2 \int_0^1 M_1(r, \mathcal{C}_{\mu,\alpha}(g)'') r dr$
 $\gtrsim \int_0^1 \sum_{n=0}^\infty \left((n+2)\mu_{n+2} \sum_{k=1}^{n+2} \frac{\Gamma(n+2-k+\alpha)}{\Gamma(\alpha)(n+2-k)!k} \right) r^{n+1} dr$
 $\gtrsim \sum_{n=0}^\infty \mu_{n+2} \sum_{k=1}^{n+2} \frac{\Gamma(n+2-k+\alpha)}{\Gamma(\alpha)(n+2-k)!k}.$

Using the Stirling's formula we get

$$\sum_{k=1}^{n+2} \frac{\Gamma(n+2-k+\alpha)}{\Gamma(\alpha)(n+2-k)!k} \asymp \sum_{k=1}^{n+2} \frac{(n+3-k)^{\alpha-1}}{k}$$

For $n \ge 1$, simple estimations lead us to the following

$$\sum_{k=1}^{n+2} \frac{(n+3-k)^{\alpha-1}}{k} = \left(\sum_{k=1}^{\left[\frac{n+2}{2}\right]} + \sum_{k=\left[\frac{n+2}{2}\right]+1}^{n+2}\right) \frac{(n+3-k)^{\alpha-1}}{k}$$
$$\approx (n+1)^{\alpha-1} \sum_{k=1}^{\left[\frac{n+2}{2}\right]} \frac{1}{k} + \frac{1}{n+1} \sum_{k=\left[\frac{n+2}{2}\right]+1}^{n+2} (n+3-k)^{\alpha-1}$$
$$\approx (n+1)^{\alpha-1} \log(n+2) + (n+1)^{\alpha-1}$$
$$\approx (n+1)^{\alpha-1} \log(n+2).$$

Therefore,

$$1 \gtrsim \sum_{n=0}^{\infty} \mu_{n+2} \sum_{k=1}^{n+2} \frac{\Gamma(n+2-k+\alpha)}{\Gamma(\alpha)(n+2-k)!k}$$
$$\gtrsim \sum_{n=0}^{\infty} (n+1)^{\alpha-1} \mu_n \log(n+2).$$

Case 2: *p* > 1.

Let q be the conjugate index of p, that is, $\frac{1}{p} + \frac{1}{q} = 1$. It is known that $(B_q)^* \cong B_p$ (see [32, Theorem 5.24]) under the paring

$$\langle F, G \rangle = \int_{\mathbb{D}} F'(z) \overline{G'(z)} dA(z), \ F \in B_p, G \in B_q.$$

This means that $\mathcal{C}_{\mu,\alpha}$ is bounded from X to B_p if and only if

$$|\langle \mathcal{C}_{\mu,\alpha}(F), G \rangle| \lesssim ||F||_X ||G||_{B_q}$$
 for all $F \in X, G \in B_q$.

Now, suppose that $C_{\mu,\alpha}$ is bounded from X to B_p . Take $g(z) = \sum_{n=0}^{\infty} \widehat{g}(n) z^n \in B_q$ and the sequence of its Taylor coefficients is a decreasing sequence of the non-negative real numbers. Let $f(z) = \log \frac{1}{1-z} = \sum_{n=1}^{\infty} \frac{z^n}{n} \in X$, we have that

$$|\langle \mathcal{C}_{\mu,\alpha}(f),g\rangle| \lesssim ||f||_X ||g||_{B_q}.$$

A simple calculation shows that

$$|\langle \mathcal{C}_{\mu,\alpha}(f),g\rangle| = \sum_{n=1}^{\infty} n\mu_n \left(\sum_{k=1}^n \frac{\Gamma(n-k+\alpha)}{\Gamma(\alpha)(n-k)!k}\right) \widehat{g}(n).$$

This implies that

$$|\langle \mathcal{C}_{\mu,\alpha}(f),g\rangle| = \sum_{n=1}^{\infty} n^{\frac{1}{q}} \mu_n \left(\sum_{k=1}^n \frac{\Gamma(n-k+\alpha)}{\Gamma(\alpha)(n-k)!k}\right) \widehat{g}(n) n^{\frac{q-1}{q}} < \infty.$$

By Lemma 2.1, the sequence $\{\widehat{g}(n)n^{\frac{q-1}{q}}\}_{n=1}^{\infty} \in l^q$. The well known duality $(l^q)^* = l^p$ yields that

$$\left\{n^{\frac{1}{q}}\mu_n\left(\sum_{k=1}^n\frac{\Gamma(n-k+\alpha)}{\Gamma(\alpha)(n-k)!k}\right)\right\}_{n=1}^{\infty}\in l^p.$$

Using the estimate $\sum_{k=1}^{n} \frac{\Gamma(n-k+\alpha)}{\Gamma(\alpha)(n-k)!k} \asymp (n+1)^{\alpha-1} \log(n+2)$ we deduce that

$$\sum_{n=0}^{\infty} (n+1)^{p\alpha-1} \mu_n^p \log^p(n+2) < \infty.$$

Proof of the implication (3) \Rightarrow (2) Let $\{f_k\}_{k=1}^{\infty}$ be a bounded sequence in X which converges to 0 uniformly on every compact subset of \mathbb{D} . Without loss of generality, we may assume that $f_k(0) = 0$ and $\sup_{k\geq 1} ||f||_X \leq 1$. It suffices to prove that $\lim_{k\to\infty} ||\mathcal{C}_{\mu,\alpha}(f_k)||_{B_p} = 0$ by using Lemma 2.5. As before, we divide the proof into p = 1 and p > 1.

Case 1: p > 1. Assume that $\sum_{n=1}^{\infty} (n+1)^{p\alpha-1} \mu_n^p \log^p(n+1) < \infty$, then

$$\sum_{n=1}^{\infty} (n+1)^{p\alpha-1} \mu_n^p \log^p(n+1) = \sum_{n=1}^{\infty} \left(\sum_{k=2^{n-1}}^{2^n-1} (k+1)^{p\alpha-1} \mu_k^p \log^p(k+1) \right)$$
$$\gtrsim \sum_{n=1}^{\infty} 2^{np\alpha} \mu_{2^n}^p \log^p(2^n+1)$$
$$\gtrsim \sum_{n=1}^{\infty} 2^{-n(p-1)} \left(\sum_{k=2^n}^{2^{n+1}-1} (k+1)^{\alpha-\frac{1}{p}} \mu_k \log(k+1) \right)^p$$

This shows that

$$\sum_{n=1}^{\infty} 2^{-n(p-1)} \left(\sum_{k=2^n}^{2^{n+1}-1} (k+1)^{\alpha - \frac{1}{p}} \mu_k \log(k+1) \right)^p < \infty.$$

By Lemma 2.2 we have that

$$\int_0^1 (1-r)^{p-2} \left(\sum_{n=0}^\infty (n+1)^{\alpha-\frac{1}{p}} \mu_n \log(n+1) r^n \right)^p dr$$
$$\approx \sum_{n=0}^\infty 2^{-n(p-1)} \left(\sum_{k=2^n}^{2^{n+1}-1} (k+1)^{\alpha-\frac{1}{p}} \mu_k \log(k+1) \right)^p < \infty.$$

Therefore, for any $\varepsilon > 0$ there exists a $0 < r_0 < 1$ such that

$$\int_{r_0}^1 (1-r)^{p-2} \left(\sum_{n=0}^\infty (n+1)^{\alpha - \frac{1}{p}} \mu_k \log(k+1) r^n \right)^p dr < \varepsilon.$$
(1)

It is clear that

$$\begin{aligned} ||\mathcal{C}_{\mu,\alpha}(f_k)||_{B_p}^p &= \left(\int_{|z| \le r_0} + \int_{r_0 < |z| < 1}\right) |\mathcal{C}_{\mu,\alpha}(f_k)'(z)|^p (1 - |z|)^{p-2} dA(z) \\ &:= J_{1,k} + J_{2,k}. \end{aligned}$$

By the integral representation of $\mathcal{C}_{\mu,\alpha}$ we get

$$\mathcal{C}_{\mu}(f_k)'(z) = \int_0^1 \frac{tf'_k(tz)}{(1-tz)^{\alpha}} d\mu(t) + \int_0^1 \frac{\alpha tf_k(tz)}{(1-tz)^{\alpha+1}} d\mu(t).$$
(2)

Cauchy integral theorem implies that the sequence $\{f'_k\}_{k=1}^{\infty}$ is also converge to 0 uniformly on every compact subset of \mathbb{D} . Thus, for $|z| \leq r_0$ we have that

$$\begin{aligned} |\mathcal{C}_{\mu,\alpha}(f_k)'(z)| &\lesssim \int_0^1 \frac{|f'_k(tz)|}{|1 - tz|^{\alpha}} + \frac{|f_k(tz)|}{|1 - tz|^{\alpha+1}} d\mu(t) \\ &\lesssim \sup_{|w| < r_0} \left(|f_k(w)| + |f'_k(w)| \right) \int_0^1 \frac{1}{(1 - tr_0)^{\alpha+1}} d\mu(t) \\ &\lesssim \sup_{|w| < r_0} \left(|f_k(w)| + |f'_k(w)| \right). \end{aligned}$$

It follows that

$$J_{1,k} \to 0, \ (k \to \infty).$$

Next, we estimate $J_{2,k}$. Since $X \subset \mathcal{B}$, we have

$$|f_k(z)| \lesssim \log \frac{e}{1-|z|}$$
 and $|f'_k(z)| \lesssim \frac{1}{1-|z|}$ for all $k \ge 1, z \in \mathbb{D}$. (3)

By (2) and (3), Minkowski inequity, Lemma 2.4 we get

$$\begin{split} M_{p}(r,\mathcal{C}_{\mu,\alpha}(f_{k})') &= \left\{ \int_{0}^{2\pi} \left| \int_{0}^{1} \frac{tf_{k}'(tre^{i\theta})}{(1-tre^{i\theta})^{\alpha}} + \frac{tf_{k}(tre^{i\theta})}{(1-tre^{i\theta})^{\alpha+1}} d\mu(t) \right|^{p} d\theta \right\}^{\frac{1}{p}} \\ &\lesssim \left\{ \int_{0}^{2\pi} \left(\int_{0}^{1} \frac{1}{(1-tr)|1-tre^{i\theta}|^{\alpha}} d\mu(t) \right)^{p} d\theta \right\}^{\frac{1}{p}} \\ &+ \left\{ \int_{0}^{2\pi} \left(\int_{0}^{1} \frac{\log \frac{e}{1-tr}}{|1-tre^{i\theta}|^{\alpha+1}} d\mu(t) \right)^{p} d\theta \right\}^{\frac{1}{p}} \\ &\lesssim \int_{0}^{1} \frac{1}{1-tr} \left(\int_{0}^{2\pi} \frac{d\theta}{|1-tre^{i\theta}|^{p\alpha}} \right)^{\frac{1}{p}} d\mu(t) \\ &+ \int_{0}^{1} \log \frac{e}{1-tr} \left(\int_{0}^{2\pi} \frac{d\theta}{|1-tre^{i\theta}|^{p(\alpha+1)}} \right)^{\frac{1}{p}} d\mu(t) \\ &\lesssim \int_{0}^{1} H(t,r) d\mu(t), \end{split}$$

where

$$H(t,r) = \begin{cases} \frac{\log \frac{e}{1-tr}}{(1-tr)^{\alpha+1-\frac{1}{p}}}, & \text{if } p > \frac{1}{\alpha}, \\ \frac{\log \frac{e}{1-tr}}{1-tr}, & \text{if } p = \frac{1}{\alpha}. \end{cases}$$

Lemma 2.3 yields that

$$M_p(r, \mathcal{C}_{\mu,\alpha}(f_k)') \lesssim \int_0^1 H(t, r) d\mu(t) \asymp \sum_{n=0}^\infty (n+1)^{\alpha - \frac{1}{p}} \mu_n \log(n+1) r^n.$$

This together with (1) implies

$$J_{2,k} = \int_{r_0 < |z| < 1} |\mathcal{C}_{\mu,\alpha}(f_k)'(z)|^p (1 - |z|)^{p-2} dA(z)$$

$$\lesssim \int_{r_0}^1 (1 - r)^{p-2} M_p^p(r, \mathcal{C}_{\mu,\alpha}(f_k)') dr$$

$$\lesssim \int_{r_0}^1 (1 - r)^{p-2} \left(\sum_{n=0}^\infty (n+1)^{\alpha - \frac{1}{p}} \mu_n \log(n+1) r^n \right)^p dr$$

$$\lesssim \varepsilon.$$

Consequently,

$$\lim_{k \to \infty} ||\mathcal{C}_{\mu,\alpha}(f_k)||_{B_p} = 0.$$

Case 2: p = 1.

When p = 1, Lemma 2.3 shows that the condition $\sum_{n=0}^{\infty} (n+1)^{\alpha-1} \mu_n \log(n+2) < \infty$ is equivalent to $\int_0^1 \frac{\log \frac{e}{1-t}}{(1-t)^{\alpha}} d\mu(t) < \infty$. Hence, for any $\varepsilon > 0$ there exists a $0 < t_0 < 1$ such that

$$\int_{t_0}^1 \frac{\log \frac{e}{1-t}}{(1-t)^{\alpha}} d\mu(t) < \varepsilon.$$
(4)

By the integral representation of $\mathcal{C}_{\mu,\alpha}$ we have

$$\mathcal{C}_{\mu,\alpha}(f)''(z) = \int_0^1 \left(\frac{t^2 f''(tz)}{(1-tz)^{\alpha}} + \frac{2\alpha t^2 f'(tz)}{(1-tz)^{\alpha+1}} + \frac{\alpha(\alpha+1)t^2 f(tz)}{(1-tz)^{\alpha+2}} \right) d\mu(t).$$
(5)

For 0 < r < 1, we have

$$M_{1}(r, \mathcal{C}_{\mu,\alpha}(f_{k})'') \lesssim \sup_{|w| \le t_{0}} \left(|f_{k}''(w)| + |f_{k}'(w)| + |f_{k}(w)| \right) \int_{0}^{t_{0}} \frac{d\mu(t)}{(1 - t_{0}r)^{\alpha+2}} \\ + \int_{0}^{2\pi} \int_{t_{0}}^{1} \frac{|f_{k}''(tz)|}{|1 - tre^{i\theta}|^{\alpha}} + \frac{|f_{k}'(tz)|}{|1 - tre^{i\theta}|^{\alpha+1}} + \frac{|f_{k}(tz)|}{|1 - tre^{i\theta}|^{\alpha+2}} d\mu(t) d\theta.$$

Since $\{f_k\} \subset X \subset \mathcal{B}$, we see that

$$|f_k''(z)| \lesssim \frac{1}{(1-|z|)^2} \text{ for all } k \ge 1.$$
 (6)

The assumption of p means that $\alpha \ge 1$. By Fubini's theorem, (3), (6) and Lemma 2.4 we have

$$\begin{split} &\int_{0}^{2\pi} \int_{t_{0}}^{1} \frac{|f_{k}''(tre^{i\theta})|}{|1 - tre^{i\theta}|^{\alpha}} + \frac{|f_{k}'(tre^{i\theta})|}{|1 - tre^{i\theta}|^{\alpha+1}} + \frac{|f_{k}(tre^{i\theta})|}{|1 - tre^{i\theta}|^{\alpha+2}} d\mu(t) d\theta \\ &\lesssim \int_{t_{0}}^{1} \int_{0}^{2\pi} \left(\frac{1}{(1 - tr)^{2}|1 - tre^{i\theta}|^{\alpha}} + \frac{1}{(1 - tr)|1 - tre^{i\theta}|^{\alpha+1}} + \frac{\log \frac{e}{1 - tr}}{|1 - tre^{i\theta}|^{\alpha+2}} \right) d\theta d\mu(t) \\ &\lesssim \int_{t_{0}}^{1} \frac{\log \frac{e}{1 - tr}}{(1 - tr)^{\alpha+1}} d\mu(t). \end{split}$$

Hence,

$$\begin{split} &\int_{t_0 < |z| < 1} |\mathcal{C}_{\mu,\alpha}(f_k)''(z)| dA(z) \\ &= 2 \int_{t_0}^1 M_1(r, \mathcal{C}_{\mu,\alpha}(f_k)'') r dr \\ &\lesssim \sup_{|w| \le t_0} \left(|f_k''(w)| + |f_k'(w)| + |f_k(w)| \right) + \int_{t_0}^1 \int_{t_0}^1 \frac{\log \frac{e}{1 - tr}}{(1 - tr)^{\alpha + 1}} d\mu(t) dr \\ &\lesssim \sup_{|w| \le t_0} \left(|f_k''(w)| + |f_k'(w)| + |f_k(w)| \right) + \int_{t_0}^1 \log \frac{e}{1 - t} \int_0^1 \frac{dr}{(1 - tr)^{\alpha + 1}} d\mu(t) \\ &\lesssim \sup_{|w| \le t_0} \left(|f_k''(w)| + |f_k'(w)| + |f_k(w)| \right) + \int_{t_0}^1 \frac{\log \frac{e}{1 - t}}{(1 - t)^{\alpha}} d\mu(t) \\ &\lesssim \sup_{|w| \le t_0} \left(|f_k''(w)| + |f_k'(w)| + |f_k(w)| \right) + \varepsilon. \end{split}$$

The uniform convergence of $\{f_k\}$ on compact subsets of \mathbb{D} implies that

$$\int_{|z| \le t_0} |\mathcal{C}_{\mu,\alpha}(f_k)''(z)| dA(z) \lesssim \sup_{|w| \le t_0} (|f_k''(w)| + |f_k'(w)| + |f_k(w)|) \to 0, \text{ as } k \to 0.$$

Since $f_k(0) = 0$, so we have that $|\mathcal{C}_{\mu,\alpha}(f_k)(0)| + |\mathcal{C}_{\mu,\alpha}(f_k)'(0)| \asymp |f'_k(0)| \to 0$ as $k \to \infty$.

Therefore, we deduce that

$$\lim_{k \to \infty} ||\mathcal{C}_{\mu,\alpha}(f_k)||_{B_1} = 0.$$

Thus, the operator $C_{\mu,\alpha}$ is compact from X to B_1 .

Conflicts of Interest

The authors declare that there is no conflict of interest.

Funding

The author was supported by the Scientific Research Fund of Hunan Provincial Education Department (No. 24C0226).

Availability of data and materials

Data sharing not applicable to this article as no datasets were generated or analysed during the current study: the article describes entirely theoretical research.

References

- [1] A. Aleman, A. Siskakis, Integration operators on Bergman spaces, Indiana Univ. Math. J. 46(2) (1997) 337–356.
- [2] A. Aleman, J. Cima, An integral operator on H^p and Hardy's inequality, J. Anal. Math. 85 (2001) 157–176.
- [3] G. Bao, K. Guo, F. Sun, Z. Wang, Hankel matrices acting on the Dirichlet space, J Fourier Anal. Appl. 30 (2024) no.53.
- [4] G. Bao, F. Sun, H. Wulan, Carleson measure and the range of Cesàro-like operator acting on H^{∞} , Anal. Math. Phys. 12 (2022) Paper No.142.
- [5] M. Beltrán-Meneu, J. Bonet, E. Jordá, Cesàro operators associated with Borel measures acting on weighted spaces of holomorphic functions with sup-norms, Anal. Math. Phy. 14 (2024) no. 109.
- [6] O. Blasco, Cesàro-type operators on Hardy spaces, J. Math. Anal. Appl. (2023) Paper No. 127017.
- [7] O. Blasco, Generalized Cesàro operators on weighted Dirichlet spaces, J. Math. Anal. Appl. 540(1) (2024) no. 128627.
- [8] S. Buckley, P. Koskela, D. Vukotić, Fractional integration, differentiation, and weighted Bergman spaces, Math. Proc. Camb. Philos. Soc. 126(2) (1999) 369–385.
- [9] C. Cowen, B. MacCluer, Composition operators on spaces of analytic functions, CRC Press, Boca Raton, 1995.
- [10] N. Danikas, A. Siskakis, The Cesàro operator on bounded analytic functions, Analysis 13 (1993) 295–299.
- [11] D. Girela, N. Merchán, A generalized Hilbert operator acting on conformally invariant spaces, Banach J. Math. Anal. Appl. 12 (2018) 374–398.
- [12] P. Duren, Theory of H^p spaces, Academic Press, New York, 1970.
- [13] P. Galanopoulos, D. Girela, N. Merchán, Cesàro-type operators associated with Borel measures on the unit disc acting on some Hilbert spaces of analytic functions, J. Math. Anal. Appl. (2023) Paper No. 127287.
- [14] P. Galanopoulos, D. Girela, N. Merchán, Cesàro-like operators acting on spaces of analytic functions, Anal. Math. Phys. 12 (2022) Paper No. 51.
- [15] P. Galanopoulos, D. Girela, A. Mas, N. Merchán, Operators induced by radial measures acting on the Dirichlet space, Results Math. 78 (2023) Paper No. 106.
- [16] P. Galanopoulos, A. Siskakis, R. Zhao, Weighted Cesàro type operators between weighted Bergman spaces, preprint.
- [17] Y. Guo, P. Tang, X. Zhang, Cesàro-like operators between the Bloch space and Bergman spaces, Ann. Funct. Anal. 15 (2024) Paper No. 8.
- [18] J. Jin, S. Tang, Generalized Cesàro operator on Dirichlet-type spaces, Acta Math. Sci 42(B) (2022) 1–9.

- [19] J. Miao, The Cesàro operator is bounded on H^p for 0 , Proc. Amer. Math. Soc. 116 (1992) 1077–1079.
- [20] M. Pavlović, Analytic functions with decreasing coefficients and Hardy and Bloch spaces, Proc. Edinb. Math. Soc. 56 (2013) 623–635.
- [21] M. Pavlović, M. Mateljević, L^p-behavior of power series with positive coefficients and Hardy spaces, Proc. Amer. Math. Soc. 87(2) (1983) 309–316.
- [22] W. Ross, The Cesàro operator, In: Recent Progress in Function Theory and Operator Theory. Editors: A. A. Condori, E. Pozzi, W. T. Ross, and A. A. Sola, Contemporary Mathematics, Vol. 799 (2024), American Matematical Society, pp. 185–215.
- [23] W. Rudin, Function theory in the unit ball of C^n , Springer, New York, 1980.
- [24] A. Siskakis, Composition semigroups and the Cesàro operator on H^p , J. London Math. Soc. 36 (1987) 153–164.
- [25] A. Siskakis, On the Bergman space norm of the Cesàro operator, Arch. Math. 67 (1996) 4312–318.
- [26] A. Siskakis, The Cesàro operator is bounded on H^1 , Proc. Amer. Math. Soc. 110 (1990) 461–462.
- [27] F. Sun, F. Ye, L. Zhou, A Cesàro-like operator from Besov space to some spaces of analytic functions, Comput. Methods Funct. Theory (2024). https://doi.org/10.1007/ s40315-024-00542-7
- [28] P. Tang, Cesàro-like operators acting on a class of analytic function spaces, Anal. Math. Phy. 13 (2023) Paper No. 96.
- [29] P. Tang, The Cesàro-like operator on some analytic function spaces, Rocky Mount. J. Math. to appear.
- [30] J. Xiao, Cesàro-type operators on Hardy, BMOA and Bloch spaces, Arch. Math. 68 (1997) 398–406.
- [31] Z. Zhou, Pseudo-Carleson measures and generalized Cesàro-like operators, preprint.https: //doi.org/10.21203/rs.3.rs-2413497/v1.
- [32] K. Zhu, Operator theory in function spaces, Math. Surveys and Monographs, Vol. 138, American Mathematical Society, Providence, Rhode Island (2007)
- [33] A. Zygmund, Trigonometric Series, Vol. I, II. Cambridge University Press, London, 1959.