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Abstract

Let a € R, and let k(a) be the largest constant such that sup |cos(na) — cos(nb)| < k(a) for b € R implies
that b € +a + 2nZ. We show that if a cosine sequence (C(n)),ez with values in a Banach algebra A
satisfies sup,5| [|C(n) — cos(na).14|| < k(a), then C(n) = cos(na).1, for n € Z. Since V572 < k(a) < 8/3V3
for every a € R, this shows that if some cosine family (C(g))ycg over an abelian group G in a Banach
algebra satisfies sup,. [IC(g) — c(g)ll < V/5/2 for some scalar cosine family (c(g))gec, then C(g) = c(g)

for g € G, and the constant \/5/2 is optimal. We also describe the set of all real numbers a € [0, 7]
satisfying k(a) < %
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1. Introduction

Let G be an abelian group. Recall that a G-cosine family of elements of a unital normed
algebra A with unit element 14 is a family (C(g))gec of elements of A satisfying the
so-called d’ Alembert equation

Co=14,C(g+h) +C(g—h)=2C(g)C(h), (g€ G,heq).

A R-cosine family is called a cosine function, and a Z-cosine family is called a
cosine sequence.

A cosine family C = (C(g)),ec 1s said to be bounded if there exists M > 0 such that
[IC(@Il < M for every g € G. In this case, we set

ICllee = Sugllc(g)ll, dist(Cy, C2) = [IC1 = Collew-
g€

A cosine family is said to be scalar if C(g) € C.1, for every g € G. It is easy to see and
well known that a bounded complex-valued cosine sequence satisfies C(n) = cos(an)
for some a € R.
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Strongly continuous operator valued cosine functions are a classical tool in the study
of differential equations (see, for example, [1, 3, 14, 18]) and a functional calculus
approach to these objects was developed recently in [10, 11].

Bobrowski and Chojnacki proved in [4] that if a strongly continuous operator
valued cosine function on a Banach space (C(1));cr satisfies sup,.q [|C(#) — c(9)l| < 1/2
for some scalar bounded continuous cosine function c(t), then C(¢) = c(¢) for t € R,
and Zwart and Schwenninger showed in [16] that this result remains valid under the
condition sup,. [|C(#) — c(?)|| < 1. The proofs were based on rather involved arguments
from operator theory and semigroup theory. Very recently, Bobrowski et al. [5]
showed more precisely that if a cosine function C = C(¢) satisfies sup,g [|C() — c()|| <
8/3V/3 for some scalar bounded continuous cosine function ¢(), then C(f) = ¢(f) for
t € R, without any continuity assumption on C, and the same result was obtained
independently by the author in [9]. The constant 8/3V3 is obviously optimal, since
sup,c lcos(at) — cos(3at)| = 8/3\5 for every a e R \ {0}.

The author also proved, in [9], that if a cosine sequence (C(¢))r satisfies
sup,eg lIC(t) — cos(at)14|| = m < 2 for some a # 0, then the closed algebra generated
by (C(1))er is isomorphic to C* for some k > 1, and there exists a finite family
P1,- - -, px of pairwise orthogonal idempotents of A and a family (b4, . .., by) of distinct
elements of the finite set A(a, m) := {b > 0 : sup,p |cos(bt) — cos(at)| < m} such that
C@t) = zf;zl cos(bj)p; (t€R).

Also, Chojnacki developed, in [6], an elementary argument to show that if (C(n)),ez
is a cosine sequence in a unital normed algebra A satisfying sup,. [|C(n) — c(n)|| <
1 for some scalar cosine sequence (c(n)),ez, then c(n) = C(n) for every n, which
obviously implies the result of Zwart and Schwenninger. His approach is based on
an elaborated adaptation of a very short elementary argument used by Wallen in [19]
to prove an improvement of the classical Cox—Nakamura—Yoshida—Hirschfeld—Wallen
theorem [7, 12, 15] which shows that if an element a of a unital normed algebra A
satisfies sup,» [la" — 1|l < 1, thena = 1.

Applying this result to the cosine sequences C(ng) and c(ng) for g € G, Chonajcki
observed, in [6], that if a cosine family C(g) satisfies SUPgei [IC(g) — c(g)l| < 1 for some
scalar cosine family c(g), then C(g) = c(g) for every g € G.

In the same direction, Schwenninger and Zwart showed, in [17], that if a cosine
sequence (C(n)),ez in a Banach algebra A satisfies sup,. [|[C(n) — 14| < %, then
C(n) = 1,4 for every n.

The purpose of this paper is to obtain optimal results of this type. We prove a
‘zero-V5 /2’ law: if a cosine family (C(g))eec satisfies SUPgei [IC(g) — c(@)ll < vs5 /2
for some scalar cosine family (c(g))geg, then C(g) = c(g) for every g € G. Since
sup,,»lcos(2nn/5) — cos(4nm/5)| = cos(2n/5) + cos(n/5) = V5/2, the constant V5/2
is optimal.

In fact, for every a € R, there exists a largest constant k(a) such that
Sup,,» Icos(nb) — cos(na)| < k(a) implies that cos(nb) = cos(na) for n > 1, and there
exists b € R such that sup,. [cos(na) — cos(nb)| = k(a) (see the remark following
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Proposition 2.2). We prove that if a cosine sequence (C(n)),cz in a Banach algebra
A satisfies sup,.; |C(n) — cos(na)ls| < k(a), then C(n) = cos(na).14 for n > 1. This
follows from the following result, which was proved by the author in [9].

TueOrREM 1.1. Let (C(n)),ez be a bounded cosine sequence in a Banach algebra A. If
spec(C(1)) is a singleton, then the sequence (C(n))nez is scalar, and so there exists
a € R such that C(n) = cos(na).14 forn > 1.

The second part of the paper is devoted to a discussion of the values of the
constant k(a). As mentioned above, it follows from [17] that k(0) = % and it is
obvious that k(a) < sup,,|cos(na) — cos(3na)| < 8/ 3V3ifa ¢ (7/2)Z. We observe that
k(a) = 8/3V3 if a/n is irrational, and we prove, using basic results about cyclotomic
fields, that k(a) < 8/3V3 if a/x is rational.

We also show that the set Q(m) := {a € [0, 7] : k(a) < m} is finite for every m <
8/3\/5 We describe in detail the set Q(%) : it contains 43 elements, and the only
values for k(a) for which k(a) < 2 are V2/5 = cos(n/5) + cos(27/5) ~ 1.1180, V2 =
cos(r/4) + cos(3n/4) ~ 1.4142 and cos(2n/11) + cos(3n/11) ~ 1.4961.

The zero-V5/2 law follows from the fact that k(a) > cos(r/5) + cos(2x/5) = V5/2
for every a € R.

We also show that, given a € R and m < 2, the set I'(a, m) of scalar cosine sequences
(c(n))nez satisfying sup,., [c(n) — cos(na)| < m is finite. This implies that if a cosine
sequence (C(n)),cz satisfies sup,; [|C(n) — cos(an)l|| < m, then there exists k <
card(I'(a, m)) such that the closed algebra generated by (C(7n)),ez is isomorphic to Ck

and there exists a finite family py, ..., py of pairwise orthogonal idempotents of A and
a finite family cy, .. ., ¢ of distinct elements of I'(a, m) such that
k
Cn) = cos(c;n)pj, (mez).
j=1

This last result does not extend to cosine families over the general abelian group.
Let G = (Z/3Z)"; we give an easy example of a G-cosine family (C(g))gec with
values in [* such that the closed subalgebra generated by (C(g)),ec equals [, while
sup,e lI1im = C(o)ll = 2.

The author warmly thanks Christine Bachoc and Pierre Parent for providing the
arguments from number theory which lead to a simple proof of the fact that k(a) <

8/3V3 if a ¢ nQ.

2. Distance between bounded scalar cosine sequences

We introduce the following notation, to be used throughout the paper.

Derinition 2.1. Let a € 7Q. The order of a, denoted by ord(a), is the smallest integer
u > 1 such that ¢ = 1.
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Recall that a subset S of the unit circle T is said to be independent if 7" - - 'zzk # 1 for
every finite family (zy, . .., zx) of distinct elements of S and every family (n,...,n;) €
ZF such that n ;# 0 for 1 <j<k It follows from a classical theorem of Kronecker
(see, for example, [13], page 21) thatif S = {zy, ..., 2} is a finite independent set, then
the sequence (z{,...,2})s>1 is dense in T*. We deduce from Kronecker’s theorem the
following observation.

ProrositioN 2.2. Let a € [0, n]. For m > 0, set

I'(a,m) = {b € [0, 7] : sup |cos(na) — cos(nb)| < m}.

n>1
Then I'(a, m) is finite for every m < 2.

Proor. Fix m € [1,2). Notice that if b € R and if the set {¢/, ¢’} is independent, then
it follows from Kronecker’s theorem that the sequence ((e™, ¢"")),s is dense in T2,
and so sup,.| [cos(na) — cos(nb)| = 2 and b ¢ I'(a, m).

Suppose that (a/rr) € Q, and denote by u the order of a, so that e = 1. If (b/n) ¢ Q,
then the sequence (¢""),5 is dense in T, and so

2 > sup |cos(na) — cos(nb)| = sup |1 — cos(nub)| = 2,
n>1 n>1

which shows that b ¢ I'(a, m).

The same argument shows that if (a/n) ¢ Q and if (b/7) € Q, then b ¢ ['(a, m). So
we are left with two situations:

(1) a/m ¢ Q, and there exists p # 0, g # 0 and k € Z such that bg = ap + 2kr; and
(2) a/meQandb/meqQ.

We consider the first case. Replacing b € [0, 7] by —b € [—m, 0], if necessary, we
can assume that p > 1 and ¢ > 1, and we can assume that

gb = pa + —,
-

with greatest common divisor (ged)(p,q) = 1,7 > 1,gcd(r, k) = 1 if k £ 0.
Since (ra/n) ¢ Q,

sup |cos(na) — cos(nb)|
n>1

> sup |cos(nrqa) — cos(nrgb)|
n>1

= sup |cos(nrqa) — cos(nrpa)| = sup |cos(gt) — cos(pt)|.
n>1 teR
Since ged(p, g) = 1, sup,g Icos(gt) — cos(pt)| = 2 if p or g is even, so we can assume
that p and ¢ are odd. Set s = (¢ — 1)/2.
It follows from Bezout’s identity that there exist n > 1 such that e?"P%/4 = ¢2s7/4,
and setting ¢ = 2nn/q,

2
sup |cos(gt) — cos(pt)| > 1 — cos( il ) =1+ cos(z).
teR 2s+1 q
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The same argument shows that

sup |cos(gt) — cos(pt)| = 1 + cos(z).
p

teR
Hence
bis
PSS —————— 4% ————.
arccos(m — 1) arccos(m — 1)
Also

sup |cos(na) — cos(nb)| > sup |cos(nga) — cos(ngb)|

n>1 n>1

2nkn
= sup|cos(nga) — cos(npa + ) .
n>1

Assume that k£ # 0. Since gcd(k, r) = 1, there exists u > 1 such that 2ukn/r €
(2n/r) + 2nZ. This gives

sup |cos(na) — cos(nb)| = sup
n>1 n>1

2nr
cos(nuqa) — cos(npua + —) .
r

If ris even, set r; = r/2.

2nmw
sup|cos(nuga) — cos(npua + —)
n>1 r
> sup |cos((2n + 1)rjuqa) — cos((2n + 1)riupa) + n|.
n>0

Since 2rjua ¢ nQ, there exists a sequence (n;);»; of integers such that

lim |et2n‘/-r1ua+tr1ua| =1

Jotoo

b}

so that
lim [cos((2n; + Driuga) — cos((2n; + 1)riupa) + n| = 2,

J—+oo
and, in this situation, sup,, [cos(na) — cos(nb)| = 2.
So we can assume that r is odd. Set r; = (r — 1)/2. The same calculation as above
gives

sup|cos(nuga) — cos(npua + —
r

n>1

2nr )'

> sup
n>1

cos((nr + ry)uqa) — cos((nr + r)upa + wﬂ)'

2
>1+ cos(ﬂn - n) =1+ cos(z).
r r
Hence r < mr/arccos(m — 1).

This gives

kI < 5-lab - pal < (— )2
=g 7T Pa= arccos(m — 1)/
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We see that I'(a, m) is finite if a/m ¢ Q and that
2 )5

card(Ta,m) < (2

Now consider the case where a/m € Q, b/m € Q. We first discuss the case where
a=0,b#0. We know that b = prr/q, where 1 < p < ¢, gcd(p,q) = 1.

If p=g=1, then b= and sup,,, |1 — cos(nm)| =2. So we may assume that
p<q-1.1f pis odd,

sup |1 — cos(nb)| > |1 — cos(gb)| = 1 — cos(pmr) = 2.

n>1

So we can assume that p is even, so that g is odd. Set r = (¢ — 1)/2. There exists
ng = 1 and r € Z such that nop — r € gZ and

2
sup |1 — cos(nb)| > |1 — cos(2nyb)| = Il - cos( ddl )' =1+ cos(z).
neZ 2r+1 q
Again g < rr/arccos(m — 1) and card(I'(0, m)) < (r/arccos(m — 1)).

Now assume that a # 0 and let u# > 2 be the order of a.

sup |1 — cos(nub)| = sup |[cos(nua) — cos(nub)| < m,
nx1 n>1

and so there exists ¢ € I'(0, m) such that cos(nc) = cos(nub) for n > 1. In particular,
cos(c) = cos(ub), and b = +(c/u) + (2kn/u), where k € Z.

2
card(I'(a, m)) < 2u card(I"(0, m)) < 2u(+) . O
arccos(m — 1)
We do not know whether it is possible to obtain a majorant for card(I'(a, m)) which
depends only on m when a € nQ.

Remark. It follows immediately from Proposition 2.2 that, for every a € R, there
exists b € R such that k(a) = sup,,,.; [cos(na) — cos(nb)|.

THeEOREM 2.3. Let a € R, let m < 2 and let (C(n)),cz be a cosine sequence in a Banach
algebra A such that sup,, ||C(n) — cos(na)|| < m. Then there exists k < card(I'(a, m))
such that the closed algebra generated by (C(n)),ez is isomorphic to CX, and there
exists a finite family pi, ..., px of pairwise orthogonal idempotents of A and a finite
family by, ..., by of distinct elements of T'(a, m) such that

k
Cn) = cos(nbj)p;, (ne€Z).
j=1
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Proor. Since ¢, = P,(c1), where P,, denotes the nth Tchebishev polynomial, A; is the
closed unital subalgebra generated by ¢; and the map y — x(c;) is a bijection from A,
onto specy (c1). Now let y € /’\\1 The sequence (y(c,))n>1 1S a scalar cosine sequence
and

sup |cos(na) — x(c,)| < 2.

n>1

It follows from Proposition 2.2 that spec, (c1) :={1=x(c1) : x € ;\\1} is finite.
Hence X] is finite. Let y1,..., v, be the elements of X] It follows from the standard
one-variable holomorphic functional calculus (see, for example, [8]) that there exists,
for every j < m, an idempotent p; of A; such that y;(p;) = 1 and x;(p;) = 0 for k # j.
Hence p;py = 0 for j # k, and Z?’:l pj is the unit element of A;.

Let x € Ay. Then (pjc,)nez is a cosine sequence in the commutative unital Banach
algebra p;A;, and specp/_Al(pjcl) = {x(c1)}.

Since sup,s llpjcos(na) — pjcall < 2||pjll, the sequence (pjc,)n>1 is bounded, and it
follows from Theorem 2.3 that (p c,),»1 is a scalar sequence and there exists 5; € [0, 7]
such that p;c, = x j(c,)p; = cos(nB;)p; for n € Z.

Hence ¢, = YL xj(ca)pj = X' cos(nf;)p; for n > 1. Since A; is the closed unital
subalgebra of A generated by ¢y, x = Z;Ll X j(x)p; for every x € Ay, which shows that
A| is isomorphic to C™. O

CoroLLARY 2.4. Let a > 0 € R and let k(a) be the largest positive real number m such
that T'(a, m) = {a} for every m < k(a). If (C(n)),ez is a cosine sequence in a Banach
algebra A such that sup,..,||C(n) — cos(na)l4l| < k(a), then C(n) = cos(na)l, forn € Z.

Theorem 2.3 does not extend to cosine families over general abelian groups, as
shown by the following easy result.

ProposITION 2.5. Let G := (Z/3Z)". Then there exists a G-cosine family (C (8))geG With
values in [ which satisfies the following two conditions.

() supyeg il — C()ll = 2.
(ii) The algebra A generated by the family (C(g))qec is dense in ™.

Proor. Elements g of G can be written in the form g = (g, )m>1, Where g,, € {0, 1, 2}.

Set
C(g) = (cos( Zg,;"ﬂ ))mz! .

Then (C(g))gec is a G-cosine family with values in [~ which obviously satisfies (i)
since cos(2r/3) = cos(4n/3) = —%.

Now let ¢ = (¢)mez be an idempotent of [ and let S :={m >1]¢,, = 1}. Set
gn=11fmeS,g,=0ifm>1,m¢S and set g = (g, m>1-

C(06) - C(g) = 1 — C(g) = 34,

and so ¢ € A. We can identify [* to €’(8N), the algebra of continuous functions on the
Stone—Céch compactification of N, and SN is an extremely disconnected compact set,
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which means that the closure of every open set is open (see, for example, [2], Ch. 6,
Section 6). Since the characteristic function of every open and closed subset of SN is
an idempotent of /*, the idempotents of [ separate points of SN, and it follows from
the Stone—Weierstrass theorem that A is dense in /*°, which proves (ii). O

3. The values of the constant k(a)

It was shown in [17] that k(0) = % We also have the following result.

ProrosiTiON 3.1. k(a) = 8/3V3 if a/m is irrational and k(a) < 8/3V3 if a/m is rational.
Proor. Assume that a/7 ¢ Q. Then 3a ¢ +a + 2nZ and

< - = - - >
k(a) < 31;11) |cos(na) — cos(3na)| ilel]g |cos(x) — cos(3x)| 3\/?

We saw above that if b/x in Q, then sup,,|cos(na) — cos(nb)| = 2, and we also
know that sup,., [cos(na) — cos(nb)| = 2 if pa — gb ¢ 2nZ for (p,q) # (0,0). So if
Sup,,»| lcos(na) — cos(nb)| < 2, there exists p € Z\ {0}, g € Z \ {0} and r € Z such that
pa—qb =2rnm.

If p # +q, then it follows from [9, Lemma 3.5] that

Sup,,»lcos(na) — cos(nb)| > sup,,..| Icos(nqa) — cos(ngb)|
= sup,,»lcos(gna) — cos(pna)
= sup,glcos(gx) — cos(px)|
8
> —.
3vV3

We are left with the case where b = +a + (2snt/r), where r € Z \ {—1,0, 1}, and we
can restrict attention to the case where b = a + (2sn/r), where r >2, 1 < s <r -1,
gcd(r, s) = 1. It follows from Bezout’s identity that there exists, for every p > 1, some
positive integer u such that ub — ua — 2pn/r) € 2nZ. If r is even, set p = r/2. Since
the set {¢/>"*14} ., is dense in the unit circle,

= SUPcr

cos(%x) — cos(x)

sup |cos(nb) — cos(na)| = sup |cos((2n + 1)ub) — cos((2n + 1)ua)|
n>1 n>1
=2sup|cos((2n + 1)ua)| = 2.

n>1

Now assume that r is odd, and set p = (r — 1)/2.

sup |cos(nb) — cos(na)|
n>1

> sup|cos((2n + 1)ub) — cos((2n + 1)ua)|

n>1

> sup
n>1

cos((an + Dua + Qnr + 1)(;: - ’;r)) _ cos(2nr + Dua)

> sup
xeR

Vg 8
> 2cos(—) >V3> —.
2r 343

cos(x) + cos(x - g)
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Now assume that a/x is rational. If the order of a is equal to one, then k(a) = 1.5, and
we will see later that this is also true if the order of a equals two or four.

Otherwise,

k(a) < sg;l) |cos(na) — cos(3na)| = lrg?ét |cos(na) — cos(3na)|.

We know that |cos(nx) — cos(3nx)| < 8/(nV3) if x ¢ + arccos(1/V3) + 7Z. If na €
+arccos(1/V3) + 7Z for some n > 1, then arccos(1/V3)/n would be rational and
@ :=1/V3 + (V2i)/V/3 would be a root of unity. So B=a’= —% + (2V2i)/3 would
have the form S = ¢**/" for some n < 1 and some positive integer k > n such that
ged(k,n) = 1.

Let Q(B) be the smallest subfield of C containing Q U 3. Since 38> + 28+ 3 =0,
the degree of Q(B) over Q is equal to two. On the other hand, the Galois group
Gal(Q(B)/Q) is isomorphic to (Z/nZ)*, the group of invertible elements of Z/nZ, and
(see [20, Theorem 2.5])

H(n) = deg(Q(B)/Q) = 2,

where H(n) = card((Z/nZ)*) denotes the number of integers p € {1, ..., n} such that
ged(p,n) = 1.

Let P(n) be the set of prime divisors of n. It is well known that, writing n =
I,epmyp®r (see, for example, [20, Exercise 1.1]),

H(n) = Mpepiyp™ ' (p - 1).

It follows immediately from this identity that the only possibilities for getting
H(m)=2aren=3,n=4and n=6. Since B # 1, f* # 1 and B° # 1, we see that
B/x is irrational, and so k(a) < 8/ 33 if a/n is rational. O

We know that if a/n is rational and if b/ is irrational, then sup,., [cos(na) —
cos(nb)| = 2. We discuss now the case where a/m and b/m are both rational, with
b ¢ +a+ 2nZ.

Lemma 3.2. Leta,b € (0, r].
Q) IfTla<b<n/2orifn/2 <b<5r/6, with|b— (2r/3)| = Ta, then

sup |cos(na) — cos(nb)| > 1.55.
n>1

(1)) If(5m/6) < b <mandif b > 4a, then
cos(a) — cos(b) > 1.57.

PROOF.
(i) Assume that 7a < b < «/2, let p be the largest integer such that pb < 37/4 and
setg = p + 1. We know that 37/4 < gb < 5n/4,0 < ga < 57/28, so

5
sup [cos(na) — cos(nb)| > cos(ga) — cos(gb) > cos(z—g) + cos(g) > 1.55.
n>1
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Now assume that /2 < b < 5x/6, with |b — 27/3| > 7a, and set ¢ = |3b — 2n|. Since
|b—Q2n/3)| <n/6,2la<c<nr/2,s0
sup |cos(na) — cos(nb)|
n>1

> sup |cos(3na) — cos(3nb)|

n>1

= sup |cos(3na) — cos(nc)| > |cos(3a) — cos(c)| > 1.55.
n>1

({) If57r/6 <b<mandif b > 4a,then 0 <a < /4 and
cos(a) — cos(b) > cos(%r) + cos(%) > 1.57. O

LemMma 3.3. Let p, g be two positive integers such that p < q.
(i)  Ifq # 3p, then there exists u, 4 > 1 such that, if ord(a) > u, g4,

8

sup |cos(npa) — cos(nga)| > —.

i~ V3
(i) If g =3p, then, for, every m < 8/3V3, there exists uy(m) > 1 such that, if

ord(a) > u,(m),

sup |cos(npa) — cos(3npa)| > m.

n>1
ProoF. Set A = sup, [cos(px) — cos(gx)| = sup,qlcos(px) — cos(gx)|. An elementary
verification shows that A > 8/3V3 if ¢ # 3p and 1 = 8/3V3 if ¢ = 3p (see, for
example, [9]). Now let u <4, and let n <9 be two real numbers such that
lcos(px) — cos(gx)| > p for n < x < 6. Since {"},51 = {€¥™/"} 1 <p<u, We see that
Sup,» lcos(npa) — cos(nga)| > u if 2w/u < 6 — n, and the lemma follows. O

Lemma 3.4. Assume that a/m and b/m are rational, let u > 1 be the order of a and let v
be the order of b.

(1) Ifu#v, u#3v, v+#3u, then sup,,, [cos(na) — cos(nb)| > 1 + cos(r/5) > 1.8 >
8/3V3.

(i) Ifu=vandifb ¢ +a+2nZ, then there exists w € Z such that 2 <w < u/2 and

gcd(u, w) = 1 satisfying
(Zmr) (ann)
cos| — | — cos .
u u

Conversely, if a € nQ has order u, then, for every integer w such that gcd(w, u) =
1, there exists b € nQ of order u satisfying (3.1).
@iii) If v = 3u, then there exists an integer w such that 1 <w < u/2 and gcd(u,w) =1

satisfying
2 2
cos(—nn) - cos( nwn)’. (3.2)
3u u

Conversely, if a € nQ has order u, then, for every integer w such that
gcd(w, u) =1, there exists b € nQ of order 3u satisfying (3.2).

sup |cos(na) — cos(nb)| = sup
n>1 n>1

(3.1)

sup |cos(na) — cos(nb)| = sup
n>1 n>1
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(iv) Ifu = 3v, then there exists an integer w such that 1 <w <u/6 and gcd(u/3,w) =1
satisfying

sup |cos(na) — cos(nb)| = sup,,.,
n>1

cos(znTﬂ) - cos(6n:}ﬂ)'. 3.3)

Conversely, if the order u of a € nQ is divisible by three, then, for every integer
w such that gcd(u/3,w) = 1, there exists b € nQ of order u/3 satisfying (3.3).

Proor.

(i) Assume that u # v, say, u < v, and let w # 1 be the order of ub, which is a divisor
of v. We know that ub = 2ra/w, with gcd(a, w) = 1, and there exists y > 1 such that
ay — 1 e wZ

2
sup |cos(na) — cos(nb)| > sup |[cos(nuya) — cos(nuyb)| = sup 1— cos(ﬂ).
n>1 nx1 I<n<w w

If w is even, then sup,,., [cos(na) — cos(nb)| = 2. If wis odd, set s = (w — 1)/2.

2
sup |cos(na) — cos(nb)| > 1 — cos(ﬂ) =1+ cos(z).
w

n>1 w
Ifw>5,
sup |cos(na) — cos(nb)| > 1 + cos(ﬂ) >1.8> 8
u na) — nb)| > - . —_—
nzll) 5 3\/§
Ifw=3,letd = gcd(u,v) and set r = (u/d). Thenw =3 = (v/d) > r. Soeither r = 1
orr=2.

If r=2, u=2d,v=3d, a= (2pn/2d) = (pr/d) with p odd, b = (2qn/3d) with
gcd(g,3d) = 1, and so

2 > sup |cos(na) — cos(nb)| > |cos(3da) — cos(3db)|

nx1

> |cos(3pm) — cos(2gm)| = 2.

If r=1,thenu=dandv=3d =3u.

We thus see that if v > u and v # 3u, then sup, . [cos(na) — cos(nb)| > 1 + cos(n/5) >
1.8 > 3/+/3, which proves (i).

(i1) Assume that u = v and that b ¢ +a + 2aZ. There exists o, € {1,...,u — 1},
with @ # 8, @ # u —  such that a € +Q2an/u) + 27Z and b € +(2Bn/u) + 21Z, and
ged(a, u) = ged(B, u) = 1. It follows from Bezout’s identity that there exists y € Z
such that ay — 1 e uZ. If By + 1 € uZ, then we would have aBy + a € auZ C uZ, and
B = a € uzZ, which is impossible. Hence y8 — w € uZ for some w € {2,...,u — 2},
ged(w, u) = 1 since ged(y, u) = ged(B,u) = 1, and
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sup |cos(na) — cos(nb)|
n>1

> sup |cos(nya) — cos(nyb)|

n>1
2nm 2nwr
cos(—) - cos( ) > sup

u u nx1

= sup
nx1

( 2nan ) ( 2nawm )'
cos - cos
u u

2 2
cos( mm) - cos(ﬂ)‘ = sup |[cos(na) — cos(nb)|.
u u

n>1

= sup
n>1
By replacing w by u — w, if necessary, we can assume that 2 < w < u/2.
Now let w € Z such that ged(u, w) = 1. We know that a = 2anx/u, with ged(a, u)
= 1. The same argument as above shows that

(Znﬂ) (2nwn)
cos| — | — cos
u u

sup
nx1

= sup [cos(na) — cos(nb)|,
n>1

with b = 2wasr/u, which has order u.

(iii) Now assume that v = 3u. There existsa € {1,...,u —1}and S € {1,...,3u — 1}
such thata € +2an/u) + 2nZ and b € +(28r/3u) + 2nZ, and ged(a, u) = ged(B, 3u) =1.
Let y € Z such that By — 1 € 3uZ. Then gcd(y,3u) = 1 and a fortiori ged(y,u) = 1.
There exists w € Z such that 1 <w < u/2 and ay € +w + uZ, and we see, as above,
that

sup |cos(na) — cos(nb)|

n>1
( 2nan ) ( 2n,87'r)
Ccos — Cos
u 3u

( 2nayn ) ( 2nByn )
= sup|cos — cos
n>1 u 3u
Conversely, let a = 2an/u € 7Q have order u, and let w € Z be such that
ged(u, w) =1. If a is not divisible by three, then gcd(a,3u) = 1. If a is divisible
by three, then u is not divisible by three, and so @ + u € @ + uZ is not divisible by
three. So we can assume, without loss of generality, that « is not divisible by three,
and there exists 8 > 1 such that @8 — 1 € 3unZ. Similarly, we can assume, without
loss of generality, that w is not divisible by three, and there exists y > 1 such that
wy — 1 € 3unZ. Set b = (2ayn/3u). Then b has order 3u, and we see, as above, that

( 2nw7r) ( 2nm )
cos —cos[ —

u 3u

( 2naywn ) ( 2nayn )
cos — cos
u 3u

= sup
n>1

2nwrn ) ( 2nmw )
- co

= sup cos(

nx1 u u

sup
nx1

> sup
n>1

( 2naybvtv,8w7r ) _ cos ( 2naypwn )’

= sup |cos(na) — cos(nb)| > sup|cos
n>1 n>1 3u
( 2nwn ) (Zl’lﬂ' )
= sup|cos —cos|l — |,
n>1 u 3u

which concludes the proof of (iii).
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(iv) Clearly, the first assertion of (iv) is a reformulation of the first assertion of
(iii). Now assume that the order u of a € nQ is divisible by three, set v = u/3, write
a =2ar/u and let w € Z such that gcd(w, v) = 1. We see, as above, that we can assume,
without loss of generality, that gcd(u, w) = 1.

Since ged(a, u) = 1, a fortiori ged(a,v) = 1, so that ged(aw,v) = 1, so that b :=
6awr/u has order v and we see, as above, that a, b, u and w satisfy (3.3).

In order to use Lemma 3.4, we introduce the following notions.

DeriniTioN 3.5. Letu > 2, denote by A(u) the set of all integers s satisfying 1 < s < u/2,
ged(u, s) = 1 and let Aj(u) = A(u) \ {1}. We set

o) o2
o) 2]

with the convention 0(u) = 2 if A;(u) = 0.

o) = inf [sup

weA)L ;> 1

O(u) = inf [sup

weA(u) n>1

Notice that Aj(u) = 0 if u = 2,3,4 or 6 and that A,(u) # 0 otherwise, since, as we
observed above, H(n) = card((Z/nZ)*) > 3 ifn ¢ {1,2,3,4,6}.

We obtain the following corollary, which shows, in particular, that the value of k(a)
depends only on the order of a.

CoROLLARY 3.6. Let a € mQ and let u > 1 be the order of a.

(1) Ifuis not divisible by three, then k(a) = inf(o (1), O(u)).
(i) If uis divisible by three, then k(a) = inf(o(u/3), o(u), 0(n)).

Proor. Set:

o Ai(a)={benQlb ¢ +a+ 2nZ,ord(b) = ord(a)};
o As(a) ={b e nQlord(b) = 3ord(a)};

o Aj(a) ={b € nQ3ord(b) = ord(a)};

o Ay(a) ={b € nQlord(b) # ord(a) # 3ord(b)};

and, for 1 <i <4, set

Ai(a) = einf sup |cos(na) — cos(nb)),
i@ p>1
with the convention A;(a) = 2 if A;(a) = 0.
Since b ¢ +a + 27Z if ord(b) # ord(a), A»(a) < 8/3V3, and it follows from
Lemma 3.4(i) that
k(a) = inf A;(a) = inf A;(a)
1<i<4 1<i<3

and it follows from Lemma 3.4(ii), (iii) and (iv) that A;(a) = 0(u) if Ai(u) # 0, that
As(a) = o(u) and that A3(a) = o (u/3) if u is divisible by three. O

https://doi.org/10.1017/51446788717000118 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788717000118

208 J. Esterle [14]

We know that A;(2) = A;(4) =0, and so k(a) = 0(2) if ord(a) = 2 and k(a) = 0(4)
if ord(a) = 4, and an immediate verification then shows that k(a) = % if ord(a) € {2,4}.
We have the following theorem.

THeOREM 3.7. Let m < 8/3\/5. Then the set Q(m) := {a € [0, ] : k(a) < m} is finite.

Proor. It follows from Lemma 3.3 applied to 27r/u and 67/u that there exists uy > 1
such that, for u > ug,

2 2
(1) sup cos(ﬂ) - COS(M) >m if2<w< inf(z, 6),
n>1 u u 2
6 2(3 1
(ii) sup|cos ﬂ) - COS(M)' >m if0<w<6,
n>1 u u
6 2(3 2
(iii) sup cos(ﬂ) - COS(M)’ >m if0<w<6.
n>1 u u

Let u# > up, and let w be an integer such that 2 <w < u/2. If 2wn/u < n/2 or if
2wr/u > 5n/6, it follows from Lemma 3.2 and property (i) that

(Znﬂ) (2wmr)
cos| — | — cos
u u

Now assume that 7/2 <2wn/u < 5x/6. If |w— (u/3)| =7, it follows from

Lemma 3.2 that
(21’!71’ ) ( 2wnr )
cos| — | — cos
u u

sup > m.

n>1

> 1.55>m.

sup
n>1

If jw—(u/3)| <7,setr =|3w —u|. Then 0 < r <20 and
(Zmr) (2wn7r) (6n7r) (2nr7r)'
cos| — | — cos cos| — | — cos .
u u

u u
If u is not divisible by three, then either r =3s+ 1 orr =35+ 2, with 0 < s < 6, and
it follows from (i1) and (iii) that

(Znﬂ) (2wn7r)‘
cos| — | — cos >m
u u

sup
nx1

> sup
n>1

sup
n>1

If u is divisible by three then 7 is also divisible by three. Set v =u/3 and s = r/3.
Then 0 < s <6 and
(2n7r) (2wn7r) (2n7r) (Znsn)
cos| — | — cos > cos[ — | — cos .
u u 1% \%

If s €{2,3,4,5, 6}, it follows from (i) that, if u > 3u,

2nmw 2snmw
cos(—) - cos( )’ >m
V u

sup
nx1
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Now assume that s = 0. If u > 15, then v > 5 and
2nm 2snw 2nm
cos(—) - cos( ) cos(—) -1
v u v
Now assume that s = 1. With € = +1,
(2n7r) (2wn7r)
cos| — | — cos
u u

2nmw 2nmw 2nen
cos(3—) - cos(— + )

sup
n>1

= sup
n>1

>1+ cos(%r) >1.8>m.

sup
nx1

- i‘;‘f v 3v 3
2Bn+ D 2@n+ D 2en
> sup cos(—) - cos(— + —)
>l 3v 3v 3
2 2
= \/gsin(ﬂ + 2 ﬂ)
v 3v 3

There exists p > 1 and g € Z such that (7/2) — (7/v) < Qpn/v) + 2n/3v) + (en/3) +
2gm < (/2) + (/v) and we obtain, foru > 21, w=v + 1,

(Znn') (2wn7r)
cos| — | — cos

u u

sup
n>1

> 3005(5)2 3c05(£)21.56>m.
v 7

We thus see that if u > uq is not divisible by three or if u > max(21, 3uy) is divisible
by three, for 2 < w < (u/2),

sup
n>1

2nw 2wnr
cos(—) - cos( ) >m,
u u

so that k(27 /u) > m.
It follows from Corollary 3.6 that k(a) depends only on the order u# of a. Hence
k(a) > m if u > max(21, 3uy), which shows that Q(m) is finite. O

We now want to identify the real numbers a for which k(a) < 1.5.
If a € 7Q has order one, two or four, then sup,, |[cos(an) — cos(3an)| = 0. We also
know the following elementary facts.

Lemwma 3.8. Let a € nQ, and let u ¢ {1,2,4} be the order of a.
(1) Ifuef3,56,8,9,10,11,12,15,16, 18,22,24,30}, then

sup |cos(an) — cos(3an)| > 1.5.
n>1

(2) Ifue({3,6,9,12,15,18,24,30}, then

sup |cos(an) — cos(3an)| = 1.5.
n>1

(3) Ifue(5,10}, then

5
sup |cos(an) — cos(3an)| = —.
n>1 2
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@) Ifue{8,16)}, then
sup |cos(an) — cos(3an)| = V2.

n>1

(5) Ifuef{ll,22}, then

8 24
sup |cos(an) — cos(3an)| = —cos(—ﬂ) + cos(—ﬂ)
n>1 11 11

2w 3r
= cos(ﬁ) + cos(ﬁ) ~ 1.4961.

Proor. We know that {€"},5; = {¢*™/"}, <<, and so
( 2nm ) (6n7r )
cos[ — | = cos| —
u u
( 2n71) ( 6nu )
cos[ — | = cos| —
u u

and the value of sup,. [cos(an) — cos(3an)| depends only on the order u of a.

sup |cos(an) — cos(3an)| = sup
n>1 n>1

= sup
1<n<u

The function x — cos(x) — cos(3x) is increasing on [0, arccos(l/ V3)] and
decreasing on [arccos(1/V3), — arccos(1/V3)], and 0.2757 < arccos(1/V3) < 0.333x.
Since cos(x) — cos(3x) > 1.5 if x = 0.2757 or if x = 0.333x, there exists a closed
interval I of length 0.0587 on which cos(x) — cos(3x) > 1.5. So, if u >35> Wzss’
there exists n > 1 such that (2nz/u) € I, and

sup |cos(an) — cos(3an)| > 1.5 Vn > 35.

n>1

The other properties follow from computations of sup,.,., [cos(2nr/u) —
cos(6nm/u)| for 3 < u < 34 and are left to the reader. O

We now wish to obtain similar estimates for sup,., [cos(2r/n) — cos(2sm/n)| for
s €1{2,4,5,6}. Set fi(x) = cos(x) — cos(sx), s = SuUp,¢ | fs(X)], 65 = sup o Ify (). If s
is even, 6, = 2, and a computer verification shows that 8, > 1.8 for s = 5. It follows
from the Taylor-Lagrange inequality that if f; attains it maximum at «, then

S, S5
£ =6, < S (x = a)’,  1f(0l > 6 - 0= ),

and so |f;(x)| > 1.5 if (x — ay)* < (26, — 3)/6,. So if [, < (20, — 3)/4,, there exists a
closed interval of length 2/; on which [f;(x)| > 1.5. Let u; > (7r/l;) be an integer.

( 2nmw ) ( 2snm )
cos| — | — cos

u u
Values for u; are given in Table 1.

We obtain the following lemma.

sup >1.5 VYu>u,.

n>1
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TasLe 1. Values of ug, s =2,4,5,6.
s 0O Oy Iy Us
2 2 <5 0.4472 8
4 2 <17 02425 13
5 >1.8 <26 0.1519 21
6 2 <37 0.1644 20

LemmA 3.9. Let u > 4 be an integer and let s < u/4 be a nonnegative integer, with s # 1.
If s # 3, then
2nm 2nsm
cos(—) - cos( ) >1.5
u u
Proor. If s = 0, then
= sup

2nmw 2nsm 2nm
cos(—) - cos( ) cos(—) — 1‘ > 1.8.
u u n>1 u

If s > 7, the result follows from Lemma 3.2(1). If s € {2, 4, 6}, the result follows
from Table 1 since u > 4s. If s =5, the result also follows from the table for u > 21,
and a direct computation shows that

(55)-(3)
cos 0 cos >

COS(Z 71) COS(]Onn) B
20 20 /|

=1+ ( ) 1.8. O
COS5 >

sup

sup
nx1

sup
n>1

sup
1<n<20

Now set gs(x) = cos(3x) — cos(sx), 05 = sup,.q [g(s)], 05 = sup,5o lgy (X)|. If s is
even, 0y = 2, and a computer verification shows that 6; > 1.85 for s =5, 6, > 1.91
fors=7,s=11,0,>1.97 for s =13,s =17, 6, > 1.96 for s = 19. We see, as above,
that if [; < V(26 — 3)/0, and if uy > /I is an integer,

( 2sn7r) ( 6nr )
cos —cos[ —
u u

Our results are shown in Table 2.

We will be interested here in the case where u is not divisible by three and where
(2smt/u) < (7/2), which means that u > 4s. So we are left with s =2, u =8,10 or 11,
and with s = 5, u = 20. We obtain, by direct computation,

COS(4n—ﬂ-) - COS(%)' = Ssu COS(E) - COS(?’ET)' = 2
g g )| TSP )"

COS(4 ﬂ-) — CO S(6nn)‘ = Ssu COS(zﬂr) - COS(%—R)
10 10 )|~ SUP°%\ 75 5

sup >1.5 VYu>u,.

n>1

sup
n>1
sup =2.
n>1

4nr 6nr 207 307 2 3r
supleos( ) = os( ) = (T ) - cos( ) = cos( )+ cos( ) = 14961,
10nr 6nr nm 3nr
i‘;?cos( 20 )_C S( 20 )‘:i‘;?“’s( 2 )_CO ( 10) > 1.80.
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TaBLE 2. Values of uy,2 < s < 20, s not divisible by three.

s O O I Us
2 2 <13 0.2774 12
4 2 <23 0.2085 16
5 >1.85 <34 0.1435 22
7 >191 <58 0.1189 27
8 2 <73 0.1170 27

10 2 <109 0.0958 33

11 >191 <130 0.0794 40
13 >197 <178 0.0727 44
14 2 <205 0.0698 45
16 2 <275 0.0603 53
17 >197 <298 0.0562 56
19 >196 <390 0.0486 65
20 2 <409 0.0494 64

We obtain the following lemma.

Lemma 3.10. Let u, s be positive integers satisfying u > 4 and u/4 < s < Su/12, with
§>2,s0thatu > 5.

(Znﬂ) (2sn7r)
cos| — | — cos
u u

2
:cos(%r)+cos(?ﬂ) ifu=5s=2orifu=10,s =3,
=V2 ifu=8,s=3o0rifu=16,s=5,
x 2 3 . .
:cos(ﬁ)+cos(ﬁ) ifu=11,s=3ors=4orifu=22,s=17,

=15 ifu=9oru=12,5s=3,

>1.5 otherwise.

Proor. Set r =|3s — u|. Since 27/3) — (7/2) = (57/6) — 2n/3) = (1/6),0 < 2nr/u) <
(m/2). If r > 21, it follows from the second assertion of Lemma 3.2(i) applied to
a=2n/uand b = 2sm/u that sup,,., [cos(2nr/u) — cos(2snm/u)| > 1.5.

If u is not divisible by three, then r is not divisible by three either, and it follows
from the discussion above thatif r # 1, r # 2, r <20, orif r =2, u # 11, then

2nm 2snw é6nr 2rnm
cos(—) — cos( ) cos(—) - cos( )' > 1.5.
u u u u

sup
n>1

sup
n>1

Ifr=2,u=11,then|s— 4| =|s— (u/3) = %, and so s = 3 and

0(2n) o (6nﬂ)‘_ o (2n7r) (6n7r)
IS TIV RS WV It

T 3r
cos( )— cos(l—)' = cos( 1) + cos(ﬁ) ~ 1.4961.

> sup
n>1

sup
n>1
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The condition r = 1 gives |s — (u#/3)| = %, andso s = (u—1)/3 if u =1 mod 3, and
s=(u+ 1)/3 if u =2 mod 3. In this situation,
(6n7r) (6sn7r)
cos| — | — cos
u

(2n7r) (2sn7r)
cos| — | — cos
u u u
(Znﬂ) (6n7r)
cos| — | — cos| —||.
u u

Since |s — (u/3)| = % it follows from Lemma 3.8 that if n ¢ {5, 8, 10, 11, 16, 22}, or
fu=5s+2 orifu=8,s#3,orifu=10,s#3,orifu=11, s #4, or if u = 16,
sup

s#5,orifu =225+ 7, then
(Zmr) (2sn7r)
cos| — | — cos
nx1 u u

A direct computation then shows that
(Znﬂ) (2sn7r )’
cos| — | — cos
u u
(21’!72’) (2smr )'
cos| — | — cos
u u

cos(g)+cos(25—ﬂ) ifu=5s=2orifu=10,s =3,
V2 ifu=8,s=3orifu=16,s=35,
cos(?—?)+cos(?—71r) fu=11,s=4 orifu=22,s=17.

sup
n>1

> sup
n>1

=sup
n>1

> 1.5.

sup
n>1

sup
1<n<u

We now consider the case where u = 3v is divisible by three. Then r is also divisible
by three. If r = 0 and if u # 9, then
sup

2nmw 2snw
COS(—) — cos( ) > sup
n>1 u u n>1
If u=9, then s =3 and

(Znﬂ) (2sn7r)
cos| — | — cos
u u

2nm

cos(—) - 1‘ > 1.8.

1%

su cos(zn—ﬂ) - COS(%)' =15
i 9 3T

Now assume that r = 3, which means that s = v + €, with € = £1.
(Znﬂ) (2sn7r) (2n7r) (2n7r 26n7r)
cos| — | — cos cos| — | — cos[ — +

= sup
1<n<9

sup = sup

nx1 u u 1<n<3v 3v 3 3v
1 1-
2 sup |2 020y, (1 O
1<n<3vy 3y 3 3y
=2 su sin(mr) sin(mr + 2n7r)
BT R 37 B
3 1 2(3 1
> V3 sup sin(( n )7T+ (G + )”)‘
0<n<y 3 3y
2 2
=V3 sup sin(ﬂ + b+ )ﬂ)’.
0<n<v 3v
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Since sin(x) > V3/2 for n/3 < x < 2n/3, there exists n € {1,...,v} such that
sin((2n7r/v) + (v + 2)1/3v)) > V3/2if v > 7, s0

2 2
sup cos(ﬂ) - cos( snn)‘ >1.5 ifux>21.
u u

nx1

We are left with the cases where u=6,v=2,s=1or3, u=9,v=3,s =2 or 4,
u=12,v=4,s=3or5 u=15v=5,s=4o0r6,u=18,v=6,s=50r7. But s =1
is not relevant, and the condition u/4 < s < 5u/12 is not satisfied for u = 6, s = 3 and
foru=9,s=2or4.

Direct computations, which are left to the reader, show that

>1.64 ifu=15and s =4,
>1.70 orifu=18ands=5o0rs=7,
>1.72 ifu=15and s =6,
>1.73 ifu=12and s =5.

So sup,. [cos(2nm/u) — cos(2snm/u)| > 1.5 if u/4 < s < 5u/12 when u is divisible
by three and when s — (u/3) € {—1,0, 1}, unless u = 12 and s = 3. If u = 12 and s = 3,

2nmw 2snmw nmr nmr
cos(—) - cos( )‘ = sup,,s; cos(z) - 005(7)‘ = 1.5.

u u

Now assume that u = 3v is divisible by three and that 2 <|s —v| < 6. Set again
r=13s —u| and set p = r/3, so that 2 < p < 6. Notice also that p < u/12 since r < u/4,
so that u > 24 and v > 8.

2nmw 2snw
cos(—) - cos( ) >
u u

sup
n>1

o) cof 27

sup > sup
n>1 n>1 u u
(2n71) (mer)'
= sup|cos| — | — cos .
n>1 v v

It follows then from Lemma 3.9 that sup,, [cos(2nm/u) — cos(2snm/u)| > 1.5 if
p#3.

If p =3, then u > 36, and so v > 12. Since s — v = £3, it follows from Lemma 3.8
that we only have to consider the cases when:

u=36,s=9or15,
u=45,s=12or 18,
u=>54,s=15o0r2l,
u=72,s=21o0r27,
u=90,s =27 or 33.
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Direct computations, which are left to the reader, show that
(2n7r ) ( 2snm )
cos| — | — cos
u u

>193 ifu=36ands=9orifu=45and s=12o0r 18
orifu=72and s =27 orif u =90 and s = 27 or 33,
>191 orifu=54ands =15,

sup
n>1

X
>1.87 orifu=72and s = 24,
>1.85 orifu=36and s =15,
>1.83 orifu=>54and s = 21.
This concludes the proof of the lemma. O

Lemma 3.11. Let u, s be positive integers satisfying Su/12 < s <u/2, with s > 2, so

that u > 4.
(Znn') (2sn7r)
cos| — | — cos
u u

Proor. If s > 4, it follows from Lemma 3.2(ii) that
2 2
cos(—mr) - cos( Smr)‘ > 1.57.
u u

So we only have to consider the cases s =3, u=6o0r7and s =2, u = 4.
A direct computation then shows that

sup

n>1 >1.5 otherwise.

_ {:1.5 ifu=6ands=3,

sup
n>1

=2 ifu=4ands=2,
Cos(z”_”) _ COS(2sn7r)‘ =15 ifu=6ands=3,

u u 2.
- cos(7”) + cos(%r) ~ 15245 ifu=7ands=3. O

sup
n>1

We consider again the numbers 6(«) and o(u) introduced in Definition 3.5.
It follows from Lemmas 3.8-3.11 that we have the following results.

Lemma 3.12. 6(5) = 6(10) = cos(rr/5) + cos(2r/5),0(8) = 6(16) = V2, 0(11) = 6(22) =
cos(2n/11) + cos(3n/11), and O(u) > 1.5 for u >4, u #5,u# 8, u+ 10,u+ 11,u #
16, u # 22.

Lemma 3.13. o(u) =1.5ifue{l1,2,3,4,5,6,8, 10} and o(u) > 1.5 otherwise.

Hence, if u is divisible by three, o-(u/3) = 1.5 if u € {3,6,9, 12, 15, 18, 24,30} and
o(u) > 1.5 otherwise. We then deduce from Corollary 3.6 a complete description of
the set (1.5) = {a € [0, 7] | k(a) < 1.5}.

TueorEM 3.14. Let a € [0, «].

o [fae{n/5,2n/5,3n/5,4n/5}, then k(a) = cos(x/5) + cos(2n/5) ~ 1, 1180.
o Jfae{n/8,n/4,3n/8,5n/8,51/4,Tr/8}, then k(a) = V2 ~ 1,4142.
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o [fae{n/11,2x/11,3n/11,4r/11,5n/11,6x/11,77/11,8x/11,97/11,10x/11},
then k(a) = cos(2r/11) + cos(3n/11) = 1,4961.

o [fae{0,n/6,7/3,7/2,21/3,5m/6}U{n/9,21/9,47/9,57/9,Tr/9,8m/9} U {n/12,
Sn/12, Tn/12} U {n/15, 27 /15, 4x/15, Tr/15, 8x/15, 11x/15, 13x/15, 147/15},
then k(a) = 1.5.

o  [For all other values of a, 1.5 < k(a) < 8/3V3 ~ 1.5396.

CoroLrary 3.15. Let G be an abelian group and let (C(g))ge be a G-cosine family in

a unital Banach algebra A such that SUP,eq [IC(g) — c(g)ll < V572 for some bounded
scalar G-cosine family (c(g))geg- Then C(g) = c(g) for every g € G.

Proor. Let g € G. Since the scalar cosine sequence (c(ng)),ez is bounded, a standard
argument shows that there exists a(g) € R such that c(ng) = cos(na(g))14 for n € Z.
Since k(a(g)) > V/5/2, it follows from Corollary 2.4 that C(ng) = cos(na(g))14 = c(ng)
forn € Z, and C(g) = c(g). O
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