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Abstract

Detailed characterization was performed on the chalcedonies from the jasperoids of the
Pietratonda–Poggio Peloso Sb–Au deposit (southern Tuscany, Italy). The main purpose was
to retrieve information on the geothermal fluids that formed the chalcedonies and the source
of antimony concentrations. Investigations were performed using optical microscopy, laser
ablation inductively coupled plasma mass spectroscopy and X-ray diffraction on both the chal-
cedonies and the lithotypes cropping out in the area. The results obtained allow the chalcedo-
nies of Pietratonda–Poggio Peloso to be described as a unicum, based on the very high contents
of Sb that do not find a comparison in the literature. The textures showed multiple generations
of silica that agree well with an environment characterized by multiple injections of mineral-
izing solutions, bearing variable physicochemical characteristics. The transport likely took place
in an alkaline environment, while the acidification of the water may have favoured the precipi-
tation at varying temperatures but not higher than 225 °C. The rocks from which the constitu-
ents may have been leached are the hosting carbonates and the surrounding metamorphic
rocks. Among the examined rocks, the metamorphic rocks showed the most numerous and
significant correspondences with the chalcedonies and were the only ones in which discrete
amounts of gold contents were found.

1. Introduction

Jasperoids consist of silica formed by metasomatic carbonate replacement from fluid–rock
interaction (Lovering, 1962) in active geothermal systems. In continental settings, many geo-
thermal systems are hosted in carbonate rock volumes that play the role of extensive reservoirs
(Barbier, 2002; Faulds et al. 2011; Garland et al. 2012; Brogi et al. 2016). Carbonate rocks, in fact,
are prone to forming permeable volumes if interconnected fractures develop during their defor-
mation (e.g. Agosta et al. 2010). It occurs when carbonate rocks are involved in tectonic events at
relatively low temperatures (i.e. in the upper crustal level), as in the case of extensional processes
triggering detachment zones (Carmignani et al. 2001; Brogi & Cerboneschi, 2007; Matera et al.
2021). In these geological contexts, the carbonate units can offer suitable secondary permeability
to host significant volumes of geothermal fluids (Romagnoli et al. 2010; Brogi et al. 2020) and,
depending on their chemical features, react with them, depositing neoformational minerals (i.e.
banded calcite veins: Hancock et al. 1999; Capezzuoli et al. 2018; Brogi et al. 2021) and jaspe-
roids. Jasperoid formation is often associated with ore development mainly consisting of anti-
mony and gold deposits (Dessau, 1952, 1977; Klemm &Neumann, 1984; Bagby & Berger, 1985;
Tanelli et al. 1991; Cline &Hofstra, 2000; Cline et al. 2005; Sillitoe & Brogi, 2021). This is the case
for southern Tuscany where jasperoids consist of extensive stratabound volumes (Lattanzi,
1999; Brogi et al. 2011; Brogi & Fulignati, 2012; Morteani et al. 2017) confined between
low-permeability units, developed in correspondence with cataclastic horizons formed during
the Neogene–Quaternary extensional evolution of the inner Northern Apennines (Carmignani
et al. 1994; Brogi et al. 2005). Nevertheless, the metasomatic process triggering the formation of
jasperoids and Sb–Au deposition is the result of repeated pulses of fluid injection within the
hosting rocks, a consequence of the tectonically controlled dynamic evolution of the geothermal
system.

The study of chalcedony and agate generally addresses multiple objectives such as the iden-
tification of the sources of the elements, the characterization of the fluids and the reconstruction
of the mobilization, transport, precipitation and depositional conditions. The study of chal-
cedony represents a flourishing research topic, prompting international interest. Several schol-
ars have contributed to the knowledge of these materials, providing essential information on
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their composition, microstructure and banding (see, e.g. Heaney,
1993; Graetsch, 1994; Heaney et al. 1994; Heaney & Davis, 1995;
Merino et al. 1995;Wang&Merino, 1995; Götze et al. 1998; French
et al. 2003). Various studies have also been focused on the inves-
tigation of their genesis in volcanic (see, e.g. Götze et al. 2001, 2016;
Gilg et al. 2003; Moxon & Reed, 2006; Dumańska Słowik et al.
2008; Richter et al. 2015) and sedimentary environments (see,
e.g. Moxon & Reed 2006; Götze et al. 2009). Furthermore, the
widespread distribution of chalcedony in correspondence with
meso- to epithermal ore deposits has also favoured research on pol-
ymetallic (Sb, Zn, Pb, Au, Ag) vein-type ore deposits (see, e.g. Dill
et al. 2008; Moreira & Fernandez 2015; Radosavljević et al. 2016).

The studies performed on chalcedonies indicate that the depo-
sition temperatures range from 20 to 230 °C (Harris, 1989; Fallick
et al. 1985; Saunders, 1990; Heaney, 1993; Götze et al. 2020) and
that, in sedimentary and low-temperature hydrothermal environ-
ments, near-surface conditions are the most favourable for their
formation (see, e.g. White & Corwin, 1961; Cady et al. 1998). In
the area under examination, a few studies performed on quartz
fluid inclusions estimated homogenization temperatures ranging
between 125 ± 3 and 232 °C (unpub. studies performed by
Roedder on quartz from Poggio Fuoco, mentioned by Dessau
et al. 1972), between 140 and 232 °C (quartz from Pereta) or
between 155 and 255 °C (quartz from Poggio Peloso in Brogi &
Fulignati, 2012). These temperatures are close to those stated for
stibnite precipitation, which has been constrained to between
132 and 245 °C by Lattanzi (1999) and confirmed at 250 °C by
Morteani et al. (2017).

Following the work previously carried out in this area, this
paper presents results of the study of the chalcedonies from the
Pietratonda–Poggio Peloso Sb–Au epithermal mineralization
(southern Tuscany, Italy; Fig. 1), which consists of an exhumed
hot geothermal system developed during Quaternary time
(Brogi & Fulignati, 2012). The main purposes of the study are:
(1) to investigate the origin of antimony, gold and other elements
present in the examined chalcedonies, by comparing the geo-
chemical features and rare earth element (REE) patterns of the
chalcedonies and selected lithotypes which may have reacted with
the fluids that deposited the chalcedonies and, (2) to obtain infor-
mation on the depositional environment of the chalcedonies. To
these aims, optical and X-ray diffraction analyses were carried
out and major, minor and trace elements were determined on
six samples of chalcedonies and 11 samples from selected litho-
types, by laser ablation inductively coupled plasma mass spectros-
copy (LA-ICP-MS) and X-ray fluorescence (XRF).

2. Geological outline

2.a. Southern Tuscany in the inner Northern Apennines

Southern Tuscany is part of the inner zone of the Northern
Apennines orogen (Fig. 1), a Tertiary fold-thrust belt formed dur-
ing collision between the Adria microplate (part of the African
plate) and the Corsica–Sardinia massif (related to the European
plate). Late Cretaceous through early Oligocene convergence of
the African and European plates by subduction of the intervening
western Tethys Ocean led to late Oligocene – early Miocene colli-
sion and eastward transport and emplacement of a thrust stack
(see, e.g. Molli, 2008). The Northern Apennines stack is formed,
from the top down by (1) Jurassic–Cretaceous ophiolite and
pelagic sedimentary cover of the Tethyan oceanic realm
(Ligurian units, LU) and (2) Cretaceous–Oligocene turbidites

representing the continent–ocean transition (Sub-Ligurian units,
SLU), both of which were thrust in late Oligocene – early
Miocene times over (3) the Upper Triassic to lower Miocene
evaporite, carbonate, terrigenous and marine siliciclastic succes-
sion of the Adria passive margin (Tuscan Nappe, TN2). The evapo-
rite level of the Tuscan Nappe is made up of partly de-dolomitized,
anhydrite-dolostone breccia (known as the Calcare Cavernoso and
Burano formations, TN1); its highly permeable and vacuolar tex-
ture is due to the interplay among different processes, such as cat-
aclasis, anhydrite dissolution and karstification (see, e.g. Gandin
et al. 2000). During early Miocene time, the Tuscan Nappe was
thrust over (4) the polydeformed blueschist- to greenschist-facies
(Giorgetti et al. 1998; Brogi & Giorgetti, 2012) tectonic wedge com-
plex (known as the Tuscan metamorphic complex; Pandeli et al.
1991) made up of phyllite and metaquartzite of Early to Middle
Triassic age (Verrucano Group, MRU3), which overlies (5) phyllite
and metacarbonate derived from Carboniferous–Permian proto-
liths (MRU2). MRU2 overlies (6) Precambrian to early
Palaeozoic micaschist (MRU1) and (7) gneissic basement with
Precambrian to early Palaeozoic protoliths. Locally, the thrusting
caused interleaving of the Calcare Cavernoso and underlyingmeta-
morphic units, especially in the upper part of the tectonic wedge
complex.

Beginning in early Miocene time, the previously stacked units
were affected by extension (Carmignani et al. 2001). Extension
produced: (a) lateral segmentation of the previously stacked units
and formation of bowl-shaped basins (Brogi & Liotta, 2008; Brogi,
2011); and (b) development of NW-striking Pliocene–Quaternary
normal faults, cross-cutting all the previous structures and induc-
ing development of NW-trending tectonic depressions, filled by
continental and marine sediments (Martini & Sagri, 1993; Brogi
et al. 2013; Martini et al. 2021). The primary evidence of extension
is the opening of the Tyrrhenian Basin (Bartole, 1995) and the
present crustal and lithospheric thicknesses of ~17 and 40 km,
respectively (Calcagnile & Panza, 1981; Locardi & Nicolich,
1982; Di Stefano et al. 2011; Möller et al. 2013).

At least since Langhian time, extension was accompanied by
eastward migrating magmatism (Serri et al. 1993). It affected the
area corresponding to the Tuscan archipelago and the inland inner
Northern Apennines (Serri et al. 2001; Dini et al. 2005, 2008).
Magmas were emplaced at shallow crustal levels (6–8 km depth,
mainly: Serri et al. 2001) mostly along NE-striking brittle shear
zones playing the role of transfer zones (Dini et al. 2008). Hot geo-
thermal systems (T >200 °C) developed near the intrusive bodies
and are now exposed in the whole Tuscan archipelago and
southern Tuscany (e.g. Liotta et al. 2010; Vezzoni et al. 2016;
Zucchi et al. 2017; Zucchi, 2020). Active systems are presently
exploited at depth for geothermal energy production (cf. Liotta
et al. 2021) in the Larderello and Monte Amiata areas (Batini
et al. 2003 and references therein).

2.b. The Pietratonda–Poggio Peloso area

The Pietratonda–Poggio Peloso area (Fig. 1) is mainly character-
ized by exposures of jasperoid that formed by the silica replace-
ment of the basal Upper Triassic evaporitic horizon of the
Tuscan Nappe (Bernoulli, 2001). This level tectonically overlies
the Triassic continental metasiliciclastic succession of the
Verrucano Group mainly consisting of quartzite and phyllite with
metacarbonate and phyllite at the top (Meccheri et al. 1987;
Moretti, 1991; Aldinucci et al. 2005), which recorded a polyphase
tectonometamorphic evolution (Aldinucci et al. 2005; Brogi, 2006).
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At the top of the jasperoid level, discontinuous bodies made up of
upper Oligocene – lower Miocene quartz–feldspar sandstone
(Macigno Fm) occur. The contact juxtaposing the Macigno Fm
on the jasperoid is tectonic and corresponds to a low-angle normal
fault (Brogi, 2008). On top, Ligurian units and Miocene sediments
formed the cap of the palaeo-geothermal system that was con-
trolled by WSW–ENE strike-/oblique-slip and NNE–SSW normal
faults, forming linkage zones between themain strike-slip fault seg-
ments (Brogi & Fulignati, 2012). The geothermal fluids consisted
of meteoric water circulated to depth and heated owing to the geo-
thermal anomaly. According to Brogi & Fulignati (2012), these flu-
ids reached temperatures of ~200–225 °C and a maximum salinity
of ~3 wt % NaCl equiv.

2.c. Sb-mineralization and disseminated gold

Southern Tuscany has represented one of the most important min-
ing districts of the Mediterranean basin from the Etruscan period
to the twentieth century, with a limited time break during the

Roman Empire. Deposits of pyrite, iron, lead, zinc andminor silver
and gold are widespread and typically related to the activity of geo-
thermal fluids associated with the Neogene–Quaternary magma-
tism (Tanelli, 1983; Tanelli et al. 1991; Serri et al. 1993;
Lattanzi, 1999; Peccerillo et al. 2001; Dini, 2003; Peccerillo,
2003; Dini et al. 2005; Boschi et al. 2009). The most significant
Sb-ore sources are typically located along the NE–SW strip con-
necting Mount Amiata with Capalbio; however, further deposits
are located north of the area of concentration (Fig. 1). The distri-
bution of Sb-deposits shows common features throughout the area:
(1) the distribution includes the peripheral zones of present and
fossil geothermal areas, coinciding with a Sb mineralized belt;
(2) they are associated with fluid flow channelled by extensional
faults (Dessau et al. 1972; Tanelli, 1983; Tanelli & Scarsella,
1990; Tanelli et al. 1991; Brogi et al. 2011; Brogi & Fulignati,
2012); (3) they are typically found at the contact between the
Upper Triassic evaporite (‘Calcare Cavernoso’ Fm) and the over-
lying, impermeable, Ligurian and Sub-Ligurian units, which have
played a fundamental role in fluid containment (Dessau et al. 1972;

Fig. 1. (Colour online) The geographic distribution of Sb-mineralization in southern Tuscany and northern Lazio. The sampling sites are indicated by the name of the sample
except for the chalcedonies (all taken from Poggio Peloso).
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Tanelli, 1983; Tanelli & Scarsella, 1990; Tanelli et al. 1991; Lattanzi,
1999); (4) they are characterized by silicic (jasperoid) and, subor-
dinately, argillic alteration (Tanelli & Scarsella, 1990; Tanelli
et al. 1991).

The Sb-ore bodies were intensively exploited during the first
half of the nineteenth century when at least 17 mines were active
(Campiglia, Capita, Casal di Pari, Cetine, Macchia-Casella,
Manciano, Montauto, Monticchio, Niccioleta, Pereta,
Pietrarotonda–Salamagna, Poggio Fuoco, Rosia, San Martino sul
Fiora, Selvena, Tafone, Zolfiere; list provided by Morteani et al.
2017). The deposition is still ongoing as testified to by the stibnite
and metastibnite precipitation observed some years ago at the
Pereta and Tafone mines (Dessau, 1952; Klemm & Neumann,
1984), as well as by the Sb- and As-rich geothermal fluids (0.2–
1.3 mg/L Sb and 22.5–65.4 mg/L As) and the Sb-rich (75 %) scales
in the wells (Morteani et al. 2017) and piping (Cappetti et al. 1995;
Möller et al. 2009; Morteani et al. 2011) of the Piancastagnaio geo-
thermal field and power plant, respectively.

The Sb-mineralization of Poggio Peloso hill was first docu-
mented by Rimbotti (1884) but never exploited due to its low
industrial potential (Brizzi & Sabelli, 1985). Reported minerals
are: quartz, as themain ganguemineral of Sb-bearingminerals, fol-
lowed by calcite; stibnite (Sb2S3), in radial nodules of thin crystals
(2–3 cm); stibiconite (Sb3O6(OH)), often pseudomorphic on stibn-
ite; valentinite (Sb2O3), generally in spherules with a radius of a few
millimetres; rare senarmontite (Sb2O3), showing small colourless
octahedra; very rare onoratoite (Sb8O11Cl2); pyrolusite (MnO2),
in the form of concretions of blackish powder; alunite
(KAl3(SO4)2(OH)6), generally present as a white powder often
associated with stibiconite; frequent barite (BaSO4), in tabular
crystals typically below centimetre size; and Fe-hydroxides
(Braga, 1980; Brizzi & Sabelli, 1985).

Brogi & Fulignati (2012) described the Pietratonda–Poggio
Peloso Sb-mineralization as ‘a fossil hydrothermal system that
was probably active during the volcanic activity that produced rhy-
olitic lava flows’ of the neighbouring Roccastrada volcanic complex
(~2.3 Ma). What was the source of the Sb is still a matter of debate.
Dessau et al. (1972) suggested that the metals had either a mag-
matic origin (direct) or that they were leached from the rocks
crossed by the fluids (indirect). Lattanzi (1999) suggested the exist-
ence of a distal ‘magmatic connection’with the igneous rocks of the
‘TuscanMagmatic Province’, even in the absence of a physical con-
tact between the mineralization and the igneous bodies. On this
basis, Brogi & Fulignati (2012) speculated on the existence of a sim-
ilar ‘magmatic connection’ between the Sb-deposits of Poggio
Peloso and the Roccastrada volcanic complex.

Gold occurrences have long been associated with Sb- and Ba-
deposits (Tanelli et al. 1991), and ‘disseminated’ gold has been
found in this ore deposit (Pipino, 1988; Tanelli & Scarsella,
1990; Tanelli et al. 1991; Lattanzi, 1999). Lattanzi (1999) hypoth-
esized that the igneous rocks of the Tuscan Magmatic Province
may have been likely gold contributors, as well as the ophiolites
of the Ligurian units as suggested by Montini et al. (1995). The lat-
ter found a positive Au–Cr correlation in mineralized samples at
Frassine (Monterotondo Marittimo, Grosseto) and observed that
the only likely source of Cr in the area was the ophiolites occurring
in the Ligurian units.

3. Materials

The list of investigated samples is provided in Table 1 and sampling
sites are shown in Figure 1.

Six samples of chalcedonies were collected at Poggio Peloso
(Fig. 2). All the chalcedonies showed the typical light blue colour,
alternating to lighter (up to whitish) or darker (up to greyish)
bands. Only sample PP5 showed light orange to light grey/blue
bands. The hand specimens showed primary crustiform and collo-
form textures, while zonal marking was only present in sample
PP5. Banding was generally parallel to the rim. Overall, these agates
can be described as wall-lining and vein agates. The host rock was
the Calcare Cavernoso (Triassic evaporitic Burano Fm) for all
samples.

Considering the various hypotheses formulated on the origin of
antimony and gold, it was immediately clear that a sampling exclu-
sively focused on chalcedonies would not have provided convinc-
ing answers. Therefore, samples of the carbonate base of the
Tuscan Nappe (sample V9), the underlying Verrucano Group
(samples V1–V3), the Upper Triassic evaporites (samples V4,
V5) and the Palaeozoic phyllites (samples V6–V8) were also col-
lected with the aim of determining their trace compositions. In
addition, two samples of Palaeozoic metamorphic rocks drilled
in the Monte Amiata geothermal area, consisting of graphitic
quartz-metasandstone and metasiltite and graphitic phyllite, com-
ing from the geothermal wells BG3bis (sample A2) and BG25
(sample A1), at depths of 3111 and 3663 m below the ground level,
respectively, were also analysed for comparison. Sample A2 was
collected in correspondence with a fractured volume (Ruggieri
et al. 2004) hosting the deeper (2500–3500 m below ground level)
exploited geothermal reservoir (Batini et al. 2003; Bertini
et al. 2005).

4. Methods

4.a. LA-ICP-MS

LA-ICP-MS measurements were performed on flat-polished sam-
ples. The instrument combines an ablation microbeam based on a
Nd:YAG laser source (Brilliant, Quantel) operating at 266 nm (for
details see Tiepolo et al. 2003) and a quadrupole ICP-MS
(PerkinElmer Sciex-Elan DRC-e). Thirty-four masses from 7Li
to 238U were acquired; the laser was operated at a 10 Hz repetition
rate, the power on the sample was 1.5 mW and the spot size was set
at 50 μm. The optimization of the LA-ICP-MS to minimize
elemental fractionation was performed by ablating NIST 610 glass
and adjusting the nebulizer Ar and the carrier laser cell He gas
flows to obtain the ratio of 232Th and 238U signals close to 1 bymin-
imizing the ThOþ/Thþ ratio (<1 %) in order to reduce the forma-
tion of polyatomic oxides. Accuracy was assessed on the USGS
BCR-2 reference glass (analysed as an unknown in each analytical
run) and was better than 20 % at the sub parts per minute (ppm)
level. Data reduction was carried out with the software package
GLITTER (van Achterbergh et al. 2001) and using NIST SRM
610 and 29Si as external and internal standards, respectively.

4.b. X-ray fluorescence

Major and minor element compositions of the bulk rocks were
determined by XRF. Samples were mechanically crushed in a plan-
etary mill and manually ground into a powder in an agate mortar.
Quantitative analyses were performed on powder discs obtained by
pressing 0.5 g of sample on a support of boric acid. The XRF instru-
ment was a Philips MagiX-Pro. Background and mass absorption
intensities were calculated using calibrations based on 24
international geological reference materials. Loss on ignition was
determined by heating samples to 1050 °C for 2 hours.
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Table 1. Rock samples list

Sample
no. Rock type Sampling site Unit

Main (and minor) miner-
alogical phases Age

V9 Dolostone Pietratonda–
Paganico

Evaporite (Burano Fm, Tuscan Nappe) Dol (þ Cal, Qz) Retico

V1 Quartz-metaconglomerate Monte Leoni Metasiliciclastic rocks (Verrucano Group,
Monticiano Roccastrada Unit)

Qzþwm (þ Chl, Opq) Trias

V2 Metasiltstone Monte Leoni Metasiliciclastic rocks (Verrucano Group,
Monticiano Roccastrada Unit)

Qzþwmþ Chl (þ Fsp,
Opq)

Trias

V3 Quartz-metasandstone Monte Leoni Metasiliciclastic rocks (Verrucano Group,
Monticiano Roccastrada Unit)

Qzþwmþ Chl (þ Fsp,
Opq)

Trias

V4 Dolostone Roccastrada Evaporite (Burano Fm, Tuscan Nappe) Dolþ Gp (þ Cal) Late
Triassic

V5 Gypsum Roccastrada Evaporite (Burano Fm, Tuscan Nappe) Gp (þ Dol) Late
Triassic

V6 Quartz-metasandstone Civitella Palaeozoic metasiliciclastic rocks (Phyllite-
quartzitic Group, Farma Fm)

Qzþwm (þ Fsp, sul,
Opq)

Late
Palaeozoic

V7 Quartz-metasandstone and
metasiltite

Civitella Palaeozoic metasiliciclastic rocks (Phyllite-
quartzitic Group, Farma Fm)

Qzþwm (þ Fsp, sul,
Opq)

Late
Palaeozoic

V8 Graphitic metasiltite Civitella Palaeozoic metasiliciclastic rocks (Phyllite-
quartzitic Group, Farma Fm)

Qzþwm (þ Fsp, sul,
Opq)

Late
Palaeozoic

A1 Graphitic metasiltite BG25 well Palaeozoic metasiliciclastic rocks (Phyllite-
quartzitic Group, Farma Fm)

Qzþwm (þ Cal, Opq) Late
Palaeozoic

A2 Quartz-metasandstone and
metasiltite, graphitic phyllite

BG3bis well Palaeozoic metasiliciclastic rocks (Phyllite-
quartzitic Group, Farma Fm)

Qzþwmþ Chl (þ Cal,
Opq)

Late
Palaeozoic

Abbreviations: Qz – quartz; wm –whitemica; Chl – chlorite group; Cal – calcite; Dol – dolomite; Fsp – feldspars; Gp – gypsum; Opq – opaqueminerals such as Fe- and Ti-oxides; sul – sulfates of the
alunite-jarosite group. Further information on the mineralogical assemblage is provided in online Supplementary Material Note 1.

Fig. 2. (Colour online) The chalcedonies from Poggio Peloso investigated in this study.
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4.c. Optical microscopy

All chalcedonies were cut orthogonally to the banding and pol-
ished. Half of the polished sample was prepared in thin-section
for optical microscopy (OM) observations, while the other oppo-
site half was investigated by LA-ICP-MS. Rock sample nos V1–V9
were prepared in thin-section to evaluate the possible presence of
microfeatures that could lead to their exclusion and to decide the
points on which to conduct further analyses.

4.d. Powder X-ray diffraction

An aliquot of ~20 g was crushed and pulverized in an agate mortar.
About 1 g was used for powder X-ray diffraction (PXRD), carried
out on an automated PANalytical X’Pert PRO diffractometer,
using Cu–Ka radiation (Ni-filter, 2θ range = 5–70°, step size
= 0.02°, time per step = 1 s, room temperature= 25 °C).
Measurements were performed on powders gently pressed into a
back-loading cavity mount. The phase analysis was carried out
using the software X’Pert HighScore Plus that uses the
Inorganic Crystal Structure Database (ICSD). The starting coordi-
nates of the atoms, cell parameters and space groups were taken
from Le Page & Donnay (1976) for quartz, Brigatti et al. (1998)
for phengitic muscovite, Walker & Bish (1992) and Guggenheim
& Nelson (1993) for clinochlore, Kawano et al. (1998) for sericite,
Aleksandrova et al. (1973) for sudoite, Neder et al. (1999) for kao-
linite, Cole et al. (1949) for sanidine, Chao et al. (1940) for ortho-
clase and Ferguson et al. (1958) for albite.

5. Results

5.a. The chalcedonies

5.a.1. LA-ICP-MS
The average composition of all samples is characterized by SiO2

contents ranging from 98.0 to 99.8 wt % (av. 99.1 wt % ± 0.3)
and a rather low minor- and trace-element content, i.e. the typical
composition of chalcedonies and agates (see, e.g. Blankenburg,
1988; Tanaka & Kamioka, 1994; Merino et al. 1995; Götze et al.
2001; Möckel & Götze, 2007; Götze et al. 2009, 2016). Some spots
with low SiO2 and high Ca,Mg, Al, K or Fe contents were also iden-
tified as carbonates, feldspars andmetal oxide inclusions. The pres-
ence of inclusions made it necessary to exclude some
measurements (fully provided in the online Supplementary
Material Tables S1–S6 and Figs S1–S6) from the calculation of
the average composition of the chalcedonies provided in
Table 2. Table 2 shows that SiO2 contents of the chalcedony range
between 99.2 and 99.4 wt % and that none of the other minor and
trace components is above 1000 ppm, except for Sb. The latter
show contents (1543–1846 ppm; average 1697 ± 119 ppm) that
greatly exceed those reported for the upper continental crust
(UCC) (0.4 ppm; Rudnick & Gao, 2003) or for surficial waters
(<0.001 ppm) (Filella et al. 2007). To a lesser extent, B and Ge
are also enriched, ranging on average between 81 and 113 ppm
for the former and between 7 and 9 ppm for the latter. As for
Ba contents, it is worth underlining that the amounts reported
in Table 2 are underestimated. Indeed, numerous Ba-rich inclu-
sions were found but omitted from the calculation of the average
chalcedony composition.

The correlations between elements and element pairs are shown
in online Supplementary Material Figures S1–S6 and Tables S7–
S12, respectively. Here the attention is focused on the correlation
coefficients of Sb with major, minor and trace elements (Table 3)

and on correlated pairs of elements (Table 4). Sb can be strongly
correlated (r> 0.9) with B, Mn, As and Cs or well correlated (0.60
< r< 0.89) to poorly correlated (0.40 < r< 0.59) with all the
remaining elements. The correlation with B and, to a lesser extent,
Mn, As and Cs appears consistent among the different samples
(Table 3; Fig. 3). On the contrary, the correlation with the other
elements is only observed in a few samples. The well to strongly
correlated pairs Be–Mn, Be–Ga, B–Rb, K–Rb, K–Cs, Rb–Cs and
Ba–Sr, and the poorly correlated pair SiO2–Ge are worth noting
(Table 4).

As for gold, despite that the values are to be considered quali-
tative, this element has been frequently detected, both in chal-
cedony and carbonate inclusions. The significance of its
correlation is lowered by the small number of available measure-
ments but appears consistent with Ag in sample PP7 (r= 0.865).
As for the correlation between chromophores and agate colours,
the techniques used are not suitable for proposing conclusive infor-
mation. For example, (a) the variability of Fe andMn amounts can-
not be correlated to light/dark bands in the geochemical profiles of
samples PP1, PP2, PP5, PP7 and PP8, and (b) the whitish and blue
bands of sample PP4 show comparable contents of both Fe and
Mn. Conversely, the brown band of the latter sample (online
Supplementary Material Table S3, measurement no. 11) shows
the highest Fe and Mn values.

As for REE contents, the chalcedonies show a depleted chon-
drite-normalized pattern (Fig. 4a), which is typical of these mate-
rials. Except for PP7 showing a Lan/Lun ratio below 1, light REEs
(LREEs) prevail over heavy REEs (HREEs) in the other samples
(Lan/Lun ratio 1.3–4.2). The LREE normalized patterns show a
decreasing slope in all samples (Lan/Smn 1.3–5.2) except PP5
(Lan/Smn 0.6). A slight negative Ce anomaly is present in all sam-
ples (Ce/Ce* 0.57–0.94), except PP5 and PP7 for which it cannot be
determined. Conversely, a weak to strong positive Eu anomaly
characterizes all samples (Eu/Eu* 1.67–6.32). The HREE normal-
ized patterns show an increasing slope (Gdn/Lun 0.4–0.6), except in
PP1 and PP5 (Gdn/Lun 1.2 and 2.3, respectively). The UCC-nor-
malized REE pattern (Fig. 4b) is particularly depleted and shows
an enrichment of HREEs with respect to LREEs. Both Lan/Lun
and Gdn/Lun ratios are constantly below 1 (range 0.06–0.76), as
shown by the overall increasing slope of the patterns. The Ce
anomaly is negative in all samples (Ce/Ce* 0.20–0.95) except
PP4 (Ce/Ce* 2.05), while the Eu anomaly is always positive (Eu/
Eu* 1.03–7.28).

5.a.2 . PXRD
Quartz was identified in all samples. Calcite has been clearly
detected in sample PP2 while barite and haematite were rarely
detected. The results of the XRD analyses performed on the rocks
analysed for comparison are provided in the online Supplementary
Material (Note 1) and confirmed the macroscopic identification of
the sampled rocks.

5.a.3. Optical microscopy
The samples are mainly constituted by fibrous chalcedony (length-
fast) and micro-/macro-crystalline quartz. In the following
description, the correspondence with the spot-analyses (i.e.
‘S(no.)-no./nos’) refers to LA-ICP-MS measurements (online
Supplementary Material Tables S1–S6). In sample PP1, long fibres
of fan-shaped chalcedony with flamboyant extinction (S1- nos 14,
15) are richer in Mg, V, Mn, B, Na, K, Cs, As and Rb, and lower in
Be, Al and Cuwith respect to the thin parallel-bladed fibres (S1-nos
10, 11). Sb, Sr, Ba and Ga contents are similar in both types of

Sb–Au-bearing chalcedony and geothermal fluids 717

https://doi.org/10.1017/S0016756822001200 Published online by Cambridge University Press

https://doi.org/10.1017/S0016756822001200
https://doi.org/10.1017/S0016756822001200
https://doi.org/10.1017/S0016756822001200
https://doi.org/10.1017/S0016756822001200
https://doi.org/10.1017/S0016756822001200
https://doi.org/10.1017/S0016756822001200
https://doi.org/10.1017/S0016756822001200
https://doi.org/10.1017/S0016756822001200
https://doi.org/10.1017/S0016756822001200
https://doi.org/10.1017/S0016756822001200
https://doi.org/10.1017/S0016756822001200
https://doi.org/10.1017/S0016756822001200


Table 2. LA-ICP-MS data. The chemical composition of the chalcedony. Average values provided as ppm if not differently specified. Measurements of quartz and inclusions were omitted from calculation

Sample PP1 PP2 PP4 PP5 PP7 PP8 Total

n = 7 SD n= 6 SD n = 7 SD n= 7 SD n = 15 SD n= 6 SD n= 48

SiO2 (wt%) 99.25 0.10 99.18 0.01 99.20 0.05 99.28 0.07 99.37 0.13 99.23 0.11 99.25 0.07

Be 21.8 4.3 29.7 18.9 47.8 26.8 28.7 10.1 26.6 17.4 37.9 13.0 32.1 9.3

B 112.7 24.7 112.0 17.6 98.6 12.8 102.4 14.9 81.1 19.5 99.8 11.8 101.1 11.5

Na 108.3 51.9 127.5 49.0 71.8 13.4 104.1 20.8 125.6 28.4 69.6 7.1 101.1 25.3

Mg 20.6 12.9 18.2 11.3 12.0 2.3 21.0 7.2 19.6 9.6 28.9 27.7 20.0 5.5

Al 20.1 9.2 25.1 12.7 44.1 19.3 39.6 19.1 42.2 20.1 50.0 25.7 36.8 11.7

K 122.8 32.0 125.2 24.9 135.1 18.0 138.7 28.7 114.5 29.5 128.1 18.8 127.4 8.7

Ca 511.4 286.8 621.8 – 227.8 83.5 205.7 – 475.8 107.9 363.0 113.8 400.9 165.0

Ti 3.0 3.4 4.8 2.7 0.6 0.0 6.1 0.2 6.0 1.6 7.9 10.2 4.7 2.6

Mn 323.7 98.7 414.6 65.3 618.2 158.8 655.1 97.5 574.7 215.8 488.6 51.8 510.3 126.2

Fe 31.7 18.0 49.9 28.8 56.0 45.2 94.8 71.8 30.9 14.2 75.9 36.8 56.5 25.1

Ga 0.6 0.3 1.9 1.7 4.4 2.6 2.1 1.5 2.5 2.7 2.1 1.3 2.3 1.2

Ge 6.9 0.6 9.2 1.1 8.6 1.7 8.5 0.9 9.4 1.3 8.1 1.0 8.5 0.9

As 10.2 1.8 9.2 1.5 8.4 1.5 11.0 1.9 9.4 2.2 8.6 1.2 9.5 1.0

Rb 0.9 0.3 1.0 0.2 0.8 0.2 1.1 0.3 0.9 0.3 0.8 0.1 0.9 0.1

Sr 2.5 1.5 4.6 1.3 6.7 1.3 4.8 1.0 3.4 1.4 9.5 12.6 5.2 2.5

Sb 1846 198 1577 68 1737 82 1788 145 1690 279 1543 112 1697 119

Cs 0.6 0.1 0.6 0.1 0.5 0.1 0.5 – 0.4 0.1 0.5 0.1 0.5 0.1

Ba 8 14 31 23 81 28 28 13 14 13 34 25 33 26

La 0.287 0.066 0.343 0.136 0.163 0.047 0.049 0.020 0.099 0.082 0.425 0.092 0.228 0.147

Ce 0.364 0.146 0.284 0.217 0.249 0.174 0.049 0.029 0.070 0.043 0.446 0.207 0.244 0.158

Pr 0.036 0.027 0.018 – 0.016 0.002 – – – – 0.014 0.005 0.021 0.010

Nd 0.144 0.084 0.147 0.055 0.103 0.017 0.058 0.048 0.066 0.057 0.115 0.055 0.106 0.038

Sm 0.059 0.007 0.043 0.012 0.065 0.067 0.050 0.012 0.048 0.035 0.051 – 0.053 0.008

Eu 0.047 0.017 0.069 0.025 0.034 0.017 0.089 – 0.099 0.032 0.095 0.039 0.072 0.027

Gd 0.070 0.005 0.043 0.014 0.057 0.016 0.070 0.041 0.070 0.049 0.038 0.028 0.058 0.015

Tb 0.008 0.005 – – 0.011 0.000 0.016 – 0.014 – 0.006 0.004 0.011 0.004

Dy 0.041 0.012 0.044 – 0.029 0.014 0.038 0.018 0.055 – 0.025 0.008 0.039 0.011

Ho 0.010 0.002 0.011 – 0.008 0.004 – – – – 0.008 – 0.009 0.001

Er 0.016 0.001 0.027 0.016 0.030 0.027 0.040 0.018 0.035 – – – 0.030 0.009

Tm – – 0.012 – 0.008 0.000 0.006 – – – – – 0.008 0.003

Yb 0.037 0.011 0.056 – – – 0.042 – 0.045 0.016 0.093 – 0.055 0.022

Lu 0.007 0.003 0.010 0.008 0.012 0.011 0.004 0.001 0.016 0.011 0.012 0.011 0.010 0.004
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textures. In sample PP2, the sequence includes several textures:
fibrous flamboyant (S2-nos 1–4), comb, parallel-bladed (S2-nos
9, 10 and 13–15) and pseudo-granular (S2-nos 1, 11, 12, 16, 17).
The last band of granular quartz (S2-nos 22, 23) contains the high-
est SiO2 and the lowest levels of almost all other elements, except
for Mg, Ca and As. A thick and heterogeneous layer mainly con-
stituted by calcite (S2-nos 5–8) is also present. Sample PP4 shows
several generations of hatched bands (‘Runzelbänderung’), consti-
tuted by long and thin parallel fibres, alternating with thin layers of
comb quartz. In sample PP5, the pseudo-granular texture (S4-nos
3, 4, 7–17) is generally poorer in most elements with respect to the
flamboyant spherulites and fan-shaped fibres (S4-nos 1, 2, 5, 6). In
sample PP7, the chemical composition varies without an apparent
consistency among the different depositional layers. The layers
show flamboyant (S5-nos 1, 2, 15–17, 22–27), parallel-bladed
(S5-nos 3–8, 20–21) and feathery chalcedony (S5-nos 13, 18),
along with comb (S5-nos. 14, 19) and granular quartz (S5-nos
9–12, 28, 29). Similarly, to the previous sample, PP8 also shows
parallel-bladed (S6-nos 1, 2, 5, 6), flamboyant (S6-nos 3, 4, 7) fibres
along with combmicro- and macro-quartz (S6-nos 8–10). The last
layer is constituted by granular quartz and abundant residues of
carbonaceous materials (S6-nos. 11, 12).

Regarding the distribution of the elements in the various layers,
it may be interesting to note that while the antimony remains at
almost comparable levels in all types of textures and generally
decreases drastically in correspondence with carbonate inclusions,
gold is present in chalcedony and carbonates while absent in comb
quartz. A series of photos of themain textures (with a scale of detail
greater than those given in the online Supplementary Material) is
provided in Figure 5.

5.b. The rocks

The rocks were analysed only to confirm their identification and to
estimate their Sb and Au contents; however, a complete analysis is
provided for most of them in the online Supplementary Material
(Note 1; Table S13).

The rocks are characterized by low to very low amounts of Sb:
below 1 ppm in samples V1, V4, V5, V6, V7, V9 and R; between 1
and 2 ppm in samples V3, V8 and A1; and between 3 and 4 ppm in
samples V2 and A2. Among the other elements, while minor and
trace elements typically show higher values in the rocks than in the
chalcedonies, the contents of Be and Ge appear systematically
higher in the chalcedonies. The relatively high contents of B in
samples V9 and A2, Mn in samples V9, A1 and A2, as well as
the amounts of Au measured in samples V1, V7–V9, A2 and, espe-
cially, A1 may be informative for comparison.

Figure 4c shows the REE patterns of the examined rock samples
and those of the Palaeozoic phyllites from the Larderello–Travale
geothermal area analysed by Möller et al. (2009). The first obser-
vation to make is that none of the rock samples show such pro-
nounced depletion as that observed in the chalcedonies except
V1. The Ciabattino and Boccheggiano samples appear particularly
enriched compared to those investigated in this study, while the
Radicondoli sample is comparable with both V6 and V7. The gen-
eral trend of the phyllites is decreasing except in samples A1 and
A2, which also show an increase in HREEs compared to LREEs.
The different pattern of these two samples compared to the other
rocks is probably due both to the partially different mineralogy
(including the relative abundance of the accessory phases) and
to the different migration speed of the HREEs compared to the
LREEs in different conditions of alteration (in particular pH

variability). As they fall beyond the scope of this research, we will
not dwell on these aspects, while it is worth noting another impor-
tant feature concerning the Eu anomalies. While the samples A1,
A2 and V3 show a weak positive Eu anomaly (similar to the chal-
cedonies), the phyllites analysed by Möller et al. (2003, 2009) and
the other metamorphic rocks investigated here are characterized
by a negative Eu anomaly (Eu/Eu* 0.5–0.9). Furthermore, the sam-
ples A1 and A2 show a Lan/Lun ratio (0.8–1.2) closest to that of the
chalcedonies.

In Figure 4d, the REE patterns of the chalcedonies are further
compared with those of the Tuscan volcanites. The data obtained
by Giraud et al. (1986) and Pinarelli et al. (1989) on the volcanites
from both Roccastrada and Monte Amiata evidence a clear differ-
ence not simply related to the absolute REE contents but also
regarding the overall behaviour of the REEs.

6. Discussion

6.a. Poggio Peloso chalcedony: an outlier based on Sb
contents

The samples from Poggio Peloso contain the highest Sb amounts
found so far in chalcedonies. Table 5 shows a selection of reference
data including chalcedony, carnelian and agate, as well as quartz,
amethyst, chert/flint, jasper and quartzites from several locations.
Low amounts of Sb are typically found in all silica-based minerals
and rocks; however, the contents measured by the authors in agates
rarely exceed 50 ppm.

Therefore, the comparison describes the chalcedonies of Poggio
Peloso as ‘outliers’with respect to Sb amounts, precisely as the high
contents of Zr (between 295 and 687 ppm) found in vein agates
from ‘Borówno’ quarry (Lower Silesia) distinguished the Polish
samples (Powolny et al. 2019).

6.b. Positive Eu anomaly: hydrothermal environment

Comparing the REE patterns provided byMorteani et al. (2017) for
calcite with those obtained for the Poggio Peloso chalcedony, a
striking difference emerges regarding Eu anomalies. While calcite
patterns are characterized by negative Eu anomalies, the chalcedo-
nies show positive anomalies. This result represents an anomalous
feature even for chalcedonies, and it has been rarely observed (e.g.
in vein and moss agates from the ‘Borówno’ quarry in Poland;
Powolny et al. 2019).

As for calcite, Morteani et al. (2017) explained the negative
anomaly due to the poor Eu2þ uptake capacity of Ca minerals,
based on the thermochemical reduction of Eu3þ to Eu2þ by
high-temperature deep-seated aquifers. As regards the chalcedo-
nies, it should be remembered that Eu2þ is present in a variety
of magmatic and hydrothermal environments while it is rare in
sedimentary environments because it is linked to particularly
reducing conditions (Brookins, 1989). In aqueous solutions, the
redox potential of Eu/Eu* is affected by temperature and, to a lesser
extent, by pH, pressure and REE speciation (Bau, 1991). As a con-
sequence, positive anomalies such as those observed in the chal-
cedonies are found in acidic, reducing hydrothermal fluids and
sediments in an active ridge system (Kamber & Webb, 2001;
Michard et al. 1983; Michard, 1989; German et al. 1990).
Furthermore, Eu enrichment may also reflect plagioclase weather-
ing since Eu substitutes into the calcium site of plagioclases (see,
e.g. Cabioch et al. 2006). However, Eu2þ can also substitute
Ba2þ (Shannon, 1976; Guichard et al. 1979; Mazumdar et al.
1999), thus making barite a possible carrier phase. In chalcedonies,
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barite inclusions are indicative of the activity of SO4
2− in the min-

eralizing medium, and Ba is one of the elements promoting silica
precipitation in alkaline solutions (Dumańska-Słowik et al.
2018).

Möller et al. (2009) reported the C1-chondrite-normalized pat-
terns of REY in liquid and vapour produced by some wells of the
Monte Amiata geothermal field. In particular, the liquid phase is
characterized by strong Eu and moderate Y positive anomalies,
which were interpreted to be the result of REY fractionation during
water–rock interaction in the fluid source region. In particular, the
deep fluid productive horizons of the Monte Amiata geothermal
field are hosted in the Palaeozoic metamorphic rocks represented
by the A1 and A2 samples. It is worth reiterating that such samples,
contrary to the other Palaeozoic rocks, are characterized by a weak
positive Eu anomaly.

6.c. Silica source and transport and Ge enrichment

The conditio sine qua non for the formation of chalcedonies is the
availability of silica. Silica commonly derives from the weathering or
hydrothermal alteration of silicate minerals (effective process) or
from the dissolution of amorphous silica or of quartz (less effective
process). As a consequence, chalcedony tends to form mainly in
areas affected by thermal springs or in formations rich in weather-
able silicates. Landmesser (1984) has shown that diffusion of mono-
meric silicic acid (H4SiO4) is themainmechanism in silica transport,
based on numerous considerations including the large size/low
velocity of colloidal silica and its clear prevalence under a wide range
of pH conditions (1–9). This mechanism excludes the transport of
silica via free liquid solution, which would also be difficult to explain
compared to the low solubility of silica (Krauskopf, 1956).

Table 3. Correlation coefficients (r) of Sb with major, minor and trace elements in the chalcedonies (LA-ICP-MS data)

SiO2 Li Be B Na Mg Al K Ca Sc Ti

PP1 −0.523 0.111 0.555 0.559 0.298 0.477 0.459 0.670 −0.307 −0.098 0.252

PP2 −0.890 0.493 0.291 0.846 0.851 −0.417 −0.367 0.892 0.004 0.900 −0.166

PP4 −0.316 0.078 0.115 0.949 0.832 0.222 −0.095 0.556 0.081 −0.234 0.298

PP5 −0.186 0.547 −0.424 0.805 0.431 0.404 0.742 −0.500 −0.407 0.693 0.485

PP7 −0.813 −0.121 0.402 0.910 0.522 −0.147 0.261 0.693 −0.066 0.084 0.584

PP8 −0.419 0.053 0.486 0.982 −0.240 −0.100 0.661 −0.550 −0.055 0.780 0.178

V Cr Mn Fe Co Ni Cu Zn Ga Ge As

PP1 0.244 – 0.289 0.484 0.305 0.344 0.036 0.341 0.329 0.103 0.884

PP2 0.153 – 0.873 −0.136 −0.348 −0.181 −0.403 0.382 0.401 −0.294 0.932

PP4 0.538 – 0.273 0.399 – −0.110 0.325 0.617 −0.174 0.191 0.856

PP5 −0.500 – 0.669 0.742 0.761 −0.575 −0.059 −0.118 −0.709 0.572 0.728

PP7 −0.132 −0.186 0.703 0.234 −0.532 −0.122 −0.201 0.288 0.245 −0.139 0.700

PP8 −0.055 – 0.906 −0.311 −0.383 −0.200 −0.963 0.306 0.322 −0.055 0.577

Rb Sr Y Zr Nb Mo Ag Cd In Cs Ba

PP1 0.678 0.872 0.339 0.044 0.737 0.160 0.742 −0.366 −0.551 0.934 0.740

PP2 0.670 0.462 −0.224 −0.400 – – 0.244 0.539 −0.151 0.628 0.258

PP4 0.048 −0.030 – – 0.243 −0.131 0.261 0.659 −0.393 0.600 −0.191

PP5 −0.007 −0.571 0.414 0.446 0.409 0.448 0.448 – 0.456 0.865 −0.515

PP7 0.714 0.446 0.121 0.324 0.025 −0.281 −0.064 0.209 0.144 0.729 0.082

PP8 0.286 0.227 – 0.878 0.536 −0.890 0.359 – 0.380 0.228 0.200

Highest values are marked in bold.

Table 4. Correlated pairs of elements in the chalcedonies (LA-ICP-MS data)

SiO2–Ge Be–Mn Be–Ga B–Rb K–Rb K–Cs Rb–Cs Ba–Sr

PP1 0.175 −0.196 −0.060 0.783 0.976 0.871 0.844 0.952

PP2 0.495 0.604 0.985 0.792 0.802 0.634 0.915 0.868

PP4 0.645 0.888 0.914 0.004 0.181 0.158 0.624 0.807

PP5 0.111 0.274 0.570 0.157 −0.445 −0.223 0.064 0.967

PP7 0.403 0.760 0.924 0.785 0.755 0.771 0.755 0.844

PP8 −0.284 0.781 0.848 0.220 −0.480 −0.646 0.049 0.999

Highest values are marked in bold.

720 E Gliozzo et al.

https://doi.org/10.1017/S0016756822001200 Published online by Cambridge University Press

https://doi.org/10.1017/S0016756822001200


Considering that the host rocks of the Poggio Peloso chalcedo-
nies are carbonates, the high amounts of silica needed for the for-
mation of chalcedony could have been derived from the volcanic
and metamorphic rocks present in the territory or from residual
magmatic fluids. Comparing REE contents in the surrounding
rocks and chalcedonies, it is evident that the volcanic rocks have
such different patterns (Fig. 4d) that it becomes difficult to invoke
them as the primary silica source. Most of the metamorphic rocks
are overall enriched with respect to the chalcedonies, but their pat-
terns show different LREE and HREE trends (Fig. 4c). As shown
above, an interesting analogy with chalcedonies is represented by
the weak Eu anomaly shown by the A1–A2 samples from the
Monte Amiata geothermal field. It is worth noting that the fluids
produced from this geothermal field are characterized by signifi-
cant concentrations of dissolved silica (up to 1160 ppm;
Minissale et al. 1997) so that the brines resulting from flashing

at the separator are highly supersaturated in silica, causing the for-
mation of silica scales in geothermal pipelines (Vitolo & Cialdella,
1995). Moreover, in one geothermal well, the high silica content is
accompanied by significant Sb concentration (up to 50 mg/L),
which caused the deposition of SiO2-rich, stibnite and/or meta-
stibnite-bearing scales in the pipes (Morteani et al. 2011).
However, the lack of a convincing direct correlation with any of
the surrounding rocks suggests that the silica does not derive from
the leaching of a unique Si-rich lithology.

The behaviour of Ge in chalcedonies has been frequently related
to that of SiO2, given the similar geochemical behaviour of these
two elements and the preferred structural incorporation of Ge
in the quartz crystal structure (Götze et al. 2009). Ge contents mea-
sured in the chalcedonies from Poggio Peloso (7–9 ppm) are higher
than those reported for the continental crust (1.4 ppm), lower than
those shown by most volcanic agates, while slightly higher than

Fig. 3. (Colour online) LA-ICP-MS measurements. The Sb, B, Mn, As and Cs patterns of the chalcedonies from Poggio Peloso.
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those reported for sedimentary agates (Götze et al. 2020; Table 1).
As noted in other case studies (e.g. Gliozzo et al. 2019), Ge contents
are poorly (PP1, 2, 5, 7, 8) to well (PP4) correlated with those of
SiO2; however, the absolute Ge amounts suggest the possible inter-
action of volatile fluids (HF) and the transport of SiF4, GeF4 and
BF3 compounds (for this chemical transport reaction, see Götze
et al. 2012).

6.d. B, Mn, As and Cs and their correlations with Sb: the
fluids

6.d.1. Boron
Contents ranging between 81 and 113 ppm are relatively high, both
compared with the crustal B abundance (17 ppm) and the typical
range of B content in quartz (from 0 to 25 ppm; Stavrov & Khitrov,
1962), where B3þ may replace Si4þ in the SiO4 tetrahedra (see
Müller et al. 2012 for details on the configuration of trace elements
in the quartz lattice).

In magmatic systems, the incompatible behaviour of this lith-
ophile element leads to its strong enrichment in magmatic fluids
and vapours as well as in hydrous liquids. Hence, boron enrich-
ment in hydrothermal fluids can derive from magmatic fluids,
heating and feeding hydrothermal aquifers with volatile compo-
nents. However, it can also be influenced by the geochemistry of
the local rocks (water–rock interactions; see Bernard-Romero
et al. 2010) and therefore, being strictly conditioned by the hydro-
thermal circulation system itself. Among the surrounding rocks,

the B-rich Triassic evaporites (Dessau et al. 1972) may have rep-
resented the most abundant source of B. In this regard, however, it
is worth noting that the A2 sample of the Monte Amiata geother-
mal field also contains remarkable B amounts (191 ppm) and that
also the fluids produced by this field are characterized by signifi-
cant B concentrations (up 3932 ppm; Minissale et al. 1997).

6.d.2. Manganese
The correlation of Sb with Mn was unexpected despite the testified
presence of concretions of pyrolusite (blackish powder) in the area.
Pyrolusite typically occurs in oxidation zones, mainly in sedimen-
tary beds, and in Tuscany, its occurrence is typically related to
supergene alteration. In the chalcedonies, manganese contents
(324–655 ppm) are lower than those reported for the UCC (0.1
wt %; Rudnick & Gao, 2003). In addition, they are often correlated
with Be, which also shows high contents (22–48 ppm) with respect
to both the continental crust and the chondrite composition. Be
enrichment is frequent in jasperoids (e.g. Johnson, 1977;
Lovering & Heyl, 1980; McLemore, 2002, 2010), and beryllium
deposits often contain concentrations of manganese oxides
together with fluorite, lithium, zinc, uranium and several trace ele-
ments (Lindsey, 1977). Consequently, while the observed correla-
tion between Mn and Be is not surprising, it appears more difficult
to trace the origin of these two elements. The rocks investigated in
this study bear low levels of Mn, except for the carbonates and the
A1 and A2 metapelites. Therefore, it seems plausible to hypoth-
esize that the high Mn contents of the chalcedonies mainly derive

Fig. 4. (Colour online) (a) The chondrite-normalized REE concentration pattern and (b) the upper continental crust (UCC)-normalized trace-element pattern of the chalcedonies
(average values from Table 2). (c) The REE patterns of the metamorphic rocks. Black and grey lines indicate the samples investigated in this study. Red lines correspond to the
Radicondoli (5.1960 m) drill core chip analysed by Möller et al. (2003) – indicated with ‘R’ – and the phyllites from the well Ciabattino 2 (305 m depth) and the Boccheggiano
outcrops (sample nos 10179-B and 10179-D) analysed by Möller et al. (2009). For comparison, the pattern of the chalcedonies is visible in the background. (d) REE pattern of
selected Tuscanian volcanites compared to the chalcedonies. Reference data from Giraud et al. (1986) and Pinarelli et al. (1989). The REE concentrations of the chondrite are from
McDonough & Sun (1995); those of the UCC are from Rudnick & Gao (2003).
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from the leaching of underlying carbonates. As regards Be enrich-
ment, none of the surrounding rocks shows high levels of this
element. However, no data are available on Be amounts contained
by the Roccastrada rhyolites, which, in turn, could represent likely
candidates. The conduits provided by faults should have then
allowed beryllium to circulate, and a wall-rock reaction may have
been essential for mineralization processes.

A not compelling but useful example to remember in this regard
is the one offered by Lindsey (1977) for Spor Mountains and
Honeycomb Hills (Utah). That is to say, carbonate-hosted beryl-
lium (replacement) deposits genetically related to rhyolites (the
only ones to return Mn-rich red beryl) and associated with hydro-
thermal silica, carbonates and other minerals. Moreover, it can be
worth remembering that Be-bearing minerals such as bertrandite
mainly occur in carbonate replacement deposits such as the
jasperoids.

6.d.3. Arsenic
Arsenic enrichment has been frequently used to trace either epi-
thermal gold mineralization (Henley, 1985; Berger & Silberman,
1985; Silberman & Berger, 1985) or geothermal activity (Bingqiu
et. al. 1986). Geothermal waters and sinters frequently bear high
amounts of As, besides Sb and Hg (Weissberg, 1969; Boyle &
Jonasson, 1973). Furthermore, this element can be concentrated
in hydrothermally altered metasediments (see, e.g. Codeço et al.
2021) and in surficial conditions. In the latter environment, As
may be released by Fe-hydroxides under oxidizing acid conditions
which, in turn, can be obtained owing to sulfide decomposition
(see e.g. Craw et al. 2000). In the investigated rocks, the highest
concentrations of As (17–43 ppm) were measured in the metamor-
phic rocks (samples V2, V6 and V8). Consequently, the As in the
chalcedonies may have been derived from magmatic/hydrother-
mal fluids and As-enriched meteoric waters.

Fig. 5. (Colour online) The tex-
tures of chalcedony. OM images
(crossed polarized light). (a)
Parallel-bladed and comb textures.
The arrows indicate two distinct
layers of comb quartz. Along the
lower one, a concentration of iron
oxides approximately corresponds
to the dark line indicated by the
arrow. (b) Parallel-bladed texture.
(c) Flamboyant texture. (d)
Flamboyant and comb (indicated
by the arrow). (e) Feathery quartz
(jigsaw-puzzle texture). (f) Pseudo-
granular. The scale bar equals
1 mm.
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Table 5. Sb amounts in silica-based minerals and rocks

Type Country Locality N Min Max Av. SD Reference

Agate Afghanistan – 15 0.06 1.47 0.46 0.4 Law et al. (2012)

Chalcedony Belize Crooked tree 1 0.7 Cackler et al. (1999)

Agate Brazil Rio Grande do Sul 1 0.4 *Fallick et al. (1987)

Agate Canada Agate Island 2 0.3 0.4 0.35 0.1 *McCrank et al. (1981)

Agate Canada Agate Point 2 0.2 0.2 0.2 – *McCrank et al. (1981)

Chert China Yangtze plate 17 3.30 16.70 9.68 4.8 Peng et al. (2000)

Agate Czech Rep. Frýdštejn, Bohemia 2 2.3 3.0 2.65 0.5 *Beer (1992)

Agate Czech Rep. Nova Paka, Bohemia 4 0.20 0.40 0.33 0.1 *Beer (1992)

Flint Denmark – 7 0.04 0.10 0.06 – Olofsson & Rodushkin (2011)

Chalcedony France Northern Massif Central 57 10.00 260.00 91.32 58.9 Marcoux et al. (2004)

Agate Germany Gröppendorf 2 0.2 0.3 0.25 0.1 *Blankenburg (1988)

Quartz Germany Gröppendorf 1 0.5 *Blankenburg (1988)

Agate (vein) Germany Halsbach 2 3 20 11.5 12.0 *Blankenburg (1988)

Quartz Germany Halsbach 1 5 *Blankenburg (1988)

Agate Germany Idar–Oberstein 2 4.70 5.20 4.95 0.4 *Schmitt-Riegraf (1996)

Amethyst Germany Lauterbach 1 0.2 *Haake & Holzhey (1989)

Quartz Germany Lauterbach 1 0.4 *Haake & Holzhey (1989)

Agate Germany Lauterbach 3 5.10 8.70 6.73 1.8 *Haake & Holzhey (1989)

Quartz Germany Schlottwitz 1 5.9 *Haake et al. (1991)

Agate Germany Schlottwitz 1 0.3 *Haake et al. (1991)

Agate India Mardet Bet, Gujarat 15 0.03 0.69 0.23 0.2 Law et al. (2012)

Agate India Ratanpur, Gujarat 15 0.04 0.65 0.30 0.2 Law et al. (2012)

Agate Iran Shahr-i-Sokhta 15 0.50 7.43 2.36 1.8 Law et al. (2012)

Agate Mexico Chihuahua 2 0.3 0.4 0.35 0.1 *Cross (1996)

Quartz Mexico Chihuahua 1 0.1 *Cross (1996)

Agate Namibia Sarusa Mine 1 0.1 *Harris (1989)

Quartz Namibia Sarusa Mine 1 0.1 * Harris (1989)

Jasper Norway Ordovician Løkken ophiolite 12 0.05 0.67 0.30 0.2 Grenne & Slack (2005)

Flint Russia Moscow, Valdai and White Sea 12 0.22 3.80 1.47 1.5 Olofsson & Rodushkin (2011)

Flint Sweden Vuollerim 6 0.02 2.00 0.68 0.8 Olofsson & Rodushkin (2011)

Agate Thailand Ban Khao Mogun 20 0.74 42.14 7.29 11.7 Law et al. (2012)

Agate Turkey Dereyalakvillage, Eskișehir 1 154 Parali et al. (2011)

Agate UK Ardownie Quarry, Scotland 1 2.8 *Fallick et al. (1985)

Quartz UK Ardownie Quarry, Scotland 1 3.1 *Fallick et al. (1985)

Agate UK Montrose, Scotland 1 0.5 *Fallick et al. (1985)

Quartz UK Montrose, Scotland 1 0.5 *Fallick et al. (1985)

Quartzite USA Colorado (various sites) 402 – 44.20 1.07 3.5 Pitblado et al. (2003)

Total 687 – 260 9.05 30.4

Abbreviations: N – number of analysed samples; Min. – minimum value; Max. – maximum value; Av. – average value; SD – standard deviation value
*From Götze et al. (2001).
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6.d.4. Caesium
Cs, Rb and K (LFS elements) show a consistent correlation in sev-
eral samples. In hydrothermal fluids, the alkali metals such as Rb
and Cs remain in solution and are later incorporated into other
phases such as micas (see, e.g. Codeço et al. 2021). Accordingly,
the metamorphic rocks, especially the metapelite A2, turned out
to be the most Cs-rich rocks among those examined. The deriva-
tion of Cs from water–rock interaction with these rocks thus
appears as plausible.

6.e. Gold and iron

As specified above, while the absolute quantities have to be consid-
ered with caution, the presence of Au in chalcedonies is evident
and not surprising. Au leaching and transport require suitable
redox conditions as well as the availability of suitable complexing
agents (Mann, 1984; Webster & Mann, 1984; Stoffregen, 1986;
Bowell et al. 1993; Freyssinet et al. 2005). It is commonly believed
that, at low temperatures (<400 °C), Au covalently bonds with
bisulfide ligand (Wood et al. 1987) and is then sequestered by sul-
fides (Cygan & Candela, 1995; Jugo et al. 1999; Simon et al. 2000)
while, at high temperatures (>350–400 °C), gold tends to form
chloride complexes (Candela, 2003). In the first case, the precipi-
tation of gold can occur from the ore-fluids, for example, owing to
fluid dilution or fluid–rock interactions, or from the achievement
of oxidizing conditions that cause the breakdown of the sulfide
complexes (Ilchik & Barton, 1997). In the second case, however,
it is cooling that favours the precipitation of gold from
gold-chloride solutions (Gammons & Williams-Jones, 1997).

In this regard, it is also worth mentioning the investigation by
Williams-Jones &Normand (1997), according to whom Sb and Au
jointly reach maximum concentrations when antimony is trans-
ported as HSb2S4−. The same authors highlight how evident
Sb–Au associations are reached when the transport takes place
in an alkaline environment (such as limestones) and precipitation
occurs in an environment suitable for the acidification of the
waters (such as phyllosilicate-rich rocks). In this way, hydrogen
ions are produced and can promote the deposition of gold and
stibnite. Undoubtedly other processes are possible, but the similar-
ity of the conditions described by Williams-Jones & Normand
(1997) to those provided by the area under investigation make this
reconstruction one of the most likely.

On the other hand, the absence of correlation of Au with iron
seems to diminish (but not exclude) the possible importance of an
association with Fe-oxyhydroxide, as often reported in the litera-
ture (Karasyova et al. 1998; Ran et al. 2002; Cohen &Waite, 2004;
Corral et al. 2018). Moreover, in the territory under examination,
the lack of a correlation between stibnite and pyrite occurrences is
observed. As explained by Dessau (1952), ‘pyrite and stibnite were
deposited at the footwall and at the roof of the limestone, respec-
tively, due to the chemical action, together with the drop in tem-
perature and pressure, or due to a chronological shift for which
pyrite should have been deposited in a “slightly earlier, higher tem-
perature period”’. In a nutshell, the precipitation of pyrite and Sb–
Au should be in succession.While the former lowers the amount of
reduced sulfur in the ore fluid, the latter is favoured by a lowering
of temperatures able to decrease Sb solubility and lead to Sb–Au
precipitation. Finally, it may be interesting to recall the study per-
formed by Nelson (1990), which reports the range of Au concen-
tration in jasperoids (up to 94 ppm) in US Carlin-type orebodies
and traces the origin of gold to marine black-shales. Metamorphic
rocks and chalcedonies are those bearing discrete Au amounts.

6.f. Textures

The various growth and textures observed in chalcedony testify to
the physicochemical variability of the mineralizing solutions,
chiefly in terms of SiO2 concentration and pH (Richter et al.
2015). On the other hand, the feathery quartz (jigsaw-puzzle tex-
ture) observed in PP8 indicates recrystallization. Dong et al. (1995)
established that this texture forms at quartz stability temperatures
(>180 °C) from the transformation of pre-existing silica phases
such as amorphous silica or chalcedony (Lovering, 1972).

The presence of calcite layers in PP4 may indicate a process
involving boiling, with consequent loss of CO2, generation of
CO3

2− (from dissociation of HCO3
−) and precipitation of calcite

(Henley & Brown, 1985; Reed & Spycher, 1985). However, the
analysis of fluid inclusions performed on other agates from
Poggio Peloso by Brogi & Fulignati (2012) did not retrieve evidence
of boiling. Otherwise, calcite may have been generated by contact
of cold fluids with hot rocks (retrograde solubility; see Simmons &
Christenson, 1994).

7. Conclusions

The chalcedonies of Poggio Peloso are the first Sb-rich chalcedo-
nies reported in the literature. Not only is there no comparison
among chalcedony and agate analysed to date, but not even the
rocks present in the surrounding area have comparably high Sb
levels. Antimony is strongly correlated with B, Mn, As and Cs
in these chalcedonies. While the high presence of B and Mn
may indicate the role of the fluids that, leaching the hosting car-
bonates, led to their replacement with chalcedony, As and Cs
can be better associated with fluids interacting with metamorphic
rocks.

The fluid transport in an alkaline environment agrees with the
presence of carbonates, whereas silica precipitation in such an
environment is possibly confirmed by features such as the abun-
dance of barite inclusions. The latter may be further correlated with
and explain the positive Eu anomaly observed in these chalcedo-
nies (as well as in the Palaeozoic metamorphic rocks A1 and A2
from the Monte Amiata geothermal field).

The alkaline environment may also be indicated as responsible
for the Sb–Au association, while the acidification of the waters pro-
moted bymetamorphic rocks or volatile fluids (HF) and SiF4, GeF4
and BF3 compounds (related to the abundance of Ge) should have
favoured their precipitation.

Among the acidic components carried by the fluids, silicic acid
must be included. For neither the latter nor any other constituent
of these chalcedonies was it possible to draw a convincing corre-
lation with the surrounding volcanic rocks. The comparison estab-
lished on the basis of the REEs drew significant analogies only with
the carbonate (B and Mn seen above) and metamorphic rocks.
Among the latter, the Palaeozoic rocks (graphitic quartz-meta-
sandstone and metasiltite and a graphitic phyllite) from two geo-
thermal wells of the Monte Amiata geothermal field provided the
most convincing comparison, also regarding the content of gold. In
addition, some features of the geothermal fluids of this field (i.e.
significant concentration of Sb, B and SiO2; positive Eu anomaly)
seem to be similar to those of the fluid that deposited the chalcedo-
nies. Thus, the latter fluid likely circulated in and reacted with
metamorphic rocks analogous to those hosting the deep reservoir
of the Monte Amiata geothermal field.

As for the deposition temperatures, it is possible to assume that
they did not exceed the threshold of 225 °C, which was set as the
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upper term for the deposition of the Poggio Peloso quartz. In any
case, the textures of the chalcedonies testify to the physicochemical
variability of the mineralizing solutions and different precipitation.
Therefore, they are representative of a diachronic process in which
fluids with different characteristics have formed different genera-
tions of the silica phases.

Supplementary material. To view supplementary material for this article,
please visit https://doi.org/10.1017/S0016756822001200
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