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A Restriction Theorem for a
k-Surface in R”

Daniel M. Oberlin

Abstract. 'We establish a sharp Fourier restriction estimate for a measure on a k-surface in R"”, where
n=k(k+3)/2.

Fix a positive integer k and let n = k(k + 3)/2. If x € R¥, write x = (xy,...,x)
and define ¢ : RF — R" by

_ 2 2
D) = (X1, oo oy Xy XTy ooy Xy X1X2y + ooy X1 Xy X253+ o oy X2 Xy -+« Xk 1K)

Write S for the k-surface in R" which is the range of ¢ and let o be the measure
induced on S by Lebesgue measure on R¥. We are interested in the operator R* taking
functions f € C2°(S) to functions on R" which is given by

R*(f)(€) = fdo(©).

The operator R* is the adjoint of the Fourier restriction operator associated with
the surface S and the measure o. The natural problem is to determine the indices
D, q € [1, 0o] such that there is an a priori estimate

(1) IR fllzarry < C(p, @I f|2o(0)-

There is also the analogous problem for the localized operator R given by

RI()(€) = fudo(€)

where 1 is fixed in C2°(S). For k = 1 these operators are associated with a parabola
in R2. Their mapping properties are well understood and are analogous to those of
the corresponding operator associated with the circle. For k > 2 the first result is
due to Christ [C2], who obtained estimates for R when p = 2. Mockenhaupt [M1,
M2] extended Christ’s results to the cases k > 3. De Carli and Iosevich [CI] obtained
a sharp I? result. Bak and Lee [BL] adapted Mockenhaupt’s method to obtain the
following nearly sharp result. (Their paper also contains a more detailed history of
these problems.)
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Theorem 1 ([BL]) Ifk = 2 or 3 then R* is bounded from LP(S) to L1(R") if and only
if% + ]‘*72 = 1,9 > 2(k+1). Ifk > 4, then R} is bounded from LP(S) to L1(R") if

% + “72 < 1,9 > 2(k + 1), and R} is unbounded from LP(S) to L1(R") ifq < 2(k + 1)

14 k2
or, + 57> L.
The purpose of this note is to present a slight improvement on Theorem 1:

Theorem 2  For k > 2, the operator R* is bounded from L (S) to L1(R") if and only if

14 k2
Ty =1,q9>2(k+1).

Quoting Christ [C2, p. 224]: “The strategy of our proof is not new: following
Prestini [P], we utilize an argument originating in Fefferman [F] and Carleson and
Sjolin [CS], based on a change of variables and the Hausdorff-Young inequality, to
reduce (1) to an easier problem concerning estimates for positive integral operators.”
The same strategy is utilized in [BL]. The proof of Theorem 2 is a bit simpler than
that of Theorem 1, depending on a change of variables different from that in [BL].

Proof of Theorem 2  As the necessity of the condition % + HTZ =1,9>2k+1)is
already established in [BL], it is enough to show the other implication.

We adopt the convention that C denotes a positive constant which may depend
only on the relevant dimensions and/or indices. Writing || - ||, for || - ||r-(re)> the
Hausdorff-Young inequality shows that it is enough to prove the inequality

I(fdo) = - (fdo)ll ey < CIfIIEHs),

where the convolution is (k + 1)-fold. This is equivalent to the inequality

k+1
) / [T FeDR(ea) + -+ 6 D) < C I Fl o 1Al
(RE1 kel
for functions f on R*. For j = 1,...,k writev; = (x}7 o ,x§k+1)) and let d be the

(k +1)-vector (1,...,1). For fixed v,, . . ., v, define
O(xi,. .. ,x(lk+l)) = -d, |2 v va, v ).

Then the Jacobian J of ® is the determinant of the matrix

1 1 ... 1
a2 L 2
L U S
oo K

For 1 <'s < 2 we will estimate (2) by the product of

? (/(Rk)kﬂ o CCCOREIE () - Jaxt - .xk+1) "
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and

k+1

s —s/s’ dx! k+1 l/s.
@ /Rl\)kﬂ Hf (X K x )

Beginning with (3), write

h(p(x) + -+ + p(x*1)
= h(@(x}, oY e,

|V2|2, ceey \Vk|2,V2 cV3, V2 Voo Vi—1 'Vk)

= h( D, ..., x ), T(v))

where v = (v, ..., ). Thus (3)5/ is
/ B (@0, ., x ), W) - Jdxl - D ay,
Rk+1 1

Rk+1

The map ® has multiplicity at most 2 for almost all v. For such v

/ (0], x), W) - Jdxg Y <2 / 1 (y, %) dy
Rk+1 Rk+1
and so it follows that (3)° " is bounded by
(5) 2 / K (,9(v)) dydv.
{{kﬂ)kl Rk+1

To bound (5) (by C||h||%)), recall that

\II(V27"'7V1(): (VZ'du"'7Vk'd7 |V2|27"-7|Vk|27V2'V37V2'V47"'7Vk71 'Vk)

whered = (1,1,...,1). Wewrited’ = d/vVk+1andv; = d;jd" +cj with¢; L d'.

IR{(k—l)(kJrZ)/Z

Then if g is a function on we have

(6) / g(\I/(vz,...mk)) dvy - - - dvy
(]R{kﬂ)k—l
_ / / g(VEF 1, VEF Ty () [0, (@02 + af,
]R{k—l (]Rk)k—l

d2d3+C2'C3,d2d4+C2'C47...,dk_1dk+Ck_1'Ck) dCz"'dedz"'dk

We require a lemma (whose proof is postponed until after the main argument).
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Lemma 3 The inequality

/H a(|cz\2,...,|ck|2,cz 03,00 Cay e vy Chel ~ck) dey - <C / o(x) dx
RKGk—D

Rk(k— 1)/2

holds for nonnegative Borel functions cc on RKk=1/2,

An application of this lemma to (6) now shows that

/ g(\Il(vz,...,vk)) dvy - -dvi, < C / g(z)dz
(R{k-v-l)k—l

R(k—l)(k-v—z)/z

(if g is a function on R*—D®+2)/2) " Applying this to (5) shows that

% (/ B (6) + -+ ) .]dxl...xk“)l/s <cnl.,
(Rk)kﬂ

completing the process of bounding (3).
To bound (4) we will need another lemma. Recall that x' = (xll, . ,xi) and write
D for the absolute value of the determinant of

1 1 ... 1
xlox L. (k”)
1 2 (k+1)
X X5 ... X
1 2 (k+1)
X Xpoo-.. X

Lemma 4 ([C1, Theorem B])  Suppose 0 < v < 1,1 <r < 2,and* =1 — &

k+1
Then the inequality
k+1 k+1
/H Hf(x)D Tdx! - k+1<CHHf Lr(R)
JRK)k+L
holds for nonnegative Borel functions fj.

An application of Lemma 4 to the integral in (4) bounds (4) by C || f||]L‘ZlR<k) so long
as the r defined by S=1- —,m satisfies 1 < r < 2 (which follows from1 <s<?2).
That is, (4) is bounded by C||f\|’£:1Rk) where p = rsand so ; = = (22 — 1)L (since
1 = k}jl *). With g = s’ (k + 1), it follows that % % =1. Thus the bound (7) for

(3) now yields (2) whenever + kiz =1landgq > 2(k+1).

Proof of Lemma 3 The proof depends on a particular parametrization of (RF)¥~!.
We begin by introducing notation.
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Write e; for the jth standard unit vector in R¥. Fix a Borel mapping
wk—1 — O(wi—1)

of the unit sphere ¥;_; in R¥ into the orthogonal group on R¥ in such a way that
O(wi—_1)er = wi—_1. For wy_q € Xj_1, set

wr_1 = O(wr-1)ez € {kal}J' N1,

realize ¥, as {wy_1 }* U Xi_1, and, as above, for wy_» € Y5, let O(wi_1, wi—2)
be an orthogonal map on IR* which fixes wi_; and takes Wy_, to wg_,. Then

O(wg—1, wk—2)O(wk—1)
takes e; to wi_; and e, to wi_,. For such wy_1, wi_» set
’ 1
Wiy = O(wk—1, wr—2)O(wi—1)e3 € {wr—1,wr—2}— N Bk_1,

realize X3 as {wi_1, wr_» } TNk, and, for wy_3 € X3, let O(wr—1, Wr—2, Wr—3)
be an orthogonal map on R which fixes wy_ 1, wi_, and takes Wy_, to wg_3. Continue
this way until O(w—1, . . . ,w) is defined. Write w = (w1, . .., wk—1) and

O(w) = O(wr—1, - - . ,w)O(Wr—1, . . ., w2) - - - Owg—1).

The notation dw; - - - wi—; will represent integration with respect to the product of
the surface area measures on (the realizations) of the spheres 31, ..., 3.
For 0; € [0, ] define

0'1(91) = (COSQ],Sil’lal) S 21

and
O'j(el, . ,0]) = (cos@l;sinﬁlaj_l(ﬁz, NN 791)) S E]

Forj=1,...,k—2, thenotation (0]-(91, . 0)), O) stands for the k-vector obtained
by following o (6, ..., 0;) with (k — j — 1) 0’s.

The parametrization of (R =1 is now

(cosci3.-562) =

(PoO(W)ers prOW)(01(8)),0); . . .5 pr20(W)(ok—2 (62, 6;73),0)) ,

where the p;’s are positive. The volume element which corresponds to Lebesgue mea-
sure dcy - - - cg_p on (RFE1 is

k—2 k=2
H pl;»_ldpo o pr—2 dwy - Wi H(Sin 6
P 1

k—2 k—2
x [JGsin 02 [ (sin6]_,)do}6363 - -- 05~ - 0573
2 k—2
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The ranges of integration for the p and 6 variables are (0, c0) and [0, 7], respectively.
(The ranges for the w’s were described above.) For example, in the case k = 4 we
have

Co = pows, €] = pl(cosﬂwg + sin@}wz),
¢ = pa(cos 9%% + sin 9% cos 9§w2 + sin 9% sin 9§w1 ).
The volume element can be written
pg(sin 9%)2 sin 9§dp2d9f9§dw1 . p?(sin 9})2dp1d9}dw2 . pédpodwy

For fixed ws, po, w2, 0}, and py, dc, is p3(sin 02)? sin 02dp,d03603dw, since dw, gives
“surface area” on {ws3, w, }-NY;. And for fixed w3 and py, de; is p3 (sin 6] )>dp,d6} dw,
since dw, gives surface area on {w3}L N X;. Finally, dcg is pdpodws.

Lemma 3 is the statement that

/ Ot( |C0|27 ceey ‘Ck_2|2, Co Cly€C0 CyvveeyCh—3 " Ck_z) dC() s Ck—2
RK(K—1)

<C / a(x) dx.
]R(k(k— 1)/2

Since the orthogonal mappings O(w) have no effect on the inner products ¢; - ¢j, we
define

(cosc’ts.5¢k2) = (poel;pl(al(ﬂi),O);...;pkfz(akfz((?]f”w~,9,]§i§),0)).
Lemma 3 then follows by observing that
(8)

k—2
2 2 k—1
/Oé(|C/o| Yo |C/k72| 7C/o : C/luc/O : C/27 .. 'aC/k73 : C/k—z) Hpj dpo - pr—2
0
k—2 ] k—2 ) k—2 )
X H(sin f])2 H(sin O3 .. H(sin 0] _,)dor620s .- 052 .. 6k2
1 2 k—2

<C / a(x)dx.
Rk(k— 1)/2

We will explain this in the case k = 4, the general case being completely analogous.
If k = 4 then

(|c'0|2, R R RN RN C/z)
= (5, P1, P3: Pop1 cos B1, popa cos 07, p1 pa(cos O] cos B7 + sin 0] sin 6] cos 63))
while the volume element can be written
p1p2 8in 0] sin 05 sin 05d63 - pop, sin 07d05 - pop; sin 01d0} - padp, - prdpy - podpo.
Thus (8) is evident.
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