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Abstract. We discuss two methods for constraining the equation of state of dark energy us-
ing strong gravitational lensing by galaxy clusters. In the so called “arc statistics” approach,
we compare the cluster efficiency for producing giant arcs in several dark-energy cosmologies
and in the “standard” ΛCDM and OCDM models. We find that the expected abundance of
gravitational arcs depends on the equation of state of dark energy and reflects the dependence
of halo concentrations on cosmology. In agreement with results in previous works, the lensing
cross section is very sensitive to dynamical processes occurring in the lenses. Then we use grav-
itational arcs for tracing the position of the lens critical curves and we measure their scaling
with the source redshift in a variety of cosmological models. We find that there is a degeneracy
between several lens properties and the equation of state of dark energy which can be broken
only after an extremely precise modeling of the lens. Instead of using this “golden lens” ap-
proach, we check whether combining the information from a statistical sample of clusters we
can distinguish among the various cosmologies. We test the method on a sample of numerically
simulated clusters and we reproduce the results expected from the analytic models.

1. Introduction
Evidence is mounting that the Universe is spatially flat, has low matter density and

is dominated by some form of dark energy, acting as a repulsive gravitational force and
responsible for the present phase of accelerated cosmic expansion (Riess et al. 1998,
Perlmutter et al. 1999, Spergel et al. 2003).

Dark energy is thought as a smooth component of the universe with equation of state
p = w(t)ρc2, where ρc2 is the mean energy density of the universe and the equation
of state w assumes negative values in order to produce cosmic acceleration. Theoreti-
cal models of dark energy, such as Quintessence scalar fields, predict in general a time
variation of the equation of state (see e.g. Peebles & Ratra 2002 and references therein).

We consider here two possible approaches for using strong gravitational lensing by
galaxy clusters as a tool for constraining the dark energy equation of state. The first is
the “arc statistics” approach. Previous analytic computations and subsequent numerical
N-body simulations showed that clusters are characterized by different concentration pa-
rameters in different dark energy cosmologies with constant and time-variable equation of
state (Dolag et al., 2004). In particular, numerical simulations show that density pertur-
bations grow in a different way in cosmological models with different equation of state of

† Present address: Institut für Teoretische Astrophysik, Tiergartenstr. 15, 69120 Heidelberg,
Germany

185

https://doi.org/10.1017/S1743921305001985 Published online by Cambridge University Press

https://doi.org/10.1017/S1743921305001985


186 Meneghetti et al.

dark energy, leading to different cluster formation epochs. The concentration reflects the
mean value of the density parameter of the Universe when the halo formed. Therefore,
halos in dark energy models with equation of state w > −1 are found to have concen-
trations which interpolate between those of corresponding halos in standard ΛCDM and
the OCDM models. Since the strong lensing cross section is known to be very sensitive
to the lens concentration, we expect large changes in the number of gravitational arcs
which clusters in different cosmologies with dark energy are able to produce (Bartelmann
et al., 2003).

The second method consists of using multiple gravitational arcs for tracing the position
of the lens critical curves for sources at different redshifts. Indeed, the scaling of the
critical curves as a function of the source redshift is sensitive to the equation of state of
dark energy (Link & Pierce, 1998, Golse, Kneib & Soucail, 2002, Sereno, 2002). A critical
issue in the reliability of geometric measurements from cluster lensing is the sensitivity
of the results to the mass distribution of the cluster. If the cluster mass were smoothly
distributed, then it is easy to see that multiple arcs are a good probe of geometry, but
realistic clusters are likely to have substructure and ellipticity. We use here both analytical
models and numerical simulations for exploring this problem.

2. Cosmological models and numerical simulations
We consider five cosmological models: an open Cold Dark Matter (OCDM) and four flat

dark-energy cosmogonies. The latter are a cosmological constant (ΛCDM) model (w =
−1), a dark-energy model with constant equation of state (DECDM, w = −0.6), and
two quintessence models, one with inverse power-law Ratra-Peebles potential (Peebles
& Ratra, 2002) (RP) and one with SUGRA potential (Brax & Martin, 2000) (S). The
present time value of the equation of state parameter w, describing the ratio between
the dark energy pressure and energy density, has been set equal to −0.83 for the RP and
S models. For the DECDM, RP, and S models, two sets of simulations were performed
by normalizing the power spectrum of the primordial density perturbations either on
large scales, with the observed Cosmic Microwave Background (CMB) anisotropies (e.g.
Spergel et al.), or on small scales, using the observed cluster abundance. In the second
case, we choose σ8 = 0.9 in all the models.

The results we present here were obtained by making ray-tracing simulations with a
sample of 17 dark matter halos. Each of them was simulated in all the previously described
cosmologies, building the initial conditions such that the clusters look very similar in all
the cosmological models at the present epoch. Full descriptions of the numerical models
and of the techniques used in the lensing simulations can be found in Dolag et al.(2004)
and Meneghetti et al. (2000, 2001).

3. The arc statistics approach
3.1. Lensing cross section

For each cluster we have measured the lensing cross sections for producing giant arcs,
i.e. arcs having a minimum length-to-width ratio L/W . The lensing cross section for any
arc property is defined as the area on the source plane where a source must be placed in
order to be imaged as an arc characterized by the requested property.

Our results are shown in the left panel of Fig. 1. In the left panel we show the mean
cross section of our cluster sample for arcs with length-to-width ratio larger than 7.5 as
a function of the cluster redshift.
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Figure 1. Left panel: averaged lensing cross sections for arcs with length-to-width ratio larger
than 7.5 of our cluster sample as function of the lens redshift. Sources are kept at redshift
zs = 1. Right panel: differential optical depth for arcs with L/W > 7.5 and sources at zs = 1
as a function of the lens redshift. Different panels refer to different cosmological models. Solid
curves show the results for cosmologies with σ8 = 0.9. Dashed curves show the correspondent
results when σ8 is reduced for taking into account the increasing Sachs-Wolfe effect affecting the
large scales in the CMB.

As expected the lensing cross sections reflect the differences in the concentration of
dark matter halos in different cosmological models. Assuming the same normalization of
the power spectrum, the lensing cross sections for the OCDM and the ΛCDM models
differ by roughly a factor of four and the cross sections for the other cosmological models
with dark energy interpolate between them. Despite the equation of state of dark energy
today is the same for the RP and S models, their lensing cross sections differ significantly
at higher redshift.

For models where the CMB normalization of the power spectrum is used, we find
mean lensing cross sections smaller by more than one order of magnitude compared to
the OCDM model. In fact, when the normalization of the power spectrum derived from
the CMB is reduced because of the Integrated Sachs Wolfe (ISW) effect affecting the large
scale CMB anisotropies in the cosmologies we consider (Bartelmann et al., 2003), not only
the formation epoch of our simulated clusters is delayed, but also their evolution up to
redshift zero is changed. For example, clusters in the RP and in the SUGRA models have
masses at redshift zero which are smaller by roughly 20% and 30% respectively compared
to the ΛCDM model.

The cluster sample is still too small for the mean cross section to be a smooth function
of redshift. In fact, the curves exhibit strong peaks which are connected to merger events
arising in single clusters. It has been recently shown that during such events, which occur
on timescales of some Gyr, the cluster efficiency for strong lensing is strongly enhanced
(Torri et al., 2004), due to the combined effect of the increasing shear and convergence.
It is interesting to note that, by comparing the cross sections as function of redshift for
different cosmological models, there is a correspondence between the number of the peaks
in the curves. This is obvious, since we are comparing the same clusters in all cosmological
models. However the position and the amplitude of the peaks is strongly dependent on
the cosmological model. Indeed the impact of a merger events appear to be larger in
cosmologies where halos are less concentrated. Moreover, the different position of the
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peaks is produced by the different formation epoch and evolution of clusters, depending
on the equation of state of dark energy. The shift of the peaks is more relevant at higher
redshift, since our sample is build such to obtain similar objects at redshift z = 0 (Dolag
et al., 2004).

3.2. Lensing optical depth

On the right panel of Fig. 1 we show the differential lensing optical depth for sources at
redshift zs = 1, given by

dτ

dz
=

1
4πD2

s

(1 + z)3
∣∣∣∣dV

dz
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∫ ∞

0

dM
dn

dM
σ(M, z) , (3.1)

where Ds is the angular diameter distance to the source plane, V is the cosmic volume,
and dn(M, z)/dz is the mass function.

The differential optical depth is larger in those cosmological models where lenses form
earlier and are thus more concentrated. Moreover, the contribution to the total optical
depth comes from clusters in a wider redshift range in these cosmologies. For example,
in the high redshift tail, the curves drop to zero at z ∼ 0.65 and z ∼ 0.8 in the ΛCDM
model and in the OCDM models, respectively. Moreover, at z ∼ 0.6, the differential
optical depth is still close to its maximum in the OCDM model, while it is decreased
below 30% in the ΛCDM. Other cosmologies, like the RP, the DECDM and the SUGRA
with cluster abundance normalisation, interpolate between these models, while we obtain
substantially smaller optical depths by adopting the CMB normalization of the power
spectrum.

4. The multiple arcs approach
We discuss now the feasibility of constraining the equation of state dark energy using

the observed position of tangential gravitational arcs arising from sources at different
redshift. Arcs are strongly distorted images forming around the lens critical line. In the
case of an axially symmetric lens, the critical line reduces to the Einstein ring, whose
radius depends on the angular diameter distances between the observer and the lens (Dl),
the observer and the sources (Ds) and the lens and the source (Dls) as given by

θt =

√
4GM(θt)

c2

Dls

DsDl
, (4.1)

where M(θt) is the mass enclosed by the Einstein ring and c is the speed of light.
This dependence of the critical line size on geometry can be reversed for constraining

the cosmological parameters affecting the angular diameter distances, like the equation
of state of dark energy. However, the sensitivity of the results to the mass distribution
of the lens represents a critical issue which still has to be accurately investigated.

4.1. Analytical models

First, we consider a simple analytic model for describing the lens mass distribution.
We use a pseudo-elliptical model, where the ellipticity e is introduced in the lensing
potential of a sphere with the Navarro-Frenk-White (NFW) density profile (Navarro,
Frenk & White, 1997)

ρ(r) =
ρs

(r/rs)(1 + r/rs)
, (4.2)
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Figure 2. Left panel: sizes of the critical curves for sources at zs normalized to their value at
zs = 1. Results are shown for four cosmological models. The lens mass is 7 × 1014 h−1M� and
the lens redshift is zl = 0.6. The lens is modeled using both an axially symmetric (thin curves)
and a pseudo-elliptical (heavy curves) model with NFW density profile. In the elliptical case,
the ellipticity of the iso-potential contours is e = 0.3.

where rs and ρs are the scale radius and a characteristic density, respectively. The lensing
properties of this model are discussed in Meneghetti, Bartelmann & Moscardini (2003)
and in Meneghetti et al. (2004b).

The expected growth of the critical line size for an halo of mass M = 7× 1014 h−1 M�
at redshift zl = 0.6 as function of the source redshift zs in a variety of cosmological models
is shown in the left panel of Fig. 2 for both the cases of e = 0 (thin curves) and e = 0.3
(heavy curves). The curves are normalized to the size of the critical curve for sources
at zs = 1. The growth of the critical curve with redshift is larger in the ΛCDM model
than other cosmologies with dark energy. In this case, for the axially symmetric lens,
the growth between zs = 1 and zs = 2 is roughly by a factor of 4.5. Beyond zs = 2, the
growth slows down; for sources at zs = 5, critical curves are larger by a factor ∼ 7 than
for sources at zs = 1. The model which deviates the most from ΛCDM is the SUGRA
model, for which the critical curves for zs = 2 and zs = 5 are larger by factors of ∼ 3.6
and ∼ 5.2, respectively, than for zs = 1. The RP and the DECDM models fall between
them.

Adding ellipticity to the model reduces the growth rate of the critical curves for all
cosmologies. For e = 0.3, the critical curves are larger by a factor of ∼ 3.4 for zs = 2
compared to zs = 1 in the ΛCDM model and by a factor of ∼ 2.8 in the SUGRA model.

The dependence of the growth rate on the lens ellipticity is due to the steepening
of the NFW profile at large radii. In fact, intrinsic ellipticity mimics the effect of an
external shear which pushes the lens critical lines at large radii where the density profile
is steeper. As shown by Meneghetti et al. (2004b), the growth of the critical curves then
becomes a shallower function of the source redshift. A similar dependence is found on all
the other factors which determine the size of the critical lines for a given source redshift,
in particular the lens concentration and redshift.

Since halos of a given mass have different concentration parameters in different cos-
mologies (see e.g. Dolag et al. 2004), a degeneracy between halo mass and cosmology
arises in NFW halos. For probing this degeneracy, we carry out the following test. We
use an input model consisting of a lens of mass M = 7.5×1014 h−1 M� at redshift zl = 0.6

https://doi.org/10.1017/S1743921305001985 Published online by Cambridge University Press

https://doi.org/10.1017/S1743921305001985


190 Meneghetti et al.

Figure 3. Confidence levels in the w-mass plane. The contours shown by the dark curve corre-
spond to a probability level of 99.7%. The two panels correspond to constraints from two arcs at
z = 1 and z = 2 (left) and from three arcs at z = 0.8, z = 2 and z = 3 plus velocity dispersion
at 10 kpc from the center (right).

in a cosmological model with w = −0.8. We consider its critical curves for source red-
shifts zs = 1 and zs = 2, mimicking the constraints from two tangential arcs, and we fit
their positions by varying the equation of state of dark energy and the lens mass. For
simplicity, we consider only cosmologies with time-independent w. The fit is performed
by minimizing

χ2
1 =

(
x1(M,w) − x̂1

∆1

)2

+
(

x2(M,w) − x̂2

∆2

)2

, (4.3)

where x̂1 and x̂2 are the positions of the tangential critical curves of the input model for
sources at zs = 1 and zs = 2, respectively, ∆1 and ∆2 are their respective errors, and
x1(M,w) and x2(M,w) are the corresponding positions of the critical curves predicted
by the fitting model with mass M in a cosmological model with dark-energy equation of
state w. We assume here to be in an idealized situation where the location of the critical
curves is known at the 1% level.

We show the confidence levels in the w-M plane resulting from this fitting procedure
in the left panel of Fig. 3. The innermost and the outermost contours correspond to
probability levels of 68% and 99.7%, respectively. As anticipated, a good fit to the position
of the critical curves is obtained for a range of M and w, with 99.7 confidence limits
ranging between 6 × 1014 h−1 M� � M � 9 × 1014 h−1 M� and −1 � w � −0.65.

The degeneracy is hardly broken only if more constraints on the lens density profiles
are added. In the right panel of Fig. 3, we show the confidence levels in the w-M plane
obtained by using three arcs at z = 0.8, z = 2 and z = 3 plus stellar velocity dispersion
data for a simulated cD galaxy in the cluster. To distinguish among different cosmological
models becomes easier but does require that we get lucky with the arc redshifts. It is
also valid only for the smooth mass distribution represented by our analytical model;
real clusters are likely to have a more lumpy structure.

4.2. Numerical models
Since asymmetries and substructures play a crucial role in determining the strong lensing
properties of galaxy clusters (Meneghetti, Bartelmann & Moscardini, 2003), analytic
models can only be used for an approximate description of their lensing properties. More
realistic mass distributions of clusters, as provided by numerical simulations, are needed
for drawing quantitative conclusions. We now repeat the analysis previously applied to
analytic models to a sample of numerical clusters.
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Figure 4. Example showing how the critical curves of a numerical cluster at zl = 0.6
simulated in different cosmological models change between zs = 1 and zs = 2.

The critical curves for one of the clusters in our sample in the different cosmological
models are shown in Fig. 4. The sources are at redshift zs = 1 in the upper panels and
at zs = 2 in the lower panels. Two important features are evident. First, for sources at
redshift zs the sizes of the critical curves differ substantially among the various cosmolog-
ical models. For example, the cluster has almost no critical curves in the ΛCDM model,
while they are already well developed in the SUGRA model. The RP and the DECDM
models fall between these two cosmologies. This is a consequence of the earlier formation
epoch of clusters in the RP, DECDM and in the SUGRA models than in the ΛCDM
model, due to which they have a larger concentration enabling them to be efficient lenses
even at relatively high redshifts or for relatively close sources. Second, as expected from
the analytical calculations, the relative enlargement of the critical curves is higher in the
ΛCDM than in the other cosmological models.

The right panel of Fig. 2 shows the relative growth of the critical curves in the four
cosmological models as measured in the numerical simulations. Each curve represents the
median among the 51 halos which develop a critical curve for source redshift zs = 1. The
number of useful clusters for this analysis ranges between ∼ 20 in the ΛCDM to ∼ 30
in the SUGRA model. The results confirm the qualitative expectations from analytic
models: namely, the trend for different cosmologies. The absolute values of the relative
growth are also consistent with the predictions for a moderate ellipticity (e � 0.3) lensing
potential (compare the two panels of Fig. 2).

These results show that the statistical application of this method is potentially power-
ful. Upcoming surveys from space, like those which will be conducted by SNAP (Aldering
et al., 2004), could provide detailed observations of order thousand galaxy clusters, al-
lowing the information from many lenses to be combined. The error bars in Fig. 2 show
the first and the third quartiles of the curve distribution we obtain from our numerical
cluster sample. They were rescaled to the expected error when the information from
∼ 1000 pairs of arcs is combined. The figure shows that when constraints on the position
of the critical curves from sources at significantly different redshifts and in a sufficiently
large sample of clusters are used, it becomes possible to discriminate among different
cosmological models. We have used a simple choice of source redshifts; by extending the
analysis to a wider redshift range, especially to redshifts beyond 2 for the distant arcs,
the constraints became stronger. The analysis needs to be extended in other ways as well,
by combining the information from different lens redshifts and finding the best way to
weight a given cluster.

https://doi.org/10.1017/S1743921305001985 Published online by Cambridge University Press

https://doi.org/10.1017/S1743921305001985


192 Meneghetti et al.

5. Summary and discussion
We have explored two methods for constraining the equation of state of dark energy.
The first is based on arc statistics: different abundances of long and thin arcs are

expected on the sky in different cosmologies. Using numerically simulated galaxy clusters
we find that dark energy cosmologies interpolate between ΛCDM and OCDM models.
The dependence of the abundance of long and thin arcs on the dark energy equation
of state reflect the sensitivity of halo concentrations on w shown in earlier papers. The
lensing cross sections result to be very sensitive to merger events occurring in the clusters.
This suggests that arc statistics can be a very powerful tool for probing the structure
formation.

Then, we make an exploratory study of how well dark energy models can be con-
strained using lensed arcs at different redshifts behind cluster lenses. We quantify the
sensitivity to lens mass, concentration and ellipticity with analytical models that include
the effects of dark energy on halo structure. We show that degeneracies between mass
models and cosmography may be broken only using additional constraints on the lens
density profile. However we conclude that the requirements on the data are so stringent
that it is very unlikely that robust constraints can be obtained from individual clusters.
We argue that surveys of clusters, analyzed in conjunction with numerical simulations,
are a more promising prospect for arc-cosmography. We use numerically simulated clus-
ters to estimate how large a sample of clusters/arcs could provide interesting constraints
on dark energy models. We focus on the scatter produced by differences in the mass
distribution of individual clusters. We find from our sample of simulated clusters that
at least 1000 pairs of arcs are needed to obtain constraints if the mass distribution of
individual clusters is taken to be undetermined.
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