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WHEN IS THE SILTING-DISCRETENESS INHERITED?

TAKUMA ATHARA® axpD TAKAHIRO HONMA

Abstract. We explore when the silting-discreteness is inherited. As a result,
one obtains that taking idempotent truncations and homological epimorphisms
of algebras transmit the silting-discreteness. We also study classification of
silting-discrete simply-connected tensor algebras and silting-indiscrete self-
injective Nakayama algebras. This paper contains two appendices; one states
that every derived-discrete algebra is silting-discrete, and the other is about
triangulated categories whose silting objects are tilting.

§1. Introduction

Silting-discreteness is a finiteness condition on a triangulated category, namely, a silting-
discrete triangulated category admits only finitely many silting objects in any interval of
silting objects [5]; actually, the set of silting objects has a poset structure [9]. In the case,
we can fully grasp the whole picture of silting objects, and such a triangulated category has
so nice structure. For example, a silting-discrete triangulated category satisfies a Bongartz-
type condition; that is, any presilting object is partial silting [10]. For an ST-pair (C,D), C
is silting-discrete if and only if D is t-discrete if and only if every bounded ¢-structure in D
is algebraic; moreover, in the case, the stability space of D is contractible [4] (see also [47]).

In general, it is very hard to check if a given triangulated category is silting-discrete.
Thus, an extremely powerful tool was introduced [1], [5], [10], and it is applied to the perfect
derived category of a finite-dimensional algebra over an algebraically closed field; we know
several algebras with silting-discrete perfect derived categories, say silting-discrete algebras
(1], [3], [5], [8]-[10], [16], [L7], [21], [27]. Typical examples of silting-discrete algebras are local
algebras, piecewise hereditary algebras of Dynkin type, and representation-finite symmetric
algebras. It was also shown by [56] that for an ST-triple (C,D,T) if C is T-discrete, then it
is silting-discrete, which implies that any derived-discrete algebra is silting-discrete; we will
also observe the result in Appendix A. We obtain from [4] that if (C,D) is a (d+ 1)-Calabi-
Yau pair for d = 1,2, then C is silting-discrete if and only if the endomorphism algebra of
a silting object is 7-tilting finite, which leads to the fact that for the derived preprojective
algebra I' := 'y, 1(Q) of a finite quiver @ with H°(T") finite-dimensional (note that it is a
nonpositive dg algebra), the perfect derived category of I' is silting-discrete if and only if
@ is Dynkin.

The aim of this paper is to investigate when the silting-discreteness is inherited. For
example, derived equivalences certainly transmit the silting-discreteness. Tensoring a local
algebra also conveys the property [7]. One of the main theorems of this paper (Theorem
2.10) states that a full triangulated subcategory of a silting-discrete triangulated category
is also silting-discrete. Moreover, we show that a homological epimorphism of (nonpositive)
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2 T. AIHARA AND T. HONMA

dg algebras induces the silting-discreteness (Theorem 2.15). These lead us to the following
results.

THEOREM 1 (Corollaries 2.11 and 2.22). Let A be a finite-dimensional algebra over an
algebraically closed field. Assume that A is silting-discrete. Then we have the following.

(1) For an idempotent e of A, the truncation elAe is silting-discrete.
(2) If e is a stratifying idempotent of A, then A/AeA is silting-discrete.

We remark that quotients of algebras always inherit the 7-tilting finiteness [26], but not
necessarily the silting-discreteness (§2.5).

The Bongartz-type condition is also one of the most important subjects in silting theory.
We naturally ask whether or not the Bongartz-type condition always holds.! For example,
silting-discrete triangulated categories satisfy the Bongartz-type condition and every 2-
term presilting object can be completed to a silting object [5], [10]. Note that the tilting
version (i.e., is a pretilting object partial tilting?) often fails [40], [48] (see Example B.8).
Theorem 1 and its proof provide a new Bongartz-type lemma under a certain condition (see
Corollary 2.17 for a general setting, which recovers the 2-term version).

THEOREM 2 (Corollary 2.18(2)). Let e be an idempotent of A. Then a presilting object
of the perfect derived category of A generating the thick closure of eA is partial silting.

As a corollary of Theorem 1, we classify silting-discrete simply connected tensor algebras;
note that the tensor algebra of three nonlocal algebras is never silting-discrete [7]. Also, we
obtain a surprising result, which says that a representation-finite self-injective algebra is
not necessarily silting-discrete.

THEOREM 3 (Proposition 3.1, Theorems 3.4 and 3.6).

(1) A simply connected algebra is silting-discrete if and only if it is piecewise hereditary of
Dynkin type.

(2) Let A and B be finite-dimensional nonlocal simply connected algebras over an alge-
braically closed field K. Then the following are equivalent:
(i) A®xk B is silting-discrete;
(ii) it is piecewise hereditary of type Dy, Eg, or Es;
(iii) it is derived equivalent to a commutative ladder of degree < 4.

(3) The self-injective Nakayama algebra with n simple modules of length r is not silting-
discrete if (i) r=3,4 andn >11; (ii) r="5,6 and n >r+8; or (iii) r > 7 andn > 2r+1.

§2. Main results

Throughout this paper, let 7 be a triangulated category which is Krull-Schmidt, K-
linear for an algebraically closed field K, and Hom-finite. For an object T of T, its thick
closure is denoted by thickT’; that is, it is the smallest thick subcategory of 7 containing 7.

Silting objects play a central role in this paper.

DEFINITION 2.1. Let T be an object of T.

(1) We say that T is presilting (pretilting) if it satisfies Homy(7,7T[i]) = 0 for any
i>0 (i £0).

1 Recently, a negative answer to this question was given [42]. (See §B.2.)
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(2) A presilting (pretilting) object T is said to be silting (tilting) provided T = thick T.
(3) A partial silting (partial tilting) object is defined to be a direct summand of some
silting (tilting) object.

NoOTATION 2.2. We use the following notations.

e Denote by silt 7T the set of isomorphism classes of basic silting objects of T .

e We always suppose that silt7T is nonempty.

e For a silting object A of 7 and d >0, da-silt 7 :={T €siltT | A>T > Ald—1]}.

e Let S be a presilting object of 7. The subset siltg 7 of silt 7 consists of all silting objects
having S as a direct summand.

As terminology, for presilting objects T and U of T, we use T' > U if Homy(T,U[i]) =0
for every i > 0. This actually gives a partial order on silt7 [9, Th. 2.11].
We define the silting-discreteness of 7, which is the main theme of this paper.

DEFINITION 2.3.

(1) We say that T is silting-discrete if it has a silting object A such that for any d > 0, the
set d4-silt T is finite (see [5, Prop. 3.8] for equivalent conditions of silting-discreteness).
(As a convention, a triangulated category without silting object is also called silting-
discrete.)

(2) For a silting object A of T, we call T 24-silting finite if 24-silt T is a finite set.

(3) A 2-silting finite triangulated category is defined to be 2 4-silting finite for every silting
object A of T.

REMARK 2.4.

(1) The notion of 2 4-silting finiteness is nothing but that of 7-tilting finiteness for Ends(A)
[25, Cor. 2.8]. For 7-tilting theory, we refer to [2].

(2) The silting-discreteness is preserved under triangle equivalences, but the 2 4-silting
finiteness is not always so; it depends on the choice of silting objects A.

Let us recall several results in [5], [10].
PROPOSITION 2.5. Let A be a silting object, and let T be a presilting object of T .

(1) [5, Prop. 2.16] If A>T > A[l], then T is a direct summand of a silting object lying in
the interval between A and A[l].

(2) [10, Prop. 2.14] Assume that T is 24-silting finite. If A>T > A[2], then there exists
a silting object B of T satisfying A> B >T > B[1] > A[2].

(3) [10, Prop. 2.14] Assume that T 1is silting-discrete. Then there is a silting object P of
T with P>T > PJ1].

(4) [10, Th. 2.4] T is silting-discrete if and only if it is 2-silting finite.

In the following, we investigate the silting-discreteness of triangulated categories:

e Full triangulated subcategories inherit the silting-discreteness (2.1);
e Recollements make an influence on silting-discreteness (2.2).

Moreover, we will also consider silting-discrete algebras as these corollaries.

Let A be a finite-dimensional K-algebra which is basic and ring-indecomposable, and
modules are always finite-dimensional and right unless otherwise noted. The perfect derived
category of A is denoted by KP(projA).
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We say that A is silting-discrete if so is KP(projA). Here is an example of silting-discrete
algebras which we should first observe; one frequently uses it in the rest of this paper.

EXAMPLE 2.6. A piecewise hereditary algebra of type H, that is, the algebra is derived
equivalent to a hereditary abelian category H with a tilting object, is silting-discrete if and
only if ‘H is of Dynkin type.

Let @ be a (finite) quiver. For an arrow « :i — j of @, we consider the formal inverse
a~':j— i and define the virtual degree by deg(a™) = £1 (double-sign corresponds). The
virtual degree of a walk (a sequence of successive arrows and formal inverses) is defined
by log-rule: deg(af) = deg(a) + deg(5). We say that @ is gradable if any closed walk has
virtual degree 0. Here, a closed walk is a walk whose start and goal coincide. For instance,
every tree quiver (i.e., the underlying graph is tree) is gradable. Note that a gradable quiver
admits no oriented cycle; but the converse does not necessarily hold.

We observe silting-discrete algebras with radical square zero.

PROPOSITION 2.7. Let A be the radical-square-zero algebra given by a gradable quiver Q.
Then A is silting-discrete if and only if Q is Dynkin.

Proof. Tt follows from [55, Th. 4.4] that A is derived equivalent to K Q. O

Note that there is a silting-discrete radical-square-zero algebra presented by an ungrad-
able non-Dynkin acyclic quiver (Example 2.19).
We say that A is gentle if it is presented by a quiver ) with ideal I such that:

(1) for any vertex of @, there exist at most two incoming and at most two outgoing arrows;

(2) for each arrow x:i— j of @, the number of arrows y stopping at i (starting from j)
with yr € I (zy € I) is at most 1;

(3) for each arrow x:i — j of @, the number of arrows y stopping at ¢ (starting from j)
with yz € I (zy € I) is at most 1;

(4) all relations in I are paths of length 2.

A quiver @ is called one-cycle provided its underlying graph contains exactly one cycle. A
gentle one-cycle algebra is defined to be a gentle algebra given by a one-cycle quiver. We
say that a gentle one-cycle algebra satisfies the clock condition if the numbers of clockwise-
and counterclockwise-oriented relations on the cycle coincide.

The following proposition is also useful.

PROPOSITION 2.8. A gentle one-cycle algebra A is silting-discrete if and only if it does
not satisfy the clock condition.

Proof. Assume that A satisfies the clock condition. By [15, Th. (A)], we see that A is a
piecewise hereditary algebra of type g, which is not silting-discrete.

Assume that A does not satisfy the clock condition. It follows from [53, Theorem]| that
A is derived-discrete, and so it is silting-discrete by [56, Exam. 3.9 and Cor. 4.2]. O

Let us observe the silting-discreteness of type A with commutative relation.

PROPOSITION 2.9. Let A be the algebra given by the quiver of type Xp; with commutative
relation; suppose that 1 <p <gq. Then A is silting-discrete if and only if p=2 and any q or
p=3 and q=3,4,5.
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Proof. Let Q be the quiver & —2> ... " % fa .o Since A

is the one-point extension of the path algebra K@ by the indecomposable injective module
corresponding to the vertex ¥, we see that it is derived equivalent to the one-point extension
of K@ by the indecomposable projective module corresponding to the vertex % [18, Th. 1],
which is the path algebra of the quiver @

[ )

[ ] a2 e [} ap i 5q [ ) e 52 [ ]

Hence, it turns out that A is silting-discrete if and only if so is K @ if and only if one of the
desired conditions holds. 0

2.1 Full triangulated subcategories
The following is the first main theorem.

THEOREM 2.10. Let U be a full triangulated subcategory of T. If T 1is silting-discrete,
then so is U.

Proof. We show that U is 2-silting finite; hence, it is silting-discrete by Proposition
2.5(4). Let T be a silting object in U. As T is presilting in 7, we obtain a silting object
A satisfying A > T > A[1] by Proposition 2.5(3). Let U be a silting object of U with
T > U > TI1]. Since there is a triangle Ty — Ty — U — T1[1] with 75,71 € addT in U [9,
Prop. 2.24], we have inequalities A > U > A[2]. Proposition 2.5(1) and (2) lead to the fact
that U is a direct summand of a silting object lying in the interval between A and A[2].
As the interval in silt7 is a finite set, we deduce that {U €silttd | T > U > T'[1]} is also
finite. 0

A typical example of fully faithful functors is the triangle functor — ®cpe €A :
KP(projeAe) — KP(projA) for an idempotent e of A. This yields a corollary of Theorem 2.10,
which says that taking idempotent truncations brings the silting-discreteness from the
original.

COROLLARY 2.11. Let e be an idempotent of A. If A is silting-discrete, then so is ele.

2.2 Recollements

In this subsection, we investigate an impact of recollements on silting-discreteness.

Let us begin with the study of silting reductions [31], which enable us to realize the
Verdier quotient of 7 by the thick closure of a presilting object as a certain subfactor
category of 7 and which make isomorphisms of silting posets.

Let S be a presilting object of 7 and put S := thickS. The Verdier quotient of 7 by S
is denoted by 7 /S. Take a full subcategory Z of T as follows:

Z:={X €T | Homy(X,S[i]) =0 = Homy(S, X[i]) for any ¢ > 0}.

We denote by [%] the additive quotient of Z modulo the ideal [S], which admits a triangle

structure [31, Th. 3.6]. Then, the silting reduction [31, Th. 3.6] shows that there is a triangle

equivalence between 7 /S and % Since T is Hom-finite and Krull-Schmidt, so is 7/S.
Now, we prepare a lemma for the main theorem of this subsection.
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LEMMA 2.12. Keep the notations above. If T is silting-discrete, then so is T /S.

Proof. By the silting reduction [31, Th. 3.7 and Cor. 3.8], the natural functor 7 — 7 /S
induces an isomorphism siltg 7 ~silt 7 /S of posets. Thus, it is not hard to deduce that 7 /S
is silting-discrete. U

REMARK 2.13. We are assuming that silt7 # () to apply the silting reduction, while
silt 7/S = () may occur (see §B.2).

To realize the goal of this subsection, we need (nonpositive) dg algebras.

Let A be a dg K-algebra and per(A) denote the perfect derived category of A. If A
is nonpositive with finite-dimensional cohomologies, then per(.A) is Hom-finite and Krull-
Schmidt (see, e.g., [4, Prop. 6.12]).

We give a remarkable example [55, Exam. 5.3], which mentions that the zeroth
cohomology HY(A) of A does not necessarily inherit the silting-discreteness from A;
moreover, the endomorphism algebra of a silting object does not always inherit the property

either.
EXAMPLE 2.14. Let A be the algebra presented by the quiver )
5 6
1——=2 5 3 5 4

with relation a8y = 0. Then, we easily observe that A is piecewise hereditary of type FEj;
so, it is silting-discrete. Take T := Sy @ Sa[1] ® S3[2] B S4[3] @ S5[2] @ Sg[1], where S; is the
simple module corresponding to the vertex i of Q; it is in K°(projA) because A has finite
global dimension. We see that T is a silting object whose dg endomorphism algebra A is
nonpositive with finite-dimensional cohomologies; so, per(.A) is Krull-Schmidt. By Keller—
Rickard’s theorem [36], [48], we have a triangle equivalence per(A) ~ K®(projA), whence
per(A) is silting-discrete. However, the zeroth cohomology H?(A) of A, which is isomorphic
to Endye proja) (1), is the radical-square-zero algebra of Q°P, and it is derived equivalent to

a hereditary algebra of type Ds. Thus, H°(A) is not silting-discrete.

This example also says that although a derived preprojective algebra A of Dynkin type
(it is a nonpositive dg algebra) admits a silting-discrete perfect derived category [4, Cor.
8.6], it is still open whether a preprojective algebra of Dynkin type except Ag, Doy, E7, and
Eg, which appears as the zeroth cohomology of A, is silting-discrete or not.

We aim at our goal of this subsection.

Recall that a recollement R consists of the following data of triangulated categories D, X,
and ), and triangle functors between them:

Yy i =1

such that:

(1) (5%,ix), (i,3"), (51,4'), and (5%,j.) are adjoint pairs;
(2) ix (=141), J1, and j, are fully faithful;
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(3) any object D of D admits two triangles
ivi' (D) = D = j.j* (D) — 2" (D)[1] and jij*(D) = D — i.i*(D) = jij (D)[1],
where the morphisms around D are given by adjunctions.

Omitting the triangle functors, we write such a recollement as R = (), D, X).

We denote by D(—) the (unbounded) derived category, and for an object X of D(A),
Tria(X) stands for the smallest full triangulated subcategory of D(A) containing X which
is closed under all direct sums.

From now, we consider either of the following situations.

e Start from a given recollement (),D(A),X) with X compactly generated: Then, by [12,
Th. 4.5], X can be written as Tria(S) for some presilting object S of KP(projA).

e Start from a given presilting object S of KP(projA): Since Tria(S) is a smashing
subcategory of D(A) [12, Prop. 3.5], there exists a full triangulated subcategory ) of
D(A) such that (Y,D(A), Tria(S)) forms a recollement; actually, ) is right perpendicular
to Tria(S) [44, Cor. 2.4].

In any case, we have a recollement (),D(A), Tria(S)) for a presilting object S of K®(projA).
Furthermore, thanks to Nicolas—Saorin’s result [44, §4], there is a dg K-algebra A and
a morphism ¢ : A — A of dg algebras such that i, = — ®E4A induces a recollement
(D(A),D(A), Tria(S)). Here, ¢ is embedded into the triangle X := RHom,(S,A) ®% S —
A% A— X[1] in D(A® ® g A), where B is the dg endomorphism algebra of S. We evidently
observe that H'(A) is finite-dimensional for any 4. One can also describe A as the dg
endomorphism algebra of A in a dg enhancement of KP(projA)/thick(S). Such a morphism
¢ is called a homological epimorphism (see [46]).
Now, we state the second main theorem of this paper.

THEOREM 2.15. Keep the notations above. If A is silting-discrete, then so is per(A).
A key point is an analog of the proof of [33, Cor. 2.12(a)].

Proof. The recollement (D(A),D(A),Tria(S)) as in before Theorem 2.15 gives rise to

an exact sequence 0 — Tria(S) — D(A) N D(A) — 0 of triangulated categories. As S is
presilting in KP(projA), we derive from the Thomason-Trobaugh-Yao localization theorem
[43, Th. 2.1] that i* induces a triangle equivalence K®(projA)/thick(S) ~ per(.A), whence
per(.A) is silting-discrete by Lemma 2.12.

REMARK 2.16. Theorem 2.15 holds enough for a nonpositive dg K-algebra A.

The proof of Theorem 2.15 spins off the following result, which mentions a Bongartz-
type lemma for a given presilting object S; if A > S > A[1], then A is nonpositive because
H(A) ~ H*"(X), so the result gives a generalization of Proposition 2.5(1).

COROLLARY 2.17. Keep the notations as in before Theorem 2.15. Assume that A is
nonpositive. Then S is partial silting.

Proof. In the proof of Theorem 2.15, we got a triangle equivalence K°(projA)/thick S ~
per(A). The silting reduction (Lemma 2.12) yields isomorphisms silts(KP(projA)) ~
silt(KP(proj A)/thick S) =~ silt(per(A)) of posets. Since A is nonpositive, it is silting in
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per(A), whence silt(per(.A)) is nonempty; so is silts(KP(projA)). Thus, it turns out that S
is partial silting. U

Let e be an idempotent of A. Following [33, Prop. 2.10] and its proof, we can construct
a nonpositive dg K-algebra A, and a homological epimorphism ¢ : A — A, of dg algebras;
embed the canonical morphism Ae®t, eA — A into the triangle

Ae@by,eh = A L5 A Aewly, eA[l],

and take the standard truncations A, := 0=%(A’) and ¢ := 0=%(¢’), where for a complex
(X% d"), the standard truncation 0=°(X) is the complex --- — X 1 — Kerd” — 0. Then, A,

and ¢ are the desired dg algebra and homological epimorphism, since we have isomorphisms

0, (1>0),

Hi(A) ~ { A (i=0). (2.17.1)
Ker(Ae®epe eA — Ael), (i=-—1),
Tor®3¢ | (Ae,eA), (i< -1)

Here is a corollary of Theorem 2.15 and Corollary 2.17.
COROLLARY 2.18. Let e be an idempotent of A. Then we have the following.

(1) If A is silting-discrete, then so is per(A.).
(2) A presilting object of KP(projA) generating thick(eA) is partial silting.

Proof. As above, we obtain a recollement (D(A.),D(A), Tria(eA)) and know that A, is
nonpositive. So, the first assertion directly follows from Theorem 2.15. If S is a presilting
object of KP(projA) generating thick(eA), then we have Tria(S) = Tria(eA), whence the last
assertion is derived from Corollary 2.17. O

We remark that Corollary 2.18(2) can be shown more directly by the silting reduction.
That is, let S :=thick.S, then & = thickeA by assumption, and so the silting reduction yields
isomorphisms siltg A ~ silt KP(projA)/S ~ silt.y A of posets. As the last set is nonempty
(because A is the member), we have siltg A # (), whence S is partial silting.

In the rest of this subsection, we give an explicit description of A, and its example thanks
to [35].

We first construct a nonpositive dg algebra A quasi-isomorphic to A (i.e., H ’(/N\) ~ HY(A);
see [45, Construction 2.6]). Let A be presented by a (finite) quiver @ with admissible ideal I;
write Q(©) := Q. We make a graded quiver Q(*) by adding to Q®) arrows in degree —1 which
correspond to each element of I and consider a differential which sends new arrows to their
corresponding relations; then H°(K QW) = A. Picking out a generating set of H~*(KQW),
one produces a graded quiver Q(®) by adding to Q") arrows in degree —2 which correspond
to each element of the generating set and consider a differential as well. Iterating this, we
get a graded quiver Q(°°) := UfioQ(i) such that the dg quiver algebra A= (KQ©) d) is
quasi-isomorphic to A.

Now, we apply Theorem 7.1 of [35] to obtain that A, is quasi-isomorphic to K/T\&NX,

where € is the idempotent of A corresponding to e.
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ExaMPLE 2.19. Let A be the algebra presented by the quiver

with deg(d) = —1, the other arrows are of degree 0 and with the trivial differential.

Let e be the primitive idempotent of A corresponding to the vertex 3. We see that A, is
the dg quiver algebra of the graded Kronecker quiver with arrows of degrees 0 and —1, and
the trivial differential. This is silting-discrete by Corollary 2.18(1).

Note that the dg quiver algebra of the graded Kronecker quiver with arrows of the same
degree n < 0 and the trivial differential is not silting-discrete; indeed, it is derived equivalent
to the (ordinary) Kronecker algebra 1 —=2 by the silting object P;[—n|® P;. Here, Py
and P, are the indecomposable projective modules corresponding to the vertices 1 and 2,
respectively.

This observation gives an example of silting-indiscrete algebras.

EXAMPLE 2.20. Let @ be the quiver of type ;1;:1 (p,q > 2); assign to the arrows of
two paths (resp. length p and ¢) from the source to the sink « and f, respectively. Then

A:=KQ/(aP,?) is silting-indiscrete.
Proof. We see that A is given by the graded quiver

with the dashed arrows of degree —1. Taking the sum e of the primitive idempotents of A
corresponding to all but the vertices 1 and 2, it is obtained that /N\/ ACA is the dg quiver
algebra of the graded Kronecker quiver with arrows of degree —1, which is silting-indiscrete,
so is A by Corollary 2.18(1). 0

2.3 Homological epimorphisms of algebras

In this subsection, we restrict the results in §2.2 to ordinary algebras; that is, A is just
an algebra.

Let ' be a finite-dimensional K-algebra. Recall that a homomorphism ¢ : A — T’
of algebras is a homological epimorphism if the canonical morphism I'®L T' — T is an
isomorphism in the derived category of (I',T")-bimodules; that is, the multiplication map
I'®a I — T is isomorphic and Tor?(I',T') = 0 for all i > 0. Note that the former condition
I'oa ' >~ T is satisfied if and only if ¢ is an epimorphism in the category of rings; it is
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called a ring-epimorphism [51, Prop. 1.1]. A surjective homomorphism (i.e., an ordinary
epimorphism) is a ring-epimorphism, but the converse is not always true.

As a homological epimorphism A — I' of algebras induces a recollement (D(I"),D(A), X)
by [44, §4], we immediately obtain the following result from Theorem 2.15 under a subtle
condition.

COROLLARY 2.21. Let ¢ : A — T be a homological epimorphism and assume that X
is compactly generated; for example, the projective dimension of the right A-module 'y is
finite. If A is silting-discrete, then so is I

We say that an idempotent e of A (or the ideal AeA) is stratifying if the canonical
homomorphism 7 : A — A/AeA is a homological epimorphism; equivalently, the dg algebra
A, as in Corollary 2.18 is just isomorphic to A/AeA. For example, if A is hereditary (i.e.,
A = KQ for an acyclic quiver @), then any idempotent e of A is stratifying; notice that A
as in the last of §2.2 is nothing but (K@Q,0) = A. More generally, if AeA is projective as a
right A-module, then it is stratifying. Here is a direct consequence of Corollaries 2.18/2.21.

COROLLARY 2.22. Let e be a stratifying idempotent of A. If A is silting-discrete, then
so is AJAeA.

A typical example of stratifying idempotents is a primitive idempotent corresponding to
a source or a sink in the Gabriel quiver of A. So, we have:

ExaMPLE 2.23. Let e be a primitive idempotent corresponding to a source or a sink
in the Gabriel quiver of A. If A is silting-discrete, then so is A/AeA. In other words, if a
one-point extension algebra of A is silting-discrete, then so is A.

We remark that this example can also be got from the fact that A/AeA is isomorphic to
(1—e)A(1—e) for such an idempotent e.

Note that the converse of Example 2.23 does not necessarily hold; a one-point extension
of a path algebra of Dynkin type is often of non-Dynkin type. This also means that the
silting-discreteness of both sides in a recollement is not always passed to the middle in the
recollement.

We apply Example 2.23 to tree quiver algebras.

EXAMPLE 2.24. Let A be a tree quiver algebra; that is, the underlying graph of its
Gabriel quiver is a tree. If A is silting-discrete, then so is A/AeA for every idempotent
e of A.

2.4 Remark on Kronecker algebras

As is well-known, the Kronecker algebras are a first and good example of 7-tilting infinite
algebras. When we discuss silting-discreteness, one often needs graded Kronecker algebras,
as we already observed in the preceding subsections. Now, we summarize it.

Let K be the dg quiver algebra of a graded n-Kronecker quiver with trivial differential.
For A := (n;); € @,y Z>0, we write K := K()), where n; stands for the number of arrows of
degree i; we will omit the zero parts. Note that n =), n;. We remark that applying shifts,
K((n;);) is derived equivalent to K((n;4m);) for every m € Z.

In case that n; # 0 for at most two components i, we get the following result.

PROPOSITION 2.25. Let i < 0. Then K = K(ng,n;) is silting-discrete if and only if
10,1 <1
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Proof. 1f ng>2, then H°(K) is the ordinary (2-)Kronecker algebra; so, it is not 7-tilting
finite. Therefore, K is not silting-discrete. Let n; > 2 and S := H°(K)/rad H°(K). Then
the Koszul dual K' := Extj (S, S) of K is quasi-isomorphic to K(n}_;,n}), which is derived
equivalent to K(n§,n!). Here, n{j =n}_, =n; and n! =n} = ny. Since K and K' are derived
equivalent [52, §5], we obtain that K is not silting-discrete.

Let us show the if part; we only handle the case that ng =1 =n;. Let A be the radical-
square-zero algebra given by the quiver

° 1 —1 °

It follows from Proposition 2.8 that A is silting-discrete. Let e, be the primitive idempotent
of A corresponding to the vertex v. Taking the idempotent e :=e; +---4+e_;, we see that
IC is quasi-isomorphic to 4., whence it is silting-discrete by Corollary 2.18. [

REMARK 2.26. We know from [41, Cor. 3.2] that if K is derived equivalent to an ordinary
algebra, then K = K(ng,n_1) up to shift. Moreover, by [41, Cor. 3.10], it is seen that
K(ng,n_1) is derived equivalent to the algebra presented by the quiver consisting of vertices
1 and 2 with ng arrows from 1 to 2 (say z) and n_; arrows from 2 to 1 (say y), and with
all relations yx = 0. This is just a quasi-hereditary algebra with two simples.

REMARK 2.27. We observe that /C(1,1) for an arbitrary degree is derived equivalent to
a graded gentle one-cycle algebra, which behaves like (ordinary) derived-discrete algebras.
We hope that graded gentle one-cycle algebras which are not derived equivalent to K A are
silting-discrete (see [34]).

2.5 Remark on quotients

We give a remark on the inheritance of silting-discreteness by (idempotent) quotients,
comparing with 7-tilting finiteness.

First, note that algebra (ordinary) epimorphisms cannot necessarily transmit the silting-
discreteness (see Proposition 2.9 and Example 2.20).

Next, let us observe that idempotent quotients cannot always inherit the silting-
discreteness, either. Let I' be the algebra given by the quiver

1%I&i
N

with relations fa = da = ve =0 and v = yx. To check that I" is a piecewise hereditary
algebra of type E7, we first show the following claim.

CLAM. Let A be a piecewise hereditary algebra of Dynkin type and M an indecomposable
K M
right A-module. Then the one-point extension algebra <O A) 1s derived equivalent to a
hereditary algebra.
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Proof. Let A be a hereditary algebra of Dynkin type which is derived equivalent to A.
Applying shift functors if needed, we may assume that M corresponds to an indecomposable
A-module N under a derived equivalence between A and A. Since A is representation-finite,
there is an integer £ > 0 with P := 7%(N) projective. Here, T denotes the Auslander—Reiten
translation. As it induces a derived autoequivalence of A, we can take a derived equivalence

K M
between A and A which sends M to P. By [18, Th. 1], we obtain that <O A) is derived

equivalent to (IO{ i), which is hereditary. U

We recall the definitions of the Coxeter matrix, Coxeter polynomial, and spectral radius
of a hereditary algebra A. Let C be the Cartan matrix of A. Then the matrix —C~1C*
and its characteristic polynomial are called the Cozeter matriz and the Cozeter polynomial
of A, respectively. Here, C* denotes the transpose of C. Let a,...,q, be the eigenvalues
of the Coxeter matrix; that is, the complex roots of the Coxeter polynomial. The spectral
radius of A is defined to be the maximum of the absolute values of o;’s.

Let us return our attention to I'. Since the full subquiver with the vertices 2, 3, 4, and
7 makes a piecewise hereditary algebra of type D4, we observe by the claim that the one-
point extension at the vertex 5 is derived equivalent to a hereditary algebra whose Coxeter
polynomial is (z+1)(x*+ 1), which is of type Ds. Therefore, it turns out that the algebra
presented by the full subquiver with the vertices 2, 3, 4, 5, and 7 is piecewise hereditary
of type Ds. As a similar argument (use the dual of the claim), we see that I' is derived
equivalent to a hereditary algebra with Coxeter polynomial (x+ 1)(z° — 23+ 1), which is of
type E7. Thus, we figure out that I is silting-discrete.

However, it is obtained by Example 2.14 that the idempotent quotient I'/T'e;I" is not
silting-discrete, where e; denotes the primitive idempotent corresponding to the vertex 7.

REMARK 2.28. Although Coxeter polynomials are a derived invariant, we cannot judge
the silting-discreteness of a given algebra only by them, in general. Actually, the extended
canonical algebra of type (2,4,6), which is given by the quiver

6 = 22 —y*, has the same Coxeter polynomial as a (piecewise) hereditary

with relation z
algebra of type D1o [39, Prop. 5.9], but it is not silting-discrete. Note that the algebra is
never derived equivalent to a hereditary algebra; for a hereditary algebra, if the spectral
radius (= 1) is not a root of the Coxeter polynomial, then the algebra is representation-
finite; if the spectral radius (= 1) is a root of the Coxeter polynomial, then the algebra
is representation-tame; if the spectral radius is strictly greater than 1, then the algebra is

representation-wild.
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83. Applications

In this section, we investigate the silting-discreteness of finite-dimensional algebras; in
particular, we focus on

e simply connected tensor algebras (3.1) and
e self-injective Nakayama algebras (3.2).

Let A be a finite-dimensional K-algebra which is basic and ring-indecomposable. Let Xn)

be the quiver 1 2 e n . For two successive arrows & —~—> e S in the
Gabriel quiver of A, we draw e —— e —— e if a3 =0.

3.1 Simply connected tensor algebras

In this subsection, we completely classify silting-discrete simply connected tensor
algebras. Since we already know that the tensor algebra of three nonlocal algebras is nothing
but not silting-discrete [7, Prop. 4.1], one turns the interest to the classification of silting-
discrete simply connected tensor algebras of two algebras. Here is the first case; one of the
two is K.

ProrosiTION 3.1. A simply connected algebra is silting-discrete if and only if it is
piecewise hereditary of Dynkin type.

Proof. The if part is trivial. We show the only if part. Let A be a silting-discrete simply
connected algebra. Note that the silting-discreteness implies the 2,-silting finiteness (the
7-tilting finiteness for A). We see by [54, Th. 3.4] that A is representation-finite. Since A is
silting-discrete, any reflection of A is 7-tilting finite. Moreover, it follows from [14, Lem. 3.1]
that every reflection of A is simply connected, so it is representation-finite. Then, we apply
Proposition 3.3 of [14] to deduce that the repetitive algebra of A is locally representation-
finite, which implies that it is piecewise hereditary of Dynkin type by [28]. 0

In the rest of this subsection, let A and B be triangular algebras which are basic and ring-
indecomposable, and put A := ARk B. Here, a triangular algebra is a finite-dimensional
K-algebra whose Gabriel quiver is acyclic.

Our goal of this subsection is to give a complete classification of silting-discrete simply
connected tensor algebras. We know that A is silting-discrete if A is local and B is silting-
discrete [7, Th. 2.1]. Let us give an easy observation.

LEMMA 3.2. If A is silting-discrete, then so are both A and B.

Proof. Let e be a primitive idempotent of A. As A is triangular, we have an isomorphism
eAe ~ K. Apply Corollary 2.11 to deduce that B ~ (e® 1)A(e®1) is silting-discrete. [

We determine the algebra structure of one of the components when A is silting-discrete.

LEMMA 3.3. If A is silting-discrete, then at least one of A and B has at most two
nonisomorphic simple modules. In particular, it is isomorphic to K or KA.

Proof. By Lemma 3.2, it is observed that A and B are silting-discrete, and so they have
no multiple arrow in their Gabriel quivers [26, Th. 5.12(d)]. Note that for every idempotent
e of A, eAe is a silting-discrete triangular algebra.
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Now, assume that A has at least three nonisomorphic simple modules. As above, there
exists an idempotent e of A such that eAe is isomorphic to one of the following:

o — >0

From Corollary 2.11, we obtain that (e®1)A(e®1) = (eAe) ®x B is silting-discrete. Note
that, the first two of the three algebras above are derived equivalent to the path algebra
K As. If eAe is one of the first two, then (eAe) ® i B is derived equivalent to KAz ® B,
which must be silting-discrete. This yields by [7, Th. 4.4] that B is a Nakayama algebra
with radical square zero, whence it is isomorphic to K A, /rad® K A for some r > 0; because
B is triangular. We see that (eAe) @k B is derived equivalent to K A3 R K Ar, which is
also silting-discrete. By [7, Th. 4.4] again, we have r < 2.

Finally, let us suppose that eAe is the last of the three algebras above, which is derived
equivalent to the algebra C' given by the quiver

with y8 = 0. So, we observe that (eAe) @k B is derived equivalent to C ® x B, which is
silting-discrete. Since there is an epimorphism C @ B — K A3 ®k B, it turns out that
K A3 ®k B is 7-tilting finite [26]. As a similar argument above, we conclude that B has at
most two nonisomorphic simple modules. O

— —
We often call the algebra K As @ KA, the commutative ladder of degree r, which is
presented by the quiver with relations as follows:

ol o]

Now, we realize the goal of this subsection, which gives a complete classification of silting-
discrete simply connected tensor algebras.

THEOREM 3.4. Assume that A and B are nonlocal and simply connected. Then the
following are equivalent:

(1) A is silting-discrete.
(2) It is a piecewise hereditary algebra of type Dy, Eg, or Es.
(3) It is derived equivalent to the commutative ladder of degree < 4.

Note that the case of A being a piecewise hereditary algebra of type A cannot occur
since if so, then either A or B is local.

Proof. The equivalence (2)<(3) is due to [38]. We know the implication (2)=-(1) holds.
Let us show the implication (1)=-(3) holds true. Applying Lemma 3.3, we may suppose
that A~ K /T; By Lemma 3.2, one sees that B is silting-discrete. Therefore, it follows
from Proposition 3.1 that B is piecewise hereditary of Dynkin type A, whence A is derived
equivalent to K As ® i KA. Since this is silting-discrete, we observe that A must be of type
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A, by [7, Th. 3.2]; that is, A is derived equivalent to the commutative ladder of degree r.
By [7, Exam. 3.3], we get r < 4. 0

REMARK 3.5. Lemma 3.3 also says that if A is silting-discrete, then at least one of
A and B is automatically simply connected. Then, we ask whether they both are simply
connected or not. In fact, it seems to be unknown that K As ® i C is silting-discrete, where
C' is the algebra presented by the quiver with relation:

SN

(Tt is 7-tilting finite, thanks to Aoki’s QPA program.) This is also one reason why we cannot

drop the assumption of A and B being simply connected in Theorem 3.4.

3.2 Self-injective Nakayama algebras

Ten years ago, the first-named author of this paper showed that any representation-
finite symmetric algebra is silting-discrete [5]. Then, we might naturally hope that every
representation-finite self-injective algebra is also silting-discrete. However, we here give the
following surprising result, which says that the guess does not necessarily hold.

THEOREM 3.6. Let A be a (nonlocal) self-injective Nakayama algebra; that is, it is
presented by the cyclic quiver with n vertices, and the rth radical is zero for some n,r > 1.
Then A is not silting-discrete if (i) r =3,4 and n > 11; (ii) r =5,6 and n>r+8; or (iii)
r>T7andn>2r+1.

Let n,r > 1. We denote by N,, , the algebra given by the quiver

12590 2 ... 2. n

with " = 0. The primitive idempotent corresponding to the vertex i of the quiver is denoted
by e;. As is well-known, an algebra is a nonlocal self-injective (symmetric) Nakayama algebra
if and only if it is isomorphic to N, for some n,r >1 (r = 1(mod n)).

We give an example of silting-discrete self-injective Nakayama algebras.

PROPOSITION 3.7. Ifr=2 orr=1(mod n), then N, , is silting-discrete.
Proof. By Proposition 2.8 for r =2 and [5, Th. 5.6] for » = 1 (mod n). 0

— —
Put A(n,r) := KA, /rad" KA,. Under a suitable condition, we can get A(n,r) by an
idempotent truncation of a self-injective Nakayama algebra.

LEMMA 3.8. Let 1<s<n and put e:=ey +---+es. If s+r<n+1, then eNy e is
isomorphic to A(s,r).

Proof. Straightforward. U

Thanks to the list of [29] (see also [39]), we give a complete classification.
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Table 1. The list of Happel-Seidel (the entry describes the type of A(s,r) if it is piecewise hereditary,
otherwise the hypen “-” is put)

1"\5 3 4 5 6 7 8 9 10 11 12 13
2 As Ay As As Ag As Ag Ao A Aro Az

3 Dy Ds Es E7 Eg Eg X236 Xasz7 - -

4 Ds Es E; E; X244 X5 - - -

5 Dg E; Es Eg Taz7 - - -

6 D7 Eg Eg Xo36 Xoazr - -

7 Dg Es Tas7 Xo37 - -

8 Dy Tas7 Th3s Xo3s -
LEMMA 3.9.

(1) If A(s,r) is not silting-discrete, then neither is A(s+1,r).
(2) A(s,r) is silting-discrete if and only if one of the following cases occurs:
() r=2
(i) r=3,5,6 and s <8§;
(iii) r=4 and s<7;
(iv) r>7 and s=r+1.

Proof. (1) Apply Corollary 2.11 to A(s,7) ~ (1 —es41)A(s+1,7)(1 —es41).

(2) For each 7, the list of Happel-Seidel (Table 1) describes a border of s for which
A(s,r) is derived equivalent to a hereditary algebra of Dynkin type or not. Then, by (1), we
completely understand whether A(s,r) is silting-discrete or not. For instance, when r > 7,
A(r+2,r) is derived equivalent to a path algebra of type Thg(—1) (£g = T236), which is not
Dynkin; so, it is silting-indiscrete. O

Now, we show the main theorem of this subsection.
Proof of Theorem 3.6. Let A:= N, , for n,r > 1. We put s in each case as follows:

(i) r=34andn>11~s=9(r=3)ors=38 (r=4).
(i) r=>56andn>r+8~s=09.
(iii) r>7and n>2r4+1~>s=r+2.

In all the cases, the assumption of Lemma 3.8 is satisfied; hence, eAe ~ A(s,r).
By Lemma 3.9, we see that A(s,r) is not silting-discrete for these pairs (s,7), whence A
is not silting-discrete by Corollary 2.11. O

REMARK 3.10. As an analog of silting-discreteness, the notion of the tilting-discreteness
for (self-injective) algebras was introduced by Chan, Koenig, and Liu. It is known that
any representation-finite self-injective algebra (so, every self-injective Nakayama algebra) is
tilting-discrete [10], [22].

Appendix A. Derived-discrete algebras are silting-discrete
The aim of this appendix is to give an approach to checking the silting-discreteness by
classification of indecomposable objects. As a corollary, we obtain that any derived-discrete
algebra is silting-discrete [56, Exam. 3.9 and Cor. 4.2]; the case that it has finite global
dimension is due to [21]. Here is the main theorem of this appendix.
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THEOREM A.l. Assume that for each integer d > 0, there exists an upper bound of
the dimensions of Hom (®;ezP*,A/rad A) for all indecomposable perfect complexes P with
length d. Then A is silting-discrete.

Proof. By [30, Cor. 9] (see also [11, Th. 1.1]), the assumption implies that there are
only finitely many indecomposable presilting complexes of KP(projA) with length d, which
derives that dx-silt KP(projA) is finite. Thus, KP(projA) is silting-discrete. 0

For example, the assumption of Theorem A.1 is satisfied if A is a derived-discrete algebra
[19], [20] (see also [13]). So, we recover the result of Yao—Yang.

COROLLARY A.2. Any derived-discrete algebra is silting-discrete. In particular, every
Nakayama algebra with radical square zero is silting-discrete.

Proof. Let A be a derived-discrete algebra, but not piecewise hereditary of Dynkin type.
By [20], we see that A is derived equivalent to the algebra presented by the quiver with
relations for some 1 <7 <n and m > 0:

1 n—r—1

ST
AN /

n—1l<=—- . <=—n—-r+1

m m—1 0 -

It follows from [19] that each term of an indecomposable perfect complex is a multiplicity-
free projective module, which means that A satisfies the assumption of Theorem A.1, so it
is silting-discrete. [

Appendix B. Triangulated categories whose silting objects are tilting

The gap between siltings and tiltings has been often drawing attention lately (see, e.g.,
[3], [17]). In this appendix, we explore when a triangulated category has only tilting objects;
the main result of this appendix was used by the first-named author of this paper in the
article [6], but he gave no proof because it is easy. The aim of this appendix is to present
a proof and examples of the main result.

We say that T is asotic if any silting object in T is tilting; the word asotic is an
abbreviation of the phrase “Any Silting Object is Tilting” + the suffix “ic.”

In this appendix, algebras are always finite-dimensional K-algebras which are basic and
ring-indecomposable, unless otherwise noted.

The first example of asotic triangulated categories is a triangulated category with an
indecomposable tilting object [9, Th. 2.26]; such a triangulated category can be written as
the perfect derived category of a local algebra. In the following, let us consider the nonlocal
case.

We say that T is ¢-Calabi-Yau if there is a bifunctorial isomorphism Homy(—,7) ~
DHomy(?,—[{]), where D stands for the K-dual. Here is an easy example of asotic
triangulated categories (see [9, Lem. 2.7 and Exam. 2.8]).

ExamMpPLE B.1. A 0-Calabi-Yau triangulated category is asotic. In particular, the
perfect derived category of a symmetric algebra is 0-Calabi—Yau, and so it is asotic.
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We also know that a (complete) preprojective algebra of extended Dynkin type admits an
asotic perfect derived category [37, Prop. A.1]; note that the algebra is not finite-dimensional
and the perfect derived category has symmetry like 0-Calabi—Yau property.

The main result of this appendix gives a slight generalization of Example B.1. Leaving
the details for silting mutation to the paper [9], we use the terminologies uy (T) and p% (T)
for the left and right mutations of a silting object 1" at its direct summand X.

THEOREM B.2. Let A be an algebra and T := K" (projA).

(1) The following are equivalent:
(i) up(A) is tilting for any indecomposable projective module P.
(ii) The top of the indecomposable injective module corresponding to S is the direct
sum of some copies of S for every simple module S.
(2) The following are equivalent:
(1) upH(A) is tilting for any indecomposable projective module P.
(ii) The socle of the indecomposable projective module corresponding to S is the direct
sum of some copies of S for every simple module S.

Proof. We show (2); the other can be handled dually. Let S be a simple module
and P its corresponding indecomposable projective module which is of the form eA for
a primitive idempotent e of A. Then, we observe that the right mutation u;(A) is the
direct sum of a complex X and the stalk complex A/P concerned in degree 0, where
X is the (—1)-shift of the projective presentation of M := eA/eA(1 —e)A. Note that
the second syzygy Q?(M) of M is contained in the direct sum of some copies of A/P
[9, Lem. 2.25]. Thus, the equivalence (i)<(ii) can be checked easily by an isomorphism
Homs prejr) (15 (A), 175 (A) [~ 1]) = Homa (M, A/ P& Q2(M)). 0

For example, weakly symmetric algebras satisfy the condition (ii) as in Theorem
B.2(1)(2). Moreover, the weakly symmetric property of algebras is a derived invariant (see,
e.g., [17, Prop. 3.1]). These yield the following corollary.

COROLLARY B.3. Let A be a weakly symmetric algebra and T := K°(projA). Let C be a
connected component of the Hasse quiver of siltT. Then the following hold:

(1) If C has a tilting object, then all members in C are tilting.
(2) If A is silting-connected, that is, C =siltT, then T is asotic.

We give an example of nonsymmetric algebras whose perfect derived categories are asotic
(see [3], [6], [10], [17]).

EXAMPLE B.4. Let A be the preprojective algebra of Dynkin type Ds,, E7 or Eg, which
is nonsymmetric weakly symmetric. Then 7 := KP(projA) is asotic.

Proof. The strategy is due to [10]; we give a proof here for the convenience of the reader.

By Theorem B.2, any (irreducible) silting mutation of A is a tilting object whose
endomorphism algebra is isomorphic to A. So, for every sequence A =: Ty, T1,...,Ty4 of
silting objects such that T;,; is the (left) silting mutation of 7; at an indecomposable
direct summand, we see that all T;’s are tilting. Since the set 2r.-silt7 is finite, we obtain
that 7T is silting-discrete; in particular, it is silting-connected. Thus, it turns out that 7 is
asotic by Corollary B.3. U
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We remark that there are weakly symmetric algebras whose perfect derived categories are
not asotic [17, §4]. This says that for such an algebra A, the Hasse quiver of silt(K®(projA))
has a connected component consisting of nontilting silting objects. On the other hand, we
know from [17, Prop. 3.6] that for a weakly symmetric algebra A, every silting object lying
in 2,-silt(KP(projA)) is tilting.

We also find nonweakly symmetric algebras with asotic perfect derived categories.

ProPOSITION B.5. Let R be a local algebra, and let A be a silting-discrete algebra. If
KP(projA) is asotic, then so is KP(projA®x R).

Proof. The assertion follows from [7, Th. 2.1]. 0

B.1 Thick subcategories

As an application, we describe thick subcategories generated by silting objects (i.e.,
the thick closures of presilting objects) in terms of algebras associated with a given
algebra; however, we will assume the Bongartz-type condition (i.e., every presilting object is
partial silting). Since any silting-discrete triangulated category satisfies the Bongartz-type
condition [10, Th. 2.15], we can, for example, choose a silting-discrete symmetric algebra
as our algebra.

The following proposition is practical to write out full triangulated subcategories with
silting objects (up to triangle equivalence).

PROPOSITION B.6. Let A be an algebra whose perfect derived category is asotic and
satisfies the Bongartz-type condition. Then every full triangulated subcategory of KP(projA)
with a silting object can be realized as KP(projele), up to triangle equivalence. Here, T is
an algebra derived equivalent to A and e is its idempotent.

Proof. Let U be a full triangulated subcategory of T := KP(proj A) with U silting. Since
U is presilting in KP(projA), the Bongartz-type condition of 7 implies that U can be
completed to a silting object T := U @ X of KP(projA). As T is asotic, it is seen that T is
tilting in 7, so U is tilting in U. Hence, I' := End (7)) is derived equivalent to A. Take the
composition e of the canonical morphisms T'— U — T, which is an idempotent of I with
el'e ~ Endr(U). Since U is tilting in U, it turns out that there are triangle equivalences
U ~ KP(projEndr(U)) ~ KP(projele). 0

Let us give an easy example.

ExaMpPLE B.7. Let A := Ay be the multiplicity-free Brauer star algebra with three
edges; that is, its Brauer tree is:

(e]

o

@)

As is well-known [49], there are two derived equivalent algebras to A; one is A itself and the
other is the multiplicity-free Brauer line algebra A; with three edges. Taking idempotent
truncations, we get three kinds of Brauer tree algebras other than A and A;; the Brauer
tree algebras Ay, A3, and A4 whose Brauer trees are G5, G3, and G3 x G3, respectively:

Go:= o o o, Gs:= o o
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By Proposition B.6, these give all (nonzero) full triangulated subcategories of KP(projA)
with siltings, which are triangle equivalent to K®(projA;) for i € {0,1,2,3,4}.

Even if a given full triangulated subcategory has a tilting object, it does not necessarily
possess partial tilting in the whole; the following example first appeared in [50].

ExAMPLE B.8. Let A be the algebra presented by the quiver
N
B

with relations a8 = vd = da = 0. Then, A has global dimension 4, and the simple module

2 3

S corresponding to the vertex 1 is a partial tilting module with projective dimension 2;
hence, it is pretilting in K(projA). Let & be the thick closure of S in KP(projA). Then, U
has a tilting object S, but its (pre)tilting objects are never partial tilting in KP(projA).

Indeed, the Grothendieck group of U has rank 1, so siltid = S|Z]. However, we obtain from
[40, Exam. 4.4] that for any n € Z, S[n] is not partial tilting in K®(projA). Thus, & has no
partial tilting object of KP(projA). On the other hand, § is partial silting in K®(projA);
actually, S @ A/P[2] is silting in KP(projA), where P stands for the indecomposable
projective module corresponding to the vertex 1.

REMARK B.9. A crux of Proposition B.6 is that our triangulated category satisfies the
Bongartz-type condition but not asotic; that is, the classification of thick subcategories
with siltings can be done by using idempotent truncations of dg algebras. However, we here
avoided doing that because it is very difficult to classify all derived equivalent dg algebras
to the original. In this case, the asoticness condition was useful.

B.2 Remark on Bongartz-type condition
Recently, it was pointed out in [42] that the Bongartz-type condition for presiltings does
not necessarily hold. Let us recall it here.

We consider the algebra I' presented by the quiver 2 # 1 # 3 with 2 =0=192. Let

S := P,/(y); it has projective dimension 2 and is pretilting in KP(projT"). Here, P; stands
for the indecomposable projective module corresponding to the vertex i. Now, we find a
thick generator S @ P, ® P3 of KP(projI") whose dg endomorphism algebra A is given by
the quiver as in Example B.8 with deg(d) = 2; by the Keller—Rickard theorem, there is a
derived equivalence between I" and A which sends St to P; 5. Applying the silting reduction
(Theorem 2.15 and Corollary 2.17) to A, we get isomorphisms siltsI" ~ siltp, A >~ silt. A of
,/6\
posets. Here, A is the dg quiver algebra given by 2 N 3 with yve =0=¢f and deg(e) =1
¥

(trivial differential). It was proved that siltgT' =) in [42] and silt. A = 0 in [23]; that is, S is
not partial silting.

REMARK B.10. As seen above, silting reduction sometimes makes a triangulated
category without silting. We give a list of triangulated categories without silting:

e the singularity category Dsg(A) for a finite-dimensional algebra A; in particular, the stable
module category mod A for a self-injective algebra A [8], [9], [24];
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e a positively Calabi—Yau triangulated category [9];
e the perfect derived category per(A) for A as above with the same relations but with
deg () +deg(e) = 1 = deg(y) +deg(e) [23], [32].
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