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Abstract

We study competing first passage percolation on graphs generated by the configuration
model with infinite-mean degrees. Initially, two uniformly chosen vertices are infected
with a type 1 and type 2 infection, respectively, and the infection then spreads via nearest
neighbors in the graph. The time it takes for the type 1 (resp. 2) infection to traverse an
edge e is given by a random variable X1(e) (resp. X2(e)) and, if the vertex at the other end
of the edge is still uninfected, it then becomes type 1 (resp. 2) infected and immune to
the other type. Assuming that the degrees follow a power-law distribution with exponent
τ ∈ (1, 2), we show that with high probability as the number of vertices tends to infinity,
one of the infection types occupies all vertices except for the starting point of the other
type. Moreover, both infections have a positive probability of winning regardless of the
passage-time distribution. The result is also shown to hold for the erased configuration
model, where self-loops are erased and multiple edges are merged, and when the degrees
are conditioned to be smaller than nα for some α > 0.
Keywords: Random graphs; configuration model; first passage percolation; competing
growth; coexistence
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1. Introduction and main results

First passage percolation (FPP) was introduced in [20] as a model for the flow of fluid
through random media, and has evolved into one of the fundamental models of random growth.
The basic model for FPP on a graph is defined by assigning independent and identically dis-
tributed (i.i.d.) non-negative random weights to the edges, referred to as passage times and
interpreted as the times or costs of traversing the edges. This induces a random metric on the
vertex set where the distance between two vertices is the minimal cost-sum among all nearest-
neighbor paths connecting the two vertices. Of primary interest is the asymptotic behavior of
distances, balls and geodesics (time-minimizing paths) in the first passage metric. The classi-
cal example is when the underlying structure is taken to be the Z

d-lattice; see [5] for a recent
survey of results in this setting. The case with exponential passage times has received particular
attention and is referred to as the Richardson model.
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In [18], the Richardson model (on Z
d) was extended to a two-type version that describes

a competition between two infection types that evolve simultaneously using passage times
with (potentially) different intensities. The event that both infection types occupy infinite parts
of the lattice is referred to as infinite coexistence, and it is conjectured that this has positive
probability if and only if the infections have the same intensity. The if-direction was proved
in full generality independently in [17] and [21]. The only-if-direction remains to be fully
resolved, but partial results can be found in [19]. We refer to [15] for a survey and further
references.

The past few years have witnessed an explosion in the amount of empirical data on
networks, showing that many networks exhibit similar properties. This has motivated the
formulation of a large number of network models aiming at capturing and explaining these
properties. One property that is observed in many real-world networks is that they display
asymptotic power-law degree distributions, that is, the number of vertices with degree k decays
asymptotically for large networks as well as large k as k−τ for some exponent τ > 1, which for
a variety of empirical networks has been observed to range from just above 1 to a bit above
3; see [3, Table II]. See also [32] for more recent estimates of power-law exponents, and [14]
for criticism on the prevailing suggestion that power laws are omnipresent. The regime τ > 3
corresponds to finite variance, τ ∈ (2, 3) to finite mean but infinite variance, and τ ∈ (1, 2) to
infinite mean. The standard model for generating graphs with a prescribed degree distribution
is known as the configuration model, and is constructed by independently assigning half-edges
to the vertices according to the desired distribution and then pairing the half-edges randomly.
Its structure is well understood in all three power-law regimes mentioned above; see e.g. [26],
[29], [30], and [31]. FPP on the configuration model with τ > 2 and exponential passage times
was analyzed in [10] and the results for τ > 3 were extended to all continuous passage-time
distributions in [12]. For τ ∈ (2, 3), FPP was studied in more detail in [7] and [8], and for
τ ∈ (1, 2) in [11].

In competing FPP on the configuration model, two infection types compete to invade the
vertices in the graph. Each edge is equipped with two independent non-negative random
weights from two potentially different distributions, indicating the passage time for types 1
and 2, respectively. When a vertex is type i infected, the passage times on the incident edges
are activated. Then a given neighbor that is uninfected when the type i passage time on the con-
necting edge has passed becomes type i infected at that time. Infected vertices become immune
to the other type and stay infected forever. The growth is typically started from two uniformly
chosen vertices. The model was analyzed for exponential passage times and constant degrees
(leading to random regular graphs) in [4], where it was shown that the strongest type occupies
all but a vanishing fraction of the vertices when the intensities are different, while both types
occupy positive fractions of the vertices when they are equal (the analysis in [4] also included
more general initial sets leading to modified results). For exponential passage times and degree
exponent τ > 3, it was shown in [1] that the behavior is the same as for constant degrees. The
case with exponential passage times and τ ∈ (2, 3) was considered in [16], where it was shown
that one of the types then occupies all but a finite number of the vertices. Furthermore, both
types have a positive probability of winning regardless of the intensities of the infections. The
model has also been analyzed for constant passage times in the regime τ ∈ (2, 3) in [6] and
[28]. When the types have different (constant) passage times, the faster type occupies all but
a vanishing fraction of the vertices [6], while in the symmetric case coexistence can occur
depending on the choice of the two starting vertices [28].

In this paper we analyze competing FPP on graphs generated by the configuration model
with degree exponent τ ∈ (1, 2) for a large class of passage-time distributions. Values of
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τ ∈ (1, 2) have been observed in social networks, such as email networks and collaboration
networks, in technological networks, such as the link structure of the World Wide Web and net-
works of dependences between software packages, and in ecological networks; see [3, Table
II] and [25, Table II]. We show that with high probability as the number of vertices grows
to infinity, one of the infection types occupies all vertices except for the starting point of the
other type, leading to the most extreme ‘winner-takes-it-all’ phenomenon possible. Moreover,
both types have a positive probability of winning, regardless of the passage-time distribution.
For τ ∈ (1, 2), the graph has a degenerate structure where all vertices are connected to a small
number of giant-degree vertices with degrees comparable to the total degree in the graph. The
competition is essentially won by the type that first makes it from its starting point to one of
its (giant-degree) neighbors. After this happens, the infection type quickly invades all the other
giant-degree vertices, thereby preventing the other type from making any progress at all. The
behavior is explosive and the outcome of the competition is determined in finite time.

1.1. Definition of the model

The configuration model takes n vertices and a probability distribution with support on
non-negative integers as input. Let D be a random variable drawn from the given probabil-
ity distribution and let D1, D2, . . . , Dn be i.i.d. copies. These represent the degrees of the
vertices and we write Ln =∑n

i=1 Di for the total degree. To construct the graph, each vertex
i ∈ {1, . . . , n} = [n] is first assigned Di half-edges. The half-edges are then iteratively paired
to form edges. Specifically, at each step we pick two half-edges uniformly at random from
the set of half-edges that have not been paired yet, and connect them into an edge. If Ln is
odd, so that only one half-edge remains in the last step, then we add one extra half-edge at a
uniformly chosen vertex. To avoid trivial complications in the formulation of our results, we
assume throughout that Di ≥ 1, so that there are no isolated vertices in the graph.

The probability mass function of the degree distribution is denoted by

P(D = j) = fj, j = 1, 2, . . . ,

and the distribution function is given by

F(x) = P(D ≤ x) =
�x�∑
j=1

fj,

where �x� indicates the largest integer smaller than or equal to x. Our main assumption is
that

1 − F(x) = �(x)x−(τ−1) for some τ ∈ (1, 2), (1.1)

where � is a slowly varying function, that is, the degrees obey a power law with infinite mean.
The notation n �→ �(n) will refer throughout to a slowly varying function that might differ at
different occurrences.

To define the competition process, given the edge set E, we equip each edge e ∈ E in the
graph with two independent weights X1(e) and X2(e) representing the passage time through
the edge for type 1 and 2, respectively. We assume that (X1(e))e∈E is an i.i.d. sequence, and so
is (X2(e))e∈E. The two sequences are independent of each other, but may have different distri-
butions. At time 0, vertex 1 is infected with type 1 and vertex 2 is infected with type 2 while
all other vertices are uninfected. Note that since vertices are exchangeable in the configuration
model, this is equivalent to starting from two distinct vertices chosen uniformly at random.
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The infections then spread in the graph via nearest neighbors: the time it takes for the type 1
(resp. 2) infection to traverse an edge e = {u, v} from u and reach the vertex v at the other end
of the edge is given by X1(e) (resp. X2(e)). If v is still uninfected at that time, then it becomes
type 1 (resp. 2) infected. An infected vertex remains infected with the same type forever and
becomes immune to the other type.

For a random variable Y , let supp(Y) denote the support of the distribution of Y . We work
with a fairly large class of passage-time distributions, assuming only that

X1(e) and X2(e) are continuous random variables

with inf supp(X1(e)) = inf supp(X2(e)) = 0.
(1.2)

1.2. Results and heuristics

It is well known that when τ ∈ (1, 2) and Di ≥ 1, the graph generated by the configuration
model contains a giant component that comprises almost all vertices, that is, the asymptotic
fraction of vertices in the giant component converges to 1; see [2] and [23]. This means that
almost all vertices will eventually be infected in the competition process described above.
Recall that we are considering a graph with n vertices. Let Ni(n) denote the number of vertices
ultimately infected by type i (i = 1, 2) and define Nlos(n) = min{N1(n), N2(n)}. Also write Zi for
the minimal passage time from the initial type i vertex to one of its neighbors, so that, assuming

that i does not have any self-loops, Zi
d= min{Xi(j) : j = 1, . . . , Di}, where (Xi(j))j≥1 are i.i.d.

random variables from the passage-time distribution, and with Z1 and Z2 being independent.
Note that Zi = Zi(n), but for simplicity of notation we omit the dependence on n. Our main
result states that one of the types overtakes the other by occupying all vertices except for the
starting point of the other type. Furthermore, the winning type is the one that makes the first
move in the process by infecting one of its neighbors.

Theorem 1.1. (The winner takes it all but one.) Consider competing FPP on the configuration
model satisfying (1.1) and (1.2). Then limn→∞ P(Nlos(n) = 1) = 1. Furthermore,

lim
n→∞ P(N1(n) = 1 | Z1 > Z2) = lim

n→∞ P(N2(n) = 1 | Z1 < Z2) = 1.

Note that it follows from (1.2) that the event {Z1 > Z2} has a non-trivial probability, imply-
ing that both types have a positive probability of winning the whole graph except for the other
starting location.

To heuristically explain the result, note that for i.i.d. power-law random variables with expo-
nent τ ∈ (1, 2), the sum Ln is of order n1/(τ−1)+o(1) when (1.1) holds, which is also the scaling
of the maximum degree. In terms of our configuration graph, this means that the bulk of the
contribution to the total degree comes from a finite number of vertices with degrees of the
same order as the total degree. We refer to these as giant-degree vertices or simply giants.
A basic fact for the configuration model is that the number of connections between two sets of
half-edges of sizes a and b is of order ab/Ln. This implies that since the giants have degree of
order n1/(τ−1)+o(1), they are all linked to each other, thus forming a tightly connected complete
graph, with the number of multiple edges between two giants being of order n1/(τ−1)+o(1).
Furthermore, with high probability as n → ∞, all other vertices are connected only to giants.
We refer to [26] for a more detailed description of the structure of the graph.

Theorem 1.1 is now explained in that all neighbors of the initially infected vertices are
tightly connected giants, implying that the type that makes the first move by occupying one
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of these giants will quickly invade all other giants as well, thereby preventing the other type
from making any progress at all. Indeed, the passage time between two giants is the minimum
of n1/(τ−1)+o(1) (the number of multiple edges) i.i.d. edge passage times, which converges to 0
in probability under the assumption (1.2). The spread between giants is hence extremely fast,
since there are many edges between giants.

Next, we investigate a more general scenario in which the competition starts from multiple
vertices chosen uniformly at random. In our main result, for a process started from ki type
i vertices, we denote the minimum passage time from the initial type i vertices to the set of

neighbors of these vertices by Zi,ki

d= min{Xi(j) : j = 1, . . . ,
∑ki

l=1 Dl}, again with Z1,k1 and
Z2,k2 being independent.

Corollary 1.1. (Multiple starting points.) Consider competing FPP on the configuration model
satisfying (1.1) and (1.2), and starting with ki type i vertices chosen uniformly at random, where
ki ≥ 1 is fixed (i = 1, 2). The number Nlos(n) converges in distribution to a random variable W
with P(W = k1) = 1 − P(W = k2) = P(Z1,k1 > Z2,k2 ). More specifically,

lim
n→∞ P(N1(n) = k1 | Z1,k1 > Z2,k2 ) = lim

n→∞ P(N2(n) = k2 | Z1,k1 < Z2,k2 ) = 1.

If k1 is fixed and k2 = k2(n) → ∞ as n → ∞, the conclusions remain valid with W ≡ k1 and
limn→∞ P(N1(n) = k1) = 1. Similarly, if k2 is fixed and k1 = k1(n) → ∞, then W ≡ k2 and
limn→∞ P(N2(n) = k2) = 1.

The result is again explained by the fact that the type that first reaches a neighbor of its
initial set will soon thereafter occupy all giants in the graph, thereby preventing the other type
from growing beyond its initial set. If both k1 and k2 are fixed, then P(Z1,k1 > Z2,k2 ) ∈ (0, 1)
and both types have a positive probability of winning. If k1 is fixed while k2 grows with n, then
P(Z1,k1 > Z2,k2 ) → 0, implying that the type 2 infection wins with high probability.

The conditioned model. The maximum degree in our configuration graph is of order
n1/(τ−1)+o(1) with τ ∈ (1, 2). In some situations these large degrees are artificial, and we may
want to prevent this while keeping the same form of degree distribution. This may be the case,
for instance, in certain types of communication networks and other networks where there are
limitations on the capacity of the vertices. We therefore extend our results to the case when the
degrees are conditioned to be smaller than nα for some α > 0. Specifically, we let the degrees
be i.i.d copies of a random variable D(n), with probability mass function

P(D(n) = j) = fj
P(D ≤ nα)

for j = 1, 2, . . . , �nα� and α > 0. (1.3)

Theorem 1.2. (Conditioned model.) Under assumptions (1.1) and (1.2), the conclusions of
Theorem 1.1 and Corollary 1.1 are also valid for competing FPP on the configuration model
with degree distribution (1.3) for any α �= 1/(τ + k), k ∈N.

When α > 1/(τ − 1) the conditioning has no effect on the graph, so the interesting regime
is α < 1/(τ − 1). The maximum degree in the graph is then nα and the total degree Ln =∑

i∈[n] Di(n) is of order n1+α(2−τ ). This means that all vertices are still connected only to
the vertices of maximal degree nα , which now play the role of the giants. In contrast to the
unconditioned case, the number of giants grows to infinity with n, indicating that the time from
when one giant is infected until all giants are infected may not vanish. We show, however, that
the time until the infection reaches all (giant) neighbors of the type that failed to make the first
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move does vanish. For α > 1/τ , this follows from the fact that the giants still form a complete
graph with a large number of multiple edges between them. For α < 1/τ , the giants no longer
form a complete graph, but in [26] it was shown that for α ∈ (1/(τ + k), 1/(τ + k − 1)), k ∈N,
the graph distance between two giants is at most k + 1. This observation can be used to show
that any two giants are with high probability connected by a large number of disjoint paths of
bounded length. Assuming (1.2), this gives the desired conclusion, since the passage times of
disjoint paths are independent and the sum of at most k + 1 i.i.d. passage times still has 0 as the
infimum of its support. Our results do not cover the boundary cases α = 1/(τ + k) for k ∈N,
since the graph distance between two giants then potentially depends on the slowly varying
function in (1.1); see [26], where it is conjectured to be supported on at most two values.

The erased model. The configuration model allows for self-loops and multiple edges between
vertices. Indeed, for τ ∈ (1, 2), these structures are abundant and the occurrence of multiple
edges is one of the explanations for the behavior of the competition process. In some situa-
tions, however, self-loops and multiple edges are not desirable, for instance when modeling
acquaintance networks or email networks where the multiplicity of a contact is not relevant,
but one only cares about whether two individuals have contact at all. One option is then to first
generate the graph and then delete all self-loops and merge all multiple edges. This is known
as the erased configuration model.

The topology of a graph generated by the erased configuration model was studied in [11]
under the slightly stronger assumption on F that there exists a constant c > 0 such that

1 − F(x) = cx−(τ−1)(1 + o(1)) as x → ∞ for some τ ∈ (1, 2). (1.4)

As a result of the erasure, there are no longer multiple edges between vertices, but the set of
neighbors of a given vertex remains the same. It was shown that the number of joint neighbors
of two given giants, with degree of order n1/(τ−1) before erasure, is of order n, so that two
giants are hence connected by a large number of disjoint two-step paths. Hence (1.2) implies
that the passage time between two giants is also vanishing in the erased model, giving rise to
the same behavior for the competition process. The behavior persists also in the erased version
of the conditioned model, since the disjoint paths constructed between giants in the proof of
Theorem 1.2 do not rely on multiple edges.

Theorem 1.3. (Erased models.) The conclusions of Theorem 1.1 and Corollary 1.1 are also
valid for competing FPP on the erased configuration model satisfying (1.2) and (1.4).
Furthermore, under assumptions (1.1) and (1.2), the conclusions are valid for the erased ver-
sion of the configuration model with conditioned degree distribution (1.3) for α �= 1/(τ + k),
k ∈N.

The rest of the paper is organized so that Section 2 contains the proofs, followed by some
suggestions for further work in Section 3.

2. Proofs

This section contains the proofs. We first give a more formal definition of giant-degree
vertices and then show a key proposition stating that the passage time between two giants is
vanishing in all three instances of the model (the original one, the conditioned model, and the
erased model). With this at hand, all results follow without much further effort. We consider
the case with two initial points and then briefly describe at the end of the section how the
arguments can be generalized to larger initial sets.
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We start by defining the giant-degree vertices as those with a degree of the same order as
the maximal degree in the graph. To this end, let {un} be a sequence satisfying

1 − F(un) = (1 + o(1))/n.

It follows from standard extreme value theory that un is the scaling of the total degree Ln as
well as the maximal degrees in the graph; see e.g. [26, Lemma 2.1], where this is formulated in
the context of the configuration model. Furthermore, it follows from (1.1) that �(un)u−(τ−1)

n =
(1 + o(1))/n and hence that there exists a slowly varying function n �→ l(n) such that

un = l(n)n1/(τ−1). (2.1)

Definition 2.1. (Giant-degree vertices.) Fix a sequence (εn) such that εn ↘ 0 arbitrarily slowly
with ε−1

n slowly varying. The set of giant-degree vertices (or giants) is given by Hn = {h : Dh >

εnun} in the original and the erased model, and Hn = {h : Dh(n) > εnnα} in the conditioned
model.

Note that Dh refers to the degree before erasure in the erased model and is hence the same as
in the original model. Vertices in Hc

n = [n] \Hn are referred to as normal vertices. An impor-
tant consequence of the definition of giant-degree vertices is that other vertices are connected
solely to them.

Lemma 2.1. (Neighbors are giants.) Assume that (1.1) holds. A uniformly chosen vertex is with
high probability only connected to giant-degree vertices.

Remark 2.1. For a set of uniformly chosen vertices, pick one of the vertices in proportion
to its (erased) degree. It follows from the proof of the lemma that this vertex is with high
probability only connected to giant-degree vertices. This observation will be used to establish
Corollary 1.1.

Proof. The lemma is a consequence of the fact that the total degree of normal vertices is
negligible compared to the total degree of the giants. This is proved in [26, Lemmas 2.2 and
3.1] for the original and the erased model, respectively, but since the definitions of giant-degree
vertices differ slightly from ours we give a brief sketch here.

Let D(1) ≤ D(2) ≤ · · · ≤ D(n) denote the order statistics of the degrees, so that D(1) is the
smallest degree, D(2) the second smallest, and so on. Also, let Kn denote the total number of
half-edges belonging to non-giants. It follows from [26, Lemma 2.1] that P(D(n−k) ≥ εnun) → 1
for any k, and hence, with high probability,

Kn

Ln
≤ 1 −

∑k−1
i=0 D(n−i)

Ln
.

Also, by [26, Lemma 2.1], ∑k−1
i=0 D(n−i)

Ln

d→
∑k

i=1 ξi∑∞
i=1 ξi

,

where (ξi)i≥1 are almost surely finite and non-negative random variables such that∑∞
i=1 ξi < ∞. Since this holds for any k, we conclude that Kn/Ln → 0 in probability so that

half-edges of a randomly chosen vertex in the original model are with high probability con-
nected to half-edges of giant-degree vertices. Since giants in the erased model are defined
based on the non-erased degree, we draw the same conclusion there.
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To deal with the conditioned model, with degree distribution given by (1.3), write Mn for
the total degree in this case. Then

E[Mn] = n

F(nα)

nα∑
j=1

[P(D > j) − P(D > nα)].

Recall (1.1). By Karamata’s theorem [13, Theorems 1.7.2 and 2.6.1],

nα∑
j=1

P(D > j) = (1 + o(1))�(nα)(2 − τ )−1nα(2−τ ),

while nα
P(D > nα) = �(nα)nα(2−τ ). Thus

E[Mn] = (1 + o(1))
τ − 1

2 − τ
�(nα)n1+α(2−τ ).

Further,
Var(Mn) ≤ n E[D(n)2] ≤ n · nα

E[D(n)] = nα
E[Mn] �E[Mn]2,

since α < 1 + α(2 − τ ). In particular, Mn/E[Mn]
P−→ 1. Similarly, with Kα

n denoting the total
degree of non-giants,

E[Kα
n ] ≤ n

F(nα)

εnnα∑
j=1

P(D > j) = (1 + o(1))�(εnnα)(2 − τ )−1(εnn)α(2−τ ) = o(E[Mn]),

since α < 1/(τ − 1) and since �(εnnα)/�(nα) ≤ cε−δ
n for any δ > 0 by Potter’s theorem [13,

Theorem 1.5.6]. Thus Kα
n /Mn

P−→ 0. �

For two given vertices u and v, write Ti(u, v) for the first passage time between u and v in a
one-type FPP process based on (Xi(e))e, that is,

Ti(u, v) = inf

{∑
e∈�

Xi(e) : � is a path between u and v

}
. (2.2)

The following key result states that the first passage time between two giants is vanishing.

Proposition 2.1. (The infection spreads quickly between giants.) Consider a configuration
model obtained from the original, the conditioned, the erased, or the conditioned + erased
model and let hi be a randomly chosen neighbor of vertex i (i = 1, 2). If (1.1) and (1.2) hold,
then, for any ε > 0,

lim
n→∞ P(Ti(h1, h2) ≥ ε) = 0, i = 1, 2.

Remark 2.2. By Lemma 2.1, with high probability, h1 and h2 are indeed giants. The con-
clusion of Proposition 2.1 is in fact valid for a wide choice of giant-degree vertices, but we
formulate it for neighbors of vertices 1 and 2 since this is what we will apply it to. In estab-
lishing Corollary 1.1, we will instead of h1 apply it to the vertex h′

1 to which the edge with the
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smallest passage time among all edges incident to the k1 initial type 1 vertices is attached. By
Remark 2.1, the vertex h′

1 also has a giant degree.

Proof. We prove the claim separately for the four versions of the model, and end by treating
the combination of the conditioned and the erased version. By Lemma 2.1, both h1 and h2
are with high probability giant-degree vertices. We will therefore assume throughout that their
degrees are at least εnun in the original model and its erased version, and at least εnnα in the
conditioned model and its erased version (recall that in the erased models giants are defined
according to their degree before erasure).

First consider the original configuration model and let E(h1, h2) denote the number of edges
between h1 and h2. Since there are at least εnun − 1 half-edges attached to each one of h1 and
h2, in addition to the ones that are used to connect to vertices 1 and 2, respectively, the variable
E(h1, h2) is stochastically larger than a binomial variable with parameters (εnun − 1)/2 and
(εnun − 1)/(2(Ln − 2)). Indeed, when we go through the first half of the half-edges of h1 and
check if they are connected to a half-edge of h2, the outcome is stochastically larger than a
sequence of i.i.d. trials with the specified success probability, since there are then still at least
(εnun − 1)/2 half-edges left to connect to at h2 while the total number of available half-edges
is at most Ln − 2. It follows from [26, Lemma 2.1] that P(Ln < u1+δ

n ) → 1 as n → ∞ for any
δ > 0. Let Yn denote a binomial random variable with parameters εnun/4 and εnun/(4u1+δ

n ).
On the event {Ln < u1+δ

n }, we then have that E(h1, h2) is stochastically larger than Yn. Now
recall Janson’s inequality for a binomial random variable Yn stating that

P(|Yn −E[Yn]| ≥ t) ≤ 2 exp

{
− t2

2(E[Yn] + t/3)

}
for any t ≥ 0; (2.3)

see [22, Theorem 1]. Picking δ ∈ (0, 1) and defining

f (n) = E[Yn]

2
= 1

32
ε2

nu1−δ
n ,

it follows from Janson’s inequality with t = f (n) that

P(Yn ≤ f (n)) ≤ 2 exp
{−Cε2

nu1−δ
n

}
,

where C > 0 is a constant. By recalling (2.1) and the fact that ε−1
n is slowly varying, we con-

clude that P(E(h1, h2) ≤ f (n)) → 0 as n → ∞, with f (n) → ∞. The passage time between h1
and h2 is smaller than the minimum of the edge passage times of the direct edges between
them, implying that

P(Ti(h1, h2) ≥ ε) ≤ P

(
min

j∈[f (n)]
Xi(j) ≥ ε

)
+ P(E(h1, h2) ≤ f (n)), i = 1, 2.

The assumption (1.2) guarantees that the first term on the right-hand side tends to 0, which
completes the proof for the original model.

Moving on to the (non-conditioned) erased model, we write N(u, v) for the number of joint

neighbors of the vertices u and v. It was shown in [11, Lemma 6.7] that N(h1, h2)/n
d→ Y as

n → ∞, where h1 and h2 are giant-degree vertices and Y a proper random variable. It follows
that P(N(h1, h2) ≤ nγ ) → 0 for any γ < 1. Giant vertices are hence connected to each other by
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a large number of (disjoint) two-step paths. For i = 1, 2, let X(2)
i (j)

d= Xi(e) + Xi(ẽ) denote the
total passage time of the jth such path. Then

P(Ti(h1, h2) ≥ ε) ≤ P

(
min

j∈[nγ ]
X(2)

i (j) ≥ ε

)
+ P(N(h1, h2) ≤ nγ ), i = 1, 2. (2.4)

Here (X(2)
i (j))j≥1 are i.i.d. and inherit the property that inf supp(X(2)

i (j)) = 0 from their
summands, implying that the first term converges to 0 for any γ > 0. This proves the claim.

Next, consider the model where the degrees are conditioned to be at most nα , with α <

1/(τ − 1). For α > 1/τ the graph still has the same topology in the sense that the giants con-
stitute a tightly connected complete graph, that is, the number of multiple edges between them
grows to infinity with n. Let Eα(h1, h2) denote the number of edges connecting the two giants
h1 and h2. In the same way as when dealing with the original model, the number Eα(h1, h2)
can be stochastically bounded from below by a binomial random variable Yα

n with parameters
εnnα/4 and εnnα/(4n1+α(2−τ )+δ), and mean E[Yα

n ] = ε2
nnατ−1−δ/16. Picking δ ∈ (0, ατ − 1),

the same argument as for the original model yields P(Ti(h1, h2) ≥ ε) → 0.
For α < 1/τ , we have to work slightly harder. Fix k ∈N. It was shown in [26, Lemma 3.3]

that when α ∈ (1/(τ + k), 1/(τ + k − 1)), the graph distance between any two giant-degree
vertices is with high probability at most k + 1. We claim that in fact there is a large number
of disjoint paths of length at most 2(k + 1) between two giants. To see this, first note that the
number of giant-degree vertices is given by |Hn| =∑

v∈[n] 1{Dv(n)>εnnα}, with

E[|Hn|] = nP(D(n) > εnnα)

= n
F(nα) − F(εnnα)

F(nα)

≥ n(F(nα) − F(εnnα))

= �(n)n1−α(τ−1),

where we have used that ε−1
n is slowly varying and where n �→ �(n) denotes a slowly varying

function (that may differ from previous occurrences). Since α < 1/(τ − 1), we have 1 − α(τ −
1) > 0, and an application of Janson’s inequality (2.3) yields

|Hn| ≥ nγ (2.5)

with high probability for γ ∈ (0, 1 − α(τ − 1)). The number of giant-degree vertices hence
grows to infinity with n. With this observation at hand, we proceed to construct a growing
number of paths between h1 and h2 that are with high probability disjoint.

Let �1 be a path from h1 to h2 of length at most k + 1. Pick a giant vertex x2 /∈ �1; this
is possible with high probability since the number of giant-degree vertices grows to infinity
with n. Then there exist paths �′

2 and �′′
2 of length at most k + 1 connecting x2 to h1 and h2,

respectively. Let �2 = �′
2 ∪ �′′

2, where loops arising from common vertices in �′
2 and �′′

2 are
removed. Then �2 constitutes a path between h1 and h2 of length at most 2(k + 1). We claim
that with high probability as n → ∞, the paths �1 and �2 are disjoint, except for the first and
last vertices h1 and h2. Let Bn = {Mn > �(n)n1+α(2−τ )} and recall from the proof of Lemma 2.1
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FIGURE 1. Construction of the m disjoint paths of length at most 2(k + 1) from h1 to h2, where m = m(n)
grows to infinity with n.

that P(Bn) → 1. Conditionally on all degrees, the probability that there is an edge between two
vertices u and v is at most Du(n)Dv(n)/Mn. Using the fact that the degrees are at most nα , and
letting u ↔ v denote the event that there is an edge between u and v, we obtain

P({u ↔ v} ∩ Bn) ≤ �(n)
n2α

n1+α(2−τ )
= �(n)nατ−1.

Note that if �1 and �2 are not disjoint, then there must exist a vertex in �1 that is connected to
a vertex in �2. With A2 denoting the event that �1 and �2 are disjoint, we hence have

P(Ac
2 ∩ Bn) ≤ 2(k + 1)2�(n)nατ−1.

Next, pick a giant vertex x3 /∈ �1 ∪ �2 connected to h1 and h2 by paths �′
3 and �′′

3, respectively,
of length at most k + 1. Let �3 = �′

3 ∪ �′′
3, again removing any loops. Then �3 is a path from

h1 to h2 of length at most 2(k + 1). Let A3 denote the event that �3 and �1 ∪ �2 are disjoint.
Since |�1 ∪ �2| ≤ 3(k + 1), we obtain as above that

P(Ac
3 ∩ Bn) = P({�3 ∩ (�1 ∪ �2) �= ∅} ∩ Bn) ≤ 6(k + 1)2�(n)nατ−1.

Iterating this construction, in step m we pick a giant vertex xm connected to h1 and h2 by paths
�′

m and �′′
m, respectively, of length at most k + 1, and set �m = �′

m ∪ �′′
m with loops removed.

See Figure 1 for the above construction. Define

Am = {�m and �1 ∪ · · · ∪ �m−1 are disjoint}.

Then, since |�m| ≤ 2(k + 1) and |�1 ∪ · · · ∪ �m−1| ≤ (2m − 3)(k + 1), we can bound

P(Ac
m ∩ Bn) ≤ 2(2m − 3)(k + 1)2�(n)nατ−1.
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Let Ām = ∩m
j=2Aj denote the event that there is no overlap between any of the paths that we

have constructed. Then

P(Ām ∩ Bn) = P

(
m⋃

j=2

Ac
j ∩ Bn

)

≤
m∑

j=2

P(Ac
j ∩ Bn)

≤ 2(k + 1)2�(n)nατ−1
m∑

j=2

(2j − 3)

≤ 2(k + 1)2m2�(n)nατ−1.

Since α < 1/τ , we have ατ − 1 < 0. Pick δ ∈ (0, 1 − ατ ) and take m = m(n) = nδ/2 so that
P(Ām(n)) → 0. Note that 1 − ατ < 1 − α(τ − 1), implying that |Hn| > m with high probability.

To complete the proof, for i = 1, 2, let X2(k+1)
i be a random variable with X2(k+1)

i
d= Xi(1) +

· · · + Xi(2(k + 1)), that is, X2(k+1)
i is distributed as the passage time of a given path of length

2(k + 1). On the event Ām that the m paths that we have constructed between h1 and h2 are
disjoint, the passage time Ti(h1, h2) between h1 and h2 is bounded from above by the mini-
mum of m i.i.d. copies of X2(k+1)

i . Under the assumption (1.2), such a minimum converges to
0 in probability, since m(n) = nδ → ∞. Let {X(2(k+1))

i (j)}j≥1 be the i.i.d. sequence. The proof is
completed by noting that

P(Ti(h1, h2) ≥ ε) ≤ P

(
min

j∈[m(n)]
X(2(k+1))

i (j) ≥ ε

)
+ P(Ām ∩ Bn) + P(Bc

n), i = 1, 2,

where all terms have been shown above to converge to 0.
Finally, consider the erased version of the conditioned model. For α < 1/τ with

α �= 1/(τ + k) for k ∈N, the claim follows from the same construction as above, since the
argument does not rely on the occurrence of multiple edges. For α ∈ (1/τ, 1/(τ − 1)), the
claim follows in the same way as in the non-conditioned erased model if we can argue that
giant vertices are connected to each other by a large number of two-step paths in this regime
of the conditioned model. First, note that after erasure the giants still form a complete graph
(without multiple edges) with high probability. From the same argument as in the proof of
Lemma 2.1, it follows that Mn < �(n)n1+α(2−τ ) with high probability. Moreover, on the event
Mn < �(n)n1+α(2−τ ) and conditionally on the degrees, by [27, Lemma 7.13] the probability that
two giant vertices u, v ∈Hn are not directly connected satisfies

P({u ↔ v}c) ≤ exp

{
−Du(n)Dv(n)

2Mn

}
< exp

{
− ε2

nn2α

2�(n)n1+α(2−τ )

}
= exp

{
−ε2

nnατ−1

2�(n)

}
.

By applying the union bound, we obtain that the probability of the event G that the giants form
a complete graph satisfies

P(G) = 1 − P(∃ u, v ∈Hn : {u ↔ v}c) > 1 − n2 exp

{
−ε2

nnατ−1

2�(n)

}
,
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where the last term tends to 1 as n → ∞, since ε−1
n is slowly varying and α > 1/τ . Note

also that the number of giants grows to infinity with n. More precisely, from (2.5) with high
probability |Hn| ≥ nγ with γ ∈ (0, 1 − α(τ − 1)). Hence, since the set of joint neighbors of the
giant vertices h1 and h2 includes at least all the remaining giants, it follows that N(h1, h2) ≥
|Hn| − 2 and then P(N(h1, h2) < nγ /2) → 0, where N(h1, h2) indicates the number of joint
neighbors of h1 and h2. The proof is completed by using (2.4) in the same way as for the
erased model without conditioning. �

Remark 2.3. (Avoiding the initial vertices.) Note from the proof that Proposition 2.1 remains
true also when vertex 1 and 2 (or any finite set of vertices) are not allowed to be used to transfer
the infection from h1 to h2, that is, when the infimum in (2.2) is taken over all paths � that do
not contain vertex 1 or 2. This will be relevant when applying the result to the competition
model below.

With Lemma 2.1 and Proposition 2.1 in hand, we are ready to prove Theorems 1.1, 1.2, and
1.3 Given that Lemma 2.1 and Proposition 2.1 apply to all versions of the model, the proofs
are identical and can be merged.

Proof of Theorems 1.1, 1.2, and 1.3. We show that for any δ > 0 there exists nδ such that

P(N2(n) > 1 | Z1 < Z2) ≤ δ when n ≥ nδ , (2.6)

that is, P(N2(n) = 1 | Z1 < Z2) → 1. That P(N1(n) = 1 | Z1 > Z2) → 1 follows by symmetry.
Let Ni denote the set of neighbors of vertex i. With high probability neither vertex 1 nor

vertex 2 has a self-loop on it, and we therefore assume that i �∈Ni for i = 1, 2. Write h∗ for
the first vertex in N1 ∪N2 that is infected. By definition, if Z1 < Z2, then h∗ = h1 ∈N1. Write
T̃i(h1, h) for the type i first passage time between h1 and h when vertices 1 and 2 are not
allowed to be used. For any ε > 0, if all vertices in N2 are reached by type 1 from h1 within
time ε, while the time that it takes for type 2 to reach any vertex in N2 is larger than ε, then
type 2 is not able to make any progress at all, and thus ends up occupying only its initial site.
Hence, conditionally on Z1 < Z2,

{N2(n) > 1} ⊂
{

max
h∈N2

T̃1(h1, h) ≥ ε

}
∪ {Z2 − Z1 ≤ ε}.

Now pick ε small so that P(Z2 − Z1 ≤ ε | Z1 < Z2) < δ/2. This is possible since Z2 − Z1 is a
proper random variable with support on (0, ∞). Also, fix d such that P(|N2| > d | Z1 < Z2) <

δ/4 and observe that

P

(
max
h∈N2

T̃1(h1, h) ≥ ε | Z1 < Z2

)

≤ P

({
max
h∈N2

T̃1(h1, h) ≥ ε

}
∩ {|N2| ≤ d} | Z1 < Z2

)
+ δ/4.

The event Z1 < Z2 only contains information about vertex 1 and 2 and hence does not affect
T̃1(h1, h) for h ∈N2. Combining this with a union bound, we obtain

P

({
max
h∈N2

T̃1(h1, h) ≥ ε

}
∩ {|N2| ≤ d} | Z1 < Z2

)
≤ d · P(̃T1(h1, h2) ≥ ε),
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where h1 and h2 are randomly chosen neighbors of vertex 1 and 2, respectively. Here the right-
hand side converges to 0 by Proposition 2.1 and Remark 2.3 and so can be made smaller than
δ/4 by picking n large. This concludes the proof of (2.6). �

Finally, we indicate how the above proof can be generalized to establish Corollary 1.1 and
its counterparts for the erased and the conditioned model.

Proof of Corollary 1.1. Generalizing (2.6), we now need to show that for any δ > 0 there
exists nδ such that

P(N2(n) > k2 | Z1,k1 < Z2,k2 ) ≤ δ when n ≥ nδ . (2.7)

To this end, consider all edges attached to the k1 initial type 1 vertices and let h′
1 be the other

end point of the edge with the smallest passage time; this is the vertex that is infected when
type 1 makes its first move. Note that (2.7) can be proved in a similar way as above by showing
that for any ε > 0, conditionally on Z1,k1 < Z2,k2 ,

{N2(n) > k2} ⊂
{

max
h∈N2

T̃1(h′
1, h) ≥ ε

}
∪ {Z2,k2 − Z1,k1 ≤ ε},

where both events on the right-hand side have probability smaller than δ/2. Here, to bound
the first term, we use Remark 2.2. We conclude that P(N2(n) = k2 | Z1,k1 < Z2,k2 ) → 1. If k2 is
fixed while k1 = k1(n) → ∞, then P(Z1,k1 < Z2,k2 ) → 1, implying that P(N2(n) = k2) → 1. �

3. Further work

There are a number of aspects of the model treated here that deserve further attention. We
give a few examples below.

Growing initial sets. When both initial sets grow with n, we believe that the outcome of the
competition depends on the combination of growth rates of the initial sets and the passage-time
distribution. For a growing initial set, the time until the corresponding infection type reaches a
giant vertex should converge to 0 in probability, with the rate of convergence being determined
by the growth of the set, as well as the behavior close to zero of the passage-time distribution.
Also, the rate at which the first passage time between two giants converges to 0 depends on the
passage-time distribution. We believe that there are setups where both types occupy a positive
fraction of the vertices (starting from an initial set that does not grow linearly) as well as setups
where one of the types occupies everything except for the initial set of the other type.

Other passage-time distributions. What happens for continuous passage-time distributions
that do not fulfill our assumption (1.2)? We believe that the outcome of the competition may
then depend not only on the infimum of the supports but also on other properties of the dis-
tributions. In general, if the passage-time distribution does not have support down to 0, then
the first passage time between two giants for the corresponding type is not vanishing, implying
that the other type is not cut off from the possibility of capturing vertices beyond its initial set.
However, a type that does not have support down to 0 may still have the possibility of occupy-
ing all initially uninfected vertices. Suppose that type 1 has a passage time with support down
to 0, while type 2 has a passage time with support down to η > 0. Suppose also that the support
of the passage time of type 1 is larger than 2η. Then, with positive probability, Z1 > 2(η + ε)
for some ε > 0, while Z2 ≤ η + ε. As a result, from the giant neighbor that type 2 reaches
at time Z2, with high probability conditionally on Z1 > 2(η + ε) and Z2 ≤ 2(η + ε), all other

https://doi.org/10.1017/jpr.2023.23 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2023.23


The winner takes it all but one 151

giants are reached at time 2(η + ε) by type 2, since the giant is connected to all other giants
with an increasing number of edges so the passage time of type 2 is close to η. Since vertex
1 is only connected to giants, at time 2(η + ε) it becomes isolated, even though the support of
its passage times does go down to zero while the one for type 2 does not. We conclude that
type 2 wins with positive probability but naturally also type 1 wins with positive probability.
Working out what the exact winning probabilities are for each of the two types in cases where
the supports do not go down to zero is quite interesting.

Another option that might seem natural is to consider discrete passage times. In order to
be meaningful, however, this would presumably require some type of non-lattice condition
guaranteeing that both types cannot arrive at a vertex at the same time. If both types arrive
simultaneously at a vertex, then a tie-breaking rule is needed to decide the type that occupies
the vertex, and due to the special structure of the graph for τ ∈ (1, 2) it is likely that the choice
of tie-breaker will in fact decide the competition. In less heavy-tailed regimes, the tie-breaker
typically kicks in only when the competition is already decided and is thereby essentially
irrelevant; see e.g. [6] and [28].

Conditioned model with stricter upper bound. In the conditioned model, the degrees are
conditioned to be smaller than nα for some α > 0. The upper bound could also be taken as
a more general function an of n. When an grows more slowly with n, the conditioning has a
larger impact on the structure of the graph. Specifically, when an is sufficiently small, the graph
may lose the property that any two vertices of maximal degree are within finite distance from
each other. This would be interesting to study in its own right, but would also have implications
for the competition process in that the first passage time between two giants is then no longer
vanishing. We believe that for a certain class of natural passage-time distributions including the
exponential and uniform distributions, the cut-off may be at an ∝ log n. For other distributions
having a thicker or thinner tail close to 0, we believe the cut-off to be at a different value of an.
We leave this for future research.
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